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(1) Clebsch-Gordan coefficients (2 Punkte)

(a)

Consider a system composed of a spin-3/2 particle and a spin-1 particle with
spin z-components S;, = +1/2 and S, = 0. What are the possible measurement
results for a measurement of S? and of S,, where S = S; + S, is the total spin
of the system? What are the probabilities for each of these possible measurement
results?

Consider now the state of two coupled particles, again a spin-3/2 and a spin-1, with
the total spin S = 5/2 and with S, = —1/2. What are the possible measurement
results for a measurement of Sy, and of S5.7 What are the probabilities for each
of these possible results?

(2) Variational method (2 Punkte + 2 Bonuspunkte)

(a)

Use the variational ansatz ¢, (x) o exp(—%) to show that the one-dimensional

potential well
| W x| <a,
Viz) = { 0 lz] > a

with V4 > 0 has at least one bound state.

Hint: Find a negative upper bound for the ground-state energy.

Bonus points: Show that the existence of a bound state is not guaranteed in the
three-dimensional case. And what about the two-dimensional case?

Find an upper bound for the ground-state energy of the Hamiltonian

p2
H =" + ka* k>0,
2m

by choosing an appropriate trial wavefunction.
Compare with the exact result

h4k' 1/3
Ey=0.66798626. .. (—) .

m2



(3) Matrix elements of z (2 Punkte)
In the discussion of the Stark effect in the lecture we used some properties of the matrix
elements of z with the H-atom states [nlm) that we want to prove now.

(a) Show that [L.,z] = 0 and conclude that (n’l'm’|z|nlm) = 0 unless m’ = m.

(b) Use a symmetry argument to prove that (n'lm’|z|nlm) = 0 (same [!).

(¢) Show that (200|2|210) = —3ao where ag = 4megh?/(me?) is the Bohr radius.
Hint: the H-atom wave functions are ¢, (1,6, ¢) = (1,0, ¢|nlm) = Ry (r) Y, (0, ¢).

1\ 32 r . 1 1\%2 ,
In particular, Roo(r) = 2 (Q_a()) (1—2—%)67ﬂ and Ry (1) = 7 (2—%> —e 2%

(4) Perturbed two-dimensional harmonic oscillator (4 Punkte)
Consider the two-dimensional harmonic oscillator with a perturbed potential energy of
the form

1
V(w,y) = gme?(@® +y° + Ay) (1)

(a) Calculate the energy eigenvalues for the unperturbed case (A = 0) and discuss
their degeneracies.
Hint: Use creation (annihilation) operators for each of the two degrees of freedom

T, Yy, i.e.,
h . Imhw
2mw<a1+a1)> Pz =1 2 (aJ{_al)a

and similarly for y, p,, and as, a;

xr =

(b) Compute the ground-state energy of the system (A # 0) up to second order in A
and the ground-state wave function up to first order in \.

(c¢) The first excited state of the unperturbed system (A = 0) is doubly degenerate.
Calculate the energy splitting up to first order in A\. What are the corresponding
eigenstates in zeroth order?

(d) * Compare with the exact result.
Hint: express (1) as a sum of two harmonic potentials.



(5) Numerically solving the Schrédinger equation (5 Bonuspunkte)
to be submitted before the end of the semester.
One way to solve quantum problems numerically is to turn the Schrodinger equation
into a matrix equation by discretizing the variable x. The goal of this problem is to
apply this procedure to the one-dimensional Hamiltonian H = A V(z).

T 2mda?

(a) Slice the relevant interval in evenly spaced points z; with Az := z;.; — z;, and

(d)
(e)

let ¢; := 9(x;) and V; := V(x;). Show that the discretized Schrodinger equation
can be written as

}"—LQ wj 1 — 277Z}] + 77Z1j_1

_m < ( $)2 > + ijj = E¢j

or

hQ

In matrix form, Hy = E, where H is a tridiagonal matrix and
Vi1

V=1 v
(LS}

Write down the matrix H. What goes in the upper left and lower right corners of
H depends on the boundary conditions. The allowed energies are the eigenvalues
of the matrix H if the discretization is fine enough, Ax — 0.

Apply this method to the harmonic oscillator, V(z) = $mw?z?.

Chop the interval [-5:5] into N +1 equal segments, i.e., Az = 10/(N+1), 2o = —5,
zy+1 = 5. Choose the boundary condition 1)y = Y41 = 0 (what does that mean?),
leaving ¥ = (11, ...%y). Construct the tridiagonal N x N matrix H.

Choose e.g. N = 100 and use a computer to find the 10 lowest eigenvalues nume-
rically. Compare with the exact result.

Hint: We support Julia, but you are free to use any programming language.

In Julia, a symmetric tridiagonal N x N matrix can be created using

H = SymTridiagonal(d, od) where the N-dimensional vector d contains the dia-
gonal elements and the (N — 1)-dimensional vector od contains the off-diagonal
elements.

e,ev = eigen(H) will create a vector e containing the eigenvalues and a matrix ev
containing the eigenvectors.

Repeat (c) for V(z) = ka* and confirm the value of the ground-state energy
mentioned in the lecture and in problem 2, viz., Ey = 0.66798626. .. (h'k/m?)"/3.

Bonus point: plot the lowest five eigenstates, both for (b) and (d).

Please submit your code in electronic form or print it out.



