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Outline of the lectures

• building blocks of quantum information
• quantum bits (qubits)
• superposition and entanglement
• gates and universal computation
• Deutsch algorithm

• decoherence, quantum error correction, no-cloning theorem,
quantum teleportation
• quantum cryptography, quantum “hardware”

References
• N. D. Mermin, Quantum computer science, Cambridge University Press
• M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge University Press
• Lecture notes by C. Bruder, R. Tiwari, N. Lörch and M. Koppenhöffer
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Main take-home messages of Lecture 1

• Any two-level quantum system can encode a qubit
• Logical operations performed by quantum gates = operators on

the system’s Hilbert space
• Quantum circuits can perform all operations performed by

classical circuits
• Quantum superposition and entanglement allow for quantum

parallelism = dramatic speedup in computational times
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Isolated vs. open quantum systems

So far perfectly isolated systems ↔ unitary evolution

|Ψ(t)〉 = Û(t)|Ψ(0)〉, Û†Û = ÛÛ† = 1

HS

In reality no system is perfectly isolated from its environment
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Isolated vs. open quantum systems

So far perfectly isolated systems ↔ unitary evolution

|Ψ(t)〉 = Û(t)|Ψ(0)〉, Û†Û = ÛÛ† = 1

HS

environment

+Henv + HintH=

In reality no system is perfectly isolated from its environment
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Density matrix formalism

pure state |Ψ〉:

|Ψ〉 = α|0〉+ β|1〉 ρ = |Ψ〉〈Ψ|,

density matrix: ρ =
(
|α|2 αβ∗

α∗β |β|2
)

• off-diagonal elements: coherences ↔ ‘quantumness’
• probabilistic interpretation: Tr {ρ} = 1

diagonal terms: populations w.r.t the given basis {|0〉, |1〉}
• for pure states Tr {ρ2} = 1
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Density matrix formalism, decoherence

|Ψ〉 measurement in {|0〉, |1〉} basis
but no access to the results  

What can I say about
the state of the system?

• with probability |α|2 in |0〉, with probability |β|2 in |1〉
• statistical mixture: ρ = |α|2 |0〉〈0|+ |β|2 |1〉〈1|

ρ =
(
|α|2 0
0 |β|2

)
• no coherences

• Tr {ρ} = 1, Tr
{
ρ2
}
< 1

• effectively, that is what environment does!  decoherence
• coherences decay over a specific time scale τD
• operations on a quantum computer must we significantly faster!
τswitch � τD
• For more on this topic see the relevant literature

• H.-P. Breuer, F. Petruccione, The theory of open quantum systems, Oxford University Press
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Errors due to uncontrolled interaction with environment

Already at the classical level  
classical error correction

• bit flip (0↔ 1) is the most general classical single-bit error
• assume a bit-flip error happens at probability p per unit time
⇒ a bit is corrupted after O(1/p) steps

Introduce redundancy:
• two-bit encoding: 0→ 00 and 1→ 11
• the strings 00 and 11 both have even parity
• if we detect an odd parity string, an error has occurred
• but how to correct it?
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Classical error correction: bit flips

Increase redundancy:
• three-bit encoding: 0→ 000, 1→ 111
• what if one error occurs?
⇒ can be corrected by “majority voting”
• what if two errors occur simultaneously?
⇒ error correction works incorrectly
• what if three errors occur simultaneously?
⇒ error is undetectable

error probability
→ 3p(1− p)2

→ 3p2(1− p)

→ p3

error correction is worth doing if 3p2(1− p) + p3 < 3p(1− p)2
(i.e., two and three bit flip errors are much rarer that single bit flips)

⇒ need p � 1
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Quantum error correction: bit flips

Adopt the ideas from the classical error correction, but carefully!
No-cloning theorem
Copying an arbitrary quantum state is impossible.
• Assume there is a “cloning operator” Â:

Â|α〉|0〉 = |α〉|α〉 for all initial states α

• For |α〉 = 1√
2(|0〉+ |1〉): Â|α〉|0〉 = 1

2(|0〉+ |1〉)(|0〉+ |1〉)
• On the other hand, Â must be linear:

Â|α〉|0〉 = 1√
2

(Â|0〉|0〉+ Â|1〉|0〉) = 1√
2

(|0〉|0〉+ |1〉|1〉)

• Contradiction!
Note however, recreating a state in one location is possible at the

expense of destroying it in another location (teleportation)
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Quantum error correction: bit flips

Obstacles to quantum error correction?

• no-cloning theorem ⇒ we cannot copy qubits
• detecting errors needs measurements ⇒ destroys quantum

superposition

Surprisingly, we can still correct errors:
• consider bit-flip error |0〉 ↔ |1〉
• corresponds to NOT gate σ̂x
• embed single-qubit state in a three-qubit state:

|ψlogical〉 = α|0〉+ β|1〉 → |ψencoded〉 = α|000〉+ β|111〉

• we have not copied |ψlogical〉, no violation of no-cloning theorem!
(instead we created a three-qubit entangled state)
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Quantum error correction; encoding circuit

• Use CNOT: α|0〉+ β|1〉 → α|000〉+ β|111〉

a|000>+b|111>|0>

|0>

a|0>+b|1>

• Single bit-flip error can result in (i.e., applying σx)

α|100〉+ β|011〉 or
α|010〉+ β|101〉 or
α|001〉+ β|110〉

• If we know the parities of qubits 1 and 2, and qubits 2 and 3, we
know which error (if any) has occurred
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Measuring the parity of two qubits

ancilla|0〉
1 2 3

qubit 1 •

qubit 2 •

1: (α|01〉+ β|10〉)⊗ |0〉
2: α|01〉 ⊗ |0〉+ β|10〉 ⊗ |1〉
3: α|01〉 ⊗ |1〉+ β|10〉 ⊗ |1〉

= (α|01〉+ β|10〉)⊗ |1〉

• state of the ancilla qubit after step 3 is |0〉 if the parity of qubits
1 and 2 is even, and |1〉 if it is odd
• measurement of the ancilla qubit does not provide any

information on α and β
⇒ superposition will not be destroyed
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Correction circuit

X
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σ
x
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if xy=10

if xy=11

if xy=01

• Alice sends α|000〉+ β|111〉
• with probability p, a bit-flip error (σ̂x) occurs on a qubit
• Bob receives α|000〉+ β|111〉 with probability (1− p)3
• Bob receives α|100〉+ β|011〉 with probability p(1− p)2
• Bob receives α|010〉+ β|101〉 with probability p(1− p)2
• Bob receives α|001〉+ β|110〉 with probability p(1− p)2
• ...
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Correction circuit

X
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• Bob determines the parities
• Bob gets (α|000〉+ β|111〉)|00〉 with probability (1− p)3
• Bob gets (α|100〉+ β|011〉)|10〉 with probability p(1− p)2
• Bob gets (α|010〉+ β|101〉)|11〉 with probability p(1− p)2
• Bob gets (α|001〉+ β|110〉)|01〉 with probability p(1− p)2
• ...
• Bob flips one qubit depending on the values x and y
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Does error correction work?

• Bob gets (α|000〉+ β|111〉)|00〉 with probability (1− p)3
• Bob gets (α|100〉+ β|011〉)|10〉 with probability p(1− p)2
• Bob gets (α|010〉+ β|101〉)|11〉 with probability p(1− p)2
• Bob gets (α|001〉+ β|110〉)|01〉 with probability p(1− p)2
• Bob gets (α|110〉+ β|001〉)|01〉 with probability p2(1− p)
• Bob gets (α|101〉+ β|010〉)|11〉 with probability p2(1− p)
• Bob gets (α|011〉+ β|100〉)|10〉 with probability p2(1− p)
• Bob gets (α|111〉+ β|000〉)|00〉 with probability p3
• failure probability with error correction is 3p2 − 2p3 ≈ O(p2)
• failure probability without error correction is O(p)
• suppression is more powerful with more qubits

16



Phase-flip error

• bit-flip error is only one kind of possible single-qubit error
• phase-flip error: α|0〉+ β|1〉 → α|0〉 − β|1〉
• corresponds to σ̂z gate
• no classical equivalent

How to correct phase flip errors?
• turn phase-flip channel into bit-flip channel:

i.e., phase flips become bit flips in the basis {|+〉, |−〉}

|+〉 ≡ 1√
2

(|0〉+ |1〉)

|−〉 ≡ 1√
2

(|0〉 − |1〉)
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Phase-flip error

• encode α|0〉+ β|1〉 → α|+ ++〉+ β| − −−〉:

a|000>+b|111>|0>

|0>

a|0>+b|1> H

H

H

• remaining detection and correction procedure stays the same,
use Ĥ gates to switch between |+〉, |−〉 and |0〉, |1〉 basis
• combination of the bit-flip and the phase-flip code can protect

against arbitrary errors: Shor’s 9-qubit code
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Quantum teleportation

• Cloning a quantum state is impossible (no-cloning theorem)
• However, it is possible to teleport a quantum state:
• Alice and Bob have one half each of the Bell state

|β00〉 = 1√
2

(|00〉+ |11〉)

• Alice can transmit an unknown state

|ψ〉 = α|0〉+ β|1〉

to Bob using only classical information
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Quantum teleportation

measurementCNOT

1

H
32|ψ>

|β  >
00

|ψ>

classical
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1
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measurement

Bob

Alice
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1: |ψ〉 ⊗ |β00〉 = 1√
2 [α|0〉 (|00〉+ |11〉) + β|1〉 (|00〉+ |11〉)]

2: 1√
2 [α|0〉 (|00〉+ |11〉) + β|1〉 (|10〉+ |01〉)]

3: 1
2 [α(|0〉+ |1〉) (|00〉+ |11〉) + β(|0〉 − |1〉) (|10〉+ |01〉)]

= 1
2

[
|00〉 (α|0〉+ β|1〉) + |01〉 (α|1〉+ β|0〉)

+|10〉 (α|0〉 − β|1〉) + |11〉 (α|1〉 − β|0〉)
]
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Quantum teleportation

• the final state is

1
2

[
|00〉 (α|0〉+ β|1〉)

+|01〉 (α|1〉+ β|0〉)
+|10〉 (α|0〉 − β|1〉)

+|11〉 (α|1〉 − β|0〉)
]

• if Alice measures |00〉, Bob’s system will be in the state
|ψ〉 = α|0〉+ β|1〉
• if Alice measures something else and tells Bob (via classical

communication), Bob can modify his state to be equal to |ψ〉
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Main take-home messages of Lecture 2

• Any realistic quantum computer will be noisy due to
uncontrolled interaction with environment.
• When information is transmitted we have to face two types of

the errors: bit flips and phase flips
• Correction schemes are based on redundancy; to encode one

logical qubit we need more physical qubits
• A quantum state cannot be simply copied from Alice to Bob

(no-cloning theorem) but can be teleported provided that Alice
and Bob share an auxiliary entangled state.
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