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(1) Distinguishable (labeled) particles, fermions, bosons (5 Bonuspunkte)

(a) Two identical bosons are found to be in states |ϕ⟩ and |ψ⟩. Write down the nor-
malized state vector describing the system when ⟨ϕ|ψ⟩ ≠ 0.

(b) When an energy measurement is made on a system of three bosons in a box, the
n values obtained were 3, 3, and 4. Write down a symmetrized, normalized state
vector.

(c) Consider three particles each of which can be in states ϕa, ϕb, and ϕc. Show that
the total number of allowed, distinct configurations for this system is

i. 27 if they are labeled

ii. 10 if they are bosons

iii. 1 if they are fermions

(2) Toy model for bunching/antibunching (5 Bonuspunkte)
Consider two particles in two orthonormal states ψa(x1), ψb(x2).

(a) Write down the 2-particle wave function for distinguishable particles, for indistin-
guishable bosons, and for indistinguishable fermions.

(b) Calculate the expectation value ⟨(∆x)2⟩ := ⟨(x1 − x2)
2⟩ of the square of the

distance between the two particles for all three cases and interpret your result.

(c) Do this calculation for two particles in states ψn and ψm in an infinite square well.
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(3) Attractive spherical δ-function shell (10 Punkte)
Problem 3 on Blatt 11 studied the scattering amplitude and scattering phase shift of a
repulsive spherical δ-function shell. The goal of the present problem is to analyze the
very interesting case of an attractive shell that exhibits both bound states and so-called
scattering resonances.

Investigate the bound states of the three-dimensional δ-shell potential

V (r) = −αδ(r − a) .

It is useful to introduce the dimensionless variables y := r/a, ξ := ka, and β :=
2maα/h̄2. It turns out that there is at most one bound state for each l.

(a) Determine the s-wave function. Show that a bound state exists only for β > 1.

(b) Show that there is at most one bound state corresponding to each l.

(c) Show for general l that the minimum strength of the potential for the existence of
a bound state is β = 2l + 1.

(d) Calculate the scattering phases δl(k).

(e) Give the scattering cross section for s-waves.

(f) Determine the condition for the maxima of the s-wave scattering cross section.

(g) From here on, assume β ≫ π. Determine the maxima for ka≪ β.

(h) Show that there are sharp and broad resonances. Show that the Breit-Wigner
formula σ ∼ Γ2/[(E − ER)

2 + Γ2] holds near the sharp resonances.

(i) Determine the poles of e2iδl − 1 on the negative real E-axis and interpret them.

(4) Fractional quantum Hall effect (5 Punkte)
The Laughlin wave function

ψ(z1, z2, . . . , zN) = A

[
N∏
j<k

(zj − zk)
q

]
exp[−1

2

N∑
k

|zk|2]

is an approximate description of the ground state of N interacting electrons confined to
two dimensions in a perpendicular magnetic field B. Here, q is a positive integer, and

zj :=

√
eB

2h̄c
(xj + iyj). Spin is not an issue here: in the ground state, all the electrons

have spin down with respect to the direction of B, and that is a trivially symmetric
configuration.

(a) Show that ψ has the proper antisymmetry for fermions.

(b) For q = 1, ψ describes noninteracting particles (i.e., can be written as a single
Slater determinant). Check this explicitly for N = 3. What single-particle states
are occupied in this case?



(c) For q > 1, ψ cannot be written as a single Slater determinant and describes
interacting particles. It can, however, be written as a sum of Slater determinants.
Show that, for q = 3 and N = 2, ψ can be written as a sum of two Slater
determinants.

(5) Shifted creation/annihilation operators (5 Punkte)
Study the shift from the (bosonic or fermionic) operators â, â† to new operators â′ =
â + α, â′† = â† + α∗; here α is a complex number. Is this transformation unitary, i.e.,
does it preserve the fermionic/bosonic commutation relations? If so, give an explicit
expression for the unitary operator.

Hint: eÂB̂e−Â = B̂ +
1

1!
[Â, B̂] +

1

2!
[Â, [Â, B̂]] + . . .

(6) Tight-binding model in second quantization (5 Punkte)
A major part of solid-state physics deals with electrons in a periodic potential. As
a simplified model we consider fermionic particles moving on a cubic lattice (lattice
constant a). The kinetic energy is assumed to have tight-binding form

H = −t
∑

<i,j>σ

[
c†iσcjσ + c†jσciσ

]
,

here,
∑

<i,j> is the sum over all nearest neighbors (such that each bond appears only
once) and

∑
σ is the sum over the two spin directions.

(a) Determine the band structure ϵ(k) for a d-dimensional cubic lattice (d = 1, 2, 3).

(b) Draw the contours ϵ(k) = const. in the (kx, ky)-plane for d = 2.

Hint: Diagonalize the Hamiltonian by a Fourier transform, cjσ = 1√
N

∑
k exp(ikrj)ckσ,

here, rj are the coordinates of the lattice sites; N is their total number.


