Departement Physik, Universität Basel

Prof. C. Bruder (Zimmer 4.2, Tel.: 20736 92, Christoph.Bruder@unibas.ch)

Quantenmechanik, Herbstsemester 2023

Blatt 0

Präsenzübung am 21. September 2023

(1) Spin 1/2

Consider a particle with spin $\frac{1}{2}$. Before each of the measurements discussed below, the particle has been prepared in the state

$$
|\psi\rangle=i \frac{1}{\sqrt{5}}|\uparrow\rangle_{z}-\frac{2}{\sqrt{5}}|\downarrow\rangle_{z} .
$$

Here, $|\uparrow\rangle_{z}$ and $|\downarrow\rangle_{z}$ are the eigenstates of the operator \hat{S}_{z} with eigenvalues $\frac{\hbar}{2},-\frac{\hbar}{2}$, respectively.
NB: In the z-basis, we have $\hat{S}_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \hat{S}_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$, and $\hat{S}_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
(a) What is the probability to obtain the value $-\frac{\hbar}{2}$ when measuring \hat{S}_{z} ?
(b) Compute the expectation value of \hat{S}_{z}.
(c) Compute the expectation value of \hat{S}_{x} and \hat{S}_{y}.
(d) Rewrite the vector $|\uparrow\rangle_{x}$, which is the eigenstate of \hat{S}_{x} with eigenvalue $\frac{\hbar}{2}$, as a linear combination of $|\uparrow\rangle_{z}$ and $|\downarrow\rangle_{z}$. Same for $|\downarrow\rangle_{x}$
(e) What is the probability to obtain the value $\pm \frac{\hbar}{2}$ when \hat{S}_{x} is measured? Check that your result is consistent with (c).
(f) Repeat (d) and (e) for \hat{S}_{y}.
(g) What is the probability to obtain the value 0 when measuring \hat{S}_{x} ?

