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(1) Forced harmonic oscillator (3 Punkte)
Consider a 1-dim harmonic oscillator that is in its ground state for t→ −∞. We now
apply an arbitrary time-dependent external force F (t) with F (t)→ 0 for t→ ±∞.

(a) Write down the Hamiltonian and the Heisenberg equation of motion for aH(t).

(b) Integrate the Heisenberg equation. Calculate the probability to find the oscillator
in its excited state |n〉f for t→∞.
Hint: |n〉f are the eigenstates of a†H(t)aH(t) for t → ∞, and they differ from |n〉i,
the eigenstates of a†H(t)aH(t) for t→ −∞.

(2) Components of the angular momentum operator (2 Punkte)
Using the commutation relation [xj, pk] = ih̄δjk, show the following relations for the
orbital angular momentum operator L = (Lx, Ly, Lz); n is a real vector.

(a) [n · L, r] = ih̄r× n

(b) [n · L,p] = ih̄p× n

(c) L× L = ih̄L

(3) Can l be half-integer for orbital angular momenta? (3 Punkte)
In this problem, we will prove that the eigenvaluesm of the angular momentum operator
Lz/h̄ must be integer. Therefore, the orbital angular momentum quantum number l can
take only integer values.

(a) Express the operator Lz in terms of the creation and destruction operators, a†i and
ai (i = 1, 2, 3) by using the transformations

xi =

√
h̄

2mω
(ai + a†i )

pi = −i
√
h̄mω

2
(ai − a†i ) .

(b) By introducing new operators b1, b2 (and their hermitian conjugates) that are
linear combinations of the ai’s, show that Lz can be written in the form

Lz = h̄(b†2b2 − b
†
1b1) ,

where the operators b1 and b2 satisfy the commutation relations [b1, b
†
1] = [b2, b

†
2] =

1, [b1, b1] = [b†1, b
†
1] = 0, and so on.



(c) Argue that the eigenvalues of Lz should be an integer multiplied by h̄ and conse-
quently that the orbital angular momentum l should be integer.

(4) Kronig-Penney-Model for V0 < 0 (2 Punkte + 3 Extra-Punkte)
In the lecture we discussed the Kronig-Penney-Model

V (x) = V0

∞∑
n=−∞

δ(x− na) .

Solving the equation

cos(ka) = cos(qa) +
mV0a

h̄2
sin(qa)

qa
(1)

graphically for V0 > 0, we obtained the allowed and forbidden values of q which resulted
in energy bands and energy gaps in εk = h̄2q2/(2m).

Consider now the case V0 < 0.

(a) Sketch the right-hand side of Eq. (1) as a function of qa and solve the equation
graphically or with a computer.

(b) Sketch the lowest energy band εk.

(c) On top of that there are also solutions to the Schrödinger equation with negative
energy eigenvalues. What does this imply for q? Solve Eq. (1) for this case gra-
phically or with a computer and sketch the part of the lowest energy band that
originates from this solution. Interpret your result.
Calculate and plot the first five energy bands numerically.

(5) Imaginary δ-potential (small research problem...)
Repeat problem 2 from Blatt 5 for the potential V (x) = ±iV0 δ(x) with V0 > 0 real.
Note: this Hamiltonian is non-hermitian but has real eigenvalues. Such Hamiltonians
are a fashionable (and controversial) topic of current research.


