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(1)

Linear stability analysis (1 Punkt)
Use linear stability analysis to classify the fixed points of the following systems. If
linear stability analysis fails because of f'(z*) = 0, use a graphical argument to decide
the stability: (a) # = ax — 23 (b) 2 = 1 — exp(—2?) (c) & = tan .

Fixed points (2 Punkte)
For each of (a)-(e), find an equation # = f(z) with a smooth f, or if there are no
examples, explain why not: (a) Every real number is a fixed point. (b) Every integer
is a fixed point, and there are no others. (c¢) There are precisely three fixed points, and
all of them are stable. (d) There are no fixed points. (e) There are precisely 100 fixed
points.

“Blow-up”: Reaching infinity in a finite time (2 Punkte)
Show that the solution to & = 1 + 2'° escapes to +o00 in a finite time, starting from
any initial condition.

Hint: Don’t try to find an exact solution; compare the solutions to those of # = 1 + 22

Infinitely many solutions with the same initial condition (2 Punkte)
Show that the initial value problem & = x'/3, x(0) = 0, has an infinite number of
solutions.

Hint: Construct a solution that stays at x = 0 until some arbitrary time ¢, after which
it takes off.

Phase portrait of the van der Pol oscillator (3 Punkte)
The van der Pol oscillator described by the equation of motion

i+ni(—14+2*)+z2=0 (1)
is a paradigmatic example of a nonlinear oscillator.

(a) Interpret the terms in (1).

(b) Use a computer to plot the phase portrait of the van der Pol oscillator: i.e., for
a fixed value of 7, plot & over z for a set of typical initial conditions (x(0), ©(0)).
Discuss your results for different 1 and compare to the case of a harmonic oscillator

(n=0).



(6) The leaky bucket (abbreviated from Strogatz, prob. 2.5.6) (3 Bonuspunkte)
The following example shows that in some physical situations, non-uniqueness is natural
and obvious, not pathological.

Consider a water bucket with a hole in the bottom. If you see an empty bucket with
a puddle beneath it, can you figure out when the bucket was full? No, of course
not. It could have finished emptying a minute ago, ten minutes ago, or whatever. The
solution to the corresponding differential equation must be non-unique when integrated
backwards in time.

Here’s a crude model of the situation. Let h(t) = height of the water remaining in the
bucket at time ¢; a = area of the hole; A = cross-sectional area of the bucket (assumed
constant); v(t) = velocity of the water passing through the hole.

(a) Show that av(t) = Ah(t). What physical law are you invoking?

(b) Use conservation of energy to derive an additional equation, viz., v? = 2gh, where
g is the gravitational acceleration.
Combine with (a) to obtain h = —C'v/h where C' = \/2g(a/A).

(c) Given h(0) = 0 (bucket empty at t = 0), show that the solution for A(t) is non-
unique in backwards time, i.e., for ¢t < 0.



