Quantenmechanik, Herbstsemester 2023

Blatt 11 (Zusatzpunkte)

Abgabe: 5.12.23, 12:00H (Treppenhaus 4. Stock) <u>Tutor:</u> Manel Bosch, Zi.: 2.12

Schriftlicher Test: Dienstag, 19. Dezember 2023, 10.15 - 12 Uhr <u>Hilfsmittel:</u> Ein beidseitiges handbeschriebenes A4 Blatt.

(1) Born approximation

A particle of mass m is scattered at the potential

$$V(\mathbf{r}) = \begin{cases} -V_0 & r < a, \\ 0 & r \ge a \end{cases}$$

here, $r = |\mathbf{r}|$, and V_0 can be positive or negative.

- (a) Calculate the differential cross section in the (first) Born approximation.
- (b) Discuss the limit of low energy $ka \ll 1$ where $k = \sqrt{2mE/(\hbar^2)}$. Calculate the total cross section in this limit.
- (c) Discuss the validity of the Born approximation for this example.

(2) Sakurai Fig. 7.8

(2 Bonuspunkte) (2 Bonuspunkte) (2 Bonuspunkte)

The figure shown below is taken from Sakurai [see p. 412 (436) in the old (new) edition]. It is supposed to illustrate the concept of the scattering phase for scattering at a squarewell potential. The figure is imprecise/incorrect in several places.

Redraw the figure **carefully** yourselves, correcting the mistakes/imprecisions.

FIGURE 7.8. Plot of u(r) versus r. (a) For V = 0 (dashed line). (b) For $V_0 < 0$, $\delta_0 > 0$ with the wave function (solid line) pulled in. (c) For $V_0 > 0$, $\delta_0 < 0$ with the wave function (solid line) pulled out.

(3 Bonuspunkte)

(3) Spherical δ -function shell

(5 Bonuspunkte)

Consider the case of low-energy scattering from a spherical δ -function shell,

$$V(r) = \alpha \delta(r-a) ,$$

where α , *a* are positive constants.

- (a) Find the s-wave $(\ell = 0)$ scattering phase shift $\delta_0(k)$. Express your answer in terms of the dimensionless quantity $\beta := 2ma\alpha/\hbar^2$.
- (b) Calculate the scattering amplitude $f(\theta)$, the differential cross-section $d\sigma/d\Omega(\theta)$, and the total cross section σ . Assume $ka \ll 1$ such that only the $\ell = 0$ term contributes significantly (i.e., neglect the terms with $\ell \neq 0$).

(4) Hard-sphere scattering

(5 Bonuspunkte)

Consider scattering of a particle of energy $E = \hbar^2 k^2/2m$ by the potential

$$V(r) = \begin{cases} \infty & r < a, \\ 0 & \text{otherwise} \end{cases}$$

- (a) Determine the scattering phase shifts δ_l , the partial scattering amplitudes f_l , and the partial (total) cross sections σ_l . Hint: Use the ansatz $R_l(r) = \frac{1}{2} [e^{2i\delta_l} h_l(kr) + h_l^*(kr)]$ for the radial part of the wavefunction.
- (b) Determine δ_0 and $R_0(r)$. Plot $R_0(r)$. Hint: $j_0(x) = \sin(x)/x$, $n_0(x) = -\cos(x)/x$.
- (c) Consider the limit of low energies, $ka \ll 1$, and calculate the partial scattering amplitude f_0 . For $l \neq 0$, show that $\lim_{ka\to 0} \sin \delta_l/k = 0$ and conclude that $f_l \to 0$. Discuss the differential and total cross section in the low-energy limit. Hint: For $x \to 0$, $j_l(x) = x^l/1 \cdot 3 \cdot \ldots (2l+1)$, $n_l(x) = -1 \cdot 3 \cdot \ldots (2l-1)/x^{l+1}$
- (d) * Show that in the limit of high energies, $ka \gg 1$, the total cross section is $\sigma_{\text{tot}} = 2\pi a^2$, i.e., twice the geometric cross section. Explanation?