Quantenmechanik, Herbstsemester 2023

Blatt 8

Abgabe: 14.11.23, 12:00H (Treppenhaus 4. Stock)
Tutor: Tobias Nadolny, Zi. 4.48
(1) Isotropic 3-dimensional harmonic oscillator
(4 Punkte)
Consider the isotropic 3-dimensional harmonic oscillator defined by the Hamiltonian

$$
H=\frac{1}{2 m} \sum_{i \in\{x, y, z\}} p_{i}^{2}+\frac{1}{2} m \omega^{2} \sum_{i \in\{x, y, z\}} x_{i}^{2}
$$

As usual when dealing with spherically symmetric potentials we split the wavefunction in radial and angular parts and write

$$
\Psi_{E l m}=\frac{u_{E l}(r)}{r} Y_{l m}(\theta, \phi),
$$

and obtain the Schrödinger equation for the radial part

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}+\frac{1}{2} m \omega^{2} r^{2}+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}-E\right] u(r)=0
$$

where the (E, l)-dependence of $u(r)$ has been omitted.
(a) Using the ansatz wavefunction

$$
u(r)=e^{-y^{2} / 2} v(y), \quad y=r \sqrt{m \omega / \hbar}
$$

to derive a differential equation for $v(y)$.
What is the boundary condition on $v(y)$ for $y=0$?
Result: $v^{\prime \prime}(y)-2 y v^{\prime}(y)+\left[2 \lambda-1-l(l+1) / y^{2}\right] v(y)=0$ where $\lambda=E /(\hbar \omega)$.
(b) To further investigate the differential equation obtained in (a), we expand $v(y)$ as

$$
\begin{equation*}
v(y)=y^{l+1} \sum_{j=0}^{\infty} C_{j} y^{j} \tag{1}
\end{equation*}
$$

Explain the factor r^{l+1}. Derive a two-term recursion relation for the coefficients C_{j}, i.e., an equation relating C_{j} and C_{j+2}. Hint: show that $C_{1}=0$.
(c) Find the energy eigenvalues by using the two-term recursion relation and the requirement that the series (1) has to converge for $r \rightarrow \infty$.
(d) Compare the result from (c) with the energy quantization found when using second quantized operators, i.e., $H=\hbar \omega \sum_{i \in\{x, y, z\}}\left(a_{i}^{\dagger} a_{i}+\frac{1}{2}\right)$, which was discussed in the lecture.
Show explicitly that both methods give the same (i) quantization of the energy, and (ii) degeneracy of the levels.
(2) Hydrogen atom in $n=2, l=1$ state
(4 Punkte) Assume that the electron in a hydrogen atom occupies the following combined position and spin state

$$
\psi(r, \theta, \phi)=R_{21}(r)\left(\frac{\sqrt{3}}{2} Y_{10}(\theta, \phi)|\uparrow\rangle+\frac{1}{2} Y_{11}(\theta, \phi)|\downarrow\rangle\right)
$$

(a) What are the possible measurement results if you measure the z-component of angular momentum L_{z}, and what is the probability of each?
(b) Same for the z-component of spin angular momentum S_{z}.
(c) Let $\mathbf{J}=\mathbf{L}+\mathbf{S}$ be the total angular momentum. If you measure J^{2}, what are the possible measurement results, and what is the probability of each?
Hint: Use the Clebsch-Gordan table.
(d) If you measure the position of the electron, what is the probability density of finding it at r, θ, ϕ ?
Hint: $R_{21}(r)=\frac{1}{2 \sqrt{6}} a^{-3 / 2}\left(\frac{r}{a}\right) \exp (-r /(2 a))$ where a is the Bohr radius.

(3) Coupled spins

(2 Punkte +2 Bonuspunkte)
Consider two coupled spin $1 / 2$ particles in an external magnetic field $\mathbf{B}=(0,0, B)$ along the z-direction, with the Hamiltonian

$$
H=J \mathbf{S}_{1} \cdot \mathbf{S}_{2}-\frac{\mu}{\hbar} B\left(S_{1 z}+S_{2 z}\right)
$$

where $J>0$. Determine and discuss the energy eigenvalues and eigenstates. Plot the energies of the ground state and of the excited states as a function of the magnetic field B.
Hint: Consider $\mathbf{S}=\mathbf{S}_{1}+\mathbf{S}_{2}$ and express the Hamiltonian in terms of S^{2}, S_{1}^{2}, and S_{2}^{2}.
Bonus points: Same for three spins arranged on the corners of a triangle. This situation is called "geometrically frustrated", can you imagine why? Use a computer for $B \neq 0$.

