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Outline of the lectures

• building blocks of quantum information
• quantum bits (qubits)
• superposition and entanglement
• gates and universal computation
• Deutsch algorithm

• decoherence, quantum error correction, no-cloning theorem,
quantum teleportation
• quantum cryptography, quantum “hardware”

References
• N. D. Mermin, Quantum computer science, Cambridge University Press
• M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge University Press
• Lecture notes by C. Bruder, R. Tiwari, N. Lörch and M. Koppenhöffer
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Main take-home messages of Lecture 2

• Any realistic quantum computer will be noisy due to
uncontrolled interaction with environment.
• When information is transmitted we have to face two types of

the errors: bit flips and phase flips
• Correction schemes are based on redundancy; to encode one

logical qubit we need more physical qubits
• A quantum state cannot be simply copied from Alice to Bob

(no-cloning theorem) but can be teleported provided that Alice
and Bob share an auxiliary entangled state.
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Classical private-key cryptography

• Alice wants to send a secret message to Bob
• both have exchanged a random encryption key beforehand

0 1 0 0 1 1 0 0 1 0 0 0 message
1 1 0 1 0 1 1 1 0 1 0 0 encryption key
1 0 0 1 1 0 1 1 1 1 0 0 bitwise sum = encrypted message
• Message transmitted to Bob over public channel

1 0 0 1 1 0 1 1 1 1 0 0 encrypted message
1 1 0 1 0 1 1 1 0 1 0 0 encryption key
0 1 0 0 1 1 0 0 1 0 0 0 bitwise difference = message
• Provably secure if the key is as long as the message
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Safety of key distribution

• if Eve (eavesdropper) gets hold of the encryption key, she may
read the encrypted message
• Eve can read the message without Bob’s knowledge of the

interception of the message

Quantum cryptography, quantum key distribution (QKD)

• Quantum mechanics can be used to distribute a provably secure
private key over a public channel
• This key can be used for classical private-key cryptography
• The presence of an eavesdropper can be detected
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Quantum cryptography; BB84 protocol

• Alice sends a string of quantum states to Bob:
she randomly switches between the encodings 0, 1 = |0〉, |1〉 and
0, 1 = |+〉, |−〉 (encoding is secret)
• Bob measures the qubits:

he randomly switches between measurements in the |0〉, |1〉 and
|+〉, |−〉 basis (measurement basis is secret)
• Alice announces her choice of basis via a public channel
• Alice and Bob keep only bits obtained in the same basis

(the bit values are secret)
• Alice and Bob compare the values of a randomly chosen subset

of bits via a public channel
• if all compared bits agree, the channel is safe and the remaining

secret bits can be used as a private key
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Quantum cryptography; BB84 protocol

Why can Alice and Bob conclude the channel is safe?
• to obtain the key, Eve intercepts the qubits on the way to Bob,

measures them, and sends a new qubit with her measurement
result to Bob
• Eve guesses the basis because she does not know Alice’s random

choice of basis
⇒ in 50% of the cases, Eve measures in the wrong basis
• if Bob happens to measure in the same basis as Alice, he gets

the wrong bit in 50% of the cases
⇒ Eve unavoidably corrupts ≈ 25% of the bits
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Quantum cryptography; E91 protocol

• BB84 based purely on quantum randomness, no entanglement
• Bob and Alice share the initial singlet state

|ψ〉 = |β11〉 = 1√
2

(|01〉 − |10〉)

• Both make measurements on their half of the pair.
• Using the same basis, the results are random but perfectly

anticorrelated
• Using different bases, they can verify that the state was

entangled (Bell test). If Eve inferred, the entanglement would be
gone.
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Bell test
An example of a Bell test based on (CHSH)1 inequality

• Alice and Bob perform measurements of physical properties of
their particles e.g., spin component σ~n along an axis ~n
• measurements are performed in two randomly chosen settings

• A1, A2 for Alice
• B1, B2 for Bob

e.g., different directions ~n
• outcome of a measurement is {a1, a2, b1, b2} ∈ {+1,−1} e.g.,
{↑, ↓} wrt. the chosen direction ~n

1Clauser-Horne-Shimony-Holt

9



Bell test
An example of a Bell test based on (CHSH) inequality

• Consider C = (a1 + a2)b1 + (a1 − a2)b2
• Either a1 + a2 = 0 ⇒ a1 − a2 = ±2
• Or a1 − a2 = 0 ⇒ a1 + a2 = ±2
⇒ C = ±2

Local theory

• particle is in a certain state before the measurement (no
correlations between measurements A and B)
• p(a1, a2, b1, b2) is probability to measure

A1 = a1,A2 = a2,B1 = b1,B2 = b2
|〈C〉| = |

∑
a1,a2,b1,b2

p(a1, a2, b1, b2)× C| ≤ 〈|C|〉 = 2

⇒ classically (or for non-entangled states) one expects |〈C〉| ≤ 2
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Bell test
An example of a Bell test based on (CHSH) inequality

Quantum mechanics
• C → Ĉ, operator!
• Measure spin σ̂~n along a general direction ~n(θ, ϕ)
• Choose ϕ = 0 for simplicity: σ̂θ = sin(θ)σ̂x + cos(θ)σ̂z and

σ̂α ⊗ σ̂β =
(

cos(α) sin(α)
sin(α) − cos(α)

)
⊗
(

cos(β) sin(β)
sin(β) − cos(β)

)
• Take a Bell state |β00〉 = 1√

2(|00〉+ |11〉):
〈β00|σ̂α ⊗ σ̂β|β00〉 = cos(α− β)

• remember classically: C = (a1 + a2)b1 + (a1 − a2)b2
Compute

〈
Ĉ
〉

= 〈(σ̂α1 + σ̂α2)⊗ σ̂β1〉+ 〈(σ̂α1 − σ̂α2)⊗ σ̂β2〉
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Bell test
An example of a Bell test based on (CHSH) inequality

Quantum mechanics
• Take a Bell state |β00〉 = 1√

2(|00〉+ |11〉):
〈β00|σ̂α ⊗ σ̂β|β00〉 = cos(α− β)〈

Ĉ
〉

= cos(α1 − β1) + cos(α2 − β1)
+ cos(α1 − β2)− cos(α2 − β2)

• Choose angles α1 = 0, α2 = π
2 , β1 = π

4 , and β2 = −π
4 :

⇒ |〈C〉| = 2
√
2 violates CHSH inequality

• Violation of the inequality |〈C〉| ≤ 2 demonstrates entanglement
Check that for a non-entangled state (for example |00〉) the CHSH
inequality holds.
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Quantum "hardware" from a bird’s-eye view

Necessary criteria for quantum computation
(DiVincenzo criteria):
1. scalability: build a large (e.g., 109) number of qubits
2. initialization: prepare a well-defined initial quantum state
3. long coherence time: in comparison to the gate time
4. universal set of quantum gates: to construct all possible

quantum gates
5. measurement procedure: to get the result of a calculation
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Quantum annealers; quantum adiabatic computation

• Hamiltonian dependent on a control parameter g ∈ [0, 1]:

Ĥ(g) = (1− g)Ĥi + gĤf

• ground state of Ĥi is easily accessible
• ground state of Ĥf encodes the solution of a hard computational

problem (typically some optimization problems)

Based on quantum adiabatic theorem:
A physical system remains in its instantaneous
eigenstate if a given perturbation is acting on it
slowly enough and if there is a gap between the
eigenvalue and the rest of the Hamiltonian’s
spectrum.
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Quantum annealers; quantum adiabatic computation

• alternative architecture: no gates applied,
just slow tuning g = 0→ 1 (for example magnetic field)
• obstacle: vanishing gaps in the energy spectrum

For vanishing ∆E the adiabatic
evolution would have to be infinitely
slow!

∆E → 0 occurs typically in a critical
point g = gc of a quantum phase
transition

• The first commercially available quantum computer is an
annealer (D-Wave, 2015)
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Overview of different qubit realizations

• spins in large molecules + NMR Cory et al., Gershenfeld and Chuang

• ions in electromagnetic traps Cirac and Zoller

• neutral atoms in optical lattices Jaksch et al.

• optical quantum computing Knill, Laflamme, and Milburn

• 31P donor atoms in silicon Kane

• electron spins in semiconductor quantum dots Loss and DiVincenzo

• superconducting electrical circuits
• flux qubit Mooij et al., Ioffe et al.

• charge qubit Schön et al., Averin

• phase qubit Martinis et al.

• transmon qubit Koch et al.

• topological qubits Kitaev et al.
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Breaking News: Quantum supremacy in boson sampling?
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Breaking News: Quantum supremacy in boson sampling?
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Optical quantum computing

• photons carry information, manipulation only through optical
elements (e.g. beamsplitters, mirrors)
photons in channels ↔ qubits, beamsplitters ↔ superpositions
• in principle optical elements can encode any qubit gate  

universal computing
• boson sampling: non-universal but classically difficult

task: model probability that the
photodetector in the nth outcome
channel clicks
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Ions in electromagnetic traps

+

+

+

+

2.5 mm

• N . 50 ions (e.g., 9Be, 40Ca) in a harmonic
electromagnetic trap (Paul trap)
• qubit is encoded in two long-lived

(metastable) internal electron states
{|g〉, |e〉} of an ion
• single-qubit gates: laser beams induce

transitions |g〉 ↔ |e〉
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Ions in electromagnetic traps

• multi-qubit gates: ions repel each other ⇒ phonon-like
oscillation modes along the chain, useful for qubit-qubit
interaction
• readout: drive transition from |e〉 to a short-lived state |r〉,

detect photon emitted during relaxation |r〉 → |e〉 through CCD
camera.

• pros: long coherence times (10− 100s), individual addressing,
high fidelity gates, generation of entanglement in the chain
• cons: relatively slow gates (≈ µs), poor scaling properties

21



Electron spins in semiconductor quantum dots

• A two-dimensional electron gas (2DEG) can be realized in
semiconductor heterostructures
• 2DEG can be structured by gate electrodes (negative potential

repels electron gas under the electrode)
• quantum dots may be formed which contain a small number or

only a single electron
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Electron spins in semiconductor quantum dots

• B⊥ defines quantization axis of the spins and energy splitting
• single-qubit gates using B‖(t)
• two-qubit gates using exchange interaction between spins of

neighboring dots Ĥex = ∑
〈i ,j〉 Jij Ŝi · Ŝj , coupling strength Jij

depends on gate voltages
• Control of magnetic field on scales µm is difficult: use

combination of external magnetic field and electric gating
• readout: sensitive charge detector

(single-electron transistor or quantum point contact)
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Superconducting electrical circuits

• superconductors are macroscopic quantum systems that show
infinite conductivity below a critical temperature Tc
• microscopic picture: electrons form Cooper pairs
• superconducting phase is characterized by a macroscopic

wavefunction Ψ = √nse iϕ

• two superconductors separated by an insulating oxide barrier
form a tunnel junction or Josephson junction
• Josephson effect: even in the absence of a voltage across the

Josephson junction, a supercurrent I can flow through it:
I = Ic sin(ϕleft − ϕright)

• Hamiltonian describing this current:
Ĥ = −EJ cos(ϕleft − ϕright)

• non-linear, non-dissipative electrical element
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Charge and transmon qubit

island

C

g

J
E

n

Vg

C Ĥ = EC (n̂ − ng)2 − EJ cos(ϕ̂)
EC : charging energy of the island,
n̂: number of Cooper pairs
ng ∝ Vg

Charge qubit: EC � EJ
superpositions of 0 or 1 Cooper
pairs on the island

Transmon: EC � EJ
Lowest eigenstates in an
anharmonic potential

25



Review of different platforms

supercond. qb electron spin qb trapped ions NMR
footprint ≈ µm 0.1µm spacing 10µm mm
scalability yes yes costly no
energy gap 1− 20GHz 1− 10GHz 105 − 106 GHz MHz
temperature 10mK 100mK µK 300K
single-qubit gate time τ1 ≈ ns 10 ns µs ms
two-qubit gate time τ2 10− 50 ns 0.2µs 100µs 10ms
coherence time T2 10− 100µs ms− s 0.1 s 10 s
1-qubit gate fidelity (%) 98− 99.9 98− 99.9 99.1− 99.9999 98− 99
2-qubit gate fidelity (%) 96− 99.4 89− 96 97− 99.9 98
initialization yes yes yes ensemble
readout fidelity (%) 99 97 99.99 ensemble

Xiang et al., Rev. Mod. Phys. 85, 623 (2013)
Resch et al., arXiv:1905.07240 (2019)

Keith et al., Phys. Rev. X 9, 041003 (2019)

5GHz ≈ 250mK
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