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A little bit of historical context and timeline

® 1920s: foundations of quantum mechanics (QM)
Schrédinger, Heisenberg, Planck...
® 1960s-70s: intersection of QM with information theory
Bell, Bennett, Holevo...
® carly 1980s: conceptual ideas of quantum computation
Benioff, Feynman...
‘The computer as a physical system: A microscopic quantum mechanical

Hamiltonian model of computers as represented by Turing machines’

Paul Benioff, J Stat Phys 22, 563-591 (1980)

“How can we simulate the quantum mechanics?....Can you do it with a
new kind of computer - a quantum computer? It is not a Turing machine,
but a machine of a different kind."

Richard Feynman, 1981
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A little bit of historical context and timeline

® early 1990s: quantum algorithms
Deutsch, Shor...

e after 2000: dramatic progress in realizations of experimental
platforms
® quantum annealers (D-Wave)
® quantum simulators (cold atoms in optical lattices, trapped
ions)
¢ different qubit realizations (superconducting circuits etc.)
® hybrid systems
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Where are we now?

Quantum communication link “Quantum supremacy”

over 7600 km distance demonstrated by Google:
established: quantum computer: 200s

Phys. Rev. Lett. 120, 030501 (2018) classical computer: 10.000a (?)

Nature 574, 505 (2019)
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Outline of the lectures

® building blocks of quantum information
® quantum bits (qubits)
® superposition and entanglement
® gates and universal computation
® Deutsch algorithm

® decoherence, quantum error correction, no-cloning theorem,
quantum teleportation

® quantum cryptography, quantum “hardware”

References

® N. D. Mermin, Quantum computer science, Cambridge University Press
® M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge University Press
® Lecture notes by C. Bruder, R. Tiwari, N. Lérch and M. Koppenhéffer
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Quantum bits

® a classical computer manipulates bits:
possible states 0 or 1 are discrete

® a3 quantum computer manipulates qubits
= quantum two-level systems: Bloch sphere
possible states («|0) + 3|1)) are continuous 2=0)

«, 3 are complex numbers, |a|? +|3]? = 1.

® general qubit state parametrized by two
angles 0 € [0, 7], ¢ € [0, 27)

1) = cos (g) |0) +sin (g)ei¢|1> ey

o= lal e, 5= 5]
parametrize |a| = cos0/2, |5 =sin6/2, ¢ = pg—pa
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QM in a nutshell

state of a system = state vector |¢)) in a Hilbert space H

® operators act on states (e.g., Hamiltonian operator l:I)

observables represented by Hermitian operators (real spectrum)

A =H

Schrédinger equation  here for simplicity A # H(t)
:h—| HIW) ~ [W(t)) = e 77 w(0))

) =
O(t) = e 77, evolution operator

A

U0 = 00 = 1, unitary evolution
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QM in a nutshell

e states can be written as linear combination (superposition) of

orthonormal basis states {|n)}
W) =2 7ln)

® probabilistic outcomes of measurements
probability of finding the state |W) in some |7i) € {|n)}

Py (i) = |{#[W)[* = ]

® normalization requires
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Example of a quantum two-level system: spin %

o dmH =2 B
® physical state | 7) — logical state |0)
® physical state | |) — logical state |1)

® operators acting on one qubit can be represented by
2 X 2 matrices

® e.g., in the basis of eigenstates of 5,,

o )

Pauli matrices:

. (o1 . (o =i\ . (1 o0
>={10/ =i o) %27 \lo —1

® all two-level systems are mathematically equivalent!
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Multi-qubit states

2 bits can represent 4 numbers: 00, 01, 10, 11

2 qubits = 4 basis states

0)1 ® [0)2

0)1 ® [1)2

1)1 ®[0)2

D1 ®[1)2

we omit the indices 1,2 and write |00), |01), |10), |11)
2-qubit state: ) = «|00) + (|01) + v|10) + 6|11),
where |af® + |5 + |7|* + [6]” = 1

similarly, we define 3-qubit, 4-qubit, ... N-qubit states

for N qubits, we have 2" basis states

= simulating quantum systems on classical computers is hard!

remember Feynman's quote...

10
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Multi-qubit states; entanglement

® quantum nature shows non-classical correlations: entanglement

® classical N-bit states can be “factorized”

Example: classical state (11)

® bit 1 is in state “1”, bit 2 is in state “1"
® equivalent quantum state: |11) = |1) ® |1)

® But there are quantum states that cannot be factorized

Example: state 1 (|00> |11)) # |11) ® [1)2

® system can only be described as a whole
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Multi-qubit states; entanglement

entanglement (formal definition)

Let H be a composite system ‘H = H,; ® H,. We denote orthonormal

bases on H; and H, as {[¢;) }iZ; and {|¢)}7_;. A general state
|W) € H can be expressed as

W) =D ili)ldg) # D i) Y Bil),
i=1j=1 i=1 =1

i. e. the coefficients 7y;; cannot be generally factorized as v;; # «;f3;.

Informally: In the case of a general state | cannot tell which part of
|W) belongs to H,; and which to H,. They are entangled.
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Multi-qubit states; entanglement

where the non-classical correlations show up?

1

NG (100) + |11))

What happens if we measure &, on qubit 1 and qubit 27
e cither we get 0 for qubit 1 and 0 for qubit 2 (probability %)
or we get 1 for qubit 1 and 1 for qubit 2 (probability %)

® but never any “mixed” result
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Multi-qubit states; Superposition vs. entanglement

75(10) +[1)): superposition of two 1-qubit states
(|OO> +]11)): entangled superposition of two 2-qubit states

S-Sl

[9) = 5(100) + [10) +]01) + 1))

® superposition state?
® entangled state?

* [v) = J(10) + 1)) ® Z(|0) +[1))
= non-entangled superposition of four 2-qubit states
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Logical operations

[~ _ NOT gate
A |/>O A A oy
. ) NOT 0 1
classical gates: 1] 0
electronic circuits 2 Input AND gate
A B AB
A ™ 0o 0
Many gates process the B Y, AB 0
classical information in a AND 1 ? ?

non-reversible way

2 Input OR gate

. A | B A+B
From the output of AND one g—ﬂ )7A+B g ? ?
L
cannot restore A and B . OR 1 0 1
1 1 1
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Logical operations

NOT0=1

lassical NOT gate:
e classica gate NOT 1 =0

quantum NOT gate: 6, = ((1) 1)

Bloch sphere
z=10)

bx[1) = 10)
Ox (]0) + B[1)) = 1) + 5/0) =
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Quantum gates

Properties of quantum gates

® quantum gates are linear transformations of state vectors
e N-qubit gate can be represented by a 2V x 2V matrix U

e {J must be unitary to preserve normalization of state vector:
00t =00 =1

=> quantum gates are reversible!

17
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Single qubit gates
Bloch sphere
z2=10)

~ (01
e NOT gate: 6, = (1 O) h
. ¥

F0y = L0y + 1)) = 14, dl) = [+

A1) = 7(|> ) =1-) dxl-)

any single qubit gate can be decomposed into rotations on the Bloch sphere, see
the exercise sheet...
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Controlled NOT gate (CNOT)

® 2-qubit gate

e flip second (target) qubit if first (control) qubit is |1):

|00) — |00)
|01) — |01)
|10) — |11)
|11) — |10)

® circuit diagram:

control qubit:

target qubit:

CNOT =

al0) + 5|1)—e—

3—

1

«|00) + /|11)

19
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Example: generating Bell states

1 2 3
maximally entangled X H
2-qubit states -
CNOT |Bry>
—=(]00) + |11
|Boo) = f(l )+ 11)) y &
1Bor) = —=(101) + [10))
\/_ 1 input state: |xy) = [00)
|f10) = \/—(|OO> —[11)) 2 apply Hadamard gate
1 1
=2 ;
|Br1) = ﬁ(|01> —|10)) 1 Va1 -1
73(/00) + [10))
General expression: 3 apply CNOT gate:
By} = (10y) + (=1)[17)) 75(100) + [11)) = [Boo)
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Toffoli gate

® 3-qubit gate
e flip third (target) qubit if the first two (control) qubits are |1)
e in basis [000), [001), |010), [011), |100), [101), [110), |111):

o TT =1 = T 1 =T, Toffoli gate is reversible
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Toffoli gate

e Toffoli gate can simulate a classical NAND gate

input ‘ output
a b c \ a’ b’ c
a a 0 0 00 0 0
0 0 110 0 1
b b 0 1 0|0 1 0
0 1 110 1 1
1 0 0|1 0 0
1 1+ab (NAND!) 1 0 111 0 1
1 1 0|1 1 1
1 1 111 1 0
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Universal computation

Can a quantum circuit simulate a classical logical circuit?

Note

of course (world around us is quantum !!)

but: all unitary quantum logic gates are inherently reversible
whereas many classical logic gates are irreversible

classical NAND gate is universal, i.e., all classical logic gates
can be built using only NAND gates
{AND,NOT} form a functionally complete set

using Toffoli gates, any classical algorithm can be made
reversible = can be executed on a quantum computer

for universal quantum computation, one needs CNOT, H, phase

gate § = (1 /.), and 7/8 gate T = (1 e’”/“)
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Quantum algorithms: Deutsch algorithm

Is f(x):{0,1} — {0,1} balanced or constant?

® balanced if f(0) = f(1) < f(0) @ f(1) =1
e constant if £(0) = f(1) < f(0)® f(1) =0

o Us:|x,y) = |x,y @ f(x)) quantum circuit implementing
y + f(x) mod 2 in the second qubit
e example: input |x) = %(|O> + 1)), ly) = |0) leads to

1
v (10, £(0)) + |1, £(1)))

= one "application” of f results in both f(0) and f(1)!
® but: measurement gives either |0, £(0)) or |1, f(1))
® 5o, quantum parallelism does not help ...?7
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Quantum algorithms: Deutsch algorithm

® it does if we transform the information in a clever way:

10> H X X H
Ut

11> H y  y+H(x)
generate use quantum use
superposition parallelism interference

e final state is o< |£(0) @ f(1)) ® (|0) — |1))

= measuring the first qubit gives a global property of f, namely
f(0) @ f(1), using only one evaluation of f(x)

® this is impossible on a classical computer!
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The power of quantum computing

® computation = unitary (reversible) evolution of a set of qubits

® gates act on (possibly entangled) superposition of states
= high degree of parallelism

® restrictions on readout of quantum information
= use interference to condense information for measurement

e N-qubit generalization of Deutsch algorithm and Shor's
prime-factoring algorithm show exponential speedup compared
to classical algorithms (but the same problems could in principle
also be solved on a classical computer)
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Main take-home messages of Lecture 1

Any two-level quantum system can encode a qubit

Logical operations performed by quantum gates = operators on
the system's Hilbert space

® Quantum circuits can perform all operations performed by
classical circuits

® Quantum superposition and entanglement allow for quantum
parallelism = dramatic speedup in computational times
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Try quantum computing yourself

1BM Q Experience % *Test_entangl...x

New Save Clear Delete Help

Test_entanglement#20190528115356

Composer help X

The circuit compos
to visually learn how to create quantum
circuits. Here are some resources to get you

er s a tool that allows you

started

Composer guide

Gates overview

pramedchenes B

Circuit composer Gates overview

Gates
Do EEIONEEUEHEE
crefllcui[llcus -+

Barrier  Operations Subroutines

i 10y +Add

qre]

ql1]

ql2]

al3]

al41 |0}

c5

2 1

https://quantum-computing.ibm.com/
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