Mechanik, Herbstsemester 2024

Blatt 4

Abgabe: 15.10.2024, 12:00H, entweder auf adam in den entsprechenden Ordner, oder in das Fach im Treppenhaus 4. Stock!

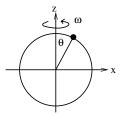
<u>Tutor:</u> Tobias Kehrer Zi.: 4.48; tobias.kehrer@unibas.ch

(1) Circular cone revisited (2 Punkte) We would like to look at the particle moving on a circular cone (opening angle $2\alpha = \pi/2$) treated in problem 2 of Blatt 2 one more time: as we saw earlier, the Lagrangian in terms of the generalized (polar) coordinates r, φ is $L(r, \varphi, \dot{r}, \dot{\varphi}; t) = \frac{m}{2}(2\dot{r}^2 + r^2\dot{\varphi}^2) - mgr$. The variable φ is cyclic, hence $l_z = \partial L/\partial \dot{\varphi}$ is conserved. Also, since L does not depend explicitly on time, the energy $E = m\dot{r}^2 + l_z^2/(2mr^2) + mgr$ is conserved.

- (a) Use E to write down a first-order differential equation for r and find the formal solution by separating the variables (you are not required to evaluate the integral).
- (b) Discuss and sketch the allowed and forbidden regions by using the effective potential V_{eff} . Find the turning points of the radial coordinate where the energy is equal to V_{eff} and discuss your solution graphically. When does the equation have 0, 1, or 2 (physically relevant) solutions? Interpret the three different cases.

(2) Bead on a rotating ring

A bead (mass m) is subject to a (homogeneous) gravitational force acting in the negative z-direction and moves without friction on a vertical circle (radius R) that rotates with angular velocity ω about the z-axis, see figure. It is convenient to use the angle θ as the generalized coordinate (why do we need only one?).



- (a) Write down the kinetic and potential energies and express the Lagrangian L = T V in terms of the generalized coordinate. Result: $L(\theta, \dot{\theta}; t) = \frac{m}{2}R^2\dot{\theta}^2 + \frac{m}{2}R^2\omega^2\sin^2\theta - mgR\cos\theta$.
- (b) Conclude that the motion of the bead corresponds to a one-dimensional motion in an effective potential $U(\theta)$. Sketch and discuss U for the two cases $R\omega^2/g < 1$ and $R\omega^2/g > 1$. What are the allowed regions for a given total energy? Determine and discuss the stable equilibrium position(s) of the bead in both cases.
- (c) Carefully sketch the phase portraits (i.e., $\dot{\theta}$ as a function of θ) in both cases (or plot them using a computer).

(4 Punkte)

(3) Numerical experiments

The goal of this problem is to study the motion of a particle in a variety of twodimensional potentials. Start by plotting the potential V(x, y) (either as a 3D- or contour plot). Calculate the force on the particle and write down the two Newton equations (for a particle of mass m=1).

Solve the differential equations numerically, preferably using Julia (a "skeleton" is provided in the notebook folder on adam), or else your favorite method.

Use the following initial conditions: $\dot{y}(0) = 0.5$, 1, and 2, as well as always x(0) = 1, y(0) = 0, and $\dot{x}(0) = 0$. Plot the resulting trajectories (x(t), y(t)) in the xy-plane in the time interval $[t = 0, t_{end}]$ for the values of t_{end} given below.

- (a) V(x,y) = -1/r where $r = \sqrt{x^2 + y^2}$ (Kepler problem of a particle in the gravitational field). What are the qualitatively different trajectories? $(t_{end} = 8)$
- (b) $V(x, y) = \ln(r)$ (another central potential. It corresponds to the Coulomb potential of a charged wire perpendicular to the xy-plane). Discuss the qualitative differences to (a). Why can you find a circular orbit in both cases? ($t_{end} = 20$)
- (c) $V(x,y) = x^2/2 + y^2$ (anisotropic two-dimensional harmonic oscillator). Why do the trajectories (so-called "Lissajous curves") not close? $(t_{end} = 20)$
- (d) $V(x,y) = -(1 + \exp(10(\sin(x)^2 \sin(y)^2 1/2)))^{-1}$ (Chaotic motion in a quadratic lattice of scattering centers). Use the following two sets of initial conditions to test the influence of small changes of the initial conditions: x(0) = 2 or x(0) = 2.1, and always y(0) = 0, $\dot{x}(0) = 0$, $\dot{y}(0) = 0.5$. $(t_{end} = 40)$
- (e) Bonus points: find another interesting potential and discuss the resulting motion in a qualitative way!
- (f) Bonus points: consider a perturbed Kepler potential, $V(x, y) = -1/r + \beta/r^2$, where $\beta \ll 1$. Plot the trajectory for $\dot{y}(0) = 0.5$ and study the precession of the orbit as a function of β . The additional term looks very much like the centrifugal barrier term in the effective potential $V_{\text{eff}}(r)$. Why is it then that the additional force term causes a precession of the orbit, while an addition to the barrier, through a change in ℓ , does not?