Quantenmechanik, Herbstsemester 2023

Blatt 4

Abgabe: Tuesday 17.10.23, 12:00H (Treppenhaus 4. Stock)
Tutor: Parvinder Solanki, Zi. 4.48
(1) Commutators of components of \mathbf{x} and \mathbf{p}
(2 Punkte)
Let F and G be analytic functions (i.e., they can be expanded in a power series) of \mathbf{p} and \mathbf{x}, respectively.
Show (e.g., by induction) that
(a) $\left[x_{j}, F(\mathbf{p})\right]=i \hbar \frac{\partial F}{\partial p_{j}}(\mathbf{p})$
(b) $\left[p_{j}, G(\mathbf{x})\right]=-i \hbar \frac{\partial G}{\partial x_{j}}(\mathbf{x})$

(2) Unequal time commutation relations

Calculate the commutation relations $\left[\hat{x}_{H}(t), \hat{p}_{H}\left(t^{\prime}\right)\right]$ of the (one-dimensional) position and momentum operators in the Heisenberg picture at times t, t^{\prime} for the following cases
(a) a particle acted on by a constant force
(b) a harmonic oscillator.
(3) Time evolution of a free particle
(3 Punkte)
Consider a free particle in three dimensions, $\hat{H}=\hat{\mathbf{p}}^{2} / 2 m$. Calculate the commutator $\left[\hat{x}_{j H}(t), \hat{x}_{j H}(0)\right]$ of the position operator $\hat{\mathbf{x}}_{H}$ in the Heisenberg picture, here, $\hat{x}_{j H}, j=$ $1,2,3$ are the components of $\hat{\mathbf{x}}_{H}$.
Give a lower bound for $\Delta \hat{x}_{j H}(t) \Delta \hat{x}_{j H}(0)$ and interpret your result.
$\Delta A:=\sqrt{\left\langle A^{2}\right\rangle-\langle A\rangle^{2}}$

(4) Harmonic oscillator

(3 Punkte)
Consider a harmonic oscillator of mass m and angular frequency ω. At time $t=0$, the state of this oscillator is given by $|\psi(0)\rangle=\sum_{n} c_{n}|n\rangle$ where the $|n\rangle$ are eigenstates with energies $\hbar \omega(n+1 / 2)$ for $n \geq 0$.
(a) What is the probability W that a measurement of the oscillator's energy performed at an arbitrary time $t>0$, will yield a result greater than $3 \hbar \omega$? When $W=0$, what are the non-zero coefficients c_{n} ?
(b) Assume that only c_{0} and c_{2} are different from zero. Write the normalization condition for $|\psi(0)\rangle$ and the expectation value \bar{E} of the energy in terms of c_{0} and c_{2}. Calculate $\left|c_{0}\right|^{2}$ and $\left|c_{2}\right|^{2}$ if $\bar{E}=\hbar \omega$.
(c) If at time $t=0$ the state of the oscillator is $|\psi(0)\rangle=\frac{1}{\sqrt{13}}(2|2\rangle+3|3\rangle)$, calculate $|\psi(t)\rangle$ for $t>0$ and the mean value $\langle p(t)\rangle$ of the momentum at t.
(5) Peres-Horodecki criterion for separability
(4 Bonus-Punkte)
We consider a bipartite system (i.e., the total system consists of two subsystems) of two spin $1 / 2$ particles and define the family of so-called Werner states by

$$
\rho_{W}(p)=p|S\rangle\langle S|+\frac{1}{4}(1-p) \mathbb{1},
$$

with $|S\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)$ and $0 \leq p \leq 1$.
For mixed states, we define "entangled" as follows: A state is entangled if it is not separable, i.e., cannot be written as a convex combination of product states

$$
\rho=\sum_{j} \lambda_{j} \rho_{j}^{(1)} \otimes \rho_{j}^{(2)}
$$

where $\rho_{j}^{(1)}, \rho_{j}^{(2)}$ are density operators of the two subsystems and $\lambda_{j} \geq 0$ such that $\sum_{j} \lambda_{j}=1$.
(a) For $p=0$ and $p=1$ decompose $\rho_{W}(p)$ into a convex combination of product states or prove that no such decomposition exists.
(b) Show that if a state ρ is separable, then its partial transpose is positive semidefinite (Peres-Horodecki criterion).
Hint: For a state ρ defined on a Hilbert space $\mathcal{H}^{(1)} \otimes \mathcal{H}^{(2)}$ the partial transpose (with respect to subsystem 2) is defined as $\tilde{\rho}=\left(\mathbb{1}^{(1)} \otimes T^{(2)}\right)(\rho)$, where $T^{(2)}$ is the transposition map in $\mathcal{H}^{(2)}$.
(c) Use (b) to check for which values of p the state $\rho_{W}(p)$ is guaranteed to be entangled.
q

