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(1) Matrix elements of z (2 Punkte)
In the discussion of the Stark effect in the lecture we used some properties of the matrix
elements of z with the H-atom states |nlm〉 that we want to prove now.

(a) Show that [Lz, z] = 0 and conclude that 〈n′l′m′|z|nlm〉 = 0 unless m′ = m.

(b) Use a symmetry argument to prove that 〈n′lm′|z|nlm〉 = 0 (same l!).

(c) Show that 〈200|z|210〉 = −3a0 where a0 = 4πε0h̄
2/(me2) is the Bohr radius.

Hint: the H-atom wave functions are ψnlm(r, θ, φ) = 〈r, θ, φ|nlm〉 = Rnl(r)Ylm(θ, φ).
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(2) Perturbed two-dimensional harmonic oscillator (4 Punkte)
Consider the two-dimensional harmonic oscillator with a perturbed potential energy of
the form

V (x, y) =
1

2
mω2(x2 + y2 + λxy) . (1)

(a) Calculate the energy eigenvalues for the unperturbed case (λ = 0) and discuss
their degeneracies.
Hint: Use creation (annihilation) operators for each of the two degrees of freedom
x, y, i.e.,

x =

√
h̄

2mω
(a1 + a†1), px = i

√
mh̄ω

2
(a†1 − a1) ,

and similarly for y, py, and a2, a†2.

(b) Compute the ground-state energy of the system (λ 6= 0) up to second order in λ
and the ground-state wave function up to first order in λ.

(c) The first excited state of the unperturbed system (λ = 0) is doubly degenerate.
Calculate the energy splitting up to first order in λ. What are the corresponding
eigenstates in zeroth order?

(d) * Compare with the exact result.
Hint: express (1) as a sum of two harmonic potentials.



(3) Numerically solving the Schrödinger equation (4 Punkte + 1 Bonuspunkt)
One way to solve quantum problems numerically is to turn the Schrödinger equation
into a matrix equation by discretizing the variable x. The goal of this problem is to
apply this procedure to the one-dimensional Hamiltonian H = − h̄2

2m
d2

dx2 + V (x).

(a) Slice the relevant interval in evenly spaced points xj with ∆x := xj+1 − xj, and
let ψj := ψ(xj) and Vj := V (xj). Show that the discretized Schrödinger equation
can be written as

− h̄2

2m

(
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(∆x)2

)
+ Vjψj = Eψj

or

−λψj+1 + (2λ+ Vj)ψj − λψj−1 = Eψj where λ =
h̄2

2m(∆x)2
.

In matrix form, Hψ = Eψ, where H is a tridiagonal matrix and
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Write down the matrix H. What goes in the upper left and lower right corners of
H depends on the boundary conditions. The allowed energies are the eigenvalues
of the matrix H if the discretization is fine enough, ∆x→ 0.

(b) Apply this method to the harmonic oscillator, V (x) = 1
2
mω2x2.

Chop the interval [-5:5] into N+1 equal segments, i.e., ∆x = 10/(N+1), x0 = −5,
xN+1 = 5. Choose the boundary condition ψ0 = ψN+1 = 0 (what does that mean?),
leaving ψ = (ψ1, . . . ψN). Construct the tridiagonal N ×N matrix H.

(c) Choose e.g. N = 100 and use a computer to find the 10 lowest eigenvalues nume-
rically. Compare with the exact result.
Hint: We support Julia, but you are free to use any programming language.
In Julia, a symmetric tridiagonal N ×N matrix can be created using
H = SymTridiagonal(d, od) where the N -dimensional vector d contains the dia-
gonal elements and the (N − 1)-dimensional vector od contains the off-diagonal
elements.
e, ev = eigen(H) will create a vector e containing the eigenvalues and a matrix ev
containing the eigenvectors.

(d) Repeat (c) for V (x) = kx4 and confirm the value of the ground-state energy
mentioned in problem 4 on Blatt 8, viz., E0 = 0.66798626 . . . (h̄4k/m2)1/3.

(e) Bonus point: plot the lowest five eigenstates, both for (b) and (d).

Please submit your code in electronic form or print it out.


