# Quantenmechanik, Herbstsemester 2025

Blatt 10 = letztes "offizielles" Übungsblatt (d.h., 50% der Hausaufgaben = 50 Punkte)

Abgabe: 25.11.25, 12:00H (Treppenhaus 4. Stock)

Tutor: Niels Lörch, Zi.: 4.10

### (1) Two spins with time-dependent coupling

(4 Punkte)

Consider two coupled spin 1/2 particles with a time-dependent coupling constant J(t) which approaches zero for  $t \to \pm \infty$ . The Hamiltonian is

$$H(t) = J(t)\mathbf{S}_1 \cdot \mathbf{S}_2 .$$

Assume that the system is prepared in the state  $|\psi(t\to-\infty)\rangle=|\uparrow\downarrow\rangle_z:=|\uparrow\rangle_z^{(1)}|\downarrow\rangle_z^{(2)}$ .

- (a) Does H commute with itself at different times? Write down an expression for the time evolution operator  $U(t_f, -\infty)$  and express it in terms of  $\alpha(t_f) := \hbar \int_{-\infty}^{t_f} \mathrm{d}t \ J(t)$  which is assumed to be finite.
- (b) Obtain an explicit exact expression of the state  $|\psi(t_f)\rangle$  at time  $t = t_f$ . Hint:  $\mathbf{S}_1 \cdot \mathbf{S}_2 = \frac{1}{2}[(\mathbf{S}_1 + \mathbf{S}_2)^2 - \mathbf{S}_1^2 - \mathbf{S}_2^2]$ .
- (c) What is the probability to find the system in the state  $|\downarrow\uparrow\rangle_z$  for  $t=t_f$ ?
- (d) [independent of (a) (c)]

Repeat (c) using first-order time-dependent perturbation theory, i.e., calculate the probability  $P_{|\uparrow\downarrow\rangle\rightarrow|\downarrow\uparrow\rangle}(t=t_{\rm f})$ .

If you have solved (c), compare with the exact result.

# (2) One-dimensional toy model for the photoelectric effect (3 Punkte) Consider an electron bound in an attractive $\delta$ -function potential, $H_0 = \frac{-\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} - \alpha \delta(x)$ . Calculate the probability per unit time of "ionization" if the electron is under the influence of a harmonically varying electric field, i.e., a perturbation $V(x,t) = -xeE_0 \cos \omega t$ .

- (a) Solve the problem assuming that the final states do not "see" the  $\delta$ -function potential (i.e., assume that the final states are plane waves). Hint: Golden rule. The ground state of  $H_0$  was found in problem 4 of Blatt 5:  $\psi_0(x) = \sqrt{\kappa}e^{-\kappa|x|}$  where  $\kappa = \frac{m\alpha}{\hbar^2}$ ; the ground-state energy is  $\frac{-\hbar^2\kappa^2}{2m}$ .
- (b) Repeat (a) taking into account the influence of the  $\delta$ -function potential on the final states.

## (3) Wigner-Eckart theorem

(3 Punkte)

Electromagnetic quadrupole transitions in the hydrogen atom are described by matrix elements of the (spherical) quadrupole operators  $Q_m^{(2)} \sim r^2 Y_{2m}$  that form a set of spherical tensor operators.

(a) Calculate the ratio B/A of the following matrix elements; here,  $|nlm\rangle$  are the eigenstates of the hydrogen atom:

$$A = \langle n'43 | Q_2^{(2)} | n21 \rangle ,$$
  

$$B = \langle n'4, -2 | Q_0^{(2)} | n2, -2 \rangle .$$

(b) Calculate

$$C = \langle n'51|Q_2^{(2)}|n1, -1\rangle,$$
  

$$D = \langle n'31|Q_0^{(2)}|n1, -1\rangle.$$

(c) Consider the matrix element  $\langle 4lm|z(x+iy)|n21\rangle$  where x,y,z are Cartesian coordinates. Which values for l and m are allowed, i.e., lead to non-vanishing values?

#### (4) Coherent states

(4 Bonuspunkte)

Consider a harmonic oscillator with mass m and frequency  $\omega$ , and let  $|n\rangle$  denote the n-th eigenstate (n = 0, 1, 2, ...). Furthermore,  $\hat{a}^{\dagger}$  and  $\hat{a}$  denote the creation and annihilation operators of the harmonic oscillator, respectively.

Consider now a so-called "coherent state" parametrized by the complex number  $\alpha$ ,

$$|\alpha\rangle = |\alpha(t=0)\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle = e^{-|\alpha|^2/2} e^{\alpha \hat{a}^{\dagger}} |0\rangle.$$

- (a) Prove the last equality in the above equation.
- (b) Show that  $|\alpha\rangle$  is an eigenstate of the annihilation operator  $\hat{a}$ , and calculate the eigenvalue. Show further that  $|\alpha\rangle$  is *not* an eigenstate of  $\hat{a}^{\dagger}$ . Can  $\hat{a}^{\dagger}$  have eigenstates?
- (c) Show that the probability to measure the energy  $\hbar\omega(n+1/2)$  is distributed according to the Poisson distribution  $P_n=e^{-\mu}\frac{\mu^n}{n!}$ , with an appropriately chosen parameter  $\mu$ . Show further that  $|\alpha\rangle$  is normalized and calculate the energy expectation value and variance.

Hint: The result in (b) may be useful.

- (d) Calculate the expectation values  $\langle \hat{x} \rangle$  and  $\langle \hat{p} \rangle$  of the position and momentum in this state.
- (e) Show that  $|\alpha(t > 0)\rangle$  is also a coherent state (apart from a phase-factor) and calculate the complex amplitude  $\alpha(t)$ . Use this fact (and the result in (d)) to calculate the time evolution of the expectation values  $\langle \hat{x} \rangle(t)$  and  $\langle \hat{p} \rangle(t)$  and compare with the Ehrenfest theorem that was discussed in the lecture.