
Departement Physik, Universität Basel
Prof. C. Bruder (Zimmer 4.2, Tel.: 207 36 92, Christoph.Bruder@unibas.ch)

Mechanik, Herbstsemester 2024

Blatt 4

Abgabe: 15.10.2024, 12:00H, entweder auf adam in den entsprechenden Ordner, oder
in das Fach im Treppenhaus 4. Stock!
Tutor: Tobias Kehrer Zi.: 4.48; tobias.kehrer@unibas.ch

(1) Circular cone revisited (2 Punkte)
We would like to look at the particle moving on a circular cone (opening angle 2α = π/2)
treated in problem 2 of Blatt 2 one more time: as we saw earlier, the Lagrangian in
terms of the generalized (polar) coordinates r, φ is L(r, φ, ṙ, φ̇; t) = m

2
(2ṙ2+r2φ̇2)−mgr.

The variable φ is cyclic, hence lz = ∂L/∂φ̇ is conserved. Also, since L does not depend
explicitly on time, the energy E = mṙ2 + l2z/(2mr2) +mgr is conserved.

(a) Use E to write down a first-order differential equation for r and find the formal
solution by separating the variables (you are not required to evaluate the integral).

(b) Discuss and sketch the allowed and forbidden regions by using the effective po-
tential Veff . Find the turning points of the radial coordinate where the energy is
equal to Veff and discuss your solution graphically. When does the equation have
0, 1, or 2 (physically relevant) solutions? Interpret the three different cases.

(2) Bead on a rotating ring (4 Punkte)
A bead (massm) is subject to a (homogeneous) gravitational force acting in the negative
z-direction and moves without friction on a vertical circle (radius R) that rotates with
angular velocity ω about the z-axis, see figure. It is convenient to use the angle θ as
the generalized coordinate (why do we need only one?).

z

ω

θ

x

(a) Write down the kinetic and potential energies and express the Lagrangian
L = T − V in terms of the generalized coordinate.

Result: L(θ, θ̇; t) =
m

2
R2θ̇2 +

m

2
R2ω2 sin2 θ −mgR cos θ.

(b) Conclude that the motion of the bead corresponds to a one-dimensional motion
in an effective potential U(θ). Sketch and discuss U for the two cases Rω2/g < 1
and Rω2/g > 1. What are the allowed regions for a given total energy? Determine
and discuss the stable equilibrium position(s) of the bead in both cases.

(c) Carefully sketch the phase portraits (i.e., θ̇ as a function of θ) in both cases (or
plot them using a computer).



(3) Numerical experiments (4 Punkte + bonus points)
The goal of this problem is to study the motion of a particle in a variety of two-
dimensional potentials. Start by plotting the potential V (x, y) (either as a 3D- or con-
tour plot). Calculate the force on the particle and write down the two Newton equations
(for a particle of mass m=1).
Solve the differential equations numerically, preferably using Julia (a “skeleton” is pro-
vided in the notebook folder on adam), or else your favorite method.
Use the following initial conditions: ẏ(0) = 0.5, 1, and 2, as well as always x(0) = 1,
y(0) = 0, and ẋ(0) = 0. Plot the resulting trajectories (x(t),y(t)) in the xy-plane in the
time interval [t = 0, tend] for the values of tend given below.

(a) V (x, y) = −1/r where r =
√

x2 + y2 (Kepler problem of a particle in the gravita-
tional field). What are the qualitatively different trajectories? (tend = 8)

(b) V (x, y) = ln(r) (another central potential. It corresponds to the Coulomb potential
of a charged wire perpendicular to the xy-plane). Discuss the qualitative differences
to (a). Why can you find a circular orbit in both cases? (tend = 20)

(c) V (x, y) = x2/2 + y2 (anisotropic two-dimensional harmonic oscillator). Why do
the trajectories (so-called “Lissajous curves”) not close? (tend = 20)

(d) V (x, y) = −(1 + exp(10(sin(x)2 sin(y)2 − 1/2)))−1 (Chaotic motion in a quadratic
lattice of scattering centers). Use the following two sets of initial conditions to test
the influence of small changes of the initial conditions: x(0) = 2 or x(0) = 2.1,
and always y(0) = 0, ẋ(0) = 0, ẏ(0) = 0.5. (tend = 40)

(e) Bonus points: find another interesting potential and discuss the resulting motion
in a qualitative way!

(f) Bonus points: consider a perturbed Kepler potential, V (x, y) = −1/r+β/r2, where
β ≪ 1. Plot the trajectory for ẏ(0) = 0.5 and study the precession of the orbit as
a function of β. The additional term looks very much like the centrifugal barrier
term in the effective potential Veff(r). Why is it then that the additional force
term causes a precession of the orbit, while an addition to the barrier, through a
change in ℓ, does not?


