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(1) Matrix elements of z (2 Punkte)
In the discussion of the Stark effect in the lecture we used some properties of the matrix
elements of z with the H-atom states [nlm) that we want to prove now.

(a) Show that [L., 2] = 0 and conclude that (n’l'm’|z|nlm) = 0 unless m’ = m.

(b) Use a symmetry argument to prove that (n'lm’|z|nlm) = 0 (same I!).

(c) Show that (200|2|210) = —3ao where ag = 4megh?/(me?) is the Bohr radius.
Hint: the H-atom wave functions are ¢, (1,6, ¢) = (r, 0, ¢p|nlm) = Ry (r) Y, (0, ¢).
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In particular, Roy(r) = 2 (Q_a()) (1—2—%)67% and Ry (1) = 7 (2—%> a—oefﬁ
(2) Perturbed two-dimensional harmonic oscillator (4 Punkte)
Consider the two-dimensional harmonic oscillator with a perturbed potential energy of
the form
1
V(w,y) = gme?(@® +y° + Ay (1)

(a) Calculate the energy eigenvalues for the unperturbed case (A = 0) and discuss
their degeneracies.
Hint: Use creation (annihilation) operators for each of the two degrees of freedom

T, Yy, i.e.,
h . Imhw
r = 2mw<al+a1)> Pz =1 9 (ai_al)a

and similarly for y, p,, and as, a;

(b) Compute the ground-state energy of the system (A # 0) up to second order in A
and the ground-state wave function up to first order in \.

(c¢) The first excited state of the unperturbed system (A = 0) is doubly degenerate.
Calculate the energy splitting up to first order in A\. What are the corresponding
eigenstates in zeroth order?

(d) * Compare with the exact result.
Hint: express (1) as a sum of two harmonic potentials.



(3) Numerically solving the Schrédinger equation (4 Punkte + 1 Bonuspunkt)
One way to solve quantum problems numerically is to turn the Schrédinger equation
into a matrix equation by discretizing the variable x. The goal of this problem is to
apply this procedure to the one-dimensional Hamiltonian H = R &2 V(z).

(a)

(d)
(e)
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Slice the relevant interval in evenly spaced points z; with Az := z;,; — x;, and
let ¢; := 9(x;) and V; := V(x;). Show that the discretized Schrodinger equation
can be written as

R (i — 20+ _
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or
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In matrix form, Hy) = E, where H is a tridiagonal matrix and
Vi1

=\ v
Vi1

Write down the matrix H. What goes in the upper left and lower right corners of
H depends on the boundary conditions. The allowed energies are the eigenvalues
of the matrix H if the discretization is fine enough, Az — 0.

Apply this method to the harmonic oscillator, V(z) = $mw?az?.

Chop the interval [-5:5] into N +1 equal segments, i.e., Ax = 10/(N+1), zg = —5,
zy+1 = 5. Choose the boundary condition 1)y = ¥y41 = 0 (what does that mean?),
leaving ¢ = (11, ...%y). Construct the tridiagonal N x N matrix H.

Choose e.g. N = 100 and use a computer to find the 10 lowest eigenvalues nume-
rically. Compare with the exact result.
Hint: We support Julia, but you are free to use any programming language.
In Julia, a symmetric tridiagonal N x N matrix can be created using

= SymTridiagonal(d, od) where the N-dimensional vector d contains the dia-
gonal elements and the (N — 1)-dimensional vector od contains the off-diagonal
elements.
e, ev = eigen(H) will create a vector e containing the eigenvalues and a matrix ev
containing the eigenvectors.

Repeat (c) for V(z) = kz* and confirm the value of the ground-state energy
mentioned in problem 4 on Blatt 8, viz., Ey = 0.66798626. .. (h'k/m?)"/3.

Bonus point: plot the lowest five eigenstates, both for (b) and (d).

Please submit your code in electronic form or print it out.



