Classical and Quantum Nonlinear Dynamics Frühjahrsemester 2024

Blatt 9

Abgabe: 16.05.2024, 12:00 <u>Tutor:</u> Tobias Nadolny Zi. 448; tobias.nadolny@unibas.ch

(1) Wigner and Husimi-Q distributions

- (a) Plot the Wigner (quasiprobability) distribution distribution for both the Fock states $|0\rangle$, $|1\rangle$, $|2\rangle$ and the coherent states $|\alpha = 0\rangle$, $|\alpha = 1\rangle$, $|\alpha = 2\rangle$. Reproduce Figs. 8.12, 8.13 of Eichler and Zilberberg.
- (b) Repeat (a) for the Husimi-Q distribution and reproduce Figs. 8.10, 8.11 of Eichler and Zilberberg.
- (c) Plot the Wigner distribution both for a mixed state and a superposition state containing $|\alpha = +1\rangle$ and $|\alpha = -1\rangle$ with equal weight. What is the difference?

(2) Damped quantum harmonic oscillator (3 Punkte)

Consider the following quantum master equation of a damped harmonic oscillator:

$$\frac{d}{dt}\rho = -i[H,\rho] + \gamma \mathcal{D}[a]\rho, \qquad (1)$$

(3 Punkte)

where a^{\dagger} , a are the raising and lowering operators of the oscillator, $H = \omega_0 a^{\dagger} a$ (we neglect the zero-point energy and set $\hbar = 1$), and $\mathcal{D}[O]\rho = O\rho O^{\dagger} - \frac{1}{2} \{O^{\dagger}O, \rho\}$ is the definition of the Lindblad dissipator for any operator O.

- (a) Calculate the matrix elements $\langle n | \dots | m \rangle$ of Eq. (1).
- (b) Choose $|\psi(t=0)\rangle = |1\rangle$ as initial state and solve the equation obtained in (a). Interpretation?
- (c) Compute the differential equation governing the time evolution for the expectation value $\langle a \rangle = \text{Tr}[a\rho]$. Bring the differential equation into the form of a classical damped harmonic oscillator $\ddot{x} + \nu \dot{x} + \omega x = 0$. What are ν and ω in terms of γ and ω_0 ?
- (3) **Quantum van der Pol oscillator** (4 Punkte + 2 Bonuspunkte) The quantum van der Pol oscillator is defined by the quantum master equation

$$\frac{d}{dt}\rho = -i[\omega_0 a^{\dagger} a, \rho] + \gamma_1 \mathcal{D}[a^{\dagger}]\rho + \gamma_2 \mathcal{D}[a^2]\rho.$$
(2)

(a) Interpret the terms proportional to γ_1 and γ_2 .

- (b) Compute the differential equation governing the time evolution for the expectation value $\alpha \equiv \langle a \rangle = \text{Tr}[a\rho]$.
- (c) Approximate the term $\langle a^{\dagger}a^{2}\rangle \approx |\alpha|^{2}\alpha$ to obtain a closed differential equation for α . When is this approximation valid?
- (d) Set $\alpha = re^{i\phi}$ and show that there is a limit cycle.
- (e) Bonus: Use a package like QuantumOptics.jl to compute and visualize the time evolution of Eq. (2) starting from a coherent state. Set $\omega_0/\gamma_1 = 1$ and test different values of γ_2/γ_1 (see for instance the function QuantumOptics.timeevolution.master and the example at

https://docs.qojulia.org/examples/pumped-cavity/#Pumped-cavity, where you can ignore the Monte Carlo trajectories). Discuss the time evolution.