Quantenmechanik, Herbstsemester 2025

Blatt 5

Abgabe: 21.10.25, 12:00H (auf adam oder Treppenhaus 4. Stock)

Tutor: Tobias Kehrer, Zi. 4.48

- (1) More on the charged particle in a magnetic field (4 Punkte + 1 Bonuspunkt) We consider a particle (charge q) in a magnetic field $\mathbf{B}(\mathbf{r})$.
 - (a) Show that the (Heisenberg) equation of motion for the velocity \mathbf{v} reads

$$\frac{d}{dt}\mathbf{v} = \frac{q}{m}(\mathbf{v} \times \mathbf{B}) + i\frac{q\hbar}{2m^2}\nabla \times \mathbf{B}.$$
 (1)

Hint: Write the Hamiltonian in terms of velocities and use the commutation relation for the components of the velocity, $[v_k, v_l] = i\hbar \frac{q}{m^2} \epsilon_{kln} B_n$. Interpret the terms on the right-hand side of Eq. (1).

- (b) We now assume that $\mathbf{B} = (0,0,B) = const.$ Solve Eq. (1) and show that the particle performs a cyclotron motion around a center (x_0, y_0) as in the classical case.
- (c) Show that the guiding center coordinates x_0 , y_0 are constants of motion but do not commute. Interpretation?
- (d) Show that the square of the radius of the cyclotron motion has a sharp value in a (Landau) energy eigenstate and conclude that the radius of the stationary states grows like \sqrt{n} for large Landau level number n.
- (e) Bonus point: How is Eq. (1) modified if there is an additional electrical potential term $+q\phi(\mathbf{x},t)$ in the Hamiltonian? Hint: To ensure that the new expression is gauge-invariant you have to allow an

explicit time dependence of \mathbf{A} .

(2) Gauge transformation in quantum mechanics

(2 Punkte)

Electric and magnetic fields do not appear in the Schrödinger equation of a charged particle with charge q. Instead, the vector potential \mathbf{A} and the scalar potential Φ enter, where $\mathbf{E} = -\nabla \Phi - \partial_t \mathbf{A}$ and $\mathbf{B} = \nabla \times \mathbf{A}$. (Remember that both the fields and the potentials depend on \mathbf{x} and t.) The potentials are not defined uniquely: a gauge transformation to new potentials \mathbf{A}' und $\mathbf{\Phi}'$ with

$$\mathbf{A}' = \mathbf{A} + \nabla \chi ; \qquad \Phi' = \Phi - \partial_t \chi ,$$

where $\chi(\mathbf{x},t)$ is an arbitrary smooth function, will not change the fields.

(a) Prove the following operator equation (you should think of both sides of the equation as operators that act on a wave function standing on their right):

$$e^{f(y)} \frac{\partial}{\partial y} = \left(\frac{\partial}{\partial y} - \frac{\partial f}{\partial y}\right) e^{f(y)}.$$

(b) Assume that $\Psi(\mathbf{x},t)$ obeys the Schrödinger equation,

$$i\hbar\partial_t\Psi(\mathbf{x},t) = \frac{1}{2m}(\hat{\mathbf{p}} - q\mathbf{A})^2\Psi(\mathbf{x},t) + q\Phi\Psi(\mathbf{x},t).$$

Use (a) to show that the gauge-transformed wave function defined by

$$\Psi'(\mathbf{x},t) := \exp(iq\chi/\hbar)\Psi(\mathbf{x},t)$$

solves the modified Schrödinger equation that contains the transformed potential \mathbf{A}' and Φ' .

(3) Translation operator

(1 Punkt)

Show that the operator $\mathcal{T}_a \equiv \exp(ia\hat{p}/\hbar)$ induces a shift of the wave function in one-dimensional coordinate space, i.e.,

$$\langle x|\mathcal{T}_a|\psi\rangle = \langle x+a|\psi\rangle = \psi(x+a).$$

(4) Binding δ -potential

(3 Punkte)

Consider a particle of mass m in the one-dimensional potential $V(x) = V_0 \delta(x)$, with $V_0 < 0$.

- (a) Find the bound state(s) (energy E < 0) of the particle in this potential. Sketch and interpret the wavefunction(s).
 - Hint: Either use the matching condition for wavefunctions in a δ -potential derived in the lecture, or go to momentum space.
- (b) We now consider positive energies (E > 0). Make an ansatz for (unnormalized) scattering states. Derive the transmission amplitude S(E) and the transmission probability T(E) for a particle with energy E incident from the left.