Quantenmechanik, Herbstsemester 2023

Blatt $10=$ letztes "offizielles" Übungsblatt
(d.h., 50% der Hausaufgaben $=50$ Punkte)

Abgabe: 28.11.23, 12:00H (Treppenhaus 4. Stock)
Tutor: Manel Bosch, Zi.: 2.12
(1) Two spins with time-dependent coupling (4 Punkte)
Consider two coupled spin $1 / 2$ particles with a time-dependent coupling constant $J(t)$ which approaches zero for $t \rightarrow \pm \infty$. The Hamiltonian is

$$
H(t)=J(t) \mathbf{S}_{1} \cdot \mathbf{S}_{2} .
$$

Assume that the system is prepared in the state $|\psi(t \rightarrow-\infty)\rangle=|\uparrow \downarrow\rangle_{z}:=|\uparrow\rangle_{z}^{(1)}|\downarrow\rangle_{z}^{(2)}$.
(a) Does H commute with itself at different times?

Write down an expression for the time evolution operator $U\left(t_{\mathrm{f}},-\infty\right)$ and express it in terms of $\alpha\left(t_{\mathrm{f}}\right):=\hbar \int_{-\infty}^{t_{\mathrm{f}}} \mathrm{d} t J(t)$ which is assumed to be finite.
(b) Obtain an explicit exact expression of the state $\left|\psi\left(t_{\mathrm{f}}\right)\right\rangle$ at time $t=t_{\mathrm{f}}$.

Hint: $\mathbf{S}_{1} \cdot \mathbf{S}_{2}=\frac{1}{2}\left[\left(\mathbf{S}_{1}+\mathbf{S}_{2}\right)^{2}-\mathbf{S}_{1}^{2}-\mathbf{S}_{2}^{2}\right]$.
(c) What is the probability to find the system in the state $|\downarrow \uparrow\rangle_{z}$ for $t=t_{\mathrm{f}}$?
(d) [independent of (a) - (c)]

Repeat (c) using first-order time-dependent perturbation theory, i.e., calculate the probability $P_{|\uparrow \downarrow\rangle \rightarrow|\downarrow \uparrow\rangle}\left(t=t_{\mathrm{f}}\right)$.
If you have solved (c), compare with the exact result.
(2) One-dimensional toy model for the photoelectric effect
(3 Punkte)
Consider an electron bound in an attractive δ-function potential, $H_{0}=\frac{-\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}-\alpha \delta(x)$. Calculate the probability per unit time of "ionization" if the electron is under the influence of a harmonically varying electric field, i.e., a perturbation $V(x, t)=-x e E_{0} \cos \omega t$.
(a) Solve the problem assuming that the final states do not "see" the δ-function potential (i.e., assume that the final states are plane waves).
Hint: Golden rule. The ground state of H_{0} was found in problem 4 of Blatt 5: $\psi_{0}(x)=\sqrt{\kappa} e^{-\kappa|x|}$ where $\kappa=\frac{m \alpha}{\hbar^{2}}$; the ground-state energy is $\frac{-\hbar^{2} \kappa^{2}}{2 m}$.
(b) Repeat (a) taking into account the influence of the δ-function potential on the final states.
(3) Wigner-Eckart theorem Electromagnetic quadrupole transitions in the hydrogen atom are described by matrix elements of the (spherical) quadrupole operators $Q_{m}^{(2)} \sim r^{2} Y_{2 m}$ that form a set of spherical tensor operators.
(a) Calculate the ratio B / A of the following matrix elements; here, $|n l m\rangle$ are the eigenstates of the hydrogen atom:

$$
\begin{aligned}
& A=\left\langle n^{\prime} 43\right| Q_{2}^{(2)}|n 21\rangle \\
& B=\left\langle n^{\prime} 4,-2\right| Q_{0}^{(2)}|n 2,-2\rangle
\end{aligned}
$$

(b) Calculate

$$
\begin{aligned}
& C=\left\langle n^{\prime} 51\right| Q_{2}^{(2)}|n 1,-1\rangle \\
& D=\left\langle n^{\prime} 31\right| Q_{0}^{(2)}|n 1,-1\rangle
\end{aligned}
$$

(c) Consider the matrix element $\langle 4 l m| z(x+i y)|n 21\rangle$ where x, y, z are Cartesian coordinates. Which values for l and m are allowed, i.e., lead to non-vanishing values?

(4) Wigner function

(4 Bonuspunkte)
Knowing the density operator $\hat{\rho}$ of a particle is equivalent to knowing its density matrix $\rho\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\langle\mathbf{x}| \hat{\rho}\left|\mathbf{x}^{\prime}\right\rangle$ in the position representation (Hint: partition of unity).
We now consider a one-dimensional situation (the generalization is easy) and use $\rho\left(x, x^{\prime}\right)$ to define the Wigner function

$$
f(r, p)=\frac{1}{2 \pi \hbar} \int \mathrm{~d} y \exp (i p y / \hbar) \rho\left(r+\frac{y}{2}, r-\frac{y}{2}\right)
$$

Show that $f(r, p)$ has the following properties:
(a) $f(r, p)$ is real.
(b) $\int \mathrm{d} p f(r, p)$ is the correct quantum-mechanical probability density in position space.
(c) $\int \mathrm{d} r f(r, p)$ is the correct quantum-mechanical probability density in momentum space.
(d) Hence $f(r, p)$ looks like a classical phase-space distribution that reproduces quantum mechanics, which appears to be a contradiction to everything we know (e.g., the uncertainty relation).
Calculate and plot $f(r, p)$ for the one-dimensional harmonic oscillator prepared in its n-th eigenstate for $n=0,1,2$ to see what is the problem. Use a computer if necessary.

