Quantenmechanik, Herbstsemester 2023

Blatt 0

Präsenzübung am 21. September 2023

(1) Spin 1/2

Consider a particle with spin $\frac{1}{2}$. Before each of the measurements discussed below, the particle has been prepared in the state

$$|\psi\rangle = i\frac{1}{\sqrt{5}} |\uparrow\rangle_z - \frac{2}{\sqrt{5}} |\downarrow\rangle_z \,.$$

Here, $|\uparrow\rangle_z$ and $|\downarrow\rangle_z$ are the eigenstates of the operator \hat{S}_z with eigenvalues $\frac{\hbar}{2}$, $-\frac{\hbar}{2}$, respectively.

NB: In the z-basis, we have
$$\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\hat{S}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, and $\hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

(a) What is the probability to obtain the value $-\frac{\hbar}{2}$ when measuring \hat{S}_z ?

- (b) Compute the expectation value of \hat{S}_z .
- (c) Compute the expectation value of \hat{S}_x and \hat{S}_y .
- (d) Rewrite the vector $|\uparrow\rangle_x$, which is the eigenstate of \hat{S}_x with eigenvalue $\frac{\hbar}{2}$, as a linear combination of $|\uparrow\rangle_z$ and $|\downarrow\rangle_z$. Same for $|\downarrow\rangle_x$
- (e) What is the probability to obtain the value $\pm \frac{\hbar}{2}$ when \hat{S}_x is measured? Check that your result is consistent with (c).
- (f) Repeat (d) and (e) for \hat{S}_y .
- (g) What is the probability to obtain the value 0 when measuring \hat{S}_x ?