Quantenmechanik, Herbstsemester 2023

Blatt 4

Abgabe: **Tuesday 17.10.23**, 12:00H (Treppenhaus 4. Stock) Tutor: Parvinder Solanki, Zi. 4.48

(1) Commutators of components of x and p (2 Punkte) Let F and G be analytic functions (i.e., they can be expanded in a power series) of \mathbf{p} and \mathbf{x} , respectively. Show (e.g., by induction) that

(2 Punkte)

(a)
$$[x_j, F(\mathbf{p})] = i\hbar \frac{\partial F}{\partial p_j}(\mathbf{p})$$

(b) $[p_j, G(\mathbf{x})] = -i\hbar \frac{\partial G}{\partial x_j}(\mathbf{x})$

- (2) Unequal time commutation relations Calculate the commutation relations $[\hat{x}_H(t), \hat{p}_H(t')]$ of the (one-dimensional) position and momentum operators in the Heisenberg picture at times t, t' for the following cases
 - (a) a particle acted on by a constant force

٩П

- (b) a harmonic oscillator.
- (3) Time evolution of a free particle (3 Punkte) Consider a free particle in three dimensions, $\hat{H} = \hat{\mathbf{p}}^2/2m$. Calculate the commutator $[\hat{x}_{iH}(t), \hat{x}_{iH}(0)]$ of the position operator $\hat{\mathbf{x}}_{H}$ in the Heisenberg picture, here, $\hat{x}_{iH}, j =$ 1, 2, 3 are the components of $\hat{\mathbf{x}}_{H}$. Give a lower bound for $\Delta \hat{x}_{iH}(t) \Delta \hat{x}_{iH}(0)$ and interpret your result. $\Delta A := \sqrt{\langle A^2 \rangle - \langle A \rangle^2}$

(4) Harmonic oscillator

(3 Punkte) Consider a harmonic oscillator of mass m and angular frequency ω . At time t = 0, the state of this oscillator is given by $|\psi(0)\rangle = \sum c_n |n\rangle$ where the $|n\rangle$ are eigenstates with energies $\hbar\omega(n+1/2)$ for $n \ge 0$.

- (a) What is the probability W that a measurement of the oscillator's energy performed at an arbitrary time t > 0, will yield a result greater than $3\hbar\omega$? When W = 0, what are the non-zero coefficients c_n ?
- (b) Assume that only c_0 and c_2 are different from zero. Write the normalization condition for $|\psi(0)\rangle$ and the expectation value \bar{E} of the energy in terms of c_0 and c_2 . Calculate $|c_0|^2$ and $|c_2|^2$ if $\overline{E} = \hbar \omega$.

- (c) If at time t = 0 the state of the oscillator is $|\psi(0)\rangle = \frac{1}{\sqrt{13}}(2|2\rangle + 3|3\rangle)$, calculate $|\psi(t)\rangle$ for t > 0 and the mean value $\langle p(t)\rangle$ of the momentum at t.
- (5) Peres-Horodecki criterion for separability (4 Bonus-Punkte) We consider a bipartite system (i.e., the total system consists of two subsystems) of two spin 1/2 particles and define the family of so-called Werner states by

$$\rho_W(p) = p|S\rangle\langle S| + \frac{1}{4}(1-p)\mathbb{1},$$

with $|S\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$ and $0 \le p \le 1$.

For mixed states, we define "entangled" as follows: A state is entangled if it is not separable, i.e., *cannot* be written as a convex combination of product states

$$\rho = \sum_{j} \lambda_{j} \rho_{j}^{(1)} \otimes \rho_{j}^{(2)},$$

where $\rho_j^{(1)}$, $\rho_j^{(2)}$ are density operators of the two subsystems and $\lambda_j \ge 0$ such that $\sum_i \lambda_j = 1$.

- (a) For p = 0 and p = 1 decompose $\rho_W(p)$ into a convex combination of product states or prove that no such decomposition exists.
- (b) Show that if a state ρ is separable, then its partial transpose is positive semidefinite (Peres-Horodecki criterion). *Hint*: For a state ρ defined on a Hilbert space $\mathcal{H}^{(1)} \otimes \mathcal{H}^{(2)}$ the partial transpose

(with respect to subsystem 2) is defined as $\tilde{\rho} = (\mathbb{1}^{(1)} \otimes T^{(2)})(\rho)$, where $T^{(2)}$ is the transposition map in $\mathcal{H}^{(2)}$.

(c) Use (b) to check for which values of p the state $\rho_W(p)$ is guaranteed to be entangled.