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A little bit of historical context and timeline

• 1920s: foundations of quantum mechanics (QM)
Schrödinger, Heisenberg, Planck...
• 1960s-70s: intersection of QM with information theory

Bell, Bennett, Holevo...
• early 1980s: conceptual ideas of quantum computation

Benioff, Feynman...
‘The computer as a physical system: A microscopic quantum mechanical
Hamiltonian model of computers as represented by Turing machines’

Paul Benioff, J Stat Phys 22, 563–591 (1980)

“How can we simulate the quantum mechanics?. . . .Can you do it with a
new kind of computer - a quantum computer? It is not a Turing machine,

but a machine of a different kind.”

Richard Feynman, 1981
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A little bit of historical context and timeline

• early 1990s: quantum algorithms
Deutsch, Shor...
• after 2000: dramatic progress in realizations of experimental

platforms
• quantum annealers (D-Wave)
• quantum simulators (cold atoms in optical lattices, trapped

ions)
• different qubit realizations (superconducting circuits etc.)
• hybrid systems
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Where are we now?

Quantum communication link
over 7600 km distance
established:
Phys. Rev. Lett. 120, 030501 (2018)

“Quantum supremacy”
demonstrated by Google:
quantum computer: 200 s
classical computer: 10.000 a (?)
Nature 574, 505 (2019)
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Outline of the lectures

• building blocks of quantum information
• quantum bits (qubits)
• superposition and entanglement
• gates and universal computation
• Deutsch algorithm

• decoherence, quantum error correction, no-cloning theorem,
quantum teleportation
• quantum cryptography, quantum “hardware”

References
• N. D. Mermin, Quantum computer science, Cambridge University Press
• M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge University Press
• Lecture notes by C. Bruder, R. Tiwari, N. Lörch and M. Koppenhöffer
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Quantum bits

• a classical computer manipulates bits:
possible states 0 or 1 are discrete
• a quantum computer manipulates qubits
≡ quantum two-level systems:
possible states (α|0〉+ β|1〉) are continuous
α, β are complex numbers, |α|2 + |β|2 = 1.
• general qubit state parametrized by two

angles θ ∈ [0, π], φ ∈ [0, 2π)

|ψ〉 = cos
(
θ

2

)
|0〉+ sin

(
θ

2

)
eiφ|1〉

α = |α| eiφα , β = |β| eiφβ

parametrize |α| = cos θ/2, |β| = sin θ/2, φ = φβ−φα

Bloch sphere
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QM in a nutshell

• state of a system = state vector |ψ〉 in a Hilbert space H
• operators act on states (e.g., Hamiltonian operator Ĥ)
• observables represented by Hermitian operators (real spectrum)

Ĥ† = Ĥ
• Schrödinger equation here for simplicity Ĥ 6= Ĥ(t)

i~ d
dt |Ψ〉 = Ĥ |Ψ〉 |Ψ(t)〉 = e− i

~ Ĥt |Ψ(0)〉

Û(t) ≡ e− i
~ Ĥt , evolution operator

Û†Û = ÛÛ† = 1, unitary evolution
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QM in a nutshell

• states can be written as linear combination (superposition) of
orthonormal basis states {|n〉}

|Ψ〉 =
∑

n
γn|n〉

• probabilistic outcomes of measurements
probability of finding the state |Ψ〉 in some |ñ〉 ∈ {|n〉}

PΨ(ñ) = |〈ñ|Ψ〉|2 = |γñ|2

• normalization requires ∑
n
|γn|2 = 1

8



Example of a quantum two-level system: spin 1
2

• dimH = 2
• physical state | ↑〉 → logical state |0〉
• physical state | ↓〉 → logical state |1〉

• operators acting on one qubit can be represented by
2× 2 matrices
• e.g., in the basis of eigenstates of σ̂z ,

|0〉 =
(
1
0

)
and |1〉 =

(
0
1

)
:

Pauli matrices:

σ̂x =
(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)

• all two-level systems are mathematically equivalent!
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Multi-qubit states

• 2 bits can represent 4 numbers: 00, 01, 10, 11
• 2 qubits ⇒ 4 basis states

• |0〉1 ⊗ |0〉2
• |0〉1 ⊗ |1〉2
• |1〉1 ⊗ |0〉2
• |1〉1 ⊗ |1〉2

• we omit the indices 1, 2 and write |00〉, |01〉, |10〉, |11〉
• 2-qubit state: |ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉,

where |α|2 + |β|2 + |γ|2 + |δ|2 = 1
• similarly, we define 3-qubit, 4-qubit, ... N-qubit states
• for N qubits, we have 2N basis states
⇒ simulating quantum systems on classical computers is hard!
remember Feynman’s quote...
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Multi-qubit states; entanglement

• quantum nature shows non-classical correlations: entanglement
• classical N-bit states can be “factorized”

Example: classical state (11)

• bit 1 is in state “1”, bit 2 is in state “1”
• equivalent quantum state: |11〉 = |1〉 ⊗ |1〉

• But there are quantum states that cannot be factorized

Example: state 1√
2 (|00〉+ |11〉) 6= |ψ1〉 ⊗ |ψ〉2

• system can only be described as a whole
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Multi-qubit states; entanglement

entanglement (formal definition)
Let H be a composite system H = Hl ⊗Hr. We denote orthonormal
bases on Hl and Hr as {|ψli〉}m

i=1 and {|ψrj〉}n
j=1. A general state

|Ψ〉 ∈ H can be expressed as

|Ψ〉 =
m∑

i=1

n∑
j=1

γij |ψli〉|ψrj〉 6=
m∑

i=1
αi |ψli〉

n∑
j=1

βj |ψrj〉,

i. e. the coefficients γij cannot be generally factorized as γij 6= αiβj .

Informally : In the case of a general state I cannot tell which part of
|Ψ〉 belongs to Hl and which to Hr . They are entangled.
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Multi-qubit states; entanglement

• where the non-classical correlations show up?

1√
2

(|00〉+ |11〉)

• What happens if we measure σ̂z on qubit 1 and qubit 2?
• either we get 0 for qubit 1 and 0 for qubit 2 (probability 1

2)
• or we get 1 for qubit 1 and 1 for qubit 2 (probability 1

2)
• but never any “mixed” result

13



Multi-qubit states; Superposition vs. entanglement

• 1√
2(|0〉+ |1〉): superposition of two 1-qubit states

• 1√
2(|00〉+ |11〉): entangled superposition of two 2-qubit states

|ψ〉 = 1
2 (|00〉+ |10〉+ |01〉+ |11〉)

• superposition state?
• entangled state?
• |ψ〉 = 1√

2(|0〉+ |1〉)⊗ 1√
2(|0〉+ |1〉)

⇒ non-entangled superposition of four 2-qubit states

14



Logical operations

classical gates:
electronic circuits

Many gates process the
classical information in a

non-reversible way

From the output of AND one
cannot restore A and B .
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Logical operations

• classical NOT gate:
NOT 0 = 1
NOT 1 = 0

• quantum NOT gate: σ̂x =
(
0 1
1 0

)

• σ̂x |0〉 =
(
0 1
1 0

)
·
(
1
0

)
=
(
0
1

)
= |1〉

• σ̂x |1〉 = |0〉

• σ̂x (α|0〉+ β|1〉) = α|1〉+ β|0〉

Bloch sphere
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Quantum gates

Properties of quantum gates

• quantum gates are linear transformations of state vectors
• N-qubit gate can be represented by a 2N × 2N matrix Û
• Û must be unitary to preserve normalization of state vector:

ÛÛ† = Û†Û = 1

⇒ quantum gates are reversible!
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Single qubit gates

• NOT gate: σ̂x =
(
0 1
1 0

)

σ̂x |0〉 = |1〉
σ̂x |1〉 = |0〉

Bloch sphere

• Hadamard gate: Ĥ = 1√
2 (σ̂x + σ̂z) = 1√

2

(
1 1
1 −1

)

Ĥ |0〉 = 1√
2

(|0〉+ |1〉) ≡ |+〉, σ̂x |+〉 = |+〉

Ĥ |1〉 = 1√
2

(|0〉 − |1〉) ≡ |−〉, σ̂x |−〉 = −|−〉

any single qubit gate can be decomposed into rotations on the Bloch sphere, see
the exercise sheet...

18



Controlled NOT gate (CNOT)

• 2-qubit gate
• flip second (target) qubit if first (control) qubit is |1〉:

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

CNOT =


1

1
1

1



• circuit diagram:

control qubit: α|0〉+ β|1〉 •
α|00〉+ β|11〉

target qubit: |0〉
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Example: generating Bell states

maximally entangled
2-qubit states

|β00〉 = 1√
2

(|00〉+ |11〉)

|β01〉 = 1√
2

(|01〉+ |10〉)

|β10〉 = 1√
2

(|00〉 − |11〉)

|β11〉 = 1√
2

(|01〉 − |10〉)

General expression:
|βxy〉 = 1√

2(|0y〉+ (−1)x |1ȳ〉)

|β  >xy

Hx

y

CNOT

321

1 input state: |xy〉 = |00〉
2 apply Hadamard gate

Ĥ = 1√
2

(
1 1
1 −1

)
:

1√
2(|00〉+ |10〉)

3 apply CNOT gate:
1√
2(|00〉+ |11〉) = |β00〉
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Toffoli gate

• 3-qubit gate
• flip third (target) qubit if the first two (control) qubits are |1〉
• in basis |000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉:

T =



1
1

1
1

1
1

1
1


• T T = 1⇒ T −1 = T , Toffoli gate is reversible
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Toffoli gate

• Toffoli gate can simulate a classical NAND gate

a

1+ab  (NAND!)

a

bb

1

input output
a b c a′ b′ c′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0
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Universal computation

Can a quantum circuit simulate a classical logical circuit?

• of course (world around us is quantum !!)
• but: all unitary quantum logic gates are inherently reversible

whereas many classical logic gates are irreversible
• classical NAND gate is universal, i.e., all classical logic gates

can be built using only NAND gates
{AND,NOT} form a functionally complete set
• using Toffoli gates, any classical algorithm can be made

reversible ⇒ can be executed on a quantum computer

Note for universal quantum computation, one needs CNOT, Ĥ , phase

gate Ŝ =
(
1

i

)
, and π/8 gate T̂ =

(
1

e iπ/4

)
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Quantum algorithms: Deutsch algorithm

Is f (x) : {0, 1} → {0, 1} balanced or constant?

• balanced if f (0) = f (1)⇔ f (0)⊕ f (1) = 1
• constant if f (0) = f (1)⇔ f (0)⊕ f (1) = 0

• Ûf : |x , y〉 → |x , y ⊕ f (x)〉 quantum circuit implementing
y + f (x) mod 2 in the second qubit
• example: input |x〉 = 1√

2(|0〉+ |1〉), |y〉 = |0〉 leads to

1√
2

(|0, f (0)〉+ |1, f (1)〉)

⇒ one “application” of f results in both f (0) and f (1)!
• but: measurement gives either |0, f (0)〉 or |1, f (1)〉
• so, quantum parallelism does not help ...?
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Quantum algorithms: Deutsch algorithm

• ...it does if we transform the information in a clever way:

f

H

H

H|0>

|1>

x

y

x

y+f(x)

U

generate
superposition

use quantum
parallelism

use
interference

• final state is ∝ |f (0)⊕ f (1)〉 ⊗ (|0〉 − |1〉)
⇒ measuring the first qubit gives a global property of f , namely
f (0)⊕ f (1), using only one evaluation of f (x)
• this is impossible on a classical computer!
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The power of quantum computing

• computation = unitary (reversible) evolution of a set of qubits
• gates act on (possibly entangled) superposition of states
⇒ high degree of parallelism
• restrictions on readout of quantum information
⇒ use interference to condense information for measurement
• N-qubit generalization of Deutsch algorithm and Shor’s

prime-factoring algorithm show exponential speedup compared
to classical algorithms (but the same problems could in principle
also be solved on a classical computer)
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Main take-home messages of Lecture 1

• Any two-level quantum system can encode a qubit
• Logical operations performed by quantum gates = operators on

the system’s Hilbert space
• Quantum circuits can perform all operations performed by

classical circuits
• Quantum superposition and entanglement allow for quantum

parallelism = dramatic speedup in computational times
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Try quantum computing yourself

https://quantum-computing.ibm.com/
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