Department of Physics, University of Basel

Martin Koppenhöfer (room 4.16, martin.koppenhoefer@unibas.ch)

Christian Scheller (room 1.10)

Nanophysics — Fall 2019

Quantum Computation and Quantum Communication Exercise 1

due Friday, December 6, 2019

(1) Controlled NOT gate

(a) In the lecture, we defined the CNOT gate to change the state of the target qubit if the control qubit is in the state |1⟩. Now, we want to change the state of the target qubit if the control qubit is in the state |0⟩. In a circuit diagram, such an operation is represented by a CNOT gate with an empty circle on the control qubit, as shown below on the left-hand side. Verify that:

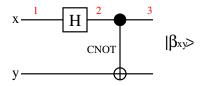
(b) Show that one can swap the role of the control and the target qubit gate by applying four Hadamard gates \hat{H} :

(2) Bell states

In the lecture, we defined the Bell states as

$$\begin{aligned} |\beta_{00}\rangle &= \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right) \ , \\ |\beta_{10}\rangle &= \frac{1}{\sqrt{2}} \left(|00\rangle - |11\rangle \right) \ , \text{ and } \\ |\beta_{11}\rangle &= \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle \right) \ . \end{aligned}$$

(a) Verify that the circuit

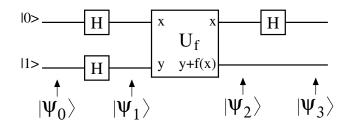


generates the Bell state $|\beta_{xy}\rangle$ if the input state is $|xy\rangle$ with $x, y \in \{0, 1\}$.

(b) Imagine that one of the qubits of a Bell state $|\beta_{xy}\rangle$ is sent to Alice and the other qubit of the same Bell state is sent to Bob (*i.e.*, Alice and Bob share a Bell state). Alice and Bob both apply a Hadamard gate \hat{H} to their qubit. Show that two of the Bell states are interchanged, and two of the Bell states remain unchanged by this transformation (up to a global phase).

(3) **Deutsch algorithm**

Consider a binary classical function $f(x): \{0,1\} \to \{0,1\}$. The Deutsch algorighm allows us to decide if f(x) is balanced [i.e., $f(0) \neq f(1)$] or constant [i.e., f(0) = f(1)]. A quantum circuit implementing the Deutsch algorithm is:



 \hat{U}_f is a two-qubit gate that implements the transformation $\hat{U}_f|x,y\rangle = |x,y\oplus f(x)\rangle$, where the symbol \oplus denotes addition modulo 2.

- (a) Write down the state $|\psi_1\rangle$ obtained when the first two Hadamard gates \hat{H} have acted on the input state $|\psi_0\rangle = |01\rangle$.
- (b) Show that

$$|\psi_2\rangle = \begin{cases} \pm \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}} & \text{if } f(0) = f(1) ,\\ \pm \frac{|0\rangle - |1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}} & \text{if } f(0) \neq f(1) . \end{cases}$$

(c) Show that the final state is

$$|\psi_3\rangle = \pm |f(0) \oplus f(1)\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$
.

(4) Interferometers

The circuit below shows a single-qubit model of an interferometer:

$$|0\rangle$$
 H \uparrow H \uparrow $|\psi_1\rangle$ $|\psi_2\rangle$ $|\psi_3\rangle$

The gate $\hat{\phi}$ maps $|0\rangle \rightarrow |0\rangle$ and $|1\rangle \rightarrow e^{i\phi}|1\rangle$.

- (a) Calculate the states $|\psi_1\rangle$, $|\psi_2\rangle$, and $|\psi_3\rangle$.
- (b) What is the probability of measuring zero in the end?