Quantenmechanik, Herbstsemester 2023

Blatt 1

Abgabe: 27.09.23, 12:00H (auf adam oder Treppenhaus 4. Stock)
Tutor: Niels Lörch, Zimmer 4.10
$\overline{\text { Die Übungskreditpunkte erhält, wer sowohl } 50 \% \text { der Punkte aus den Hausaufgaben er- }}$ reicht als auch 50% der Punkte aus dem schriftlichen Test am Ende des Semesters.

(1) Spin 1 system

(3 Punkte)
Consider a spin 1 system. The spin matrices are

$$
S_{x}=\hbar \sqrt{\frac{1}{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), S_{y}=\hbar \sqrt{\frac{1}{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right), \text { and } S_{z}=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

(a) What are the possible measurement results if S_{z} is measured?
(b) Assume the system is prepared in an eigenstate of S_{z} such that a measurement of S_{z} yields \hbar. In this state, what are the expectation values $\left\langle S_{y}\right\rangle$ and $\left\langle S_{y}^{2}\right\rangle$?
Discuss your results.
(c) Now assume the system to be prepared in the eigenstate of S_{z} with the eigenvalue 0 . What are the possible outcomes and their probabilities when S_{y} is measured? Hint: the normalized eigenvectors of S_{y} are

$$
\frac{1}{2}\left(\begin{array}{c}
-1 \\
\mp i \sqrt{2} \\
1
\end{array}\right) \text { with eigenvalues } \pm \hbar, \frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \text { with eigenvalue } 0 .
$$

(2) Properties of the density operator
(2 Punkte)
The density operator is defined as $\hat{\rho}=\sum_{i=1}^{N} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ where $0 \leq p_{i} \leq 1$ are the probabilities that the system is in state $\left|\psi_{i}\right\rangle$. The $\left|\psi_{i}\right\rangle$ do not need to be orthogonal.
(a) Show that $\operatorname{Tr} \hat{\rho}=1$.
(b) Show that $\operatorname{Tr} \hat{\rho}^{2}=1$ if and only if ρ is pure.

Hint: Write down the expression for $\operatorname{Tr} \hat{\rho}^{2}$ and distinguish the two cases that only one or at least two different $\left|\psi_{i}\right\rangle$'s contribute to $\hat{\rho}$.
(3) Spin $1 / 2$ continued

We continue to consider a particle with spin $\frac{1}{2}$. The notation is the same as in problem 1 from Blatt 0 .
(a) Write the projector onto $|\downarrow\rangle_{x}$ as a matrix in the z-basis.
(b) Let the spin- $\frac{1}{2}$ particle be with probability $\frac{2}{3}$ in the state $|\uparrow\rangle_{y}$ and with probability $\frac{1}{3}$ in the state $|\downarrow\rangle_{x}$ (Note the indices x and $y!$). Give a representation of the density operator $\hat{\rho}$. Is this a mixed or a pure state?
(c) What is the probability to measure $\pm \frac{\hbar}{2}$ on measuring \hat{S}_{x} in a system described by $\hat{\rho}$ from problem (b).
(d) Can you find a state $|\psi\rangle$ that reproduces the measurement results in (c)?
(e) What is the state after the measurement in (c) and (d)?
(f) Compute the expectation value of \hat{S}_{y} using $\hat{\rho}$ from problem (b) and $|\psi\rangle$ from problem (d).

