Quantenmechanik, Herbstsemester 2019

Blatt 9

Abgabe: 19.11.19, 12:00H (Treppenhaus 4. Stock)

Tutor: Gaomin Tang, Zi.: 4.16

(1) Matrix elements of z

(2 Punkte)

In the discussion of the Stark effect in the lecture we used some properties of the matrix elements of z with the H-atom states $|nlm\rangle$ that we want to prove now.

- (a) Show that $[L_z, z] = 0$ and conclude that $\langle n'l'm'|z|nlm \rangle = 0$ unless m' = m.
- (b) Use a symmetry argument to prove that $\langle n'lm'|z|nlm\rangle = 0$ (same l!).
- (c) Show that $\langle 200|z|210\rangle = -3a_0$ where $a_0 = 4\pi\epsilon_0\hbar^2/(me^2)$ is the Bohr radius. Hint: the H-atom wave functions are $\psi_{nlm}(r,\theta,\phi) = \langle r,\theta,\phi|nlm\rangle = R_{nl}(r)Y_{lm}(\theta,\phi)$. In particular, $R_{20}(r) = 2\left(\frac{1}{2a_0}\right)^{3/2}(1-\frac{r}{2a_0})e^{-\frac{r}{2a_0}}$ and $R_{21}(r) = \frac{1}{\sqrt{3}}\left(\frac{1}{2a_0}\right)^{3/2}\frac{r}{a_0}e^{-\frac{r}{2a_0}}$

(2) Perturbed two-dimensional harmonic oscillator

(5 Punkte)

Consider the two-dimensional harmonic oscillator with a perturbed potential energy of the form

$$V(x,y) = \frac{1}{2}m\omega^{2}(x^{2} + y^{2} + \lambda xy).$$
 (1)

(a) Calculate the energy eigenvalues for the unperturbed case ($\lambda=0$) and discuss their degeneracies.

Hint: Use creation (annihilation) operators for each of the two degrees of freedom x, y, i.e.,

$$x = \sqrt{\frac{\hbar}{2m\omega}}(a_1 + a_1^{\dagger}), \qquad p_x = i\sqrt{\frac{m\hbar\omega}{2}}(a_1^{\dagger} - a_1),$$

and similarly for y, p_y , and a_2 , a_2^{\dagger} .

- (b) Compute the ground-state energy of the system $(\lambda \neq 0)$ up to second order in λ and the ground-state wave function up to first order.
- (c) The first excited state of the unperturbed system ($\lambda = 0$) is doubly degenerate. Calculate the energy splitting up to first order in λ . What are the corresponding eigenstates in zeroth order?
- (d) * Compare with the exact result. Hint: express (1) as a sum of two harmonic potentials.

(3) Time-dependent perturbation of a harmonic oscillator (3 Punkte) A homogeneous electric field $E(t) = E_0 \exp(-t^2/\tau^2) \cos \omega_0 t$ is applied to a charged one-dimensional oscillator $H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$.

- (a) Assume that the oscillator was prepared in the n^{th} excited state before the field was turned on (i.e., for $t \to -\infty$). Use first-order perturbation theory to calculate the transition probability to find the oscillator in the k^{th} excited state for $t \to +\infty$.
- (b) Discuss your result for the relevant limits of ω_0 and τ .