Prof. C. Bruder (Zimmer 4.2, Tel.: 20736 92, Christoph.Bruder@unibas.ch)

Quantenmechanik, Herbstsemester 2023

Blatt 6

Abgabe: 31.10.23, 12:00H (Treppenhaus 4. Stock)
Tutor: Tobias Nadolny, Zi. 4.48
(1) Components of the angular momentum operator
(3 Punkte)
Using the commutation relation $\left[x_{j}, p_{k}\right]=i \hbar \delta_{j k}$, show the following relations for the orbital angular momentum operator $\mathbf{L}=\left(L_{x}, L_{y}, L_{z}\right) ; \mathbf{n}$ is a real vector.
(a) $[\mathbf{n} \cdot \mathbf{L}, \mathbf{r}]=i \hbar \mathbf{r} \times \mathbf{n}$
(b) $[\mathbf{n} \cdot \mathbf{L}, \mathbf{p}]=i \hbar \mathbf{p} \times \mathbf{n}$
(c) $\mathbf{L} \times \mathbf{L}=i \hbar \mathbf{L}$
(2) Can l be half-integer for orbital angular momenta?
(3 Punkte)
In this problem, we will prove that the eigenvalues m of the angular momentum operator L_{z} / \hbar must be integer. Therefore, the orbital angular momentum quantum number l can take only integer values.
(a) Express the operator L_{z} in terms of the creation and destruction operators, a_{i}^{\dagger} and $a_{i}(i=1,2,3)$ by using the transformations

$$
x_{i}=\sqrt{\frac{\hbar}{2 m \omega}}\left(a_{i}+a_{i}^{\dagger}\right) ; \quad p_{i}=-i \sqrt{\frac{\hbar m \omega}{2}}\left(a_{i}-a_{i}^{\dagger}\right) .
$$

(b) By introducing new operators b_{1}, b_{2} (and their hermitian conjugates) that are linear combinations of the a_{i} 's, show that L_{z} can be written in the form

$$
L_{z}=\hbar\left(b_{2}^{\dagger} b_{2}-b_{1}^{\dagger} b_{1}\right),
$$

where the operators b_{1}, b_{2} satisfy the commutation relations $\left[b_{1}, b_{1}^{\dagger}\right]=\left[b_{2}, b_{2}^{\dagger}\right]=1$, $\left[b_{i}, b_{i}\right]=\left[b_{i}^{\dagger}, b_{i}^{\dagger}\right]=0$ for $i=1,2$.
(c) Argue that the eigenvalues of L_{z} should be an integer multiplied by \hbar and consequently that the orbital angular momentum l should be integer.
(3) Kronig-Penney-Model for $V_{0}<0$
(4 Punkte +2 Bonuspunkte)
In the lecture we discussed the Kronig-Penney-Model

$$
V(x)=V_{0} \sum_{n=-\infty}^{\infty} \delta(x-n a)
$$

Solving the equation

$$
\begin{equation*}
\cos (k a)=\cos (q a)+\frac{m V_{0} a}{\hbar^{2}} \frac{\sin (q a)}{q a} \tag{1}
\end{equation*}
$$

graphically for $V_{0}>0$, we obtained the allowed and forbidden values of q which resulted in energy bands and energy gaps in $\epsilon_{k}=\hbar^{2} q^{2} /(2 m)$.
Consider now the case $V_{0}<0$.
(a) Sketch the right-hand side of Eq. (1) as a function of $q a$ and solve the equation graphically or with a computer. Sketch the lowest energy band ϵ_{k}.
(b) In the case $V_{0}<0$ there are solutions to the Schrödinger equation with negative energy eigenvalues. What does this imply for q ? Solve Eq. (1) for this case graphically or with a computer. Sketch the part of the lowest energy band that originates from this solution and complete the sketch in (a). Interpret your result.
(c) Bonus points: Calculate and plot the first four energy bands numerically for $m V_{0} a / \hbar^{2}=-1,-2,-5$.

(4) Supersymmetry

Consider the two operators

$$
A=i \frac{p}{\sqrt{2 m}}+W(x) \quad \text { and } \quad A^{\dagger}=-i \frac{p}{\sqrt{2 m}}+W(x)
$$

for some function $W(x)$; here, p is the momentum operator. Using these two operators we can construct two Hamiltonians,

$$
H_{1}=A^{\dagger} A=\frac{p^{2}}{2 m}+V_{1}(x) \quad \text { and } \quad H_{2}=A A^{\dagger}=\frac{p^{2}}{2 m}+V_{2}(x)
$$

$W(x)$ is called superpotential; V_{1} and V_{2} are called supersymmetric partner potentials.
(a) Find the potentials $V_{1}(x)$ and $V_{2}(x)$ in terms of $W(x)$.

Hint: Apply $A^{\dagger} A$ to a wave function $\psi(x)$.
(b) Show that if $\left|\psi_{n}^{(1)}\right\rangle$ is an eigenstate of H_{1} with eigenvalue $E_{n}^{(1)}$, then $A\left|\psi_{n}^{(1)}\right\rangle$ is an eigenstate of H_{2} with the same eigenvalue. Similarly, show that if $\left|\psi_{n}^{(2)}\right\rangle$ is an eigenstate of H_{2} with eigenvalue $E_{n}^{(2)}$, then $A^{\dagger}\left|\psi_{n}^{(2)}\right\rangle$ is an eigenstate of H_{1} with the same eigenvalue. The two Hamiltonians therefore have essentially identical spectra.
(c) One ordinarily chooses $W(x)$ such that the ground state of H_{1} satisfies $A\left|\psi_{0}^{(1)}\right\rangle=0$ and hence $E_{0}^{(1)}=0$. Use this to find $W(x)$ in terms of the ground state wave function $\psi_{0}^{(1)}(x)$. (The fact that A annihilates $\left|\psi_{0}^{(1)}\right\rangle$ means that H_{2} has one less eigenstate that H_{1} and is missing the eigenvalue $E_{0}^{(1)}$.)
(d) Consider the attractive δ-function potential $V_{1}(x)=\frac{m \alpha^{2}}{2 \hbar^{2}}-\alpha \delta(x)$ with $\alpha>0$. (The constant shift guarantees that $E_{0}^{(1)}=0$.) As we saw in problem 2 of Blatt 5, it has a single bound state,

$$
\psi_{0}^{(1)}(x)=\frac{\sqrt{m \alpha}}{\hbar} \exp \left(-\frac{m \alpha}{\hbar^{2}}|x|\right)
$$

Determine $W(x)$ and the partner potential $V_{2}(x)$ and compare the properties of V_{1} and V_{2}.
(e) Bonus points: Find and discuss the supersymmetric partner of the box with hard walls, $V_{1}(x)=-\frac{\pi^{2} \hbar^{2}}{2 m L^{2}}$ for $|x| \leq \frac{L}{2}$ and ∞ otherwise.

