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Outline of the lectures

® building blocks of quantum information
® quantum bits (qubits)
® superposition and entanglement
® gates and universal computation
® Deutsch algorithm

® decoherence, quantum error correction, no-cloning theorem,
quantum teleportation

® quantum cryptography, quantum “hardware”
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Main take-home messages of Lecture 2

® Any realistic quantum computer will be noisy due to
uncontrolled interaction with environment.

® When information is transmitted we have to face two types of
the errors: bit flips and phase flips

e Correction schemes are based on redundancy; to encode one
logical qubit we need more physical qubits

® A quantum state cannot be simply copied from Alice to Bob
(no-cloning theorem) but can be teleported provided that Alice
and Bob share an auxiliary entangled state.
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Classical private-key cryptography

Alice wants to send a secret message to Bob

both have exchanged a random encryption key beforehand
010011001000 message
110101110100 encryption key

100110111100 bitwise sum = encrypted message

Message transmitted to Bob over public channel
100110111100 encrypted message
110101110100 encryption key
010011001000 bitwise difference = message

Provably secure if the key is as long as the message
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Safety of key distribution

e if Eve (eavesdropper) gets hold of the encryption key, she may
read the encrypted message

® Eve can read the message without Bob’s knowledge of the
interception of the message

Quantum cryptography, quantum key distribution (QKD)

® Quantum mechanics can be used to distribute a provably secure
private key over a public channel

® This key can be used for classical private-key cryptography
® The presence of an eavesdropper can be detected
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Quantum cryptography; BB84 protocol

e Alice sends a string of quantum states to Bob:

she randomly switches between the encodings 0,1 = |0), |1) and
0,1=|+),|—) (encoding is secret)
® Bob measures the qubits:

he randomly switches between measurements in the |0), |1) and
|+), |—) basis (measurement basis is secret)

® Alice announces her choice of basis via a public channel

® Alice and Bob keep only bits obtained in the same basis
(the bit values are secret)

® Alice and Bob compare the values of a randomly chosen subset
of bits via a public channel

e if all compared bits agree, the channel is safe and the remaining
secret bits can be used as a private key
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Quantum cryptography; BB84 protocol

Why can Alice and Bob conclude the channel is safe?

® to obtain the key, Eve intercepts the qubits on the way to Bob,
measures them, and sends a new qubit with her measurement
result to Bob

® Eve guesses the basis because she does not know Alice’s random
choice of basis

= in 50% of the cases, Eve measures in the wrong basis

¢ if Bob happens to measure in the same basis as Alice, he gets
the wrong bit in 50% of the cases

= Eve unavoidably corrupts ~ 25% of the bits
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Quantum cryptography; E91 protocol

e BB84 based purely on quantum randomness, no entanglement
® Bob and Alice share the initial singlet state
9 = 1Bu) = —=(lo1) ~ 10))
- 11/ — \/§
® Both make measurements on their half of the pair.

® Using the same basis, the results are random but perfectly
anticorrelated

e Using different bases, they can verify that the state was
entangled (Bell test). If Eve inferred, the entanglement would be
gone.
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Bell test
An example of a Bell test based on (CHSH)! inequality

® Alice and Bob perform measurements of physical properties of
their particles e.g., spin component o5 along an axis ni
® measurements are performed in two randomly chosen settings
® Ay, A; for Alice
® B, B, for Bob

e.g., different directions n

® outcome of a measurement is {a1, a», by, bo} € {+1, -1} eg.,
{1,4} wrt. the chosen direction r

! Clauser-Horne-Shimony-Holt
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Bell test
An example of a Bell test based on (CHSH) inequality

e Consider C = (a1 + ap)b; + (a1 — a2) by

® Fithera; +a,=0= a; — a, = +2

¢ Orag—a=0=a +a, =22
=C==2

Local theory

e particle is in a certain state before the measurement (no
correlations between measurements A and B)

® p(ay, az, by, by) is probability to measure
A =a;, A =a, By =b;,B, = by

(O =1 > plar,a, by, b) x C| < ([C]) =2

ai,az, b1, b2

= classically (or for non-entangled states) one expects |(C)| < 2
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Bell test
An example of a Bell test based on (CHSH) inequality

Quantum mechanics

e C—C, operator!

e Measure spin 67 along a general direction (6, )

Choose ¢ = 0 for simplicity: 6y = sin(0)6x + cos(6)5, and

reonn=(nte) i) (5 )

Take a Bell state |By) = %(!00> + [11)):
(Bool6a @ 65|Bo0) = cos(a — )

e remember classically: C = (a; + a2)by + (a1 — a2) b2
ComPUte <C> = <(6a1 + 6-012) ® 6-51> + <(a-041 - 60&2) ® 6’52>
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Bell test
An example of a Bell test based on (CHSH) inequality

Quantum mechanics
® Take a Bell state |fo0) = i(|00) + [11)):

(BoolGa ® 6] Bo0) = co ( )

< > Bl) + COS(OQ 51)
+ cos(al — [2) — cos(aa — (o)
® Choose angles a; =0, ap = 3, By = 7, and B, = —7:

= |(C)| = 2/2 violates CHSH inequality

e Violation of the inequality |(C)| < 2 demonstrates entanglement
Check that for a non-entangled state (for example |00)) the CHSH
inequality holds.
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Quantum "hardware" from a bird’s-eye view

Necessary criteria for quantum computation
(DiVincenzo criteria):

1.

scalability: build a large (e.g., 10°) number of qubits

2. initialization: prepare a well-defined initial quantum state
3.
4. universal set of quantum gates: to construct all possible

long coherence time: in comparison to the gate time

quantum gates

measurement procedure: to get the result of a calculation

13
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Quantum annealers; quantum adiabatic computation

¢ Hamiltonian dependent on a control parameter g € [0, 1]:
F(g) = (1 —g)Hi + ghk

® ground state of A is easily accessible
® ground state of F; encodes the solution of a hard computational
problem (typically some optimization problems)

Energy
Based on quantum adiabatic theorem:
A physical system remains in its instantaneous
eigenstate if a given perturbation is acting on it
slowly enough and if there is a gap between the
eigenvalue and the rest of the Hamiltonian’s

Solution

spectrum.
Adiabatic evolution
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Quantum annealers; quantum adiabatic computation

® alternative architecture: no gates applied,
just slow tuning g = 0 — 1 (for example magnetic field)

® obstacle: vanishing gaps in the energy spectrum

For vanishing AE the adiabatic
evolution would have to be infinitely
slow!

'ﬁl;; AE — 0 occurs typically in a critical
f

> point g = g. of a quantum phase

transition
® The first commercially available quantum computer is an

annealer (D-Wave, 2015)

&
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Overview of different qubit realizations

® spins in large molecules + NMR  cory et al., Gershenfeld and Chuang

® jons in electromagnetic traps  cirac and Zoller

® neutral atoms in optical lattices  jaksch et al

® optical quantum computing kil Laflamme, and Milburn

® 3P donor atoms in silicon  kane

® electron spins in semiconductor quantum dots  vLoss and Divincenzo

® superconducting electrical circuits

® flux qubit  Mooij et al., loffe et al.
® charge qubit  schon et al, Averin
® phase qubit  Martinis et al.

® transmon qubit  Kochetal

® topological qubits  kitwevetal
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Breaking News: Quantum supremacy in boson sampling?

QUANTUM COMPUTING | RESEARCH UPDATE

Quantum advantage demonstrated using Gaussian boson
sampling

03 Dec 2020 Hamish Johnston

Quantum computational advantage
using photons
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ling exploits d states to provide a highly efficient way

ate quantum p ional advantage. We perform experiments with

boson

bility and sq ing

50 input single-mode squeezed states with high i

parameters, which are fed into a 100-mode ultralow-loss interferometer with full

connectivity and random transformation, and sampled using 100 high-efficiency

single-photon detectors. The whole optical set-up is phase-locked to maintain a

high coherence between the superposition of all photon number states. We observe
up to 76 output photon-clicks, which yield an output state space dimension of ~10*

and a sampling rate that is ~10'* faster than using the state-of-the-art simulation
~ strategy and super s. The obtained samples are validated against variqus

" hypotheses including using thermal states, distinguishable photons, and uniform
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Optical quantum computing

® photons carry information, manipulation only through optical
elements (e.g. beamsplitters, mirrors)
photons in channels <+ qubits, beamsplitters <+ superpositions

® in principle optical elements can encode any qubit gate ~~
universal computing

® boson sampling: non-universal but classically difficult

> N task: model probability that the
photodetector in the nth outcome

channel clicks

s
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lons in electromagnetic traps

2

e N <50 ions (e.g., °Be, “°Ca) in a harmonic
—N N\ electromagnetic trap (Paul trap)
* N @ qubit is encoded in two long-lived
i ;l\ (metastable) internal electron states
D {lg),|e)} of an ion

® single-qubit gates: laser beams induce
transitions |g) < |e)

20 5 Dac



lons in electromagnetic traps

® multi-qubit gates: ions repel each other = phonon-like
oscillation modes along the chain, useful for qubit-qubit
interaction

e readout: drive transition from |e) to a short-lived state |r),
detect photon emitted during relaxation |r) — |e) through CCD
camera.

© 00000 O

o long coherence times (10 — 100s), individual addressing,
high fidelity gates, generation of entanglement in the chain

e cons: relatively slow gates (= us), poor scaling properties
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Electron spins in semiconductor quantum dots

Cap layer

x

L
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2DEG

® A two-dimensional electron gas (2DEG) can be realized in
semiconductor heterostructures

® 2DEG can be structured by gate electrodes (negative potential
repels electron gas under the electrode)

® quantum dots may be formed which contain a small number or
only a single electron
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Electron spins in semiconductor quantum dots

back gates magnetized or heterostructure
high-g layer quantum well

® B, defines quantization axis of the spins and energy splitting

® single-qubit gates using Bj(t)

® two-qubit gates using exchange interaction between spins of
neighboring dots M., = > i J,JS SJ, coupling strength J;
depends on gate voltages

e Control of magnetic field on scales pm is difficult: use
combination of external magnetic field and electric gating

® readout: sensitive charge detector
(single-electron transistor or quantum point contact)
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Superconducting electrical circuits

® superconductors are macroscopic quantum systems that show
infinite conductivity below a critical temperature T,

® microscopic picture: electrons form Cooper pairs

® superconducting phase is characterized by a macroscopic
wavefunction W = ,/nge’?

® two superconductors separated by an insulating oxide barrier
form a tunnel junction or Josephson junction

® Josephson effect: even in the absence of a voltage across the
Josephson junction, a supercurrent / can flow through it:

| = /C sin(g&left - (,Oright)
® Hamiltonian describing this current:
H=—-E J COS(soleft - (Pright)

® non-linear, non-dissipative electrical element
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Charge and transmon qubit

H = Ec(f — ny)? — E;cos()
Ec: charging energy of the island,
n: number of Cooper pairs

ng o< Vg
Charge qubit: E- > E; Transmon: E- < E;|
superpositions of 0 or 1 Cooper Lowest eigenstates in an
pairs on the island anharmonic potential

(d) Es/Ec = 50.0
¥ T % T y T ¥

a) E;/Ec = 1.0
19 T(d)l S=F T

T 2 —

En/En
Lo N & 0 @

Ng superconducting phase ©
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Review of different platforms

supercond. gqb  electron spin gb trapped ions NMR
footprint  pm 0.1 pm spacing 10 pm mm
scalability yes yes costly no
energy gap 1—20GHz 1-10GHz 10° —10° GHz MHz
temperature 10mK 100 mK K 300K
single-qubit gate time 71 /X ns 10ns us ms
two-qubit gate time 7 10 — 50ns 0.2 us 100 ps 10 ms
coherence time T 10 — 100us ms — s 0.1s 10s
1-qubit gate fidelity (%) 98 —99.9 98 —99.9 99.1 —99.9999 98 — 99
2-qubit gate fidelity (%) 96 —99.4 89 — 96 97 —99.9 98
initialization yes yes yes  ensemble
readout fidelity (%) 99 97 99.99  ensemble

Xiang et al., Rev. Mod. Phys. 85, 623 (2013)
Resch et al., arXiv:1905.07240 (2019)

Keith et al., Phys. Rev. X 9, 041003 (2019)

5GHz ~ 250 mK
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