# Quantenmechanik, Herbstsemester 2025

#### Blatt 3

Abgabe: 07.10.25, 12:00H (auf adam oder Treppenhaus 4. Stock)

Tutor: Tobias Nadolny, Zi.: 4.48

#### (1) State determination

(2 Punkte)

Measurements on a system of two spin 1/2 particles yield the following expectation values:

$$\langle S_z^{(1)} \rangle = \langle S_z^{(2)} \rangle = 0$$
 and  $\langle S_z^{(1)} \otimes S_z^{(2)} \rangle = -\frac{\hbar^2}{4}$ ,

where  $S_z = \frac{\hbar}{2}\sigma_z$ .

- (a) Construct a pure state consistent with the given data, or prove that none exists.
- (b) Construct a *mixed* state consistent with the given data, or prove that none exists.

### (2) Reduced density operator

(3 Punkte)

Consider a system of two spins 1/2 in the state  $|\psi_{\alpha}\rangle = \cos(\alpha)|\downarrow\downarrow\rangle + i\sin(\alpha)|\uparrow\uparrow\rangle$ .

- (a) Write down the density operator  $\rho$  that describes this system.
- (b) Calculate the reduced density operator  $\rho^{(1)}$  of subsystem 1 (i.e., the first spin). Does it represent a pure or a mixed state? What is the expectation value of  $S_z^{(1)}$  and  $S_z^{(1)}$  if only the first spin is measured. Interpret your results.
- (c) For a joint measurement of  $S_x^{(1)}$  and  $S_x^{(2)}$  of both spins, calculate the probability to measure  $\hbar/2$  for spin 1 and  $\hbar/2$  for spin 2.

(3) Time evolution (3 Punkte)

Consider a spin 1/2 particle. At time t=0, the system is prepared in the state

$$|\psi(t=0)\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle_z - e^{i\phi}|\downarrow\rangle_z)$$
.

The Hamiltonian of the system is given by  $H = -g\frac{\mu_B}{\hbar}\mathbf{B}\cdot\mathbf{S}$ , with  $\mathbf{B} = B_0\mathbf{e}_z$  and  $\mathbf{S} = \frac{\hbar}{2}(\sigma_x, \sigma_y, \sigma_z)$ .

- (a) Write down a formal expression for the time evolution operator U(t) and evaluate it explicitly. Calculate  $|\psi(t)\rangle$  for t>0.

  Hint: One possibility is to show that  $\exp(i\alpha\sigma_z) = \mathbb{1}\cos\alpha + i\sigma_z\sin\alpha$ .
- (b) What is the probability that a measurement of  $S_x$  done at time t > 0 gives  $-\hbar/2$ ? What is the probability that a measurement of  $S_z$  done at time t > 0 gives  $+\hbar/2$ ?
- (c) Calculate  $\langle S_x(t) \rangle$ ,  $\langle S_y(t) \rangle$ , and  $\langle S_z(t) \rangle$ . Interpret your result.

## (4) Quantum speed limit

(2 Punkte + 2 Bonuspunkte)

We consider a system described by the Hamiltonian H with eigenenergies  $E_n$  and eigenstates  $|n\rangle$ , i.e.,  $H|n\rangle = E_n|n\rangle$ . Assume that the system is initially prepared in an arbitrary state  $|\psi_0\rangle$ . We want to show that there exists a fundamental lower bound on the time it takes the system to evolve into a state that is orthogonal to  $|\psi_0\rangle$ .

- (a) Give an expression for  $|\psi(t)\rangle$  using the initial condition  $|\psi(t=0)\rangle = |\psi_0\rangle$ .
- (b) Now consider  $S(t) := \langle \psi_0 | \psi(t) \rangle$ . We want to find the smallest value  $t_{\min}$  of t such that  $S(t_{\min}) = 0$ . Write down an expression for Re S(t) and use the trigonometric inequality  $\cos x \ge 1 \frac{2}{\pi}(x + \sin(x))$  valid for  $x \ge 0$  to show that

$$t_{\min} = \frac{\pi\hbar}{2E} \tag{1}$$

where  $E = \langle \psi_0 | H | \psi_0 \rangle$  is the expectation value of H.

- (c) Interpret your result.
- (d) Bonus points: Consider a 2-level system and show that the bound (1) is achievable.