Prof. C. Bruder (Zimmer 4.2, Tel.: 20736 92, Christoph.Bruder@unibas.ch)

Quantenmechanik, Herbstsemester 2023

Blatt 5

Abgabe: Tuesday 24.10.23, 12:00H (Treppenhaus 4. Stock)
Tutor: Parvinder Solanki, Zi. 4.48
(1) More on the charged particle in a magnetic field (4 Punkte +1 Bonuspunkt) We consider a particle (charge q) in a magnetic field $\mathbf{B}(\mathbf{r})$.
(a) Show that the (Heisenberg) equation of motion for the velocity \mathbf{v} reads

$$
\begin{equation*}
\frac{d}{d t} \mathbf{v}=\frac{q}{m}(\mathbf{v} \times \mathbf{B})+i \frac{q \hbar}{2 m^{2}} \nabla \times \mathbf{B} . \tag{1}
\end{equation*}
$$

Hint: Write the Hamiltonian in terms of velocities and use the commutation relation for the components of the velocity, $\left[v_{k}, v_{l}\right]=i \hbar \frac{q}{m^{2}} \epsilon_{k l n} B_{n}$.
Interpret the terms on the right-hand side of Eq. (1).
(b) We now assume that $\mathbf{B}=(0,0, B)=$ const. Solve Eq. (1) and show that the particle performs a cyclotron motion around a center $\left(x_{0}, y_{0}\right)$ as in the classical case.
(c) Show that the guiding center coordinates x_{0}, y_{0} are constants of motion but do not commute. Interpretation?
(d) Show that the square of the radius of the cyclotron motion has a sharp value in a (Landau) energy eigenstate and conclude that the radius of the stationary states grows like \sqrt{n} for large Landau level number n.
(e) Bonus point: How is Eq. (1) modified if there is an additional electrical potential term $+q \phi(\mathbf{x}, t)$ in the Hamiltonian?
Hint: To ensure that the new expression is gauge-invariant you have to allow an explicit time dependence of \mathbf{A}.
(2) Gauge transformation in quantum mechanics
(2 Punkte)
Electric and magnetic fields do not appear in the Schrödinger equation of a charged particle with charge q. Instead, the vector potential A and the scalar potential Φ enter, where $\mathbf{E}=-\nabla \Phi-\partial_{t} \mathbf{A}$ and $\mathbf{B}=\nabla \times \mathbf{A}$. (Remember that both the fields and the potentials depend on \mathbf{x} and t.) The potentials are not defined uniquely: a gauge transformation to new potentials \mathbf{A}^{\prime} und Φ^{\prime} with

$$
\mathbf{A}^{\prime}=\mathbf{A}+\nabla \chi ; \quad \Phi^{\prime}=\Phi-\partial_{t} \chi
$$

where $\chi(\mathbf{x}, t)$ is an arbitrary smooth function, will not change the fields.
(a) Prove the following operator equation (you should think of both sides of the equation as operators that act on a wave function standing on their right):

$$
e^{f(y)} \frac{\partial}{\partial y}=\left(\frac{\partial}{\partial y}-\frac{\partial f}{\partial y}\right) e^{f(y)}
$$

(b) Assume that $\Psi(\mathbf{x}, t)$ obeys the Schrödinger equation,

$$
i \hbar \partial_{t} \Psi(\mathbf{x}, t)=\frac{1}{2 m}(\hat{\mathbf{p}}-q \mathbf{A})^{2} \Psi(\mathbf{x}, t)+q \Phi \Psi(\mathbf{x}, t)
$$

Use (a) to show that the gauge-transformed wave function defined by

$$
\Psi^{\prime}(\mathbf{x}, t):=\exp (i q \chi / \hbar) \Psi(\mathbf{x}, t)
$$

solves the modified Schrödinger equation that contains the transformed potential \mathbf{A}^{\prime} and Φ^{\prime}.

(3) Translation operator

Show that the operator $\mathcal{T}_{a} \equiv \exp (i a \hat{p} / \hbar)$ induces a shift of the wave function in onedimensional coordinate space, i.e.,

$$
\langle x| \mathcal{T}_{a}|\psi\rangle=\langle x+a \mid \psi\rangle=\psi(x+a) .
$$

(4) Binding $\boldsymbol{\delta}$-potential

(3 Punkte +2 Bonuspunkte) Consider a particle of mass m in the one-dimensional potential $V(x)=V_{0} \delta(x)$, with $V_{0}<0$.
(a) Find the bound state(s) (energy $E<0$) of the particle in this potential. Sketch and interpret the wavefunction(s).
Hint: Either use the matching condition for wavefunctions in a δ-potential derived in the lecture, or go to momentum space.
(b) We now consider positive energies $(E>0)$. Make an ansatz for (unnormalized) scattering states. Derive the transmission amplitude $S(E)$ and the transmission probability $T(E)$ for a particle with energy E incident from the left.
(c) Bonus points: Re-derive the continuity equation for probability in the case of an imaginary potential. How do you interpret the role of imaginary potential in quantum mechanics? Next, consider an imaginary δ-potential $V(x)= \pm i V_{0} \delta(x)$ with $V_{0}>0$ real. Derive an expression for the absorption coefficient $\alpha(E)=$ $1-T(E)-R(E)$, where $T(E)$ and $R(E)$ are the transmission and reflection probabilities for a particle with energy E incident from the left.
Remark: Non-hermitian Hamiltonians are a fashionable (and controversial) topic of current research.

