Quantenmechanik, Herbstsemester 2025

Blatt 12 (Zusatzpunkte)

Abgabe: 9.12.25, 12:00H (Treppenhaus 4. Stock)

Schriftlicher Test: Dienstag, 16. Dezember 2025, 10.15 - 12 Uhr

Hilfsmittel: Ein beidseitig handbeschriebenes A4 Blatt.

(1) Distinguishable (labeled) particles, fermions, bosons (5 Bonuspunkte)

- (a) Two identical bosons are found to be in states $|\phi\rangle$ and $|\psi\rangle$. Write down the normalized state vector describing the system when $\langle \phi | \psi \rangle \neq 0$.
- (b) When an energy measurement is made on a system of three bosons in a box, the n values obtained were 3, 3, and 4. Write down a symmetrized, normalized state vector.
- (c) Consider three particles each of which can be in states ϕ_a , ϕ_b , and ϕ_c . Show that the total number of allowed, distinct configurations for this system is
 - i. 27 if they are labeled
 - ii. 10 if they are bosons
 - iii. 1 if they are fermions

(2) Toy model for bunching/antibunching

(5 Bonuspunkte)

Consider two particles in two orthonormal states $\psi_a(x_1)$, $\psi_b(x_2)$.

- (a) Write down the 2-particle wave function for distinguishable particles, for indistinguishable bosons, and for indistinguishable fermions.
- (b) Calculate the expectation value $\langle (\Delta x)^2 \rangle := \langle (x_1 x_2)^2 \rangle$ of the square of the distance between the two particles for all three cases and interpret your result.
- (c) Do this calculation for two particles in states ψ_n and ψ_m in an infinite square well.

(3) Attractive spherical δ -function shell

(10 Punkte)

Problem 3 on Blatt 11 studied the scattering amplitude and scattering phase shift of a repulsive spherical δ -function shell. The goal of the present problem is to analyze the very interesting case of an *attractive* shell that exhibits both bound states and so-called scattering resonances.

Investigate the bound states of the three-dimensional δ -shell potential

$$V(r) = -\alpha \delta(r - a) .$$

It is useful to introduce the dimensionless variables y := r/a, $\xi := ka$, and $\beta := 2ma\alpha/\hbar^2$. It turns out that there is at most one bound state for each l.

- (a) Determine the s-wave function. Show that a bound state exists only for $\beta > 1$.
- (b) Show that there is at most one bound state corresponding to each l.
- (c) Show for general l that the minimum strength of the potential for the existence of a bound state is $\beta = 2l + 1$.
- (d) Calculate the scattering phases $\delta_l(k)$.
- (e) Give the scattering cross section for s-waves.
- (f) Determine the condition for the maxima of the s-wave scattering cross section.
- (g) From here on, assume $\beta \gg \pi$. Determine the maxima for $ka \ll \beta$.
- (h) Show that there are sharp and broad resonances. Show that the Breit-Wigner formula $\sigma \sim \Gamma^2/[(E-E_R)^2 + \Gamma^2]$ holds near the sharp resonances.
- (i) Determine the poles of $e^{2i\delta_l} 1$ on the negative real E-axis and interpret them.

(4) Fractional quantum Hall effect

(5 Punkte)

The Laughlin wave function

$$\psi(z_1, z_2, \dots, z_N) = A \left[\prod_{j \le k}^N (z_j - z_k)^q \right] \exp\left[-\frac{1}{2} \sum_{k}^N |z_k|^2 \right]$$

is an approximate description of the ground state of N interacting electrons confined to two dimensions in a perpendicular magnetic field B. Here, q is a positive integer, and

 $z_j := \sqrt{\frac{eB}{2\hbar c}}(x_j + iy_j)$. Spin is not an issue here: in the ground state, all the electrons have spin down with respect to the direction of **B**, and that is a trivially symmetric configuration.

- (a) Show that ψ has the proper antisymmetry for fermions.
- (b) For $q=1, \psi$ describes noninteracting particles (i.e., can be written as a single Slater determinant). Check this explicitly for N=3. What single-particle states are occupied in this case?

- (c) For $q>1,\ \psi$ cannot be written as a single Slater determinant and describes interacting particles. It can, however, be written as a sum of Slater determinants. Show that, for q=3 and $N=2,\ \psi$ can be written as a sum of two Slater determinants.
- (5) Shifted creation/annihilation operators

(5 Punkte)

Study the shift from the (bosonic or fermionic) operators \hat{a} , \hat{a}^{\dagger} to new operators $\hat{a}' = \hat{a} + \alpha$, $\hat{a}'^{\dagger} = \hat{a}^{\dagger} + \alpha^*$; here α is a complex number. Is this transformation unitary, i.e., does it preserve the fermionic/bosonic commutation relations? If so, give an explicit expression for the unitary operator.

Hint: $e^{\hat{A}}\hat{B}e^{-\hat{A}} = \hat{B} + \frac{1}{1!}[\hat{A}, \hat{B}] + \frac{1}{2!}[\hat{A}, [\hat{A}, \hat{B}]] + \dots$

(6) Tight-binding model in second quantization

(5 Punkte)

A major part of solid-state physics deals with electrons in a periodic potential. As a simplified model we consider fermionic particles moving on a cubic lattice (lattice constant a). The kinetic energy is assumed to have tight-binding form

$$H = -t \sum_{\langle i,j \rangle \sigma} \left[c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right] ,$$

here, $\sum_{\langle i,j \rangle}$ is the sum over all nearest neighbors (such that each bond appears only once) and \sum_{σ} is the sum over the two spin directions.

- (a) Determine the band structure $\epsilon(\mathbf{k})$ for a d-dimensional cubic lattice (d=1,2,3).
- (b) Draw the contours $\epsilon(\mathbf{k}) = \text{const.}$ in the (k_x, k_y) -plane for d = 2.

Hint: Diagonalize the Hamiltonian by a Fourier transform, $c_{j\sigma} = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} \exp(i\mathbf{k}\mathbf{r}_j) c_{\mathbf{k}\sigma}$, here, \mathbf{r}_j are the coordinates of the lattice sites; N is their total number.

(7) Wigner function

(5 Punkte)

Knowing the density operator $\hat{\rho}$ of a particle is equivalent to knowing its density matrix $\rho(\mathbf{x}, \mathbf{x}') = \langle \mathbf{x} | \hat{\rho} | \mathbf{x}' \rangle$ in the position representation (Hint: partition of unity).

We now consider a one-dimensional situation (the generalization is easy) and use $\rho(x, x')$ to define the Wigner function

$$f(r,p) = \frac{1}{2\pi\hbar} \int dy \exp(ipy/\hbar) \rho(r + \frac{y}{2}, r - \frac{y}{2}).$$

Show that f(r, p) has the following properties:

- (a) f(r, p) is real.
- (b) $\int dp f(r, p)$ is the correct quantum-mechanical probability density in position space.
- (c) $\int dr f(r, p)$ is the correct quantum-mechanical probability density in momentum space.
- (d) Hence f(r, p) looks like a classical phase-space distribution that reproduces quantum mechanics, which appears to be a contradiction to everything we know (e.g., the uncertainty relation).

Calculate and plot f(r, p) for the one-dimensional harmonic oscillator prepared in its n-th eigenstate for n = 0, 1, 2 to see what is the problem. Use a computer if necessary.