Theorie der Supraleitung, Herbstsemester 2018

Blatt 6

Abgabe: 08.11.18, 12:00H (Treppenhaus 4. Stock) <u>Tutor:</u> Alexandre Roulet Zi.: 4.10

(1) The critical field H_{c3}

(10 Punkte)

In the course we studied the linearized Ginzburg-Landau equation for the case of an infinite superconductor in a homogeneous magnetic field $\mathbf{B} = (0, 0, B)$; vector potential e.g. $\mathbf{A} = (0, Bx, 0)$ and determined the critical field H_{c2} below which the GL equation has a nontrivial solution. In this problem we would like to do the same calculation for a superconducting half-space.

Hint: The boundary condition for ψ on the surface (normal vector **n**) between a superconductor and an insulator (or vacuum) is $\mathbf{n} \cdot (-i\nabla - \frac{2\pi}{\Phi_0}\mathbf{A})\psi = 0$.

- (a) Assume the superconductor fills the half-space z < 0, i.e., $\mathbf{n} = (0, 0, 1)$. What are the solutions of the linearized GL equation discussed in the course that fulfill the boundary condition? Which critical field do they correspond to?
- (b) Now we consider the case that the field is parallel to the surface, i.e., the superconducting half-space x < 0 with $\mathbf{n} = (1, 0, 0)$. What are the solutions of the linearized GL equation discussed in the course that fulfill the boundary condition? Which critical field do they correspond to? Convince yourselves that by a clever choice of the position x_0 of the parabolic potentials you can obtain a lower eigenvalue of the linearized GL equation and therefore a critical field that is greater than H_{c2} .
- (c) Find an estimate of the maximal critical field. E.g., use the variational principle, or solve the linearized GL numerically.

(2) Critical current of a thin wire

(10 Extra-Punkte)

We consider the Ginzburg-Landau expression for the free energy of a superconductor,

$$F = F_n + \int d^3 r \, \left(\alpha \, |\psi|^2 + \frac{\beta}{2} \, |\psi|^4 + \frac{1}{2m^*} \left| (\frac{\hbar}{i} \nabla - e^* \mathbf{A}) \psi \right|^2 + \frac{h^2}{2\mu_0} \right) \,, \tag{1}$$

with $\alpha < 0, \beta > 0, \psi(\mathbf{r}) = |\psi(r)| e^{i\varphi(r)}$, together with the expression

$$\mathbf{J}_s = e^* \left| \psi \right|^2 \mathbf{v}_s \tag{2}$$

for the equilibrium supercurrent in the system, with $\mathbf{v}_s = (\hbar \nabla \varphi - e^* \mathbf{A})/m^*$.

(a) Show that, for boundary conditions which do not impose fields or gradients, one has $|\psi|^2 = |\psi_{\infty}|^2 = -\alpha/\beta$. In the following, we consider a thin wire, so that we can neglect the term $h^2/(2\mu_0)$ in (1). We will also assume that the orientation of the wire with respect to any external field is such that $|\psi(r)|$ is spatially constant $(|\psi(r)| = |\psi|)$. (b) Use these hypotheses to simplify (1) into

$$F = F_n + \int d^3 r \, \left(\alpha \, |\psi|^2 + \frac{\beta}{2} \, |\psi|^4 + \frac{m^*}{2} \, |\psi|^2 \, v_s^2 \right). \tag{3}$$

- (c) Minimize the expression (3) for F to find the optimal value $|\psi|^{opt}$ for $|\psi|$ in terms of $|\psi_{\infty}|^2$, α and v_s .
- (d) Give the expression of the supercurrent amplitude J_s^{opt} associated to $|\psi|^{opt}$.
- (e) The critical current J_c of the wire can be calculated as the maximum of J_s^{opt} as a function of v_s . Show that

$$J_c = e^* \left| \psi_{\infty} \right|^2 \frac{2}{3} \left(\frac{2}{3} \frac{|\alpha|}{m^*} \right)^{1/2} \,. \tag{4}$$

Sketch the dependence of $|\psi|^{opt}$ and of J_s^{opt} as a function of v_s .

- (f) Express J_c as a function of the critical field $H_c(T)$ of the superconductor and of the penetration depth $\lambda(T)$.
- (g) Compare this critical current with the one that you would obtain with $\psi = \psi_{\infty}$ (that agrees with the so-called London theory) and explain the result.