Quantenmechanik, Herbstsemester 2023

Blatt 12 (Zusatzpunkte)

Abgabe: 12.12.23, 12:00H (Treppenhaus 4. Stock)
Tutor: Manel Bosch, Zi.: 2.12
Schriftlicher Test: Dienstag, 19. Dezember 2023, 10.15-12 Uhr Hilfsmittel: Ein beidseitig handbeschriebenes A4 Blatt.
(1) Distinguishable (labeled) particles, fermions, bosons
(5 Bonuspunkte)
(a) Two identical bosons are found to be in states $|\phi\rangle$ and $|\psi\rangle$. Write down the normalized state vector describing the system when $\langle\phi \mid \psi\rangle \neq 0$.
(b) When an energy measurement is made on a system of three bosons in a box, the n values obtained were 3,3 , and 4 . Write down a symmetrized, normalized state vector.
(c) Consider three particles each of which can be in states ϕ_{a}, ϕ_{b}, and ϕ_{c}. Show that the total number of allowed, distinct configurations for this system is
i. 27 if they are labeled
ii. 10 if they are bosons
iii. 1 if they are fermions
(2) Toy model for bunching/antibunching
(5 Bonuspunkte)
Consider two particles in two orthonormal states $\psi_{a}\left(x_{1}\right), \psi_{b}\left(x_{2}\right)$.
(a) Write down the 2-particle wave function for distinguishable particles, for indistinguishable bosons, and for indistinguishable fermions.
(b) Calculate the expectation value $\left\langle(\Delta x)^{2}\right\rangle:=\left\langle\left(x_{1}-x_{2}\right)^{2}\right\rangle$ of the square of the distance between the two particles for all three cases and interpret your result.
(c) Do this calculation for two particles in states ψ_{n} and ψ_{m} in an infinite square well.

Weitere Aufgaben für Unentwegte.
Abgabe bis 19.1.2024, Besprechung nach Vereinbarung

(3) Attractive spherical δ-function shell

(10 Punkte) Problem 3 on Blatt 11 studied the scattering amplitude and scattering phase shift of a repulsive spherical δ-function shell. The goal of the present problem is to analyze the very interesting case of an attractive shell that exhibits both bound states and so-called scattering resonances.
Investigate the bound states of the three-dimensional δ-shell potential

$$
V(r)=-\alpha \delta(r-a) .
$$

It is useful to introduce the dimensionless variables $y:=r / a, \xi:=k a$, and $\beta:=$ $2 m a \alpha / \hbar^{2}$. It turns out that there is at most one bound state for each l.
(a) Determine the s-wave function. Show that a bound state exists only for $\beta>1$.
(b) Show that there is at most one bound state corresponding to each l.
(c) Show for general l that the minimum strength of the potential for the existence of a bound state is $\beta=2 l+1$.
(d) Calculate the scattering phases $\delta_{l}(k)$.
(e) Give the scattering cross section for s-waves.
(f) Determine the condition for the maxima of the s-wave scattering cross section.
(g) From here on, assume $\beta \gg \pi$. Determine the maxima for $k a \ll \beta$.
(h) Show that there are sharp and broad resonances. Show that the Breit-Wigner formula $\sigma \sim \Gamma^{2} /\left[\left(E-E_{R}\right)^{2}+\Gamma^{2}\right]$ holds near the sharp resonances.
(i) Determine the poles of $e^{2 i \delta_{l}}-1$ on the negative real E-axis and interpret them.
(4) Fractional quantum Hall effect

The Laughlin wave function

$$
\psi\left(z_{1}, z_{2}, \ldots, z_{N}\right)=A\left[\prod_{j<k}^{N}\left(z_{j}-z_{k}\right)^{q}\right] \exp \left[-\frac{1}{2} \sum_{k}^{N}\left|z_{k}\right|^{2}\right]
$$

is an approximate description of the ground state of N interacting electrons confined to two dimensions in a perpendicular magnetic field B. Here, q is a positive integer, and $z_{j}:=\sqrt{\frac{e B}{2 \hbar c}}\left(x_{j}+i y_{j}\right)$. Spin is not an issue here: in the ground state, all the electrons have spin down with respect to the direction of \mathbf{B}, and that is a trivially symmetric configuration.
(a) Show that ψ has the proper antisymmetry for fermions.
(b) For $q=1, \psi$ describes noninteracting particles (i.e., can be written as a single Slater determinant). Check this explicitly for $N=3$. What single-particle states are occupied in this case?
(c) For $q>1, \psi$ cannot be written as a single Slater determinant and describes interacting particles. It can, however, be written as a sum of Slater determinants. Show that, for $q=3$ and $N=2, \psi$ can be written as a sum of two Slater determinants.
(5) Shifted creation/annihilation operators
(5 Punkte)
Study the shift from the (bosonic or fermionic) operators $\hat{a}, \hat{a}^{\dagger}$ to new operators $\hat{a}^{\prime}=$ $\hat{a}+\alpha, \hat{a}^{\prime \dagger}=\hat{a}^{\dagger}+\alpha^{*}$; here α is a complex number. Is this transformation unitary, i.e., does it preserve the fermionic/bosonic commutation relations? If so, give an explicit expression for the unitary operator.
Hint: $e^{\hat{A}} \hat{B} e^{-\hat{A}}=\hat{B}+\frac{1}{1!}[\hat{A}, \hat{B}]+\frac{1}{2!}[\hat{A},[\hat{A}, \hat{B}]]+\ldots$

(6) Tight-binding model in second quantization

A major part of solid-state physics deals with electrons in a periodic potential. As a simplified model we consider fermionic particles moving on a cubic lattice (lattice constant a). The kinetic energy is assumed to have tight-binding form

$$
H=-t \sum_{<i, j>\sigma}\left[c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right]
$$

here, $\sum_{<i, j\rangle}$ is the sum over all nearest neighbors (such that each bond appears only once) and \sum_{σ} is the sum over the two spin directions.
(a) Determine the band structure $\epsilon(\mathbf{k})$ for a d-dimensional cubic lattice $(d=1,2,3)$.
(b) Draw the contours $\epsilon(\mathbf{k})=$ const. in the $\left(k_{x}, k_{y}\right)$-plane for $d=2$.

Hint: Diagonalize the Hamiltonian by a Fourier transform, $c_{j \sigma}=\frac{1}{\sqrt{N}} \sum_{\mathbf{k}} \exp \left(i \mathbf{k r}_{j}\right) c_{\mathbf{k} \sigma}$, here, \mathbf{r}_{j} are the coordinates of the lattice sites; N is their total number.

