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The purpose of problems 1 and 2 is to train the use of the formalism of second quantization.
The anticommutator /commutator relations for fermionic/bosonic operators read
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(1) Position and momentum representation
For free electrons, the relation between position and momentum representation reads
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Write the Hamiltonian
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(2) Tight-binding model in second quantization
A major part of solid-state physics deals with electrons in a periodic potential. As
a simplified model we consider fermionic particles moving on a cubic lattice (lattice
constant a). The kinetic energy is assumed to have tight-binding form
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here, > i j> 1s the sum over all nearest neighbors (such that each bond appears only
once) and ) _ is the sum over the two spin directions.



(a) Determine the band structure (k) for a d-dimensional cubic lattice (d = 1,2, 3).

(b) Draw the contours e(k) = const. in the (k,, k,)-plane for d = 2.

Hint: Diagonalize the Hamiltonian by a Fourier transform, ¢;, = \/LN > exp(ikr;)ckey,
here, r; are the coordinates of the lattice sites; N is their total number.

(3) Variational derivative I

(a) Consider the functional G[f] = [ ¢(y, f)dy. Show that
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(b) Now consider the functional H[f] = [ g(y, f, f')dy and show that
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where "= 0f/0y.
(¢) For the functional J[f] = [ g(y, f, f', f")dy show that
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where f” = 0%f /0y

(4) Three-dimensional elastic medium
For a three-dimensional elastic medium, the potential energy is

.
V= [aaver,

and the kinetic energy is

P [ s OV
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Here, 1(x,t) describes the displacement of the elastic medium at x at time ¢, p is the
mass density, and 7 the tension.

Write down the Lagrange density, the action, the Euler-Lagrange equation, and the
resulting equation of motion for ¥ (x,t).



