## Mechanik, Herbstsemester 2020

Blatt 1

 $\frac{\text{Abgabe: 22.9.2020, 12:00H per email}}{\overline{\text{Tutor: Frank Schäfer, frank.schaefer@unibas.ch}}$ 

Die Übungskreditpunkte erhält, wer 50% der Punkte aus den Hausaufgaben erreicht.

(1) How quickly can a mass slide from  $r_A$  to  $r_B$ ? (6 Punkte) We consider a point mass that slides without friction on a curve y(x) in the xy-plane connecting the two points  $r_A = (0,0)$  and  $r_B = (2,-1)$ . The point mass starts at  $r_A$ with velocity 0 and is subject to the Earth's gravitational field that is assumed to be homogeneous and point in the negative y-direction.



(a) Use energy conservation to calculate the velocity of the particle at a given ycoordinate. Result:  $v = \sqrt{2g(-y)}$ .

Show that the total time that the particle needs to reach  $r_B$  can be expressed as  $T = \int_{r_{Ax}}^{r_{Bx}} \mathrm{d}x \frac{\sqrt{1+y'^2}}{\sqrt{2g(-y)}}.$ 

- (b) Calculate the time T exactly if y(x) is a straight line. Result:  $T_{\text{straight}} = \sqrt{10/9.81}$ s.
- (c) Write a computer program (using Julia or some other programming language) to calculate T for an arbitrary curve y(x). Confirm that you obtain the result of (b) in the case of a straight line. Now try modifications of a straight line and explore curves for which  $T < T_{\text{straight}}$ . What is the minimal time that you can find??
- (2) Velocity and acceleration in polar and spherical coordinates (4 Punkte) In a Cartesian coordinate system, the basis vectors  $\mathbf{e}_x$ ,  $\mathbf{e}_y$ ,  $\mathbf{e}_z$  are spatially independent. In curvilinear coordinate systems, the basis vectors are generally spatially dependent, e.g., in polar coordinates  $(\rho, \phi)$ , they take the form:  $\mathbf{e}_{\rho} = (\cos \phi, \sin \phi)$ ,  $\mathbf{e}_{\phi} = (-\sin \phi, \cos \phi)$ . For a moving particle, the basis vectors will therefore effectively depend on time t.
  - (a) Calculate velocity and acceleration for the trajectory  $\mathbf{r}(t) = \rho(t)\mathbf{e}_{\rho}(t)$  in polar coordinates.
  - (b) Write down the basis vectors  $\mathbf{e}_r$ ,  $\mathbf{e}_{\theta}$ ,  $\mathbf{e}_{\phi}$  for the spherical coordinate system  $(r, \theta, \phi)$ . Repeat (a) for a trajectory  $\mathbf{r}(t) = r(t)\mathbf{e}_r(t)$  in the spherical coordinate system.