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(1) Components of the angular momentum operator (3 Punkte)
Using the commutation relation [xj, pk] = ih̄δjk, show the following relations for the
orbital angular momentum operator L = (Lx, Ly, Lz); n is a real vector.

(a) [n · L, r] = ih̄r× n

(b) [n · L,p] = ih̄p× n

(c) L× L = ih̄L

(2) Can l be half-integer for orbital angular momenta? (3 Punkte)
In this problem, we will prove that the eigenvaluesm of the angular momentum operator
Lz/h̄ must be integer. Therefore, the orbital angular momentum quantum number l can
take only integer values.

(a) Express the operator Lz in terms of the creation and destruction operators, a†i and
ai (i = 1, 2, 3) by using the transformations

xi =

√
h̄

2mω
(ai + a†i ) ; pi = −i

√
h̄mω

2
(ai − a†i ) .

(b) By introducing new operators b1, b2 (and their hermitian conjugates) that are
linear combinations of the ai’s, show that Lz can be written in the form

Lz = h̄(b†2b2 − b†1b1) ,

where the operators b1, b2 satisfy the commutation relations [b1, b
†
1] = [b2, b

†
2] = 1,

[bi, bi] = [b†i , b
†
i ] = 0 for i = 1, 2.

(c) Argue that the eigenvalues of Lz should be an integer multiplied by h̄ and conse-
quently that the orbital angular momentum l should be integer.

(3) Kronig-Penney-Model for V0 < 0 (4 Punkte + 2 Bonuspunkte)
In the lecture we discussed the Kronig-Penney-Model

V (x) = V0

∞∑
n=−∞

δ(x− na) .

Solving the equation

cos(ka) = cos(qa) +
mV0a

h̄2
sin(qa)

qa
(1)

graphically for V0 > 0, we obtained the allowed and forbidden values of q which resulted
in energy bands and energy gaps in ϵk = h̄2q2/(2m).

Consider now the case V0 < 0.



(a) Sketch the right-hand side of Eq. (1) as a function of qa and solve the equation
graphically or with a computer. Sketch the lowest energy band ϵk.

(b) In the case V0 < 0 there are solutions to the Schrödinger equation with negative
energy eigenvalues. What does this imply for q? Solve Eq. (1) for this case graphi-
cally or with a computer. Sketch the part of the lowest energy band that originates
from this solution and complete the sketch in (a). Interpret your result.

(c) Bonus points: Calculate and plot the first four energy bands numerically for
mV0a/h̄

2 = −1,−2,−5.

(4) Supersymmetry (5 Bonuspunkte)
Consider the two operators

A = i
p√
2m

+W (x) and A† = −i p√
2m

+W (x)

for some function W (x); here, p is the momentum operator. Using these two operators
we can construct two Hamiltonians,

H1 = A†A =
p2

2m
+ V1(x) and H2 = AA† =

p2

2m
+ V2(x) .

W (x) is called superpotential ; V1 and V2 are called supersymmetric partner potentials.

(a) Find the potentials V1(x) and V2(x) in terms of W (x).
Hint: Apply A†A to a wave function ψ(x).

(b) Show that if |ψ(1)
n ⟩ is an eigenstate of H1 with eigenvalue E

(1)
n , then A|ψ(1)

n ⟩ is

an eigenstate of H2 with the same eigenvalue. Similarly, show that if |ψ(2)
n ⟩ is an

eigenstate of H2 with eigenvalue E
(2)
n , then A†|ψ(2)

n ⟩ is an eigenstate of H1 with
the same eigenvalue. The two Hamiltonians therefore have essentially identical
spectra.

(c) One ordinarily choosesW (x) such that the ground state of H1 satisfies A|ψ(1)
0 ⟩ = 0

and hence E
(1)
0 = 0. Use this to find W (x) in terms of the ground state wave

function ψ
(1)
0 (x). (The fact that A annihilates |ψ(1)

0 ⟩ means that H2 has one less

eigenstate that H1 and is missing the eigenvalue E
(1)
0 .)

(d) Consider the attractive δ-function potential V1(x) =
mα2

2h̄2 − αδ(x) with α > 0.

(The constant shift guarantees that E
(1)
0 = 0.) As we saw in problem 4 of Blatt 5,

it has a single bound state,

ψ
(1)
0 (x) =

√
mα

h̄
exp(−mα

h̄2
|x|) .

Determine W (x) and the partner potential V2(x) and compare the properties of
V1 and V2.

(e) Find and discuss the supersymmetric partner of the box with hard walls, V1(x) =

− π2h̄2

2mL2 for |x| ≤ L
2
and ∞ otherwise.


