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(1) Components of the angular momentum operator (3 Punkte)
Using the commutation relation [z;, px] = ihd;x, show the following relations for the
orbital angular momentum operator L = (L,, L,, L.); n is a real vector.

(a) m-L,r] =dhr x n
(b) [1’1 ’ L7p] = th Xn
(¢) Lx L =1ihL

(2) Can [ be half-integer for orbital angular momenta? (3 Punkte)

In this problem, we will prove that the eigenvalues m of the angular momentum operator

L,/h must be integer. Therefore, the orbital angular momentum quantum number [ can
take only integer values.

(a) Express the operator L, in terms of the creation and destruction operators, a;-r and
a; (i =1,2,3) by using the transformations

h hmw
Y (a; +a)); D i1/ 5 (a; —a)) .

(b) By introducing new operators by, by (and their hermitian conjugates) that are
linear combinations of the a;’s, show that L, can be written in the form

L, = h(blby — blby),

Tr; =

where the operators by, by satisfy the commutation relations [by, bi] = [by, b] = 1,
[b;, b;] = [b],b]] = 0 for i = 1,2.

(c¢) Argue that the eigenvalues of L, should be an integer multiplied by & and conse-
quently that the orbital angular momentum [ should be integer.

(3) Kronig-Penney-Model for 1, < 0 (4 Punkte + 2 Bonuspunkte)
In the lecture we discussed the Kronig-Penney-Model

Viz) =W Z d(x —na) .

Solving the equation
Vig si
m 20a sin(qa) (1)
h qa
graphically for V > 0, we obtained the allowed and forbidden values of ¢ which resulted
in energy bands and energy gaps in ¢, = h%¢%/(2m).

cos(ka) = cos(qa) +

Consider now the case Vy < 0.



(a) Sketch the right-hand side of Eq. (1) as a function of ga and solve the equation
graphically or with a computer. Sketch the lowest energy band €.

(b) In the case Vi < 0 there are solutions to the Schrodinger equation with negative
energy eigenvalues. What does this imply for g7 Solve Eq. (1) for this case graphi-
cally or with a computer. Sketch the part of the lowest energy band that originates
from this solution and complete the sketch in (a). Interpret your result.

(¢) Bonus points: Calculate and plot the first four energy bands numerically for
mVpa/h? = —1, -2, —5.

(4) Supersymmetry (5 Bonuspunkte)
Consider the two operators

. p . p
A= + W d Al =—
W T Wie) an "Vam

for some function W (z); here, p is the momentum operator. Using these two operators
we can construct two Hamiltonians,

+ W (z)

2 2

H=Aa=2 V@) and H=a4 =L 1v).

W (z) is called superpotential; V; and V3 are called supersymmetric partner potentials.

(a) Find the potentials Vi(x) and V,(z) in terms of W (z).
Hint: Apply ATA to a wave function ¥ (z).

(b) Show that if W,(Ll)> is an eigenstate of H; with eigenvalue ES", then AW(I)}
an eigenstate of Hy with the same eigenvalue. Similarly, show that if Wn ) is an
eigenstate of Hy with eigenvalue Eﬁz), then ATW,@) is an eigenstate of H; with

the same eigenvalue. The two Hamiltonians therefore have essentially identical

spectra.
(¢) One ordinarily chooses W (x) such that the ground state of H; satisfies A|1/1(()1)> =0
and hence E = 0. Use this to find W(z) in terms of the ground state wave

function 2/10 ( ). (The fact that A annihilates |2/J(()1)> means that Hy has one less
eigenstate that H; and is missing the eigenvalue E(l) )
(d) Consider the attractive d-function potential V;(z) = 2h2 — ad(x) with a > 0.

(The constant shift guarantees that Eél) = 0.) As we saw in problem 4 of Blatt 5,
it has a single bound state,

é

mo
0 (@) = = exp(— 7 fol)

Determine W (x) and the partner potential V5(x) and compare the properties of
Vi and V5.

(e) Find and discuss the supersymmetric partner of the box with hard walls, V;(z) =

— r£2 for |z| < £ and oo otherwise.



