Quantenmechanik, Herbstsemester 2023

Blatt 9

Abgabe: 21.11.23, 12:00H (Treppenhaus 4. Stock)
Tutor: Manel Bosch, Zi.: 2.12

(1) Clebsch-Gordan coefficients

(a) Consider a system composed of a spin-3/2 particle and a spin-1 particle with spin z-components $S_{1 z}=+1 / 2$ and $S_{2 z}=0$. What are the possible measurement results for a measurement of \mathbf{S}^{2} and of S_{z}, where $\mathbf{S}=\mathbf{S}_{1}+\mathbf{S}_{2}$ is the total spin of the system? What are the probabilities for each of these possible measurement results?
(b) Consider now the state of two coupled particles, again a spin-3/2 and a spin-1, with the total spin $S=5 / 2$ and with $S_{z}=-1 / 2$. What are the possible measurement results for a measurement of $S_{1 z}$ and of $S_{2 z}$? What are the probabilities for each of these possible results?
(2) Variational method
(2 Punkte +2 Bonuspunkte)
(a) Use the variational ansatz $\psi_{\lambda}(x) \propto \exp \left(-\frac{x^{2}}{2 \lambda^{2}}\right)$ to show that the one-dimensional potential well

$$
V(x)= \begin{cases}-V_{0} & |x|<a \\ 0 & |x| \geq a\end{cases}
$$

with $V_{0}>0$ has at least one bound state.
Hint: Find a negative upper bound for the ground-state energy.
Bonus points: Show that the existence of a bound state is not guaranteed in the three-dimensional case. And what about the two-dimensional case?
(b) Find an upper bound for the ground-state energy of the Hamiltonian

$$
H=\frac{p^{2}}{2 m}+k x^{4}, \quad k>0
$$

by choosing an appropriate trial wavefunction.
Compare with the exact result

$$
E_{0}=0.66798626 \ldots\left(\frac{\hbar^{4} k}{m^{2}}\right)^{1 / 3}
$$

(3) Matrix elements of \mathbf{z}
(2 Punkte)
In the discussion of the Stark effect in the lecture we used some properties of the matrix elements of z with the H -atom states $|n l m\rangle$ that we want to prove now.
(a) Show that $\left[L_{z}, z\right]=0$ and conclude that $\left\langle n^{\prime} l^{\prime} m^{\prime}\right| z|n l m\rangle=0$ unless $m^{\prime}=m$.
(b) Use a symmetry argument to prove that $\left\langle n^{\prime} l m^{\prime}\right| z|n l m\rangle=0$ (same l !).
(c) Show that $\langle 200| z|210\rangle=-3 a_{0}$ where $a_{0}=4 \pi \epsilon_{0} \hbar^{2} /\left(m e^{2}\right)$ is the Bohr radius. Hint: the H -atom wave functions are $\psi_{n l m}(r, \theta, \phi)=\langle r, \theta, \phi \mid n l m\rangle=R_{n l}(r) Y_{l m}(\theta, \phi)$.
In particular, $R_{20}(r)=2\left(\frac{1}{2 a_{0}}\right)^{3 / 2}\left(1-\frac{r}{2 a_{0}}\right) e^{-\frac{r}{2 a_{0}}}$ and $R_{21}(r)=\frac{1}{\sqrt{3}}\left(\frac{1}{2 a_{0}}\right)^{3 / 2} \frac{r}{a_{0}} e^{-\frac{r}{2 a_{0}}}$
(4) Perturbed two-dimensional harmonic oscillator
(4 Punkte)
Consider the two-dimensional harmonic oscillator with a perturbed potential energy of the form

$$
\begin{equation*}
V(x, y)=\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}+\lambda x y\right) . \tag{1}
\end{equation*}
$$

(a) Calculate the energy eigenvalues for the unperturbed case $(\lambda=0)$ and discuss their degeneracies.
Hint: Use creation (annihilation) operators for each of the two degrees of freedom x, y, i.e.,

$$
x=\sqrt{\frac{\hbar}{2 m \omega}}\left(a_{1}+a_{1}^{\dagger}\right), \quad p_{x}=i \sqrt{\frac{m \hbar \omega}{2}}\left(a_{1}^{\dagger}-a_{1}\right),
$$

and similarly for y, p_{y}, and a_{2}, a_{2}^{\dagger}.
(b) Compute the ground-state energy of the system $(\lambda \neq 0)$ up to second order in λ and the ground-state wave function up to first order in λ.
(c) The first excited state of the unperturbed system $(\lambda=0)$ is doubly degenerate. Calculate the energy splitting up to first order in λ. What are the corresponding eigenstates in zeroth order?
(d) * Compare with the exact result.

Hint: express (1) as a sum of two harmonic potentials.
(5) Numerically solving the Schrödinger equation

to be submitted before the end of the semester.

One way to solve quantum problems numerically is to turn the Schrödinger equation into a matrix equation by discretizing the variable x. The goal of this problem is to apply this procedure to the one-dimensional Hamiltonian $H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)$.
(a) Slice the relevant interval in evenly spaced points x_{j} with $\Delta x:=x_{j+1}-x_{j}$, and let $\psi_{j}:=\psi\left(x_{j}\right)$ and $V_{j}:=V\left(x_{j}\right)$. Show that the discretized Schrödinger equation can be written as

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{\psi_{j+1}-2 \psi_{j}+\psi_{j-1}}{(\Delta x)^{2}}\right)+V_{j} \psi_{j}=E \psi_{j}
$$

or

$$
-\lambda \psi_{j+1}+\left(2 \lambda+V_{j}\right) \psi_{j}-\lambda \psi_{j-1}=E \psi_{j} \quad \text { where } \quad \lambda=\frac{\hbar^{2}}{2 m(\Delta x)^{2}}
$$

In matrix form, $\mathrm{H} \psi=E \psi$, where H is a tridiagonal matrix and

$$
\psi=\left(\begin{array}{c}
\cdot \\
\cdot \\
\psi_{j-1} \\
\psi_{j} \\
\psi_{j+1} \\
\cdot \\
\cdot
\end{array}\right)
$$

Write down the matrix H . What goes in the upper left and lower right corners of H depends on the boundary conditions. The allowed energies are the eigenvalues of the matrix H if the discretization is fine enough, $\Delta x \rightarrow 0$.
(b) Apply this method to the harmonic oscillator, $V(x)=\frac{1}{2} m \omega^{2} x^{2}$.

Chop the interval [-5:5] into $N+1$ equal segments, i.e., $\Delta x=10 /(N+1), x_{0}=-5$, $x_{N+1}=5$. Choose the boundary condition $\psi_{0}=\psi_{N+1}=0$ (what does that mean?), leaving $\psi=\left(\psi_{1}, \ldots \psi_{N}\right)$. Construct the tridiagonal $N \times N$ matrix \mathbf{H}.
(c) Choose e.g. $N=100$ and use a computer to find the 10 lowest eigenvalues numerically. Compare with the exact result.
Hint: We support Julia, but you are free to use any programming language.
In Julia, a symmetric tridiagonal $N \times N$ matrix can be created using
$\mathrm{H}=\operatorname{SymTridiagonal}(d$, od) where the N-dimensional vector d contains the diagonal elements and the ($N-1$)-dimensional vector od contains the off-diagonal elements.
$e, e v=\operatorname{eigen}(H)$ will create a vector e containing the eigenvalues and a matrix $e v$ containing the eigenvectors.
(d) Repeat (c) for $V(x)=k x^{4}$ and confirm the value of the ground-state energy mentioned in problem 4 on Blatt 8 , viz., $E_{0}=0.66798626 \ldots\left(\hbar^{4} k / m^{2}\right)^{1 / 3}$.
(e) Bonus point: plot the lowest five eigenstates, both for (b) and (d).

Please submit your code in electronic form or print it out.

