Mechanik, Herbstsemester 2020

Blatt 8

Abgabe: 10.11.2020, 12:00H, auf adam in den entsprechenden Ordner. Ein File pro Abgabe; der Filename muss Ihren Namen enthalten, sonst wird nicht korrigiert! <u>Tutor:</u> Gaomin Tang, gaomin.tang@unibas.ch

- (1) Bottle on the floor of a tram (2 Punkte) A bottle (modeled as a homogeneous circular cylinder of radius R and mass M) lies on the floor of a tram; its orientation is perpendicular to the tram's direction of motion. When the tram starts moving with acceleration a, the bottle will start to roll (we assume without sliding).
 - (a) Calculate the moment of inertia I along the symmetry axis. Result: $I = \frac{1}{2}MR^2$
 - (b) Determine the acceleration \tilde{a} of the bottle relative to the passengers.

(2) Inertia ellipsoid

Consider a body with density $\rho(\mathbf{x})$ and inertia tensor $I_{\mu\nu}$. We define the set Γ of all points $\boldsymbol{\omega}$ for which $\boldsymbol{\omega}^T I \boldsymbol{\omega} = 1$.

- (a) Show that Γ is an ellipsoid whose axes are parallel to the principle axes of the body and whose (semi-)axes lengths are $1/\sqrt{I_i}$ where I_i , i = 1, 2, 3 are the principle moments of inertia of the body.
- (b) Assume that the body is invariant under a symmetry transformation R, $\rho(R\mathbf{x}) = \rho(\mathbf{x})$. Show that Γ is also invariant under R. Hint: $R^{\mathrm{T}}R = 1$.
- (c) Show: if the body has a k-fold symmetry axis (i.e., is invariant under rotations by $2\pi/k$ about this axis) with $k \ge 3$, this axis is a principle axis and the body is a symmetric top. If the body has more than one such axis, it is a spherical top.

(3) Rotating ellipsoid

(2 Punkte)

(3 Punkte)

Consider a homogeneous three-axial ellipsoid with principal moments of inertia I_1 , I_2 , and I_3 that rotates about one of its axes (AB in the figure) with constant angular velocity $\dot{\alpha}$. This axis rotates itself about the direction CD that is fixed in space, perpendicular to AB, and passes through the center of mass of the ellipsoid, with constant angular velocity $\dot{\beta}$.

- (a) Find $\boldsymbol{\omega}$ in the body's coordinate system by projecting the rotations onto the principal axes.
- (b) Write down the kinetic energy. Show that it is not constant interpretation?

(4) Angular velocity in the body system and Euler angles

(3 Punkte)

The angular velocity $\pmb{\omega}$ in the body frame can be expressed in terms of the time-dependent Euler angles by projecting the Euler rotations onto the body axes. Show that

$$\boldsymbol{\omega} = \begin{pmatrix} \dot{\varphi} \sin \theta \sin \psi + \dot{\theta} \cos \psi \\ \dot{\varphi} \sin \theta \cos \psi - \dot{\theta} \sin \psi \\ \dot{\varphi} \cos \theta + \dot{\psi} \end{pmatrix} \,.$$

Hint: $\boldsymbol{\omega} = \boldsymbol{\omega}_{\varphi} + \boldsymbol{\omega}_{\theta} + \boldsymbol{\omega}_{\psi}$, where $\boldsymbol{\omega}_{\varphi}$, $\boldsymbol{\omega}_{\theta}$, and $\boldsymbol{\omega}_{\psi}$ are the angular velocity vectors that correspond to the Euler rotations. Project them onto the body axes. E.g., $\boldsymbol{\omega}_{\psi}$ points in direction x_3 , hence $\boldsymbol{\omega}_{\psi} = (0, 0, \dot{\psi})$.

(5) Bonus problem: Static and dynamic unbalance (4 Punkte)

A cylinder is fixed on an axis that rotates with the constant angular velocity ω , see figure. The center of mass S of the cylinder has distance e from the axis; the cylinder axis and the rotation axis enclose an angle θ .

This type of rotation leads to two kinds of unbalances since (i) the center of mass does not lie on the rotation axis (*static unbalance*). (ii) the cylinder axis is not parallel to the rotation axis (*dynamic unbalance*).

Calculate the forces in the bearings A and B.

Hint: Use Euler's equations and the fact that the center of mass is accelerated as if the sum of the external forces would be applied to it.

