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CHAPTER 1

INTRODUCTION

The central notion of this thesis is quantum transport. With the miniaturization of elec-
tronic devices, quantum coherence effects may start to play a significant role. Therefore
the study of mesoscopic transport is not only of importance for fundamental research
but may also be relevant for technological applications.

Transport of classical particles governed by Newtonian physics can be drastically dif-
ferent from the transport of particles described by quantum mechanics. For electrons
in crystalline solids, the ratio of the mean free path `mean and the coherence length `ϕ
of an electron can help us decide which description is appropriate. While `mean repre-
sents the average distance between two collisions with, e.g., phonons or impurities, `ϕ
is determined by the average distance on which the phase of the electronic wavefunc-
tion is well-defined. If the sample size is much larger than `mean > `ϕ, the electrons in
a solid move as Brownian particles and the conductivity is given by the semi-classical
Drude model. Upon lowering the temperature T , both characteristic lengths increase.
However, for T → 0, `mean saturates at a constant value determined by the scattering
with static impurities, while `ϕ diverges. Hence, for low enough temperatures, `ϕ may
become larger than the sample size. Such a situation leads to interference and the wave
nature of electrons may manifest itself in macroscopic features, e.g., in conductance.
These phenomena are called mesoscopic. In the first part of the thesis we are concerned
with ballistic conductance quantization, quantum Hall effect, and superconductivity in
materials with a honeycomb lattice structure. In the second part we deal with tunneling
between two cold atomic superfluid reservoirs.

The most famous material with a honeycomb lattice structure is graphene. It is a two-
dimensional layer of carbon atoms and can be thought of as a single layer of graphite.
The electronic configuration of a carbon atom in the ground state is the following: two
electrons are in the inner shell occupying a 1s orbital and four in the outer shell occu-
pying 2s and 2p orbitals. This is often written as 1s2 2s2 2p2. In graphene, however,
three out of the four outer-shell electrons occupy states that are superpositions of s,
px and py orbitals in order to minimize the total energy by forming in-plane covalent
bonds with neighboring atoms. This is called the sp2 hybridization. The electrons in
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Chapter 1. Introduction

the sp2-hybridized orbitals can be treated as inert because they do not contribute to the
transport within the range of energies used in typical experiments. The remaining elec-
tron is in the out-of-plane pz orbital and can quantum-mechanically tunnel between the
pz orbitals of neighboring atoms in the honeycomb lattice. The resulting band structure
of the pz electrons, i.e., single-electron energies as a function of the crystal momen-
tum, was first calculated already in 1947 by Wallace [1]. The low-energy excitations
in graphene are described by a Schrödinger equation that is identical to the relativistic
Dirac equation for massless fermions in 2 + 1-dimensional space-time. However, it was
not until the experimental breakthrough of Novoselov et al. [2] in 2004, that the pop-
ularity of graphene-related research exploded. In 2010, the Nobel Prize in Physics was
awarded to Geim and Novoselov “for groundbreaking experiments regarding the two-
dimensional material graphene” [3]. One of the great advantages of graphene is that
the charge carrier density can be controlled by a simple application of a gate voltage.
This allows for patterning a p-n junction that is an elementary building block of many
electronic devices. Graphene and graphene-related materials continue to be one of the
leading research areas due to the strong application potential in nanotechnology as well
as the contributions to the fundamental science of material physics. From now on we
use term graphene as a representative of this class of materials.

An important notion in the realm of condensed matter is the quantum Hall effect,
that is the quantization of the Hall resistance in strong magnetic fields. If we apply a
weak magnetic field perpendicularly to the plane of a two-dimensional conductor, the
electron trajectories will get slightly curved as a result of the Lorentz force. Hence,
upon applying an electric field, a voltage difference develops in the direction transverse
to the electric current. The transverse voltage leads to the transverse (Hall) resistance,
named after its discoverer Hall in 1879 [4]. In the limit of weak magnetic fields, the Hall
resistance is proportional to the out-of-plane magnetic field strength. In 1980, it was
experimentally found by von Klitzing et al. [5] that for large magnetic fields (∼ few T),
the Hall resistance is no longer linear but shows a stepwise behavior as a function of the
field and also as a function of the charge carrier density. Such a quantization is a direct
consequence of the drastic change of the density of electronic states in the presence of a
strong magnetic field, i.e., the formation of Landau levels. The quantized conductance
plateaus at h/(e2ν) can be measured with unprecedented precision, better than 10−6,
and are used as a resistance standard. Five years after this essential experimental finding,
it was recognized by a Nobel prize that was awarded to von Klitzing “for the discovery
of the quantized Hall effect” [6]. The quantum Hall effect was later also measured in
graphene [2, 7], where the conductance plateaus are even wider due to the high-quality
graphene samples. In this thesis, we consider only the integer quantum Hall effect, where
ν can take just integer values. The case when ν can take fractional values is realized in
systems with strong electron-electron interactions and is called the fractional quantum
Hall effect [8, 9]. From now on, the term quantum Hall effect refers to the integer one.

The precise quantization of the Hall conductance in the quantum Hall effect is tightly
connected to the class of phenomena, for which the Nobel prize in 2016 was awarded to
Thouless, Haldane, and Kosterlitz [10]. The official wording is “for theoretical discover-
ies of topological phase transitions and topological phases of matter”. The laureates laid
the foundations of ideas used widely today in the topological classification of gapped
electronic systems. While there is an elaborate mathematical theory behind such a
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Chapter 1. Introduction

classification, in concrete physical examples we are often well-off with a simplified phe-
nomenological description. One can assign a number, known as topological invariant,
to a gapped Hamiltonian. Such a Hamiltonian typically depends on a set of parameters
depending on which material under which circumstances we are trying to describe. The
property of the topological invariant is that it cannot change upon an adiabatic change
of these parameters unless a gap is closed or an underlying symmetry is broken. This
leads to the notion of topologically distinct gapped electronic phases, i.e., topologically
distinct Hamiltonians that cannot be deformed into each other without closing the gap
or breaking an underlying symmetry. In recent years, classification of such phases was
developed, and both theoretical and experimental research in this area was launched. In
mathematics, topology is concerned with geometrical properties of a space that are pre-
served under continuous deformations. The role of such a space in the context of gapped
electronic systems is played by a complex vector bundle, called the Bloch bundle. This is
a mathematical structure that arises naturally for Hamiltonians that depend on crystal
momentum. One example of a system with a non-trivial topology is the quantum Hall
effect, where the topological invariant can take only integer values (Z invariant). The
system is gapped when the Fermi energy lies in between the Landau levels. Another
example is the two-dimensional topological insulator, where the topological invariant in
the presence of time-reversal symmetry can take only two distinct values (Z2 invariant).
Here, the spin-orbit interaction leads to a topologically non-trivial electronic phase. The
common feature of topologically non-trivial systems is the existence of states localized at
the boundary with vacuum called edge states in two-dimensions. This is a consequence
of the bulk-boundary correspondence stating that the difference between the number of
right and left moving modes at the boundary with vacuum is determined solely by the
topological structure of the bulk [11]. The concept of topologically distinct phases can
be elucidated using an analogy with the difference between a sphere and a torus from a
topological point of view. The sphere cannot be continuously deformed into the torus,
because the torus has a hole. The sphere and the torus, therefore, belong to different
topological classes where the role of the topological invariant is played by the genus (the
number of holes).

In many materials below a certain critical temperature, the effective electron-electron
interaction mediated by phonons leads to the formation of Cooper pairs, large and
overlapping coherent pairs of electrons. Charge in such a system can flow with zero
resistance, a phenomenon known as superconductivity. The Nobel prize in 1972 was
awarded to Bardeen, Cooper, and Schrieffer “for their jointly developed theory of super-
conductivity, usually called the BCS-theory” [12]. Another state of matter that exhibits
a flow of particles without resistance is called the Bose-Einstein condensate (BEC). The
two phenomena turn out to be just two sides of the same coin, more precisely, two limits
of the BCS-BEC crossover that can be experimentally realized in a cloud of fermionic
atoms. In such a cloud the interatomic interaction can be tuned from the weakly coupled
Cooper-pair regime to the BEC regime of tightly bound molecules. The advantage of
such systems is that they can simulate conditions inaccessible in conventional solid-state
devices.

We ought to mention that particle-particle interactions in this thesis are neglected, or
taken into account via a mean-field approximation. As a result, all the Hamiltonians
are of a single-particle nature. Interactions are implicitly taken into account in two
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Chapter 1. Introduction

cases: interaction of electrons and motionless ions that form the lattice resulting in
the periodic lattice potential and the Bloch theory; the effective attractive interaction
between fermions that leads to superconductivity.

1.1 This thesis

This thesis is divided into two parts: Part I deals with quantum transport in two-
dimensional materials with honeycomb lattice structure, while Part II touches upon a
quantum transport in a junction between two interacting cold atomic Fermi gases.

1.1.1 Part I: Quantum transport in materials with a honeycomb lattice

Chapter 2: Theoretical background

In Chapter 2 we review some of the basic notions used in the subsequent three chapters.
That is, we introduce the tight-binding model of electrons on a honeycomb lattice within
the nearest-neighbor approximation and calculate the band structure by diagonalizing
the Hamiltonian in the momentum space. We also numerically calculate and show band
structures of ribbons with zigzag and armchair edge terminations and discuss their
properties. The presence of an external magnetic field affects the orbital motion as well
as the spin degree of freedom of an electron. How to include this in the tight-binding
descriptions is also presented. Next, we show the low-energy theory of graphene and
derive the spectrum of Landau levels within this approximation. Last but not least, we
briefly introduce the Landauer-Büttiker formalism and the scattering matrix.

Chapter 3: Switchable valley filter based on a graphene p-n junction in a
magnetic field

In Chapter 3 we present a valley filter realized in a three-terminal device based on a
graphene p-n junction in a uniform quantizing magnetic field. We show that, by tuning
the external potential that gives rise to a p-n junction, we can switch the current from
one valley polarization to the other. We also consider the effect of different types of edge
terminations and present a setup, where we can partition an incoming valley-unpolarized
current into two branches of valley-polarized currents. The branching ratio can be chosen
by changing the location of the p-n junction using a gate. The valley degree of freedom
is a potential alternative to the spin degree of freedom with applications in quantum
computing.

Chapter 4: Interface between graphene and superconductor

In Chapter 4 we study Andreev reflection at the interface between graphene and a su-
perconductor. When the Fermi energy EF is smaller than the superconducting pairing
∆, the unique nature of graphene excitations allows for two kinds of Andreev reflection:
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Chapter 1. Introduction

retro-reflection and specular reflection. The two are separated by a dip in the two-
terminal differential conductance plotted as a function of the incoming electron energy
in the absence of magnetic fields. In the presence of a quantizing magnetic field, the
differential conductance as a function of the field is constant within the zeroth Landau
level. That is in stark contrast to the junction based on a two-dimensional electron gas
in semiconductor heterostructures with quadratic dispersion, for which the conductance
oscillates as a function of the field within the zeroth Landau level. Next, we inspect a
three-terminal geometry, where two leads are in a normal state and one in a supercon-
ducting state. We find that a spin-filtering effect takes place within the zeroth Landau
level, if the spin-degeneracy is lifted by a Zeeman field.

Chapter 5: The topological Anderson insulator phase in the Kane-Mele
model

In Chapter 5 we investigate the concept of a topological Anderson insulator, i.e., a
trivial insulator that is driven into a topological phase by disorder. First, we introduce
the Kane-Mele model that describes a topological insulator on a honeycomb lattice.
Then we show numerically, that if the system in the absence of disorder is topologically
trivial, it can be driven into a topologically nontrivial phase by increasing the disorder
strength. This can be understood via renormalization of the Hamiltonian parameters due
to the disorder. We also present the lowest-order Born approximation and reproduce the
gap closing and re-opening that is seen in the numerical calculations of the differential
conductance. Next, we numerically study the presence of magnetic disorder and find,
that the topological Anderson insulator phase does not occur unless the disorder term
commutes with the Hamiltonian.

1.1.2 Part II: Quantum transport in a junction between interacting
cold atomic Fermi gases

Chapter 6: Thermoelectricity in a junction between interacting cold atomic
Fermi gases

In Chapter 6 we examine quasiparticle transport in a system of two weakly-coupled
reservoirs of interacting ultracold fermions. While in a solid state device the interaction
between the electrons is fixed, in a cloud of fermions the interatomic interaction can be
tuned by an external magnetic field via a Feshbach resonance. Hence, in such a cloud one
can sweep from the Bardeen-Cooper-Schrieffer (BCS) regime of large and overlapping
Cooper pairs through the strongly interacting unitary regime to the Bose-Einstein con-
densate (BEC) regime of tightly-bound pairs. This is known as the BCS-BEC crossover.
In a dilute gas, the interaction can be characterized by the s-wave scattering length.
Using the generalized BCS theory, where the scattering length explicitly enters, we cal-
culate the time evolution of the two-reservoir system that is assumed to be initially
prepared in a nonequilibrium state characterized by a particle number imbalance or a
temperature imbalance. We find a number of characteristic features like sharp peaks in
quasiparticle currents or transitions between the normal and superconducting states.
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Put in a broader context, the high tunability in a cloud of ultracold atoms allows for
an experimental realization of a system that reproduces physics of a precisely defined
Hamiltonian, i.e., a quantum simulator [13].
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Honeycomb lattice

Figure 2.1: Honeycomb lattice structure of graphene. The two Bravais lattice
vectors a1 and a2 and the basis vector δ are shown. The unit cell is marked with a
blue-shaded rhombus. The black and white circles show the A and B sublattice atom
in the unit cell, respectively.

The honeycomb lattice structure is shown in Fig. 2.1. It is a triangular lattice with a
two-atomic basis. The two primitive (lattice) vectors are

a1 = a (1, 0) ,

a2 = a

(
1
2 ,
√

3
2

)
,

(2.1)

where a is the lattice constant, a = 0.246 nm for graphene. The basis vector connecting
a site from sublattice A to the site from sublattice B in the same unit cell is

δ = a

(
1
2 ,

1
2
√

3

)
. (2.2)

The position of any site in the sublattice A can be expressed as

Ri = na1 +ma2, (2.3)
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Chapter 2. Theoretical Background

while in the sublattice B as

Ri + δ = na1 +ma2 + δ. (2.4)

Here, n and m are integers.

2.2 Tight-binding model

The nearest-neighbor (nn) tight-binding model of electrons on a honeycomb lattice is
given by the Hamiltonian

H = −EF
∑
i

c†ici +
∑
〈ij〉

tijc
†
icj , (2.5)

where the first term accounts for the Fermi energy, while the second term for the nn
hopping. The sum over 〈ij〉 runs over the nearest neighbors, and tij is the nn hopping
amplitude, e.g., t〈ij〉 = −t ≈ 2.5 eV for graphene. c†i (ci) creates (annihilates) a particle
in a Wannier state localized at the site at position Ri. In the (single-particle) basis of
Wannier states {|Ri〉 , |Ri + δ〉}, the Hamiltonian has a sparse matrix structure with
hopping element −t between the nearest neighbors and 0 otherwise.

According to Bloch’s theorem, the Hamiltonian (2.5) can be diagonalized using the
following ansatz

|k〉 = cA(k) |A(k)〉+ cB(k) |B(k)〉 , (2.6)

where the two kets on the right-hand side are two Bloch sums on the respective sublat-
tices:

|A(k)〉 = 1√
N

∑
i

eik·Ri |Ri〉 ,

|B(k)〉 = 1√
N

∑
i

eik·(Ri+δ) |Ri + δ〉 .
(2.7)

Here, N is the number of unit cells in the volume under consideration and k is the wave
vector associated with the crystal momentum ~k. The periodic boundary conditions

|Ri +N1a1〉 = |Ri〉 ,
|Ri +N2a2〉 = |Ri〉 ,

(2.8)

where N1 and N2 are large integers, restrict the wave vectors to discrete values

k = 2π
a

(
n1
N1

,
1√
3

(2n2
N2
− n1
N1

))
, (2.9)
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Chapter 2. Theoretical Background

with n1 and n2 being integers. The wave vector can be expressed as k = n1
N1
b1 + n2

N2
b2

using reciprocal lattice vectors

b1 = 2π
a

(
1,− 1√

3

)
,

b2 = 2π
a

(
0, 2√

3

)
,

(2.10)

defined as aibj = 2πδij .

Plugging the ansatz in Eq. (2.6) into the Schrödinger equation we obtain the following
block-diagonal form(

HAA(k) HAB(k)
HBA(k) HBB(k)

)(
cA(k)
cB(k)

)
= E(k)

(
cA(k)
cB(k)

)
, (2.11)

where
HAA(k) = HBB(k) = −EF (2.12)

and
HAB(k) = 1

N

∑
ij

eik·(Rj+δ−Ri) 〈Ri|H |Rj + δ〉 (2.13)

with HAB(k) = H∗BA(k). In Eq. (2.11) we neglected the overlap of the Wannier wave-
functions localized at the lattice sites, that is we assumed 〈R|R′〉 = δRR′ .

The expectation value 〈Ri|H |Rj + δ〉 is equal to −t for the three nearest neighbors of
site i, i.e., sites with coordinates

Rj + δ =


Ri + δ,
Ri − a1 + δ,
Ri − a2 + δ,

(2.14)

and zero otherwise (Fig. 2.1). Hence,

HAB(k) = −teik·δ(1 + e−ik·a1 + e−ik·a2). (2.15)

The eigenenergies are obtained by diagonalizing the 2x2 matrix in Eq. (2.11) and are
given by

E(k) = −EF + λt

√√√√1 + 4 cos
(
a

2kx
)

cos
(
a
√

3
2 ky

)
+ 4 cos2

(
a

2kx
)
, (2.16)

where λ = ±1 is for the conduction and valence band, respectively. E(k) can be plotted
as a function of kx and ky, which yields the band structure shown in Fig. 2.2.

Note that Eq. (2.5) is the simplest version of a tight-binding Hamiltonian describing the
physics of electrons on a honeycomb lattice. We might consider other terms entering
the Hamiltonian, depending on which effect (or which material) we wish to study. For
instance, we will introduce the orbital effect of the magnetic field by adding the Peierls
phase to the nn hopping term in Chapter 3. On top of that, in Chapter 4 we couple the
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spin degree of freedom to the magnetic field via the Zeeman term, and add the super-
conducting pairing of electrons and holes within the Bogoliubov-De Gennes framework.
To model topological insulators with honeycomb lattice structure, in Chapter 5 we will
introduce intrinsic and extrinsic (Rashba) spin-orbit coupling terms and the staggered
sublattice potential that lifts the sublattice symmetry. The spin-orbit terms may be
less relevant for graphene, but gain importance for other materials such as germanene,
stanene, and silicene. Finally, in Chapter 5 we include disorder effects via the random
on-site potential.

2.3 Band structures

In this section we review band structures of a two-dimensional graphene sheet, and
one-dimensional zigzag and armchair ribbon.

2.3.1 Two-dimensional sheet

The periodic boundary conditions in Eq. (2.8) describe an infinite two-dimensional sheet
of a honeycomb lattice and lead to the band structure in Eq. (2.16). If plotted as a
function of kx and ky, we can observe six Dirac cones in the corners of the first Brillouin
zone (Dirac points), as shown in Fig. 2.2. In the case of undoped graphene, the Fermi
energy lies at the Dirac point, E = 0. Hence, the band structure in the vicinity of this
point is particularly important. Only two out of the six Dirac points can be chosen as
inequivalent, i.e., such that they cannot be connected by the reciprocal lattice vectors.
Once chosen, the low-energy excitations can be thought of as located in two separate
regions in momentum space, so-called valleys. The band structure in the valleys has a
linear character, see Sec. 2.5.

Figure 2.2: Band structure of a two-dimensional graphene sheet. Reproduced from
Ref. [14].
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Chapter 2. Theoretical Background

2.3.2 Ribbons

Now we review the band structure of ribbons, also called nanoribbons or strips in the
literature. These are one-dimensional (1D) slices of a 2D honeycomb sheet of width
W , as shown for the zigzag and armchair edge termination in Fig. 2.3(a-b). The two
cases are related via rotation of the honeycomb lattice by π/6 angle. In this thesis,
the 1D ribbons serve as leads, i.e., translationally invariant systems with well-defined
scattering states. The leads allow us to calculate the scattering matrix that describes
transport properties of the scattering region to which the leads are attached, see Sec. 2.7.
Experimentally, graphene ribbons with more or less well-defined edges can be made using
several techniques. To mention some: lithographic patterning of graphene samples [15],
unzipping a carbon nanotube [16], chemical bottom-up approach [17], anisotropic etching
by hydrogen plasma [18] or nickel nanoparticles [19], and several others.

Below we present band structures of a zigzag and armchair ribbon calculated numerically
by diagonalizing the tight-binding Hamiltonian (2.5) with proper boundary conditions.
For the review and derivation of analytical expressions from the tight-binding model see
Ref. [20].

Figure 2.3: Graphene ribbons and their band structures. (a) A zigzag ribbon of
width W = 5a/

√
3 and with the unit cell (dashed rectangle) of width a. (b) An

armchair ribbon with W = 3a and with the unit cell of width
√

3a. (c) Band
structure of a zigzag ribbon (W = 149.245a) and (d) of an armchair ribbon
(W = 149a). The armchair ribbon can be either metallic or gapped, see the upper or
lower panel of the inset in (d), respectively. The metallic case occurs when
2W = 2 (mod 3), and the gapped cases otherwise.

Zigzag ribbon

The low-energy band structure of a zigzag ribbon is shown in Fig. 2.3(c). The bulk
bands are separated in momentum space into two valleys connected by a flat edge band.
The flat band appears within the region 2π/3 ≤ |k| ≤ π (for W → ∞), which can be
understood by considering a wavefunction at the zigzag edge of a semi-infinite honey-
comb sheet [20]. Away from zero energy, this band disperses and forms propagating edge
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states, which are more delocalized further from zero energy. The band structure of a
zigzag ribbon has zero gap and the ribbon is always metallic.

Due to the separation of the states in momentum space, a zigzag ribbon can be used as a
probe for a valley polarization (in analogy to the spin polarization) [21]. We investigate
a valley filtering effect in Chapter 3.

It is worth mentioning that due to the flat band the density of states is highly enhanced
at E = 0, which results in non-zero magnetization at the edge in the presence of electron-
electron interaction [22, 23].

Armchair ribbon

The low-energy band structure of an armchair ribbon is shown in Fig. 2.3(d). The states
are not valley-resolved in momentum space. The band structure of an armchair ribbon
can be obtained by slicing the bandstructure of a 2D sheet, and the low-energy spectrum
can be described as a superposition of the two valleys of the 2D sheet.

Depending on the width of the ribbon, either a metallic or a gapped state is realized.
Namely, the metallic case occurs when 2W = 2 (mod 3) and the gapped case otherwise,
with the magnitude of the gap proportional to 1/W . The threefold character manifests
itself also in transport properties, whenever an armchair ribbon is included, see Figs. 3.7
and 4.12.

2.4 Effect of a magnetic field

The orbital motion in 2D materials in presence of an out-of-plane magnetic field can be
understood as follows. If the field is weak, the (semiclassical) trajectories of electrons
are slightly curved which results in an accumulation of charge imbalance transverse to
the direction of applied current. Hence, one can measure a non-zero transverse (Hall)
conductance proportional to the field strength B. This is the classical Hall effect, first
measured in 1879 [4]. Upon further increasing B, the semiclassical trajectories are curved
more and more, and they become circular eventually. This leads to the situation, where
the electrons in the bulk of a sample are localized on circular orbits (discrete spectrum of
Landau levels). However, close to the boundary with vacuum, the electrons bounce from
the edge and form a skipping orbit (propagating edge state). In this situation, the Hall
conductivity is no longer linear in B and exhibits quantized steps. This phenomenon,
termed integer quantum Hall effect, was first measured experimentally [5], and only
later explained theoretically. For the quantum Hall effect to be observable, one needs
`B =

√
~/eB < sample size, so that the sample is large enough for the circular orbit

to form, and ωcτ > 1, so that the electron makes at least one circular turn on the
semiclassical orbit before a collision. Here, ωc is the cyclotron frequency characterizing
the circular motion of an electron in a magnetic field and τ is the collision rate.

The magnetic field also influences the spin degree of freedom. The coupling of the elec-
tronic spin to the external magnetic field enters the Hamiltonian in the Schrödinger
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equation as a result of the non-relativistic approximation to the relativistic Dirac equa-
tion. In this thesis we will treat it merely as another term in the Hamiltonian regardless
of its origin.

Below we describe, how the influence of an external magnetic field on the orbital and
spin degree of freedom can be included in tight-binding Hamiltonian (2.5).

Orbital effect in the tight-binding model

Let us consider a magnetic field perpendicular to the graphene sheet, since in 2D ma-
terials only the out-of-plane component of magnetic field plays a role in orbital effects.
This can be included in the hopping term (kinetic part) of Hamiltonian (2.5) by adding
a complex phase to the hopping amplitude. Namely,

tij = −teiϕij , (2.17)

where
ϕij = e

~

∫ i

j
A · dr (2.18)

is the Peierls phase [24] accumulated by an electron hopping from site j to site i along
a straight line. A is the vector potential corresponding to the out-of-plane magnetic
field B = ∇×A. It is often convenient to choose the Coulomb gauge, ∇ ·A = 0. This
gauge does not determine A uniquely. Hence, in the presence of leads, i.e., systems with
discrete translational symmetry, we are allowed to choose A such that it respect this
symmetry.

Figure 2.4: Orientation of the vector e1 that is parallel to the translational
symmetry vector of the lead, and the transverse vector e2. The external magnetic
field is applied along the z axis.

Let us confine the electron motion to the x-y plane and consider the B field along the
z axis, B = (0, 0, B). For a general orientation of the translational symmetry vector of
the lead shown as e1 in Fig. 2.4, the proper gauge respecting the translational symmetry
is

A = −B(r · e2)e1, (2.19)

where e1 = (cos θ, sin θ)T and e2 = (− sin θ, cos θ)T , see also Appendix of Ref. [25]. We
can parametrize the straight line from site j to site i as

x = xj + (xi − xj)t,
y = yj + (yi − yj)t,

(2.20)
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where (xi, yi) are coordinates of the site i and t ∈ [0, 1]. For the Peierls phase in
Eq. (2.18) we obtain the following expression

ϕij = eB

2~

[
(xjyi − xiyj)− cos 2θ(xiyi − xjyj) + sin 2θ

2 (x2
i − x2

j − y2
i + y2

j )
]
. (2.21)

Therefore, choosing a lead along the x axis (θ = 0), we obtain

ϕij = −eB2~ (xi − xj)(yi + yj) (2.22)

while for a lead along the y axis (θ = π/2)

ϕij = eB

2~ (yi − yj)(xi + xj). (2.23)

Zeeman effect in the tight-binding model

An external magnetic field couples also to the spin degree of freedom via term ∝ µ ·B,
where µ is the magnetic moment of an electron (Zeeman effect). This can be included
in the tight-binding model via an on-site term ∆Z

∑
i

(
c†i↑ci↑ − c

†
i↓ci↓

)
, where i is the

site index and ↑ (↓) is for spin up (down). This essentially splits the spin-degenerate
single-electron states in energy. The energy difference between the two spin states for
an electron in vacuum is 2∆Z , where

∆Z = 1
2gµBB. (2.24)

Here, g ≈ 2.0023 is the effective Landé factor (g-factor), µB = e~/2me is the Bohr
magneton with me being the electron rest mass in vacuum, and B = |B| is the magnitude
of the magnetic field. The g-factor for an electron in graphene is enhanced by interaction
effects. This can be included by replacing g by effective g∗, which is found to be in range
2 ≤ g∗ . 4, Ref. [26, 27]. Therefore, the Zeeman energy can reach up to

∆Z = 2.3 meV, (2.25)

for B = 10 T and g∗ = 4. The magnetic field in Eq. (2.24) is B =
√
B2
⊥ +B2

‖ , where B⊥
is the out-of-plane component and B‖ is the in-plane component of the field. Note, that
while the orbital motion is affected only by B⊥, the spin degree of freedom experiences
both, B⊥ and B‖.

2.5 Low-energy approximation

In this section we present the famous linear (low-energy) approximation to the block-
diagonal Hamiltonian in Eq. (2.11) and energy in Eq. (2.16). We choose the two Dirac
points to be

Kξ =
(
ξ

4π
3a , 0

)
, (2.26)

16



Chapter 2. Theoretical Background

where ξ = ±1. To obtain the low-energy (long-wavelength) Hamiltonian of graphene,
we plug k = Kξ + q into Eq. (2.11) assuming with q � 1/a, where q =

√
q2
x + q2

y .
We perform the Taylor expansion keeping only terms linear in qx and qy.1 Hence, the
Hamiltonian in the vicinity of Kξ is(

−EF ~vF (ξqx − iqy)
~vF (ξqx + iqy) −EF

)(
cA(Kξ + q)
cB(Kξ + q)

)
= E(Kξ + q)

(
cA(Kξ + q)
cB(Kξ + q)

)
,

(2.27)
where we defined the Fermi velocity as ~vF = −

√
3at/2, for graphene vF ≈ 106 m/s.

Consequently, the low-energy spectrum

E(Kξ + q) = −EF + λ~vF q (2.28)

is independent of the valley index and is linear, i.e., has a form of a double cone, in the
vicinity of each of the Dirac points (inset of Fig. 2.2). We can combine the two pairs of
equations (2.27) into one set of four equations as

−EF ~vF (qx − iqy) 0 0
~vF (qx + iqy) −EF 0 0

0 0 −EF ~vF (−qx + iqy)
0 0 ~vF (−qx − iqy) −EF



cA(K+ + q)
cB(K+ + q)
cB(K− + q)
cA(K− + q)

 =

E(q)


cA(K+ + q)
cB(K+ + q)
cB(K− + q)
cA(K− + q)

 .
(2.29)

We see that the low-energy excitations in one valley do not couple to the excitations in
the other valley. The off-diagonal terms coupling the two valleys appear when a scatterer
is introduced, e.g., an edge or disorder on the scale of the lattice constant.

The low-energy Hamiltonian can be written compactly using tensor products of Pauli
matrices as

H = −EF τ0 ⊗ σ0 + ~vF τz ⊗ (σ · q), (2.30)

where τν and σν with ν = {0, 1, 2, 3} are two sets of Pauli matrices describing the
valley and sublattice degree of freedom, respectively. The four eigenvectors of Hamilto-
nian (2.30) can be written as four-spinors

λ q
qx+iqy

1
0
0

 and


0
0
1

−λ q
qx+iqy

 . (2.31)

1Tight-binding terms, such as the overlap of the Wannier functions on the neighboring sites and the
next-nearest-neighbor hopping lead to corrections of the order of q2a2. To be consistent, this is neglected
in our derivation.
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Note, that another common form of the Hamiltonian (2.30), H ′ = −EF τ0⊗σ0 +~vF τ0⊗
(σ · q), is commonly used in the literature [28]. It is related to the one in Eq. (2.30) by
a unitary transformation H ′ = UHU †, where U = (τ0 + τz)/2⊗ σ0 + (τ0 − τz)/2⊗ σz.

2.6 Landau levels in graphene

Here we derive the quantized energy levels within the low-energy approximation (2.30)
in the presence of a strong magnetic field.

To include a coupling of the orbital motion to the magnetic field B = (0, 0, B) with the
vector potential in Landau gauge A = (0, Bx, 0), we replace the canonical momentum
by the gauge-invariant momentum. The low-energy Hamiltonian (2.30) then takes the
following form in a magnetic field

H = ~vF τz ⊗ σ · (q + eA), (2.32)

where we set EF = 0, since it is just a constant shift of the energies. Hence, the
Schrödinger equation is

HΨ = EΨ, (2.33)

where Ψ = (ψ+
A , ψ

+
B , ψ

−
B , ψ

−
A)T is a four-spinor; ψ±A(B) is the amplitude of the wavefunc-

tion on A(B) sublattice in K± valley.

To solve Eq. (2.33) means to find eigenvalues and corresponding eigenfunctions of the
Hamiltonian (2.32). We introduce a transformation using the annihilation and creation
operators

a = `B√
2~

(~qx − i(~qy + eBx)),

a† = `B√
2~

(~qx + i(~qy + eBx)),
(2.34)

with bosonic commutation relation [a, a†] = 1. The inverse transformation is

Πx = ~√
2`B

(a† + a),

Πy = ~
i
√

2`B
(a† − a),

(2.35)

where the gauge-invariant momentum is Πi = ~qi + eAi. Plugging this transformation
into Hamiltonian (2.32) we obtain

H = ~ωc


0 a 0 0
a† 0 0 0
0 0 0 −a
0 0 −a† 0

 (2.36)
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where we denoted the cyclotron frequency ~ωc =
√

2~vF /`B. Eq. (2.33) is a system of
four pairwise coupled equations

~ωcaψ+
B = Eψ+

A ,

~ωca†ψ+
A = Eψ+

B ,

−~ωcaψ−A = Eψ−B ,

−~ωca†ψ−B = Eψ−A .

(2.37)

Eliminating ψ+
A from the first two yields

a†aψ+
B = E2

(~ωc)2ψ
+
B . (2.38)

Since ψ+
B is an eigenstate of a†a, then ψ+

B = α |n〉, α ∈ C. It follows that

a†aα |n〉 = αn |n〉 = E2

(~ωc)2α |n〉 , (2.39)

where in the first equation we used the fact that a†a |n〉 = n |n〉, n = 0, 1, 2, . . . and the
second equation follows from (2.38). Hence the eigenenergies are

En = λ~ωc
√
n, (2.40)

Using the well-known relations between the bosonic operators and their eigenstates

a |n〉 =
√
n |n− 1〉 ,

a† |n〉 =
√
n+ 1 |n+ 1〉 ,

(2.41)

and fixing ψ+
B = |n〉, we obtain for the ψ+

A component

ψ+
A = ~ωc

En
a |n〉 = 1

λ
|n− 1〉 . (2.42)

The second pair of equations in Eq. (2.37) can be treated analogously and yields the
same eigenenergies as in Eq. (2.40). The corresponding eigenstates are ψ−A = |n〉 and
ψ−B = − 1

λ |n− 1〉.

To summarize, the resulting normalized eigenstate in Eq. (2.33) is

Ψn = 1
2


|n− 1〉
λ |n〉
|n− 1〉
−λ |n〉

 (2.43)

with the corresponding eigenvalue

En = λ~ωc
√
n = λ

~vF
`B

√
2n. (2.44)
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These eigenenergies are called Landau levels (LLs). They are different from the LLs
that arise in a conventional two-dimensional electron gas with E′n = ~ω′c(n+1/2), where
ω′c = eB/m. See Fig. 2.5 for the behaviour of the LLs as a function of a magnetic field.

Figure 2.5: Landau levels as a function of an out-of-plane magnetic field in (a)
graphene and in (b) a conventional two-dimensional electron gas.

We can plug in the tight-binding parameters to obtain

En = λ|t|
√

2
√

3πφ/φ0
√
n, (2.45)

where we introduced the magnetic flux through the unit cell φ = BS with the unit cell
area S =

√
3a2/2 and the magnetic flux quantum φ0 = h/e. The energy gap between

the n = 1 and n = 0 LL is δ = |t|
√

2
√

3πφ/φ0 ≈ 3.3|t|
√
φ/φ0.

A peculiar situation arises for the zeroth Landau level (n = 0). Here the bulk eigenstate
is

Ψ0 = 1√
2


0

λ |0〉
0

−λ |0〉

 , (2.46)

which means that the sublattice and valley degree of freedom are locked together: when
an electron is in a state in K+(K−) valley, it has zero probability to be on the A(B)
sublattice.

The existence of LLs implies the quantization of the Hall resistance, i.e., the quantum
Hall effect. The LLs are flat (momentum-independent) in the bulk, however, towards
the edge of the sample, the LLs bend upwards (downwards) for the conduction (valence)
band due to the edge potential. This bending means that the states close to the edge
acquire a finite velocity. The direction of propagation at the edge is fixed and the
propagating edge states cannot backscatter. Hence, if the Fermi energy is in between
the bulk Landau levels, one can measure the quantized Hall resistance (RH) in a Hall-bar
geometry

RH = 1
ν

h

e2 , (2.47)
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where ν is the filling factor, i.e., the number of occupied LLs. If we also account for
the spin degree of freedom, for spin-degenerate electrons in graphene the sequence is
ν = ±2,±6,±10, . . . , while for a conventional 2DEG it is ν = 0, 2, 4, 6, . . . . However,
note that the degeneracy of LLs may be lifted as a result of, e.g., the Zeeman effect. This
results in different filling factor sequences. Since the energy gaps between the first few
LLs in graphene are large enough, the resistance quantization (2.47) can be measured
already at relatively small field strengths [29], and even at room temperatures [7] in this
material.

2.7 Mesoscopic coherent transport: Landauer-Büttiker for-
malism and scattering matrix

Landauer-Büttiker formalism

Mesoscopic transport is coherent if the size of the sample is smaller than coherence
length. Landauer, Büttiker and Imry developed a widely used framework for the de-
scription of such transport. Here we summarize the main results.

Figure 2.6: Mesoscopic system with quasi-one-dimensional leads connected to the
scattering region.

Consider the system shown in Fig. 2.6. There are (quasi) one-dimensional leads con-
nected to the scattering region. Leads are translationally-invariant systems that have
well-defined scattering states and serve as a probe of the transport properties of the
scattering region. In general, each state in lead n can be written as a product of a
stationary wave in the transverse direction and a propagating wave in the longitudinal
direction2. To each longitudinal wave vector there is Nn(E) transverse waves at energy
E, called modes, and their number depends on the transverse size of the lead. Trans-
mission amplitude from mode α in lead m to mode β in lead n at energy E is denoted
as tnβ,mα(E) and depends on the details of the scattering region. The total transmission
probability from lead m to lead n at energy E (transmission function) is given by

Tnm(E) =
Nn∑
β=1

Nm∑
α=1
|tnβ,mα(E)|2. (2.48)

2Besides the propagating waves, there are evanescent waves with imaginary wave vector which do not
carry current. However, they have an indirect effect on the conductance. For simplicity, the evanescent
modes are excluded from this discussion but included in the numerical approach below.
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Then, the summation rule∑
m

Tnm(E) =
∑
m

Tmn(E) = Nn(E) (2.49)

follows from current conservation. The symmetry of the transmission function in the
presence of a magnetic field,

Tnm(E,B) = Tmn(E,−B), (2.50)

is a direct consequence of the symmetry of the Schrödinger equation. The Fermi function
in lead n describing the occupation of states at energy E and temperature T is

fn(E) = 1
e(E−µn)/kBT + 1

, (2.51)

where µn is the chemical potential of electrons in lead n and kB is the Boltzmann
constant. We can write the current per unit energy flowing in lead n as

in(E) = 2e
h

∑
m

Tnm(E)[fn(E)− fm(E)], (2.52)

where we sum over all the leads connected to the scattering region. The total current
in lead n is given by the following integral

In =
∫

dE in(E). (2.53)

In the approximation of small bias, i.e., when µn − µm � εc + few kBT , where εc is
the energy range over which the transmission function is constant, we have fn(E) −
fm(E) ≈ δµ(−∂f0(E)/∂E) with equilibrium Fermi function f0(E). Consequently, the
total current is

In =
∑
m

Gnm(Vn − Vm), (2.54)

where Vn = µn/e and

Gnm = 2e2

h

∫
Tnm(E)

(
−∂f0(E)

∂E

)
dE. (2.55)

If also the temperature is very low (as we will assume in Part I of the thesis), the
expression (−∂f0(E)/∂E) can be approximated by a delta function δ(E −EF ). Hence,
the conductance characterizing transport through the scattering region in the limit of
small bias and temperature is

Gnm = 2e2

h
Tnm(EF ). (2.56)

The transmission function Tnm is related to the scattering matrix, which can be calcu-
lated directly from the Schrödinger equation by matching wavefunctions at the interface.
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Figure 2.7: The scattering region can be characterized by the scattering matrix S at
each energy. Two leads with incoming and outgoing states with amplitudes aα and bα
are connected to the scattering region.

Scattering matrix

The scattering matrix S of a system (scattering region) relates the incoming amplitudes
to the outgoing amplitudes of the propagating modes in all leads. Let us illustrate it
on a simple example of two leads shown in Fig. 2.7, where lead L0 has two modes and
lead L1 has only one mode. The relation between incoming amplitudes ai and outgoing
amplitudes bi is b0b1

b2

 =

S00 S01 S02
S10 S11 S12
S20 S21 S22


a0
a1
a2

 , (2.57)

where Sij are the elements of the scattering matrix. It can be calculated directly from
the Schrödinger equation by matching the wavefunction in the leads to the wavefunction
in the scattering region at energy E. Numerically, this amounts to solving a large sparse
linear system of equations. Clearly, Sij are the transmission amplitudes in Eq. (2.48).
Therefore, the scattering matrix is related to the transmission function by

Tnm(E) =
∑
j∈m

∑
i∈n
|Sij(E)|2, (2.58)

where the index i contains all the quantum numbers labeling the transverse modes in
lead n. Hence, once we know the matrix S, the conductance follows from Eq. (2.56).

In general, the index i can also contain other quantum numbers than the transverse-
mode quantum numbers, such as the electron spin projection. Then, Sαs,βs′ represents
the transmission amplitude from mode β in lead m with spin s′ to mode α in lead n with
spin s. Hence, we can calculate the spin-resolved conductance which allows for studying
spin-filtering effects. In this thesis, also other quantum numbers like the valley degree
of freedom (Chapter 3) and the electron-hole degree of freedom (Chapter 4) are used to
partition the scattering matrix into corresponding blocks.

We employ Kwant [30], the Python package for numerical calculations on tight-binding
models, to obtain the scattering matrix in various setups. An example is shown in
Appendix A.
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CHAPTER 3

SWITCHABLE VALLEY FILTER BASED ON A GRAPHENE
P -N JUNCTION IN A MAGNETIC FIELD

The results presented in this chapter were published in

T. Sekera, C. Bruder, E. J. Mele, and R. P. Tiwari
Switchable valley filter based on a graphene p-n junction in a magnetic field
Phys. Rev. B 95, 205431 (2017).

Minor changes have been made to better embed this work into the thesis.

Low-energy excitations in graphene exhibit relativistic properties due to the linear dis-
persion relation close to the Dirac points in the first Brillouin zone. Two of the Dirac
points located at opposite corners of the first Brillouin zone can be chosen as inequiv-
alent, representing a new valley degree of freedom, in addition to the charge and spin
of an electron. Using the valley degree of freedom to encode information has attracted
significant interest, both theoretically and experimentally, and gave rise to the field of
valleytronics. We study a graphene p-n junction in a uniform out-of-plane magnetic
field as a platform to generate and controllably manipulate the valley polarization of
electrons. We show that by tuning the external potential giving rise to the p-n junction
we can switch the current from one valley polarization to the other. We also consider the
effect of different types of edge terminations and present a setup, where we can partition
an incoming valley-unpolarized current into two branches of valley-polarized currents.
The branching ratio can be chosen by changing the location of the p-n junction using a
gate.

3.1 Introduction

Two-dimensional (2D) materials are promising candidates for future electronics due to
their unique characteristics. The pioneering 2D material, graphene, was experimentally
isolated in 2004 [2]. The bandstructure of pz electrons in single-layer graphene, modeled
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as a honeycomb lattice with lattice constant a = 0.246 nm consisting of two triangular
Bravais sublattices A and B with nearest-neighbor hopping in the tight-binding formula-
tion, hosts six Dirac cones resulting from touching of the valence and conduction bands
at the Fermi energy EF = 0. Two of the cones located at diagonally opposite corners
of the first Brillouin zone can be chosen as inequivalent, for example at K = 2π/3a
and −K. For the low-energy electronic excitations in the system they represent a new
degree of freedom of an electron, in addition to the charge and spin. This valley degree
of freedom can be exploited in analogy with the spin in spintronics, which gave rise
to the field called valleytronics, where one uses the valley degree of freedom to encode
information.

There is a strong motivation to generate, controllably manipulate and read out states
of definite valley polarization, and a substantial amount of theoretical and experimental
work has been done towards achieving these goals. A recent review of some advances
made in the field of valleytronics in 2D materials is provided in Ref. [31]. To mention
some: a gated graphene quantum point contact with zigzag edges was proposed to func-
tion as a valley filter [21]. Superconducting contacts were shown to enable the detection
of the valley polarization in graphene [28]. In 2D honeycomb lattices with broken in-
version symmetry, e.g. transition metal dichalcogenide (TMD) monolayers, a non-zero
Berry curvature carries opposite signs in the K and −K valleys. In these 2D materials,
the velocity in the direction perpendicular to an applied in-plane electric field is propor-
tional to this Berry curvature [32]. Hence the electrons acquire a valley-antisymmetric
transverse velocity leading to the valley Hall effect, which spatially separates different
valley states. In a system where the occupation numbers of the two valleys are different
(valley-polarized system), a finite transverse voltage across the sample is developed and
the sign of this voltage can be used to measure the valley polarization [33]. The valley
Hall effect can also be exploited in a biased bilayer graphene, where the out-of-plane
electric field breaks the inversion symmetry [34–36]. Moreover, it was shown that the
broken inversion symmetry results in the valley-dependent optical selection rule, which
can be used to selectively excite carriers in the K or −K valley via right or left cir-
cularly polarized light, respectively [37, 38]. Valley polarization can also be achieved
in monolayer[39–42] and bilayer[42] graphene systems with barriers. In addition, pro-
posals exploiting strain that induces pseudomagnetic fields acting oppositely in the two
valleys[43, 44] together with artificially induced carrier mass and spin-orbit coupling[45]
have been put forward.

In this chapter we propose a way to generate and controllably manipulate the valley
polarization of electrons in a graphene p-n junction in the presence of an out-of-plane
magnetic field. Applying an out-of-plane magnetic field to the graphene sheet leads to
the formation of low-energy relativistic Landau levels (LLs) [46]. These are responsible
for the unusual quantum Hall conductance quantization Gn = 2s × 2v × (n+ 1/2)e2/h,
where the integer n is the highest occupied Landau level index (for n-type doping) for a
given chemical potential. The factor 2s in the formula accounts for the spin degeneracy
and the second factor 2v for the valley degeneracy of the LLs. The presence of the E = 0
Dirac point and particle-hole symmetry lead to a special zeroth Landau level (ZLL) for
n = 0, which is responsible for the fraction 1/2 in the conductance.
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Semiclassically, charged particles propagating in a spatially varying out-of-plane mag-
netic field in 2D may exhibit snake-like trajectories that are oriented perpendicularly to
the field gradient [47]. The simplest case occurs along a nodal line of a spatially vary-
ing magnetic field [48–51]. Another system, a graphene p-n junction in a homogeneous
out-of-plane magnetic field, hosts similar states located at the interface between n- and
p-doped regions. These interface states are also called snake states due to the shape
of their semiclassical trajectories [52–54]. A correspondence between these two kinds of
snake trajectories was pointed out in Ref. [55]. A mapping between these two systems
was found by rewriting both problems in a Nambu (doubled) formulation [56]. In this
chapter we consider a graphene p-n junction in a homogeneous out-of-plane magnetic
field, a system which has attracted a lot of attention [57–63]. In the limit of a large
junction (where the phase coherence is suppressed due to inelastic scattering or ran-
dom time-dependent electric fields), the conductance is a series conductance of n- and
p-doped regions [64]. However, for sufficiently small junctions the conductance depends
on the microscopic edge termination close to the p-n interface. When the chemical po-
tential in the n and p regions is within the first Landau gap, i.e., is restricted to energy
values smaller than the absolute value of the energy difference between the zeroth and
the first Landau level, an analytical formula for the conductance can be derived [65], see
Eq. (3.3).

We demonstrate that a three-terminal device like the one shown in Fig. 3.1 can be used
as a switchable, i.e. voltage-tunable valley filter. In short, it works as follows: valley-
unpolarized electrons injected from the upper lead are collected in the lower leads with
high valley polarization. The valley polarization of the collected electrons is controlled
by switching the p-n junction on and off, while the partitioning of the electron density
between the two lower leads is controlled by the edge termination and the width W of
the central region close to the p-n interface.

Our results are not restricted to graphene. They apply also to honeycomb lattices with
broken inversion symmetry, where the inversion symmetry breaking term is represented
by a staggered sublattice potential. As long as the amplitude of this term is smaller than
the built-in potential step in the p-n junction, our results remain valid. In a system with
broken inversion symmetry, a non-zero Berry curvature would give rise to the valley Hall
effect which could be used to read out the polarization of the outgoing states [33].

The rest of this chapter is organized as follows. In Sec. 3.2 we describe the setup of the
proposed switchable valley filter and the methods we use to investigate its properties
in detail. In Sec. 3.3 we present our numerical results, which demonstrate the valley-
polarized electronic transport. In Sec. 3.4 we study the effect of potential step height
and different edge terminations of the graphene lattice close to the p-n interface on the
valley polarization. We show that using a tilted staircase edge p-n junction allows to
partition a valley-unpolarized incoming current into two outgoing currents with opposite
valley polarizations, where the partitioning can be controlled by tuning the location of
the p-n junction. Finally we summarize our results in Sec. 3.5.
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3.2 Setup

Figure 3.1 shows the three-terminal device that we would like to study. A rectangular
region of width W and length L represents the graphene p-n junction in a uniform out-
of-plane magnetic field, also referred to as the scattering region. It is described by a
tight-binding Hamiltonian of the form

H =
∑
i

V (ri)c†ici +
∑
〈i,j〉

teiϕijc†icj , (3.1)

where V (ri) is the scalar on-site potential at site i with coordinate ri and ϕij =
(e/~)

∫ j
i A · dr is the Peierls phase accumulated along the link from site i to site j

in magnetic field B = [0, 0, B]. The Zeeman splitting is neglected, i.e., we consider spin-
less electrons. The sum over 〈i, j〉 denotes the sum over nearest neighbors. We choose

Figure 3.1: Three-terminal device used as a switchable valley filter. The three leads
of horizontal size d with zigzag edge termination, upper lead L0, lower-left lead L1
and lower-right lead L2, are attached to the rectangular scattering region of length L
and width W . Top and bottom edges of the scattering region are of armchair type,
while the left and right edges are of zigzag type. The p-n interface of thickness 2`
(white color gradient) is modeled by an x-dependent on-site potential V (x). In an
out-of-plane magnetic field with n Landau levels occupied (n = 0, 1, 2 . . . ), there are
2n+ 1 edge states with opposite chirality in the n- and p-doped region. Along the p-n
interface there are 2(2n+ 1) co-propagating snake states.

the Landau gauge, where the vector potential is

A = [0, Bx, 0] .

In this gauge we can define a (quasi-)momentum parallel to the edges of the leads. The
leads L0, L1, and L2 are modeled as semi-infinite zigzag nanoribbons, where the valley
index can be well distinguished in k-space. They are also described by the Hamiltonian
(3.1) and below we present the case with B = 0 in the leads, which is however not crucial
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for our results. The Peierls phase ϕij can be written in the form

ϕij = 2π φ
φ0

2√
3a2

xi + xj
2 (yj − yi) ,

where φ0 = h/e is the magnetic flux quantum and φ = BS is the flux through a
single hexagonal plaquette of a honeycomb lattice. Here, S =

√
3a2/2 is the area of a

hexagonal plaquette of the honeycomb lattice. An important length scale derived from
the magnetic field is the magnetic length `B =

√
~/eB. In the rest of the chapter the

magnetic field is chosen such that φ/φ0 = 0.003 and hence `B ≈ 6.78a. We also denote
the energy difference between the first and the zeroth LL by

δ =
√

2~vF /`B, (3.2)

where the Fermi velocity at the K point is vF =
√

3at/2~. For the chosen magnetic
field, δ = 0.18t.

The scalar on-site potential is varying only in the x-direction as

V (x) = V0 tanh(x/`) ,

where V0 is the external scalar potential and 2` is the thickness of the domain wall
characterizing the p-n junction. If both V0 and B are non-zero and V0 < δ in such a setup,
there exist two snake states co-propagating along the p-n junction [56]. The orientation
of the fields in the system is such that the snake states are traveling downwards in the
negative y-direction.

We calculate the transmission T10 from L0 to L1, and T20 from L0 to L2. We also
calculate the valley-resolved transmissions, with the following notation: TK(−K)

20 is the
transmission from L0 to L2, where in L2 we sum only over outgoing modes with k ∈
(0, π/a] (k ∈ (−π/a, 0]). Then we can define the valley polarization in L2 as P2 =
(TK20 − T−K20 )/T20. Analogous quantities are defined for L1.

Due to the absence of backscattering in chiral quantum Hall edge states and the sym-
metry of the p-n junction for E = 0, the net transmission (no spin) is T10 +T20 = 2n+1,
where n is the highest occupied LL in the n-doped region. The partitioning of the net
transmission between T10 and T20 depends on the edge termination close to the p-n
interface according to the formula [65]

T20 = 1
2(1− cos Φ) , (3.3)

where Φ is the angle between valley isospins at the upper and lower edge represented as
vectors on the Bloch sphere. For armchair edges one has Φ = π if W/a mod 3 = 0 and
Φ = ±π/3 otherwise. The formula is valid if the n and p regions are on the lowest Hall
plateau, where the quantum Hall conductances in the n- and p-doped regions are equal
to e2/h (ignoring the spin degree of freedom) [65]. The transmission from L0 to L1 is
then given by T10 = 1 − T20. Interference between wavefunctions of the snake states is
responsible for this partitioning. The snake-state wavefunctions are located at the p-n
interface and their effective spread in the x-direction is given by the magnetic length
`B to the left and right of the interface. Hence one way to control the partitioning
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experimentally will be to control the edge termination around the p-n interface on a
length scale of the order of 2`B.

In the following we show numerically that by switching the p-n junction on (V0 6= 0)
and off (V0 = 0) we can control the valley polarization of the outgoing states in leads
L1 and L2.

3.3 Switchable valley filter

We demonstrate the principle of the switchable valley filter using a p-n junction in an
out-of-plane magnetic field, where the upper and the lower edges are of armchair type.
The system is described by the Hamiltonian shown in Eq. (3.1). The width W of the p-n
junction is chosen such that the number of hexagons in this width is a multiple of 3, i.e.
such that the corresponding armchair nanoribbon would be metallic. If, furthermore,
both the n- and p-doped regions are on the lowest Hall plateau and V0 is large enough [65],
we expect T20 = 1 and T10 = 0, see Eq. (3.3). The switchable valley filter is based on
the fact that for a zigzag graphene nanoribbon the quantum Hall edge states of the ZLL
lying in opposite valleys K and −K have opposite velocities [46, 66, 67].

Unless stated otherwise, the system has length L = 520a and width W = 246a (the
exception is Fig. 3.4). The horizontal size of each lead is d = 156a. The thickness of
the p-n junction is 2` = 20a. We set the magnitude of the magnetic field in the leads
to zero, which is however not crucial for the result. Our tight-binding calculations were
performed using Kwant [30].

First, we consider the case V0 = 0. A valley-unpolarized electron current (injected
from both valleys) in L0 ends up as outgoing valley-polarized electron current in L2. In
Figs. 3.2(a) and 3.3(a) we also plot the probability density of one of the states carry-
ing the current by drawing a black dot on each site whose size is proportional to the
probability of finding an electron on that particular site. This is plotted for a state in
the scattering region due to an incoming mode from L0 at Fermi energy E and with
momentum ky indicated by the red arrow in the bandstructure for L0, see Figs. 3.2(b)
and 3.3(b). Figure 3.2(a) shows the probability density of the state in the scattering
region due to an incoming mode from L0 at E = δ/2 and kya = 2.08. Since V0 = 0, there
are no snake states in this system and the electronic current is carried by the quantum
Hall edge states. The electrons injected from L0 travel in a clockwise manner to L2. The
calculated transmissions T10 and T20 and polarizations P1 and P2 are shown in the inset
table in Fig. 3.2(a). We find that the outgoing electrons in L2 are perfectly polarized in
the K valley. This shows the valley-polarized nature of the zeroth LL. Thus, this system
can be used as a valley filter.

If we now turn on the p-n junction, the situation will change. We assume that the p-n
junction is turned on adiabatically. We choose V0 = δ/2, so that the n- and p-doped
regions are on the ZLL. Figure 3.3(a) shows the probability density of the state in the
scattering region due to the incoming mode from L0 at the Fermi energy E = 0.001t
and with kya = 2.08 (red arrow in the inset of Fig. 3.3(b)). In this system there are
two co-propagating snake states along the p-n interface, and the electronic current is
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Figure 3.2: Case when V0 = 0 and E = δ/2. (a) State in the scattering region due to
incoming mode from lead L0 with kya = 2.08. The inset table lists the transmissions
T10 and T20 and polarizations P1 and P2. (b) Bandstructure of leads L0 and L2. The
Fermi energy is indicated by the horizontal dashed line. The red arrow indicates the
incoming mode on lead L0 which has velocity v < 0 and is chosen to be plotted in (a).

carried by these states. These snake states are located at the p-n interface and spread
in the ±x-direction over the magnetic length lB, which is independent of the domain
wall thickness 2`.

The electrons injected from L0 now travel along the upper edge in the n region towards
the p-n interface and continue along the p-n interface towards the lower edge, where
they enter the p region with probability ≈ 1 due to the specifically chosen W and the
armchair edge termination at both ends of the interface. Finally, they end up in L2. The
corresponding transmissions and polarizations are shown in the inset table of Fig. 3.3(a).
We find that the electrons in L2 are nearly perfectly polarized in the −K valley. Thus,
by turning on the p-n junction we have flipped the valley polarization of the electronic
current in L2.

It is worth noting that these results are robust with respect to edge disorder because
of the absence of backscattering in the chiral quantum Hall edge states. Our results
also apply to the case where the magnetic field is present in the leads. However, since
for low energies and dopings, only the ZLL plays a role, states in the leads are already
valley-polarized edge states and thus our three-terminal device would then work as a
perfect valley switch.
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Figure 3.3: Case when V0 = δ/2 and E = 0.001t. (a) State in the scattering region
due to incoming mode from lead L0 with kya = 2.08. The inset table lists the
transmissions T10 and T20 and polarizations P1 and P2. (b) Top: bandstructure of
lead L0. The Fermi energy is indicated by the horizontal dashed line. The red arrow
indicates the incoming mode chosen to plot (a). Bottom: bandstructure of lead L2.

3.4 Polarizations and transmissions upon varying poten-
tial step height and geometry

In the following we analyze how the valley polarizations P1 and P2 and transmissions
T10 and T20 change upon varying V0 and edge terminations.

Polarization vs. V0. In Fig. 3.4 we plot the polarization in the leads as a function of V0.
Let us focus on P2, because the majority of electrons are traveling into lead L2 (for this
specifically chosen scattering region). The case shown in Fig. 3.2 corresponds to V0 = 0,
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where P2 = 1 (not visible in the figure). For V0 > 0 (Fig. 3.3), the polarization in lead
L2 changes sign, P2 = −1. For 0 < V0 < δ = 0.18t only the ZLL valley-polarized edge
states contribute to the transport and P2 stays close to −1 until V0 ≈ δ. For V0 > δ

the higher LLs get occupied. Edge states in the higher LLs are not valley-polarized
which reduces P2. On further increasing V0 higher and higher LLs get occupied which
further obscures the edge state valley polarization of the ZLL and the magnitude of P2
decreases. The population of the LLs can be seen from T10 + T20 as a function of V0,
which is shown with the red curve in Fig. 3.4. Hence the efficiency of the switchable
valley filter device is observed to decrease with an increase in V0, i.e. with populating
higher LLs.

Furthermore, one can notice in Fig. 3.4 that the valley polarizations P1 and P2 in leads
L1 and L2 jump at the same voltages V0, where the p-n junction undergoes quantum Hall
transitions and the total transmission T10 + T20 changes by 2. The larger V0, the more
the values of V0 at which the total transmission changes by 2 deviate from the vertical
lines indicating the LL energies at En =

√
2n~vF /`B. This is due to the nonlinearity

of the dispersion which leads to a change in group velocity. The oscillations seen in the
blue and green curves stem from oscillations of transmissions as shown in Fig. 3.5. This
can be viewed as a consequence of interference effects between modes confined at the p-n
interface with different momenta[60, 68]. However, the amplitude of these oscillations
decreases with increasing system size. In our simulations, the system size is increased
proportionally, i.e. parameters L,W, d and ` are multiplied by α = 1, 1.5, 4, while the
magnetic flux per plaquette is kept constant, φ/φ0 = 0.003 (see Fig. 3.5).

Figure 3.4: Polarization P1 in lead L1 (blue, left axis), and P2 in lead L2 (green, left
axis) as a function of V0 for the device shown in Fig. 3.1. For 0 < V0 < δ only the
zeroth Landau level (LL) is occupied and P2 ≈ −1. As soon as higher LLs get
involved (V0 > δ), where the edge states are not valley-polarized, the valley
polarization in L1 and L2 decreases towards 0 with increasing V0. The sum of the
transmissions T10 + T20 (red step-like curve, right axis) exhibits quantization due to
LLs in the scattering region. The device is a good valley filter for V0 < δ, i.e., when
only the zeroth LL is occupied. Vertical (grey dashed) lines mark the LL energies
En =

√
2n~vF /`B in the n-doped region calculated for a linear Dirac dispersion. The

parameters chosen for this figure are L = 2080a, W = 984a, ` = 40a, and d = 320a.
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Figure 3.5: Transmissions T10 (solid lines), T20 (dotted lines) and T10 + T20 (dashed
line) as a function of V0 for different system sizes. The inset shows that the amplitude
of the oscillations tend to vanish as we increase the system size, which is accomplished
by multiplying the parameters L,W, d and ` by a factor of α = 1 (blue), 1.5 (green), 4
(red) while φ/φ0 = 0.003 is kept constant.

Different edge terminations. We find that different edge terminations and p-n interface
length have almost no influence on the valley polarization in the leads, but they de-
termine the partitioning of the net transmission between T10 and T20. In Tab. 3.1(a),
where the p-n interface meets armchair edges, T10 and T20 exhibit the expected period-
icity when changing the width W such that the number of hexagons across the width
of the scattering region changes by 3. The case in which the p-n interface meets zigzag
edges is considered in Tab. 3.1(b). Here, the transmissions T10 and T20 switch values
depending on whether the two edges are in zigzag or anti-zigzag configuration, which
is in agreement with Ref. [69]. To model different edge terminations, we also added a
triangular region to the sample, see Tab. 3.1(c)–(e) (a zoom-in onto the tip is shown in
the last column of Tab. 3.1(c)). Thus by controlling the edge termination on a length
scale of 2`B around the p-n interface one can tune the partitioning of the current into
L1 and L2. The currents in both of these leads are polarized in opposite valleys. Thus
if one chooses the situation where the current is finite in both L1 and L2 (for example
the case shown in Tab. 3.1(c)), one can create two streams of oppositely valley-polarized
currents in leads L1 and L2.

Tilted staircase edge. Now we consider the three-terminal setup shown in Fig. 3.6. The
upper edge has many steps on the atomic scale, shown in the upper panel of Fig. 3.6.
The size of each of these steps is assumed to be constant and is denoted by `step. The
bottom-edge termination of the sample is of armchair type. We study the transmission
T20 as a function of the position of the p-n interface x0. Note that T10 = 1 − T20,
because here the parameters are such that only the ZLL contributes to the electronic
transport. If `step � 2`B, the transmission T20 shows a plateau-like behavior (see
Fig. 3.7(a)). The transmission jumps to a different plateau as a new step is encountered
while moving x0 from −180a to 180a (the jump happens on length scales of the order
of 2`B). Since the upper and the lower edges are of armchair type, we observe three
plateau values corresponding to different angles the between valley isospins at the two
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geometry T10 P1 T20 P2 notes

(a)

0.03

0.6

0.88

–

0.99

1

0.97

0.4

0.12

-1

-0.99

-1

W =246a

W =247a

W =248a

(b) 0.0

1.0

–

0.93

1.0

0.0

-0.93

–

L =520a

L =521a

(c) 0.48 1 0.52 -1

(d) 1 1 0 – W independent

(e) 0.02 – 0.98 -1 W independent

Table 3.1: Transmissions T10 and T20 and polarizations P1 and P2 for different
devices. The first column shows different sample geometries where the dashed line
denotes the p-n interface. (a) Transmissions for three different widths W for the same
geometry as in Fig. 3.1, i.e. the p-n interface meets armchair edges. The partitioning
of the net transmission between T10 and T20 is a periodic function of W with period
3a (or three hexagons across the width of the scattering region). (b) The p-n interface
meets edges of zigzag type. The two rows describe the zigzag/anti-zigzag configuration
which lead to a different partitioning of the transmission. Note the changed position
of the leads. (c) A triangular region is added to the lower edge (a zoom-in onto the
tip is shown in the last column) to model different edge terminations. (d)–(e)
Triangular regions added to the top and bottom edge. When the transmission to a
particular lead is negligible, the polarization in this lead is not shown (long dash).

edges Φ = π,±π/3, in agreement with Ref. [65]. The width of these plateaus corresponds
to `step. In the regime `step . 2`B there is a qualitative change from the plateau-like to
sine-like behavior of T20, see Fig. 3.7(b). Thus, when `step . 2`B, the incoming current in
L0 can be partitioned into valley-polarized currents in L1 (K valley) and L2 (-K valley)
in any desired ratio by tuning the location of the p-n junction. When `step . 2`B, mixing
of Landau orbits on neighboring guiding centers gives rise to the conductance behavior
shown in Fig. 3.7(b). Our results are in agreement with the simulations in Ref. [70].
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Figure 3.6: Geometry of a device with a tilted staircase edge. Upper panel: zoom-in
onto a part of the tilted upper edge displaying the staircase. The step length (length
of the region of constant width W ) is denoted by `step. Lower panel: a schematic of
the device. The slope of the tilted edge k is related to `step, e.g. k = 0.003
corresponds to `step ≈ 166a while k = 0.03 corresponds to `step ≈ 16a.

(a)

b

Figure 3.7: Transmission T20 in a device with a tilted staircase edge as a function of
the position of the p-n interface x0 for different values of the slope k, see Fig. 3.6. (a)
Plateau-like behavior of T20 as expected for `step � 2`B . (b) Sine-like behavior of T20
for `step . 2`B . In this figure L = 780a.
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In an experiment, one could measure the resulting valley polarization by utilizing the
valley Hall effect [33]. This would require breaking the inversion symmetry, which can
be modeled by a staggered sublattice potential of the form ±λν

∑
i c
†
ici in our system.

Our results remain valid even after adding such a term to the Hamiltonian in Eq. (3.1)
as long as λν < V0. This condition ensures the presence of snake states in the system at
E ≈ 0.

3.5 Conclusion

In summary, we have demonstrated that a graphene p-n junction in a uniform out-of-
plane magnetic field can effectively function as a switchable valley filter. The valley
polarization of the carriers in the outgoing leads is quite robust. Changing the edge
termination at the p-n interface can drastically modify the partitioning of the current
into the two outgoing leads, but the outgoing current in both leads remains valley-
polarized. We have also shown that in a device where one of the edges has many steps
on the atomic scale, the partitioning of the current into two outgoing leads can be tuned
by choosing the location of the p-n junction. In such a device it will be possible to
partition a valley-unpolarized incoming current into two streams of oppositely valley-
polarized currents in two outgoing leads in any desired ratio.
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CHAPTER 4

INTERFACE BETWEEN GRAPHENE AND
SUPERCONDUCTOR

A superconducting electrode placed on top of a graphene sheet will induce a nonzero
superconducting pairing ∆(r) in the sheet via the proximity effect [71–73]. In this chap-
ter, we will treat for simplicity the spatial dependence of the pair potential ∆(r) as a
step function, i.e., it is a non-zero constant in the graphene sheet under the supercon-
ducting electrode and zero otherwise. We adopt the following terminology. The term
two-dimensional electron gas (2DEG) is used for a material that has energy dispersion
near the bottom of the conduction band proportional to p2 and can be modeled by
a tight-binding Hamiltonian with a nearest-neighbor hopping on a square lattice, like
the 2DEG formed in AlGaAs/GaAs heterostructures. The corresponding junction with
a superconductor is abbreviated as NS. On the other hand, graphene has low-energy
excitation energies near the Dirac point linear in p and is modeled by a tight-binding
Hamiltonian with a nearest-neighbor hopping on a honeycomb lattice. The junction
between graphene and superconductor is abbreviated as GS. We use the term normal
metal for both 2DEG and graphene in the normal (non-superconducting) state.

4.1 Semiclassical discussion of Andreev reflection in graphene

An electron is incoming from a normal metal onto the interface with a superconductor at
energy E > 0 (measured from the Fermi energy EF ), that is within the superconducting
gap ∆. It can enter the superconductor only by forming a Cooper pair with another
electron at energy−E with opposite spin and opposite momentum taken from the normal
metal Fermi sea (FS). The result of this process, called Andreev reflection, is a normal
metal FS with a missing electron, i.e., with a hole.

Below we summarize the properties of the hole excitation in relation to the properties
of the electron taken from the FS (the missing electron):

• If the charge of the missing electron is qe = −e, the charge of the hole is qh = +e.

39



Chapter 4. Interface between graphene and superconductor

• If the spin of the missing electron is se, the spin of the hole is sh = −se.

• If the net momentum of the FS is zero and the momentum of the electron taken
from the FS is ~ke, the momentum of the hole is ~kh = −~ke.

• The energy of the FS upon removing an electron is changed by−Ee(ke). Therefore,
the energy of the hole is Eh(kh) = −Ee(ke).

Figure 4.1: (a) Andreev retro-reflection and (b) Andreev specular reflection at the
interface between a normal metal (N) and a superconductor (S) in the absence of a
magnetic field. (c-d) The same in the quantum Hall regime. Semiclassical electron
and hole trajectories are marked by solid and dotted line, respectively. The state
propagating along the interface in (c) is of mixed electron-hole character (dash-dotted
line).

Figure 4.2: An electron from the valence band at energy EF +E in one valley can be
converted to a hole with energy EF − E in the opposite valley via Andreev reflection.
The Andreev retro-reflection case is shown, when E < EF . Adapted from Ref. [67].

In a 2DEG, the reflected hole retraces the path of the incoming electron, as shown in
Fig. 4.1(a). However, in the case of graphene, a specular reflection is possible [74]. Let us
fix EF > 0. For E < EF , as illustrated in Fig. 4.2, the usual retro-reflection occurs, since
the Andreev-reflected hole is in the same (conduction) band as the incoming electron.
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On the other hand, when E > EF , the hole is in the valence band and this leads to a
specularly reflected hole as in Fig. 4.1(b).

This picture becomes quite different when we switch on the out-of-plane magnetic field
and enter the quantum Hall regime in graphene. Here, the retro-reflection case (E < EF )
yields the so-called Andreev edge states propagating along the interface with the super-
conductor, Fig. 4.1(c). In graphene, the probability of the state leaving the interface to
be of an electron or hole character depends on the valley structure of the edge states
within the distance of the order of magnetic length `B away from the interface [28].
This probability is different for a 2DEG as discussed in Sec. 4.4. In the case of specular
reflection (E > EF ), the electron incoming onto the GS interface is Andreev reflected
from the interface into the counter-propagating hole edge state, Fig. 4.1(d). In Sec. 4.5
we examine a situation in the presence of a Zeeman field that splits the zeroth Landau
level (ZLL) into two, and we find that both, retro- and specular Andreev reflection takes
place which leads to a spin filtering effect in a three-terminal setup.

4.2 Bogoliubov-De Gennes Hamiltonian

The quantum-mechanical description of Andreev reflection is provided by the Bogoliubov-
De Gennes (BdG) Hamiltonian. The BdG Hamiltonian in real space can be derived from
the standard Bardeen-Cooper-Schrieffer (BCS) Hamiltonian in momentum space

H =
∑
ks

εkc
†
kscks + 1

2Ω
∑

kk′qss′

V c†k+qsc
†
k′−qs′ck′s′cks, (4.1)

where εk is the energy dispersion of free electrons, V is the effective electron-electron
interaction, Ω is the volume and c†ks (cks) is the creation (annihilation) operator for
an electron with momentum k and spin s. We introduce the field operators (linear
combinations of cks, c†ks)

ψ†s(x) =
∑
k

ϕ∗k(x)c†ks,

ψs(x) =
∑
k

ϕk(x)cks,
(4.2)

where ϕk(x) is the wavefunction of the state with momentum k. Then, one can rewrite
Eq. (4.1) within the mean-field approximation as

H =
∫

d3x
(
ψ†↑(x) ψ↓(x)

)(h(x)− EF ∆(x)
∆∗(x) EF − T h(x)T −1

)ψ↑(x)
ψ†↓(x)

+ const.. (4.3)

Here, the electron and hole wavefunctions are coupled via the superconducting pair
potential ∆(x) = V (x) 〈ψ↓(x)ψ↑(x)〉 and T is the time-reversal operator. h(x) is the
single-particle Hamiltonian of a normal metal. The last term is just a constant, indepen-
dent of creation and annihilation operators. In the rest of the thesis we assume constant
and real ∆(x) = ∆ in the S region and ∆(x) = 0 in the N region.
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The nearest-neighbor tight-binding approximation on a discrete lattice leads to the fol-
lowing form of the BdG Hamiltonian:

H = H0 +H∆, (4.4)

where
H0 =

∑
〈ij〉

ψ†i

[
−teiϕij

1
2(ρ0 + ρz) + te−iϕij

1
2(ρ0 − ρz)

]
⊗ s0ψj+

+
∑
i

ψ†i (−(EF + V )ρz ⊗ s0)ψi,

H∆ =
∑
i

ψ†i (∆ρx ⊗ s0)ψi.

(4.5)

The four-spinor field ψi is in the standard Nambu basis ψi = (ci↑, ci↓, c†i↓,−c
†
i↑)T , where

ψ†i creates a particle localized at site i with a four component wavefunction (ϕe↑(r −
ri), ϕe↓(r − ri), ϕh↑(r − ri),−ϕh↓(r − ri))T . Here es (hs) is for an electron (hole) with
spin s ∈ {↑, ↓}. Two sets of Pauli matrices ρµ and sµ with µ ∈ {0, x, y, z} describe the
electron-hole and spin degree of freedom, respectively.

∑
〈ij〉 is the sum over the nearest

neighbors.

The first (second) term inH0 represents the nearest-neighbor hopping of electrons (holes)
in an out-of-plane magnetic field with hopping amplitude −teiϕij (te−iϕij ). The third
term in H0 represents the Fermi energy EF in the system. For undoped graphene,
EF = 0. V describes the doping of the superconductor with respect to the normal
region, i.e., V = V0 in the S region and V = 0 in the N region. We may require
V0 + EF � ∆ to satisfy the mean-field condition for superconductivity. The s-wave
superconducting pairing is represented by H∆ and couples an electron with spin s to a
hole with spin s on the same lattice site.

We assume a step function profile for the magnetic field ϕij = 0, if i, j ∈ S and nonzero
otherwise, as well as for the superconducting pair potential ∆(ri) = ∆, if i ∈ S and
zero otherwise.

4.3 Two-terminal conductance across graphene-superconductor
junction

We use the tight-binding model (4.4) to simulate two-terminal transport in a graphene-
superconductor (GS) junction. In this section we investigate the situation in the absence
of magnetic fields where the Peierls phase is zero. We numerically calculate the scattering
matrix, from which we obtain the two-terminal differential conductance dI/dV at energy
E across the GS junction given by [75]

dI/dV = (N −Ree +Rhe)e2/h. (4.6)

Here N is the number of electron modes in the normal region at energy E, Ree is the
normal reflection coefficient and Rhe is the Andreev reflection coefficient at energy E.
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Figure 4.3: Differential conductance of the NS interface normalized by the number
of transverse modes N as a function of energy for EF /∆ = 0.01, 0.1, 0.5, 1, 10. The
curves are smooth if N � 1. Doping of the superconductor is V0 = 0.5t.

In Fig. 4.3 we plot the differential conductance normalized to the normal-state ballistic
value. Andreev retro-reflection occurs when E < EF and its probability Rhe decreases
with increasing energy simply because the hole density of states (DOS) decreases towards
the Dirac point. Once E = EF , the differential conductance vanishes and Rhe = 0, since
the hole DOS is zero at the Dirac point and there is no hole excitation available for the
Andreev reflection. Therefore, the incoming electron has to be reflected as an electron
and Ree = N . For E > EF , specular Andreev reflection occurs, and the differential
conductance increases with increasing energy. For E � ∆, the differential conductance
approaches a value that is in general smaller than the normal ballistic value Ne2/h as a
result of the Fermi wavelength mismatch due to the doping of the superconductor given
by V0. As V0 → 0, the differential conductance curves approach Ne2/h for E � ∆. The
curves have qualitatively the same profile for different V0, but the value of the differential
conductance is overall suppressed as V0 is increased.

The larger the Fermi energy, the larger the number of transverse modes N . For N � 1
the curves become smooth, while for smaller N , the quantization of the transverse modes
becomes apparent (visible for EF /∆ = 0.01 and 0.1 in Fig. 4.3).

Our results based on the tight-binding Hamiltonian (4.4) are in agreement with the
analytical calculation of Ref. [74], where the continuum model for graphene is used, and
the scattering matrix is found by matching the wavefunctions at the interface with a
proper boundary condition.

From an experimental point of view, it is worth noting that the major drawback pre-
venting observation of the specular Andreev reflection in monolayer graphene are Fermi
energy fluctuations (so-called electron-hole puddles) on the order of ∆. Such fluctua-
tions are suppressed in bilayer graphene, where the DOS is large in the vicinity of the
Dirac point. This means that the same carrier density fluctuations result in smaller
Fermi energy fluctuations in bilayer than monolayer. The signature of specular Andreev
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reflections (the dip in the differential conductance at E = EF ) was first observed in bi-
layer graphene [76]. Direct observation of the specular reflection in monolayer graphene
is still lacking.

4.4 Two-terminal magnetoconductance across normal metal-
superconductor junctions in the quantum Hall regime

Superconductivity and the quantum Hall effect are two seemingly contradictory phe-
nomena: the first one requires small enough magnetic fields to survive, while the second
one requires high enough fields for Landau levels (LLs) to develop. Recent experiments
demonstrate the possibility of the coexistence of the two [77, 78]. In this section we
omit the spin of an electron, while the effect of the spin degeneracy lifting is discussed
in Sec. 4.5.

In an Andreev reflection process, electron edge states propagating towards the GS in-
terface are converted into hole edge states propagating away from the interface, which is
manifested in an experiment by a negative (electronic) chemical potential of the carriers
leaving the interface. Graphene is an especially good material for the realization of this
hybrid system because of two reasons. On the one hand, it provides a good electric
contact with conventional metallic superconductors [71–73], which results in significant
Andreev reflection probabilities. On the other hand, graphene has well-developed LLs
for relatively weak magnetic fields. Namely, the gap between the two lowest LLs in
graphene is ∆EG = 36

√
B meV/

√
T, while in, e.g., GaAs it is ∆EGaAs = 1.7B meV/T

[79]. This amounts to the ratio ∆EG/∆EGaAs ≈ 6.7 at B = 10 T.

NS junction

Semiclassically, an electron in a strong magnetic field has a circularly curved trajectory
due to the Lorentz force. When this trajectory is in the vicinity of the sample edge,
it has the character of a skipping orbit. If the trajectory is close the interface with
a superconductor and the Andreev reflection has nearly unit probability, the skipping
orbit has an alternating electron-hole character.

However, quantum mechanically, the picture is as follows. When only a single LL is
occupied in the 2DEG, there are two states of mixed electron-hole character at the
interface marked |+〉 and |−〉 in Fig. 4.4(a). Their interference leads to an oscillatory
pattern of the AR probability as a function of magnetic flux, see Fig. 4.5. This can
be understood from the following [80]. Consider the NS junction shown in Fig. 4.4(c).
Assuming that particles move ballistically in the edge states, the net scattering matrix
is composed of three terms

S = T2ΛT1, (4.7)

where T1 is the scattering matrix from the left edge to the NS interface, Λ describes the
ballistic propagation along the interface and T2 is the scattering from the interface to
the right edge. If the transport is within the ZLL, there is only one electron and one
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Figure 4.4: (a) Band structure of excitations propagating along a translationally
invariant NS interface. Two Andreev edge states |+〉 and |−〉 (circles) of mixed
electron-hole character at the Fermi energy (dashed line) are shown. These evolve into
flat Landau levels far away from the interface. The bulk bands of the S region with a
gap are also visible. (b) Band structure of electrons (black) and holes (grey) in the N
region. The electron state marked with a black circle propagates along the left edge
towards the NS interface as shown in (c). (c) Sketch of an NS junction with interface
length L. The incoming electron is scattered into two Andreev edge states |+〉 and
|−〉 described by scattering matrix T1. After traveling along the interface, the particle
is scattered into an outgoing electron or hole state described by T2.

hole mode in the N region and these 2x2 matrices can be expressed as

T1 =
(
t+e t+h
t−e t−h

)
, Λ =

(
eik+L 0

0 eik−L

)
, T2 =

(
te+ te−
th+ th−

)
, (4.8)

where tβα is the matrix element describing scattering from state α to state β, k+(−)
is the momentum along the idealized translationally-invariant interface associated with
state |+〉 (|−〉). L is the length of the NS interface and L � ξ, where ξ = ~vF /∆ is
the superconducting coherence length with the Fermi velocity vF . We assume a mirror
symmetric junction (in the presence of a magnetic field), which means that T1 = T T2 . If
the incoming electron energy E is less than ∆, the scattering matrix is unitary and the
AR probability can be expressed as

Rhe = | 〈h|T2ΛT1 |e〉 |2 = 2τ(1− τ)[1− cos(δϕ+ (k+ − k−)L)], (4.9)

where we used the following parametrization of the complex matrix elements

te+ =
√
τeiϕ1 ,

te− =
√

1− τeiϕ2 ,

δϕ = 2(ϕ1 − ϕ2).
(4.10)

Here, τ is the probability that an electron from state |e〉 scatters into state |+〉, while
ϕ1 and ϕ2 are the phases of the complex amplitudes te+ and te−, respectively.

We observe this behavior in the tight-binding simulations of the NS junction as shown
in Fig. 4.5. Besides the simple oscillation of Rhe in the ZLL regime (N = 1), there is
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a slight modulation of the amplitude which could be accounted for by a flux-dependent
τ = τ(φ). In agreement with Eq. (4.9), the AR probability also oscillates as a function
of L for fixed φ as shown in Fig. 4.6.

The simple picture that leads to Eq. (4.9) sheds light on the origin of the magnetooscil-
lations within the ZLL regime. As higher LLs come into play (N > 1), whether it is
done by decreasing the magnetic field or increasing the Fermi energy, a beating pattern
emerges and oscillations become more complex.
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Figure 4.5: Andreev reflection probability Rhe (left vertical axis) across an NS
junction and number of propagating electron modes N in the normal 2DEG region
(right vertical axis) as a function of magnetic flux φ. In the region of fluxes where
only a single Landau level is occupied (N = 1), Rhe has a sinusoidal character with a
slight amplitude modulation. When N = 2, a beating pattern appears and for N > 2
even more complicated oscillations can be observed. Magnetic field values and other
parameters are exaggerated to make the effect more visible. Here ∆ = 0.004t,
EF = 0.3t, L = 600a and E = 10−6t.
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Figure 4.6: Andreev reflection probability Rhe as a function of interface length L in
an NS junction. The grey line guides the eye between discrete values of L. For the
chosen parameters only the ZLL is occupied (N = 1), and we see the oscillations as
expected from Eq. (4.9). Here ∆ = 0.004t, EF = 0.06t, φ/φ0 = 0.005 and E = 10−6t.
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GS junction

The situation in GS junctions is different. Rhe is constant within the ZLL (as long as
the field is not unrealistically high). This is a consequence of the special valley structure
of the ZLL edge states [28]. In Fig. 4.7 we plot the AR probability as a function of
magnetic flux. The value within the ZLL is a constant given by

Rhe = 1
2(1− cos Φ), (4.11)

where Φ is the angle between valley isospins of the states at the opposite edges repre-
sented as three-dimensional vectors on a Bloch sphere. This relation is conspicuously
identical to the one in Eq. (3.3) for the conductance across the graphene p-n junction
in quantizing magnetic field. Indeed, there exist a mapping between between the GS
junction and graphene p-n junction [67]. This mapping is not to be confused with an-
other one: the correspondence between a junction with uniform carrier density in an
antisymmetric magnetic field profile and a junction with antisymmetric carrier density
in a uniform field [81].

An oscillatory behavior of Rhe in GS junction appears once the higher valley-unpolarized
LLs are involved.
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Figure 4.7: Andreev reflection probability Rhe (left vertical axis) across a GS
junction and number of propagating electron modes N in the normal region made of
graphene ribbon with zigzag edges (right vertical axis) as a function of magnetic flux
φ. The constant Rhe = 1 within the ZLL (N = 1) corresponds to the angle Φ = π
between the valley isospins of the states at the opposite edges of the ribbon. An
oscillatory behavior appears once the higher valley unpolarized Landau levels play a
role.

4.5 Spin transport in the spin-split zeroth Landau level
edge states coupled to a superconductor

The spin-degenerate ZLL in graphene is pinned at the Dirac point. Taking into account
the spin splitting of the energy levels due to the Zeeman field, the ZLL is split into two
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Figure 4.8: Zizgzag ribbon band structure (a) for B = 0, (b) in the quantum Hall
regime. (c) Zoom-in on the zeroth Landau level that is spin-split by the Zeeman field.
(d-f) The same for an armchair ribbon.

with energy difference 2∆Z , where

∆Z = 1
2g
∗µB|B|, (4.12)

see Fig. 4.8(c). Here, 2 ≤ g∗ . 4 is the effective g-factor of an electron in graphene,
µB is the Bohr magneton and |B| is the absolute value of the applied magnetic field.
The energy difference between the spin-up and spin-down ZLL can reach up to 2∆Z =
2.3 meV at B ∼ 10 T for the interaction-enhanced g-factor g∗ = 4 [82]. Note that in
addition to the out-of-plane quantizing magnetic field, an in-plane magnetic field can be
used to further control ∆Z .

Here we study the interplay of superconductivity and the quantum Hall effect in the
ZLL of graphene that is spin-split by a Zeeman field. Without the superconductor, the
electron (hole) edge states in the energy window ∓EF − ∆Z < E < ∓EF + ∆Z are
helical: opposite-spin states propagate in opposite directions at a single edge (Fig. 4.9).
In a system without a superconductor, the hole degree of freedom plays no role. Here
lead L2 in the three-terminal device shown in Fig. 4.10 is in the normal state and one
expects spin-polarized transport in the energy window −EF −∆Z < E < −EF + ∆Z ,
where the electron edge states are helical in this regime. Curiously, in the case when L2
is in the superconducting state, this window is shifted to EF − ∆Z < E < EF + ∆Z .
The charge transport is also altered in the presence of the superconducting interface as
described below. Note, that the spin-filtering effect presented in this section requires no
spin-orbit coupling.
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Figure 4.9: (a) Band structure of the electrons (full lines) and holes (dashed lines)
of the spin-split zeroth Landau level in graphene for spin-up (red) and spin-down
(blue) in a zigzag ribbon. The horizontal dashed lines mark the energies where the
edge states change the direction of propagation. (b) Edge states in a graphene ribbon
(grey) and their direction of propagation indicated by arrows shown for the three
energy regions (I-III).

Figure 4.10: Three-terminal graphene device with two normal leads L0 and L1 and
one superconducting lead L2. The normal region (N) marked by the grey-shaded
region hosts quantum Hall edge states. The superconductor (green area) couples
electron and hole edge states propagating along the upper edge.

Model of the graphene-superconductor interface in Zeeman field

We investigate the spin transport in the three-terminal system shown in Fig. 4.10. The
underlying honeycomb lattice is exposed to a quantizing out-of-plane magnetic field.
The upper edge of the system is coupled to an s-wave superconductor (S) with a sizeable
critical field, such that the quantum Hall effect and superconductivity coexist. There
are two normal leads L0 and L1 of width W which serve to probe the spin-resolved
transmission, and a superconducting lead L2. The shape of the system is motivated by
a recent experiment [77].

The tight-binding Hamiltonian of the system in real space is written in the standard
Nambu basis as

H = H0 +H∆ +HZ , (4.13)
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where H0 and H∆ are defined in Eq. (4.5), and

HZ =
∑
i

ψ†i (ρ0 ⊗∆Zsz)ψi. (4.14)

The Zeeman field described by HZ splits each LL into two with energy difference 2∆Z .

For the configuration in Fig. 4.10, we choose the vector potential in Landau gauge that
is invariant along the x axis. Namely,

A = (−By, 0, 0). (4.15)

Thus the Peierls phase is given by

ϕij = −πB
φ0

(xi − xj)(yi + yj), (4.16)

where φ0 = h/e is the magnetic flux quantum and ri = (xi, yi) are the real-space
coordinates of site i. The third term in H0 represents the Fermi energy of the system.
In the absence of any doping, EF is set to zero.

In this system, the following length scales play an important role: magnetic length
`B =

√
~/eB, superconducting coherence length ξ = ~vF /∆ and the system dimensions

W , L, y0 shown in Fig. 4.10. For well-developed LLs we require a� `B �W,L, y0.

Results: spin and charge transport

In Fig. 4.11(a-c) we plot transport coefficients in the case when EF < ∆Z < ∆ and
the gap between the ZLL and other LLs is large enough so that only the ZLL plays a
role in the transport. Since the Hamiltonian in Eq. (4.13) conserves the z-projection
of the spin, [H, sz] = 0, only the spin-diagonal transport coefficients are shown: red is
for a particle with spin-up scattered to a particle with spin-up, while blue describes the
same for spin-down particles. Tee (The) is the probability for an electron from L0 to be
scattered into an electron (a hole) in L1 and Rhe is the probability for an electron from
L0 to be backscattered as a hole to L0. Because we are in the quantum Hall regime and
our system is wide enough, the probability for an electron from L0 to be backscattered
as an electron is zero (Ree = 0) and hence not shown. Furthermore, Tee is the normal
(N) forward scattering, The is the crossed Andreev reflection (CAR) and Rhe is the local
Andreev reflection (LAR). For energies |E| < ∆, the scattering matrix is unitary and
Tee + The +Rhe = 1 for each spin projection.

It is interesting to look at the spin polarization of the carriers in the subgap regime,
where |E| < ∆. Having in mind that H conserves the spin projection along the z-axis,
we define this quantity as

P = Te↑,e↑ + Th↑,e↑ − Te↓,e↓ − Th↓,e↓
Te↑,e↑ + Th↑,e↑ + Te↓,e↓ + Th↓,e↓

, (4.17)
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Figure 4.11: On the horizontal axis, we plot (a)-(c) the transport coefficients for
spin-up (red) and spin-down (blue), (d) the band structure of the spin-split zeroth
Landau level of the normal lead L0, (e) spin polarization and (f) charge conductance.
On the vertical axis is energy E. The horizontal dashed lines mark the energies where
the edge states change the direction of propagation. Here the edge terminations of L0
and L1 are zigzag while for L2 it is armchair. The parameters are ∆ = 10 meV,
EF = 0.3∆, ∆Z = 0.5∆, B = 10 T, W = 147.6 nm, L = 125.46 nm and y0 = 73.8 nm.

where Tα′s′,αs is the transmission coefficient for a particle α with spin s in lead L0 to a
particle α′ with spin s′ in lead L1. 1

The spin polarization calculated numerically and shown in Fig. 4.11(e) is non-zero in
the energy region (EF −∆Z , EF + ∆Z) and zero otherwise. This can be understood by
looking at the direction of propagation of the particles, Fig. 4.9(b). In the energy region
(II), e ↑ travels undisturbed along the lower edge into L1, while e ↓ propagating along
the upper edge is backscattered as h ↓ to L0. This results in accumulation of spin-up
in L1. The situation in the energy region (I) is the same for e ↓. However, here e ↑ also
travels along the upper edge and encounters the superconductor. Since the Andreev
reflected h ↑ has the same direction of propagation as e ↑, the particle propagates
along the GS interface via Andreev edge states, and, depending on the geometry, ends
up with a certain probability as e ↑ or h ↑ in L1. This means that injecting spin-
unpolarized particles in L0 results in spin-polarized particles in L1 in energy region
EF −∆Z < E < EF + ∆Z .

In the presence of hole excitations, the (differential) charge conductance from L0 to L1
is defined as

G10 = e2

h

 ∑
s=↑,↓

Tes,es − Ths,es

 . (4.18)

1In our calculations we choose a cut-off: P = 0 if the denominator in Eq. (4.17) is smaller than 10−3,
i.e., when almost no particle is transmitted from L0 to L1.
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In energy region (I) the carrier ending in L1 is a hole, while in region (II) it is an
electron. In energy region (III) there is an electron e ↑ along the lower edge and hole
h ↑ along the upper edge ending in L1, which results in zero charge transfer. The charge
conductance behavior, however, is not universal and depends on the geometrical details
(valley structure of the edge states).
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Figure 4.12: (a) The spin polarization and (b) the charge conductance for three
different interface lengths that corresponds to three different valley polarizations. The
charge conductance depends on the angle between the valley isospins, while the spin
polarization does not (up to the region where e ↓ leaks to L1 due to the smaller
induced gap.) Here edge terminations of L0 and L1 are zigzag while of L2 are
armchair. The parameters are ∆ = 20 meV, EF = 0.3∆, ∆Z = 0.5∆, B = 10 T,
W = 147.6 nm, L = 125.46 nm and y0 = 73.8 nm.

Figure 4.13: (a-c) Band structure of excitations along the graphene-superconductor
interface in a quantizing magnetic field for ∆/t = 0.03, 0.06, 0.1, respectively.
Dispersing states at the interface for |E| < ∆ evolve into the flat zeroth Landau level
(ZLL) away from the interface. The bulk ZLL is split into four due to its electron-hole
character and the lifted spin degeneracy. When EF < ∆Z , the ZLL edge states
develop an effective band gap ∆∗ (red arrows) due to the coupling to a
superconductor. ∆∗ increases from (a) to (c) with increasing superconducting pair
potential ∆. Here EF = 0.3∆, ∆Z = 0.5∆ and the interface is along the zigzag
direction. The parameters are exaggerated for better visibility.

In Fig. 4.12 we show the spin polarization and conductance for three different widths
of L2 with armchair edge termination. We see the spin polarization that is (almost)
independent of L and the characteristic threefold transport due to the presence of an
armchair ribbon. Besides that, we see a set of dips (peaks) in the spin polarization
(conductance) for energies close to EF − ∆Z , that might come as a surprise at first
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sight. The reason for this feature is an e ↓ leaking from L0 to L1 through the interface.
Without the superconductor, there are edge states propagating in the opposite direc-
tions for opposite spins. When we couple the superconductor to the upper edge, the
electron incoming on the interface will be reflected as a hole (in the case of non-zero AR
probability). However, this hole goes in the direction opposite to the electron edge state
for both spin projections in this energy region. Hence, the transport along the interface
should be blocked. But if the AR probability is less than one, the electron has a finite
chance to leak along the interface onto the other side. In other words, edge states along
the upper edge contacted to a superconductor develop an effective gap ∆∗ [83] that is
smaller than the naively expected gap 2(∆Z − EF ) (if (∆Z − EF ) < ∆). The bigger
the pairing ∆, the higher the AR probability. So when increasing ∆, ∆∗ approaches
2(∆Z − EF ), see Fig. 4.13.

Figure 4.14: Same as Fig. 4.11, but EF = 1.6∆.

The spin-filtering effect is lost once EF > ∆ + ∆Z . We show this in Fig. 4.14 where the
spin polarization vanishes completely for |E| < ∆.

Another edge termination of leads

We obtain the same results for the armchair orientation of leads L0 and L1 and the zigzag
orientation of lead L2, see Fig. 4.15. The spin polarization is again (nearly) perfect for
EF −∆Z < E < EF + ∆Z . This is expected since, unlike the valley structure, the spin
structure of the ZLL in graphene is independent of the type of the edge termination.
The dip in the spin polarization is there for the same reason as in Fig. 4.12.

53



Chapter 4. Interface between graphene and superconductor

0.0 0.2 0.4 0.6 0.8 1.0

0

EF + ∆Z

−EF + ∆Z

EF −∆Z

−EF −∆Z

−∆

∆

E

(a) N forward scattering

0.0 0.2 0.4 0.6 0.8 1.0

(b) CAR

0.0 0.2 0.4 0.6 0.8 1.0

(c) LAR

−2 0 2

k
√

3a

0

EF + ∆Z

−EF + ∆Z

EF −∆Z

−EF −∆Z

−∆

∆

E

(d) L0 band structure

−1.0 −0.5 0.0 0.5 1.0

P

(e) Spin Polarization

−2 −1 0 1 2

G10 [e2/h]

(f) Charge Conductance

↑
↓

Figure 4.15: Same as Fig. 4.11 but the edge terminations of L0 and L1 are armchair
while of L2 are zigzag.

4.6 Conclusion

The interface between graphene and a superconductor has several unusual and distinct
properties owing to the linear low-energy dispersion and its valley structure. Without
a magnetic field, specular Andreev reflection takes place in energy region E > EF for
∆ > EF , where E is the energy of the incoming electron. Switching on a quantizing
magnetic field, the conductance of a GS junction as a function of flux is constant within
the zeroth Landau level. That is in sharp contrast to the oscillatory behavior in the NS
junction. When taking into account the Zeeman splitting of the zeroth Landau level, we
show that a spin-filtering effect is present in a three-terminal setup with a GS junction,
and can be switched on and off simply by gate voltage that shifts the Fermi energy. Such
an effect requires no spin-orbit coupling.

54



CHAPTER 5

THE TOPOLOGICAL ANDERSON INSULATOR PHASE IN
THE KANE-MELE MODEL

The results presented in this chapter were published in

C. P. Orth, T. Sekera, C. Bruder, T. L. Schmidt
The topological Anderson insulator phase in the Kane-Mele model
Sci. Rep. 6, 24007 (2016).

Changes have been made to better embed this work into the thesis. The introduction was
expanded and Subsection 5.6.1 concerning magnetic disorder was added.

It has been proposed that adding disorder to a topologically trivial mercury telluride/-
cadmium telluride (HgTe/CdTe) quantum well can induce a transition to a topologically
nontrivial state. The resulting state was termed topological Anderson insulator and was
found in computer simulations of the Bernevig-Hughes-Zhang model. Here, we show that
the topological Anderson insulator is a more universal phenomenon and also appears in
the Kane-Mele model of topological insulators on a honeycomb lattice. We numerically
investigate the interplay of the relevant parameters, and establish the parameter range in
which the topological Anderson insulator exists. A staggered sublattice potential turns
out to be a necessary condition for the transition to the topological Anderson insulator.
For weak enough disorder, a calculation based on the lowest-order Born approximation
reproduces quantitatively the numerical data. Our results thus considerably increase
the number of candidate materials for the topological Anderson insulator phase.

5.1 Introduction

If the Fermi energy is placed in the band gap of a conventional insulator, no electronic
states can propagate at this energy and the material does not conduct electricity. Even
though the band gap of a conventional insulator, such as solid argon, is much larger in
comparison to that of an ordinary semiconductor, the electronic states of the two are, in
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a sense, equivalent. It is possible to deform their Hamiltonians into each other without
closing the energy gap. There are, however, insulators with Hamiltonians that cannot
be deformed into that of a conventional insulator. This motivated a topological classi-
fication scheme of gapped electronic systems [84]. The mathematical theory of vector
bundles provides tools for such classification, see Refs. [85] and [86] for an introduction.
The idea is that to each Hamiltonian one can assign a number, so-called topological in-
variant, that cannot be changed by adiabatically deforming the Hamiltonian unless the
gap is closed or a symmetry is broken. So, which systems with Hamiltonians that are
not topologically equivalent to conventional (trivial) insulators are there? The simplest
one is the quantum Hall system studied in previous chapters. Here, the topological
invariant is called the Chern number and can take integer values (thus also the name
Z invariant). The characteristic feature of the quantum Hall system is the existence of
chiral states confined to the boundary with vacuum (edge states) that lead to the quan-
tized Hall conductance. These states are robust against small perturbations and lead
to the perfectly quantized Hall conductance. The number of edge states corresponds to
the Chern number, as well as to the quantized filling factor. The existence of the states
localized at the boundary with vacuum is a general feature of topologically nontrivial
phases and the result of the bulk-boundary correspondence.

The key object of the present chapter is the so-called topological insulator (TI) in two
dimensions (2D). This is a gapped electronic phase in the presence of time-reversal
symmetry (TRS), where the bulk gap is opened by the spin-orbit coupling. Unlike the
quantum Hall system, a TI is characterized by a Z2 invariant that can take only two
distinct values that correspond to the trivial phase and the TI phase. In the presence of a
boundary with vacuum, the TI phase manifests itself by two gapless counter-propagating
edge states of opposite spin projection. These states are robust with respect to TRS-
preserving perturbations and lead to a quantized two-terminal conductance. In this
chapter, the 2D TI is described by the Kane-Mele (KM) Hamiltonian (5.1), while also
other models exist; e.g., the Bernevig-Hughes-Zhang (BHZ) model [87]. As will be
shown in Sec. 5.2, the ratio among the parameters in the KM Hamiltonian decides
which phase, trivial or topological, is realized in the ground state. For the review on
TIs see Refs. [11, 88].

Due to the invariant nature of the topological phases, the edge states are robust against
small symmetry-preserving perturbations. From Anderson’s theory of localization [89]
one expects that a system with finite conductance without disorder undergoes a tran-
sition to a system with localized states and suppressed conductance as the disorder is
increased beyond a certain threshold value. Indeed, we observe a completely vanishing
conductance for large disorder strength W , where the disorder is modeled by a ran-
dom on-site potential. However, a curious effect may take place at intermediate W . A
plateau of quantized conductance is seen to persist for a significant range of energies
and W . Even more surprisingly, if a system described by the KM Hamiltonian without
disorder is a trivial insulator, adding disorder can cause a closing of the trivial gap and
reopening of the topological one. A system that exhibits such disorder induced transi-
tion from a trivial insulator to a TI is termed topological Anderson insulator (TAI). The
explanation of this transition lies in the renormalization of the Hamiltonian parameters.
The BHZ model with disorder and band mass m can be approximated by an effective
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model of a clean system and renormalized mass m̄. Using an effective-medium the-
ory and the self-consistent Born approximation (SCBA), it was shown that for certain
model parameters, m̄ can become negative even if the bare mass m is positive [90]. As
a consequence, the effective model becomes that of a TI and features edge states with a
quantized conductance of G0 = e2/h [91].

Furthermore, TAIs have been predicted in several related systems, for instance in a hon-
eycomb lattice described by the TRS breaking Haldane model [92], a modified Dirac
model [92], the BHZ model with sz non-conserving spin-orbit coupling [93], as well as in
3D topological insulators [94]. Moreover, similar transitions from a topologically triv-
ial to a topologically nontrivial phase have been found to be generated by periodically
varying potentials [95] or phonons [96]. In contrast to on-site Anderson disorder, certain
kinds of bond disorder cannot produce a TAI as they lead only to a positive correction
to m [97, 98]. Here, we report on the TAI found in the KM model, describing materials
with honeycomb lattice, such as graphene, silicene, germanene and stanene [99–102].
Previous studies found first indications to this TAI phase, showing that the KM model
without a staggered sublattice potential hosts extended bulk states even for large disor-
der strengths [103].

The interplay between the parameters characterizing intrinsic spin-orbit coupling (SOC)
λSO, extrinsic Rashba SOC λR, and a staggered sublattice potential λν turns out to be
crucial for the visibility of TAIs, and we calculate the parameter ranges in which TAIs
can be observed. We find analytically that to lowest order in W , the parameters λSO and
λR are not renormalized with increasing disorder strength, in contrast to λν . However,
a new effective hopping λR3 is generated due to the disorder, which is related but not
identical to λR. Although λR is not a crucial ingredient for the existence of TAIs, it
significantly alters the physics of topological insulators in various ways [104, 105] and,
as we will show below, strongly affects the TAI state.

Observation of the TAI is experimentally challenging. The main difficulty is the require-
ment of a rather large and specific amount of disorder, which is tough to control in the
topological insulators currently investigated, where the 2D TI layer is buried inside a
semiconductor structure. In contrast, producing and controlling disorder in 2D materials
described by the KM model could be much easier. Disorder in 2D materials with honey-
comb structure can be produced by randomly placed adatoms [106, 107] or a judicious
choice of substrate material [108–111]. Moreover, a sizeable staggered sublattice poten-
tial can be generated via a suitable substrate material [112]. Other means of engineering
disorder were proposed in periodically driven systems [113, 114]. Finally, honeycomb
structures with the SOC necessary to produce a topological phase have already been
realized using ultracold atoms in optical lattices [115], in which disorder can in princi-
ple be engineered. A recent experiment finds evidence for the TAI in one-dimensional
disordered atomic wires [116].
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Figure 5.1: Visualization of the terms in the Kane-Mele Hamiltonian (5.1) and their
amplitudes. (a) Intrinsic spin-orbit coupling represented by the second
nearest-neighbor hopping (green arrows) and (b) Rashba spin-orbit coupling
represented by the first nearest-neighbor hopping on a honeycomb lattice (blue
arrows). (c) Staggered sublattice on-site potential.

5.2 Kane-Mele Hamiltonian

Let us start by introducing the KM Hamiltonian [117, 118]

H = t
∑
〈ij〉

c†icj + iλSO
∑
〈〈ij〉〉

νijc
†
iszcj + iλR

∑
〈ij〉

c†i

(
s× d̂ij

)
z
cj + λν

∑
i

ξic
†
ici. (5.1)

Summations
∑
〈ij〉 and

∑
〈〈ij〉〉 denote the sum over the nearest and next-nearest neigh-

bors (nn and nnn), respectively. Operators c†i = (c†i↑, c
†
i↓) and ci = (ci↑, ci↓)T are the

creation and annihilation operators for the particle at site i. The parameters t, λSO and
λR represent the amplitude of the nn hopping, intrinsic SOC, and Rashba SOC, respec-
tively. If the nnn hopping from site j to site i corresponds to a right-turn on the honey-
comb lattice, then νij = 1, otherwise νij = −1. In other words, νij = (2/

√
3)(d̂1 × d̂2)z,

where d̂1 and d̂2 are unit vectors along the two bonds the electron traverses going from
site j to site i. Furthermore, s = (sx, sy, sz) is the vector of Pauli matrices for the
spin degree of freedom, and d̂ij is the unit vector between sites j and i. The Wannier
states at the two basis atoms of the honeycomb lattice are separated in energy by twice
the amplitude of the staggered sublattice potential term λν , where ξi = 1 for the A
sublattice and ξi = −1 for the B sublattice. Terms in Eq. (5.1) and their amplitudes
are visualized in Fig. 5.1.

Hamiltonian (5.1) can be diagonalized in translationally symmetric situation. Due to
sublattice and spin, each block (labeled by k) in the block-diagonal matrix is the fol-
lowing 4x4 matrix

H(k) =
5∑

a=0
da(k)Γa +

5∑
a<b=1

dab(k)Γab, (5.2)

where Γ(0,1,2,3,4,5) = (σ0 ⊗ s0, σx ⊗ s0, σz ⊗ s0, σy ⊗ sx, σy ⊗ sy, σy ⊗ sz) and Γab =
[Γa,Γb]/(2i). Here, σµ for µ ∈ {0, 1, 2, 3} are the Pauli matrices representing the sublat-
tice index. The coefficient are

d1(k) = t(1 + 2 cosx cos y),
d1(k) = λν ,

d1(k) = λR(1− cosx cos y),
d1(k) = −

√
3λR sin x sin y,

d12(k) = −2t cosx sin y,
d12(k) = λSO(2 sin 2x− 4 sin x cos y),
d12(k) = −λR cosx sin y,
d12(k) =

√
3λR sin x cos y,

58



Chapter 5. The topological Anderson insulator phase in the Kane-Mele model

with x = kxa/2 and y =
√

3kya/2. Diagonalized Hamiltonian (5.2) leads to four energy
bands that are functions of 2D momentum k. The Dirac point structure due to the
nn hopping term is still present, however, a gap can be opened at these points. The
topological nature and size of the gap depends on the parameter set λSO, λR, and
λν . For λR = 0, the system has an energy gap of magnitude |6

√
3λSO − 2λν |, that is

topologically non-trivial if λν/λSO < 3
√

3 and trivial otherwise [117]. The quasi-1D
ribbon along the zigzag direction and examples of the band structure are displayed in
Fig. 5.2. For λν = 0, the system will be a topological insulator if λR/λSO . 2

√
3 and a

metal or semimetal otherwise. For finite λν and λR the situation is more complex and
a topological transition appears for values within these two boundaries, see the phase
diagram in Fig. 5.2(c).

Low energy expansion of Hamiltonian (5.2) in the vicinity of Dirac pointK = (2π/a)(2/3, 0)
leads to

H(q) = −t
√

3a
2 (qxσx+qyσy)⊗s0−λSO3

√
3(σz⊗sz)+λR

3
2(σy⊗sx−σx⊗sy)+λν(σz⊗s0),

(5.3)
where k = K + q. The presence or absence of the terms depends on the symmetries of
the system. The spin-orbit term ∝ σz⊗sz respects all of the symmetries dictated by the
nn hopping term and is present, hence the name intrinsic. If the mirror symmetry about
z = 0 plane is broken, e.g., by an out-of-plane electric field or substrate, that allows for
the (extrinsic) Rashba term ∝ (σy ⊗ sx − σx ⊗ sy). Finally, if the inversion symmetry
in the plane of the honeycomb lattice is broken, i.e., A atoms and B atoms cannot be
interchanged, then also the staggered sublattice potential ∝ (σz ⊗ s0) is present. Note
that all the terms respect the TRS symmetry.

The KM Hamiltonian was first introduced to describe electrons in graphene [117]. How-
ever, it turned out that the non-trivial gap caused by the intrinsic SOC is tiny [119–121].
Thus, graphene is not considered to be a good candidate for a TI while other materials
like germanene, stanene or silicene might play this role better.

In order to study the disorder-induced transition from the trivial insulator to the TI,
the following term is added to the Hamiltonian (5.1)

H ′ = W
∑
i

εic
†
ici. (5.4)

This is the on-site disorder term with disorder strength W and uniformly distributed
random variables εi ∈ [−1, 1].

5.3 Numerical results

For λR = 0, we find a TAI phase for parameters close to the topological transition at
λν/λSO = 3

√
3 ≈ 5.2. Changing this ratio corresponds to changing the band mass in

the case of the BHZ model. Figure 5.3 shows the conductance for different values of λν .
We find that for λν = 1.45t ≈ 4.8λSO the system is a topological insulator. For W = 0,
i.e., in the clean case, the conduction and valence bands are separated by a red region
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Figure 5.2: (a) Zigzag ribbon of honeycomb lattice illustrating the tight-binding
terms in the Kane-Mele Hamiltonian (5.1) with disorder. The blue color scale marks
different on-site potentials. Thick black lines correspond to nearest-neighbor hopping
and Rashba SOC, while thin green lines correspond to intrinsic SOC. The leads
attached at both sides (red color) are modeled by a hexagonal lattice with
nearest-neighbor hopping term and finite chemical potential. In this example, the
sample has width w = 5a and length l = 6a. Much larger sample sizes of w = 93a and
length l = 150a were used in the calculations described below. (b) Band structures of
infinitely long samples of width w = 93a for two different values of λν showing a
topologically nontrivial and a trivial gap. Vertical and horizontal axis correspond to
energy in units of t and dimensionless momentum, respectively. Parameters are
λSO = 0.3t and λR = 0. (c) Phase diagram adapted from [118].

with a quantized conductance of 2G0. Remarkably, with increasing disorder strength,
the states in the conduction and valence bands localize, but the helical edge states that
are responsible for the conductance of 2G0 exist for an even larger energy window. The
conductances and the vanishing error bars for the two distinct energy values EF = 0,
EF = 0.2t in the lower row of Fig. 5.3 show that the conductance quantization, and
with it the topological nature of the system, persist for the vast majority of microscopic
disorder configurations. For λν = 1.65t = 5.5λSO, the system is a trivial insulator at
W = 0. The trivial gap closes however, and at W ≈ t the system develops a topologically
non-trivial gap and edge states. This can be seen from the quantized conductance.
Finally, for λν = 1.85t ≈ 6.2λSO, the closing of the trivial gap and re-opening of the
topological gap happens at a disorder strength which is strong enough to destabilize the
emergent topological phase. Features of the conductance quantization can still be seen,
but this behavior is not that robust anymore. As no averaging is done in the upper row
of Fig. 5.3, and a new disorder configuration is taken for every data point, destabilization
of the topological phase can be seen by red and white speckles in the figure.

We find that no TAI exists without staggered sublattice potential (λν = 0). If both λν
and λR are finite, the TAI phase is in general less pronounced, see Fig. 5.4. The plot
on the right shows the closing of a trivial gap and emergence of a topological one at
W ≈ 0.5t.

Furthermore, we observe that the simultaneous presence of intrinsic and Rashba SOC
(both λR 6= 0 and λSO 6= 0) destroys the particle-hole symmetry in the spectrum.
In the absence of Rashba SOC, the symmetry operator Υ, which acts on the lattice
operators as ΥciσAΥ−1 = c†−i,σ,B and ΥciσBΥ−1 = −c†−i,σA for the sublattices A and
B, leaves the (disorder-free) Hamiltonian invariant. Υ can be viewed as particle-hole
conjugation combined with spatial inversion, and the inversion is needed to leave the
staggered sublattice potential term invariant.
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Figure 5.3: Top row: The conductance from the left to the right lead as a function
of the disorder strength W (horizontal axis) and chemical potential EF (vertical axis).
The conductance varies from 0 (white) to 30G0 (dark blue). The quantized value of
2G0 (red for all conductances within [1.95G0, 2.05G0]) originates from two helical edge
states. The three plots show the conductance for three different values of λν that
represent, respectively, a topological insulator, a TAI, and a TAI at the transition to
an ordinary insulator. The black lines are obtained from a lowest-order Born
approximation without any adjustable parameter. The two dotted lines mark the
energies EF = 0, EF = 0.2t. Bottom row: The conductance at fixed chemical
potentials EF = 0 (black) and EF = 0.2t (red) for the same parameters as in the top
row. The errors bars originate from an averaging procedure over 100 disorder
configurations. The vanishing error bars in the regions with a conductance of 2G0
show that the topological phase is stable irrespective of the exact disorder
configuration. The system parameters are w = 93a, l = 150a, λSO = 0.3t, and λR = 0.

5.4 Lowest-order Born approximation

In the self-consistent Born approximation, the self-energy Σ for a finite disorder strength
is given by the following integral equation [90, 122]

Σ = 1
3W

2
(
a

2π

)2 ∫
BZ

dk
1

EF −H(k)− Σ , (5.5)

where H(k) is the Fourier transform of H in the clean limit, Eq. (5.2). The coefficient
1/3 originates from the second moment 〈ε2i 〉 = 1/3 of the uniform distribution function
of the disorder amplitudes, and EF is the chemical potential. The integration is over
the full first Brillouin zone. We use the lowest-order Born approximation, which means
setting Σ = 0 on the right-hand side of the equation.

After a low-energy expansion of H(k), i.e., Eq. (5.3), the integral can be evaluated
analytically [90] for λR = 0. This requires keeping the terms up to second order in k
wherever this is the leading k-dependent order. The evaluation yields the renormalized
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Figure 5.4: The conductance for increasing disorder strength W and chemical
potentials EF for three different values of λR = 0 (left), λR = 0.5t (middle) and
λR = 0.65t (right). The system parameters are w = 93a, l = 150a, λSO = 0.3t, and
λν = 0.95t. The black lines are obtained from a lowest-order Born approximation
without any fitting parameter. The conductance color code is the same as in Fig. 5.3

staggered sublattice potential

λ̄ν = λν + W 2

9π
√

3λSO
log
∣∣∣∣∣ 27λ2

SO
E2
F − (λν − 3

√
3λSO)2

(
π

2

)4
∣∣∣∣∣ , (5.6)

For a certain set of parameters, the logarithm can be negative and λ̄ν is reduced com-
pared to λν . Moreover, we find that λSO is not renormalized to order W 2. Therefore,
it is possible to obtain λν > 3

√
3λSO > λ̄ν . The system thus makes a transition from a

trivial insulator to a topological insulator with increasing W .

For a more quantitative treatment, we evaluate the integral for the full Hamiltonian
H(k) in Eq. (5.2) numerically. The self-energy Σ is then written as a linear combination
of several independent contributions

Σ =
5∑

a=0
gaΓa +

5∑
a<b=1

gabΓab, (5.7)

where ga and gab are the coefficients determined by the disorder. This leads to the
following equations for the renormalized quantities

λ̄ν = λν + g2,

ĒF = EF − g0,

λ̄R3 = g3 , (5.8)

whereas λ̄SO = λSO and λ̄R = λR remain unrenormalized to lowest order in W . Surpris-
ingly, a new coupling λ̄R3Γ3 is created by the disorder. This coupling has the matrix
structure Γ3, which is similar but not identical to the one for Rashba SOC. Expressing
this new term in the lattice coordinates of Eq. (5.1) reveals that it corresponds to a
Rashba-type nearest-neighbor hopping term which is asymmetric and appears only for
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Figure 5.5: Phase diagram in the (λν , λR) plane. Strong blue (red) color marks the
region for which a TAI exists for λSO = 0.3t (0.15t). Transparent blue (red) color
indicates the regions where a topological insulator is found for zero disorder. Each dot
represents an individual simulation of the kind illustrated in Fig. 5.3.

bonds that are parallel to the unit vector (0, 1),

HR3 = iλR3
∑
〈ij〉v

c†i

(
s× d̂ij

)
z
cj , (5.9)

where 〈ij〉v stands for summations over strictly vertical bonds only. Furthermore, we
find to lowest order in W that λ̄R3 = 0 for λR = 0.

For W = λR = 0, the upper and lower edge of the gap are at the energies EF =
±|3
√

3λSO − λν |. This is the case for both topological and trivial insulators. Extrap-
olation of these equations to finite W leads to the conditions ĒF (EF ) = ±|3

√
3λ̄SO −

λ̄ν(EF )|. The solid black lines in Fig. 5.3 are the two solutions to these equations and
describe the closing and reopening of the gap qualitatively for small W .

For finite λR and therefore finite λR3, there is no analytical expression of the gap energy.
In this case, we read off the positions of the gap edges from band structure calculations for
several values of λR and λR3. An interpolation leads to two functions hU,L(λν , λR, λR3)
for the upper and lower band edge in the clean system. Replacing the unperturbed by
the renormalized parameters yields two equations

hU,L[λ̄ν(EF ), λ̄R(EF ), λ̄R3(EF )] = ĒF (EF ). (5.10)

The solutions of these equations are indicated by the solid black lines in Fig. 5.4. Hence,
these results agree with the numerical data for small W without any fitting parame-
ter. Deviations appear for larger W , when the lowest-order Born approximation is not
applicable.
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Figure 5.6: Critical value of the disorder strength for the TAI transition along the
line λR = 0 for λSO = 0.3t. Comparison between tight-binding simulation and
analytical results.

5.5 Phase diagram

Figure 5.5 shows a phase diagram as a function of λν and λR based on the tight-binding
simulations. The strong color marks the regions for which a critical disorder strength Wc

exists above which the system is a TAI (blue for λSO = 0.3t, red for λSO = 0.15t). The
TAI phase is located along the boundary separating trivial from topological insulators
in the clean case. Towards larger λR, the TAI region becomes narrower and eventually
vanishes above a critical λR. Figure 5.6 shows the critical disorder strength Wc as a
function of λν for a fixed value of λR.

In Figs. 5.3 and 5.4 rather large values of the parameters λSO, λν and λR were chosen to
better visualize the effect. The TAI phenomenon scales down also to smaller values of
the parameters, as the red region in the Fig. 5.5 indicates, but the TAI phase becomes
less pronounced in the conductance plots and is harder to identify. Material parameters
for stanene, for example, are t = 1.3 eV, λSO = 0.1 eV [123] and λR = 10 meV [124].
We suspect that disorder, e.g., originating from missing or dislocated atoms, can reach
disorder strengths in the eV range.

5.6 Alternative disorder models

5.6.1 Magnetic disorder

Here we numerically investigate if magnetic disorder, i.e., disorder that may arise from
magnetic adatoms and alters the spin of scattered electrons, can lead to a transition
from a trivial to topological insulator. The magnetic-disorder Hamiltonian is

H ′ = W
∑
i

εic
†
imici , (5.11)
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Figure 5.7: Conductance maps as in Fig. 5.3 for various choices of matrix mi for
λν = 1.65t, λSO = 0.3t, and λR = 0. (a) The TAI phase (red region of quantized
conductance) is realized only in the case when mi = sz. (b-f) The disorder term for
these choices of mi (indicated in the upper right corner) does not commute with the
KM Hamiltonian and no TAI phase can be seen.

where, as previously, W is the disorder strength and εi ∈ [−1, 1] are uniformly distributed
random variables at each site i. The new feature is the 2x2 matrix in spin space, mi. In
the previous sections of this chapter we focused on the case mi = s0.

Here, we calculate conductance maps for different choices of mi. The results are shown
in Fig. 5.7 for λν = 1.65t, λSO = 0.3t, and λR = 0. In the upper three conductance
maps we use mi ∈ {sz, sx, sy}. Only the case with mi = sz leads to the TAI phase. One
could expect that if we mix all the Pauli matrices, on average, we will restore the spin
symmetry of the disorder and obtain the TAI phase. That this is not the case can be
seen in the lower row of the figure. Here, mi ∈ {ni · s, ñi · s, (s0 + ni · s)/

√
2}, where

ni = (sin θi cosφi, sin θi sinφi, cos θi)T is the unit vector pointing in a random direction
on a sphere and ñi is the unit vector pointing in direction along the x or y or z axis
randomly on each site. We conclude that only a disorder term for which [H ′, H] = 0
leads to the TAI phase.

5.6.2 Sparse disorder

Anderson disorder is a special model for disorder which is not necessarily representative
for all TI materials. To better understand the effect of the disorder model, we briefly
remark on the following disorder Hamiltonian

H ′ = W√
3
∑
i

ηic
†
ici . (5.12)
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In contrast to the Anderson disorder model, where a random potential is assigned to
every lattice site, here the distribution function for ηi is such that only a fraction 0 <
ρ ≤ 1 of the sites are affected by disorder. Denoting the total number of sites by N , we
assume ηi = 1 on ρN/2 sites, ηi = −1 on ρN/2 sites, and ηi = 0 on the remaining sites.
The disorder amplitude W is constant. Because 〈η2

i 〉 = ρ, the normalization factor in
Eq. (5.12) ensures that the mean squared disorder strength is equal to the Anderson
disorder case for ρ = 1.

For general ρ, the prefactor in Eq. (5.5) is thus replaced by ρW 2/3. The lowest-order
Born approximation for the disorder model (5.12) therefore predicts that a reduced
disorder density ρ can be exactly compensated by an increased amplitude W . For large
enough ρ, this is indeed confirmed in the tight-binding simulations.

However, because a single impurity (ρ = 1/N) cannot destroy the topological phase,
it is clear that the TAI phase should eventually vanish for ρ → 0 at arbitrary W .
Nevertheless, we find numerical evidence for the TAI phase at surprisingly low impurity
densities. A TAI region remains pronounced for densities as low as ρ = 0.1.

5.7 Conclusion

Using a combination of an analytical approach and tight-binding simulations, we have
established that the topological Anderson insulator appears in the Kane-Mele model
that describes potential topological insulators such as silicene, germanene, and stanene
and that can also be realized in optical lattices. We have observed a transition from a
trivially insulating phase to a topological phase at a finite disorder strength and have
mapped out the phase diagram as a function of the staggered sublattice potential (∼ λν)
and the Rashba spin-orbit coupling (∼ λR). The new Anderson insulator exists at the
boundary between trivial and topological insulators for small λR and finite λν , but
not at the boundary between a semimetal and a topological insulator for small λν and
finite λR. Additionally, we found that magnetic disorder does not induce the transition
from trivial to topological phase unless it commutes with Hamiltonian. Since the Kane-
Mele model on a honeycomb lattice describes a wide class of candidate materials for
topological insulators, we hope that our work will trigger experimental efforts to confirm
the existence of the topological Anderson insulator.
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CHAPTER 6

THERMOELECTRICITY IN A JUNCTION BETWEEN
INTERACTING COLD ATOMIC FERMI GASES

The results presented in this chapter were published in

T. Sekera, C. Bruder, and W. Belzig
Thermoelectricity in a junction between interacting cold atomic Fermi gases
Phys. Rev. A 94, 033618 (2016).

Changes have been made to better embed this work into the thesis. The introduction was
expanded.

A gas of interacting ultracold fermions can be tuned into a strongly interacting regime
using a Feshbach resonance. Here, we theoretically study quasiparticle transport in a sys-
tem of two reservoirs of interacting ultracold fermions on the BCS side of the BCS-BEC
crossover coupled weakly via a tunnel junction. Using the generalized BCS theory, we
calculate the time evolution of the system that is assumed to be initially prepared in
a nonequilibrium state characterized by a particle number imbalance or a temperature
imbalance. A number of characteristic features like sharp peaks in quasiparticle currents
or transitions between the normal and superconducting states are found. We discuss sig-
natures of the Seebeck and the Peltier effects and the resulting temperature difference
of the two reservoirs as a function of the interaction parameter (kFa)−1. The Peltier
effect may lead to an additional cooling mechanism for ultracold fermionic atoms.

6.1 Introduction: cold fermionic atoms

A cloud of ultracold atoms potentially allows for an experimental realization of a sys-
tem that reproduces physics of a precisely defined Hamiltonian. It can, therefore, play
the role of a quantum simulator [13]. The advantage is that such a quantum simula-
tor may allow to access information about complex many-body states [125] or about
transport [126] in solid-state systems that is usually inaccessible by classical computer
simulation.
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Figure 6.1: (a) Open triplet channel (red) slightly detuned from the bound state in
the closed singlet channel (blue). (b) The energy difference ∆µB between the open
channel and the closed-channel bound state can be tuned via an external magnetic
field (∆µ is the difference in the magnetic moments of the two channels). Reproduced
from Ref. [127].

Interaction tunability

In condensed-matter systems, the interaction between electrons is fixed by the material
parameters and cannot be tuned. The situation is different in a gas of alkali fermionic
atoms, such as 40K and 6Li, that have a single outermost electron in an s-orbital. A
dilute gas of such atoms can be laser-trapped and cooled down to the regime, where the
interatomic interaction between the atoms can be tuned. Even though this interaction
can be a complicated function of the interatomic distance in general, due to the diluteness
of the gas, it can be represented by a single number: the s-wave scattering length a. 1

In a superconducting system described by the mean-field theory of Bardeen-Cooper-
Schrieffer (BCS) [128], the effective attractive interaction leads to the formation of
Cooper pairs that are composed of spin up and spin down fermions. The two differ-
ent fermionic species in the case of cold atomic gases are two different hyperfine states,
often called spin up and spin down as well. The phenomenon allowing for a tunable in-
teraction between the two atoms of different species is called Feshbach resonance [129],
which we will now briefly describe. Take the specific case of 6Li, where the two hyper-
fine species are mJ = 1/2, mI = 1/2 and −1/2, where mI (mJ) is the total nuclear
(electronic) angular momentum. In the presence of a magnetic field (> 0.05 T), the real
electron spin of a lithium atom is aligned with the direction of the field. Two atoms
colliding in a triplet configuration (open channel) can be in resonance with the singlet
bound state in the closed channel, see Fig. 6.1. Due to the hyperfine interaction be-
tween electron spin and nuclear spin the two channels can mix. Additionally, because
the magnetic moments of the open and closed channels are different, one can tune the
system into the resonance via an external magnetic field B. This leads to a scattering
length given by

a = aBG[1−∆B/(B −B0)] (6.1)
1The letter a should not be confused with the symbol for the lattice constant defined in Part I of the

thesis.
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Figure 6.2: BCS-BEC crossover. The interaction parameter (kFa)−1 is swept from
large negative to large positive values (from left to right). Adapted from Ref. [131].

in the vicinity of the resonance [127, 130]. Here, aBG is the background value of the
scattering length in the absence of coupling to the closed channel, B0 is the field at
which the resonance occurs and ∆B is the width of the resonance.

It is convenient to describe the interaction via the dimensionless parameter (kFa)−1.
Then, by tuning the magnetic field, one can in principle sweep the interaction parameter
from large negative values (BCS state) to large positive values (BEC state). The BCS
state is characterized by largely overlapping Cooper pairs, while the BEC state is a
condensate of tightly-bound two atomic “molecules”. There is a smooth transition (BCS-
BEC crossover) between the two limiting cases, and at (kFa)−1 = 0 the unitary Fermi
gas takes place. These regimes are schematically shown in Fig. 6.2.

Transport

Thermal transport is an important tool to investigate many-body systems. There is
a variety of transport coefficients describing the heat carried by thermal currents as
well as the voltages (in the case of charged particles) or chemical potential differences
(in the case of neutral particles) induced by a thermal gradient (Seebeck effect). The
inverse effect, the build-up of a thermal gradient by a particle current is of great prac-
tical importance (Peltier effect). These thermoelectric effects depend in sensitive ways
on the excitation spectrum of the system close to the Fermi surface [132, 133]. If the
spectrum is particle-hole symmetric (as it is to a good approximation in the bulk of a
metallic superconductor), the Seebeck effect vanishes. Breaking this symmetry in su-
perconducting tunnel junctions allows for refrigeration [134] and/or giant thermoelectric
effects [135–137].

In recent years, transport in ultracold atomic gases has been investigated both theoreti-
cally [138–142] and in a number of experiments [143–147]. Optical potentials were used
to realize a narrow channel connecting two macroscopic reservoirs of neutral fermionic
atoms to form an atomic analogue of a quantum mesoscopic device. Ohmic conduction
in such a setup was observed [143] as well as conductance plateaus at integer multiples
of the conductance quantum 1/h for a ballistic channel [146]. Tuning the interaction
between the atoms by a magnetic field via a Feshbach resonance allowed to drive the
system into the superfluid regime. The resulting drop of the resistance was observed
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experimentally [144]. Moreover, a quantum point contact between two superfluid reser-
voirs was realized [147]. Signatures of thermoelectric effects were observed in the nor-
mal state of these systems [145]. Several theoretical studies also examined mesoscopic
transport [141], thermoelectric effects [148], and Peltier cooling in ultracold fermionic
quantum gases [149, 150]. For a recent review on this topic see Ref. [126].

In this chapter, we investigate the coupling of thermal and particle currents in a junction
of two superfluids. The goal is to explore the possibility to realize dynamical heating
and refrigeration phenomena around the phase transition. To this end, we consider two
reservoirs of interacting ultracold atoms connected by a weak link that we model as a
tunnel junction. The generalized BCS theory [130] provides self-consistency equations
for the gap parameter and the chemical potential as a function of the dimensionless
interaction parameter (kFa)−1. We use the tunneling approach to describe quasiparticle
transport in a system with a fixed number of particles and specify the initial particle
and/or temperature imbalance of the two reservoirs. The resulting time evolution of the
system shows a number of characteristic features: we find transitions between superfluid
and normal states as well as signatures of the Peltier and Seebeck effects. In addition,
there are peaks in the transport current that can be related to a resonant condition in
the expression for the tunneling current.

The rest of this chapter is organized as follows: In Sec. 6.2 we introduce a model Hamil-
tonian for the system consisting of two tunnel-coupled reservoirs as well as the self-
consistency equations for the superconducting gap and the chemical potential in the
generalized BCS theory. We also give expressions for the particle and the heat current.
In Sec. 6.3 we calculate the time evolution of the system with a fixed total number of
particles initially prepared with an imbalance in particle number and/or temperature.
Finally, we conclude in Sec. 6.4.

6.2 Model: tunneling Hamiltonian

Our system, depicted in Fig. 6.3, consists of two reservoirs of interacting neutral fermionic
atoms connected by a weak link that is modeled by a tunnel junction. Experimentally,
the junction can be realized as a constriction in space using trapping lasers. We denote
the number of particles and temperature in the left (right) reservoir as NL(R) and TL(R),
respectively.

The Hamiltonian describing this system is assumed to be

H = HL +HR +Ht , (6.2)

where HL and HR are the BCS Hamiltonians for the two reservoirs

HL =
∑
pσ

ξpc
†
pσcpσ + 1

2
∑
pp′σ

Vpp′c
†
pσc
†
−p−σc−p′−σcp′σ ,

HR =
∑
kσ

ξka
†
kσakσ + 1

2
∑
kk′σ

Vkk′a
†
kσa
†
−k−σa−k′−σak′σ .

(6.3)
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Figure 6.3: Two reservoirs of ultracold fermions connected via a tunnel junction
allowing particle and heat transport. Each reservoir is characterized by the particle
number N and temperature T .

Here, cpσ and c†pσ (apσ and a†pσ) are the annihilation (creation) operators of a fermion
with momentum p and spin σ in the left (right) reservoir, ξp = εp − µ is the single-
particle energy with respect to the chemical potential, and Vpp′ is the (singlet) pairing
interaction. In the context of neutral fermionic atoms the spin degree of freedom is
represented by the two hyperfine states of the atom in consideration. The tunneling
Hamiltonian is

Ht =
∑
kpσ

ηkpa
†
kσcpσ + h.c. , (6.4)

where ηkp is the tunneling matrix element, which in the following we assume to be energy
independent, |ηkp|2 = |η|2.

In the next step, we restrict ourselves to the mean-field approximation for the Hamilto-
nians in Eq. (6.3) introducing the mean-field parameter ∆L for the left reservoir

∆pσ−σ = −
∑
p′

Vpp′
〈
c−p′−σcp′σ

〉
≈ ∆L (6.5)

and analogously for the right reservoir.

In a dilute gas of neutral fermionic atoms it is a good approximation to describe the
interaction Vpp′ between two atoms using a single parameter, the s-wave scattering length
a. Consequently, the dimensionless interaction parameter (kFa)−1 can be included in
the BCS gap equation using a standard renormalization procedure (see, e.g. Appendix
8A of Ref. [130]). The gap equation then takes the form

π

kFa

√
εF =

∫ ∞
0

dε
√
ε

1
ε
− 1
E

tanh
(
E

2T

) , (6.6)

where E =
√

(ε− µ)2 + |∆|2 and εF is the Fermi energy. In Eq. (6.6), there are two
unknown variables µ and ∆. To solve it, the second equation is obtained by fixing the
number of particles

4
3ε

3/2
F =

∫ ∞
0

dε
√
ε

1− ε− µ
E

tanh
(
E

2T

) . (6.7)

For the density of states (DOS) of a 3D Fermi gas in the normal state N 0(ε) ∝
√
ε

(neglecting the confining potential) which we used above, the integrals in Eqs. (6.6)
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Figure 6.4: (Color online) Solution for ∆ (lower blue surface) and µ (upper orange
surface) following from Eqs. (6.6) and (6.7) as a function of (kFa)−1 and T . The
mean-field critical temperature Tc is highlighted in the lower surface as a white curve.
In the BCS limit (kFa)−1 → −∞, the chemical potential µ/εF → 1 and ∆ as well as
Tc approach zero.

and (6.7) converge and no cut-off energy needs to be introduced. The solution to these
equations is shown in Fig. 6.4 as a function of temperature T and interaction parameter
(kFa)−1. As the interaction parameter approaches the BCS limit, (kFa)−1 � −1, the
superconducting gap ∆ and critical temperature Tc are proportional to e−π/(2kF a) and
µ/εF → 1 at T = 0 [130]. On the other hand, towards unitarity, where (kFa)−1 → 0−,
∆ and Tc increase and µ decreases.

Note that this mean-field critical temperature Tc is, in fact, the pairing temperature
below which a significant number of fermions are bound in pairs. In the BCS limit
the real critical temperature and mean-field Tc coincide, however, closer to the unitary
regime, this approximation starts to fail.

An initial state with particle number imbalance or temperature imbalance between the
left and right reservoirs will give rise to particle and heat transport. The particle cur-
rent I and energy current IE are defined as

I = −∂〈N̂L〉
∂t

= i〈[N̂L, H]〉,

IE = −∂〈HL〉
∂t

= i〈[HL, H]〉 ,
(6.8)

where the angular brackets represent the thermodynamic average in the grandcanonical
ensemble and N̂L =

∑
pσ c
†
pσcpσ is the fermion number operator in the left reservoir.

All the operators are in the Heisenberg picture. These expressions for the currents are
general. The commutator on the right-hand side of Eq. (6.8) leads to terms describing
quasiparticle tunneling and Cooper-pair tunneling, see e.g. Ref. [151] for the explicit
evaluation of the particle current and the appendix of Ref. [152] for the evaluation of
the heat current. In the following, we restrict ourselves to quasiparticle transport (i.e.,
ignore terms corresponding to Cooper-pair tunneling). Consequently, the expressions
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for the particle and heat current in the tunneling limit read

I = IL→R − IR→L (6.9)

= 2π|η|2

~
VLVR

∫ ∞
−∞

dENL(E)NR(E)
[
fL(E)− fR(E)

]
and

IQ = IQ,L→R − IQ,R→L

= 2π|η|2

~
VLVR

∫ ∞
−∞

dENL(E)NR(E)

×
[
(E − µL)fL(E)(1− fR(E))− (E − µR)fR(E)(1− fL(E))

]
. (6.10)

Here, VL(R) is the volume and fL(R)(E) the Fermi function describing the left (right)
reservoir. The superconducting density of states

NL(R)(E) = Re {N 0
L(R)(ε)}Re {

|E − µL(R)|√
(E − µL(R))2 −∆2

L(R)

}

contains the energy-dependent density of states N 0
L(R) of a normal 3-dimensional Fermi

gas that can be expressed as

N 0
L(R)(ε) = 1

2π2 (2m
~2 )3/2√ε

= 1
2π2 (2m

~2 )3/2
√
µL(R) + sign(E − µL(R))Re

√
(E − µL(R))2 −∆2

L(R) .

The quasiparticle currents (6.9) and (6.10) can be understood already on a phenomeno-
logical level: the first term in Eq. (6.10) describes quasiparticles with energy (E − µL)
tunneling with probability |η|2 from the left to right reservoir while the second term
describes quasiparticles with energy (E − µR) tunneling from the right to left reservoir.
Similar considerations lead to Eq. (6.9) for the particle current: the terms involving
products of Fermi functions of the left and right reservoirs cancel.

6.3 Time evolution of the system

For finite reservoirs, which is the case we are studying here, a non-equilibrium initial state
(like a temperature or particle number imbalance between the left and right reservoir)
will induce time-dependent transport [141, 148, 149]. To model this phenomenon we
consider the balance equations for the particle number NL(R) and energy EL(R) in each
reservoir that lead to

∂NL(R)
∂t

= ∓I,

∂TL(R)
∂t

= ∓ 1
CVL(R)

(IQ + µLIL→R − µRIR→L) .
(6.11)
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Here, we used the relation between the energy of the left (right) reservoir and temper-
ature change of the system at constant volume CV = ∂E/∂T . The heat capacity in the
(generalized) BCS theory described by Eqs. (6.6) and (6.7) is given by

CV(T ) = 2
T

∫ ∞
−∞

dEN (E)
(
−∂f(E)

∂E

)

×
(
E2 − T

2
∂∆2

∂T
+ T sign(E)

√
E2 −∆2 ∂µ

∂T

)
.

(6.12)

In writing Eqs. (6.11) and (6.12), we have neglected number and energy fluctuations in
the reservoirs which were shown to be small in the regime considered here [153].

To calculate the time evolution of the system, we proceed as follows: starting with
NL(R)(t) = N±δN/2 and TL(R)(t) = T ±δT/2 at time t, we calculate the corresponding
values of µL(R)(t) and ∆L(R)(t) using Eqs. (6.6) and (6.7). Then, using the discretized
form of Eq. (6.11), we obtain NL(R)(t + δt) and TL(R)(t + δt) at time t + δt, and the
procedure is iterated. The time evolution is hence uniquely determined by setting initial
values of N0

L(R), T
0
L(R) and (k0

F,La)−1, where quantities with superscript 0 denote the
values at time t = 0. The interaction parameter on the right side follows from (k0

F,La)−1

and N0
R. Note that in linear response in δN and δT , assuming ∆L = ∆R = 0 and CV =

constant, Eqs. (6.11) can be solved analytically using simple exponential functions[148].
For example, an initial particle number imbalance will decay exponentially with time.

Typically, starting with an initial particle number (temperature) imbalance δN0 (δT0)
will lead to a time-dependent temperature (particle number) imbalance due to the cou-
pling between particle and heat transport. As a consequence, the chemical potential
imbalance δµ = µL − µR and δ∆ = ∆L −∆R will also depend on time. Eventually, as
t→∞, the system reaches an equilibrium state.

In the following we show and discuss three examples of such a time evolution displaying
various quantities characterizing the system as a function of time. The time scale in
Figs. 6.5–6.7 is fixed as follows: time can be expressed in units of εb~/|η|2, where εb =
~2/(2ma2) and |η|2 = |ηkp|2 is the modulus squared of the tunneling matrix element
introduced after Eq. (6.4). As mentioned earlier, the time evolution of a system in the
normal state within linear response corresponds to an exponential decay of the initial
particle number imbalance. To get an order-of-magnitude estimate for the absolute time
scale in seconds, we compare our results for the dimensionless linear response coefficient
1/τ̃ in Ĩ = δN/τ̃ , where the tilde denotes dimensionless quantities, with the experimental
value 1/τ0 = 2.9 s−1 taken from Ref. [143]. This leads to relation

εb~
|η|2

= τ0/τ̃ .

The time scale τ0 represents a characteristic particle transport time scale and is analo-
gous to the RC-time of a capacitor circuit.

Figure 6.5 demonstrates a case in which a sharp peak in the current as a function of
time appears. This can be understood in the semiconductor picture of the tunneling
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Figure 6.5: Time evolution of various quantities: (a) particle current (I) and heat
current (IQ), (b) superconducting gap in the left (∆L) and right (∆R) reservoir, (c)
chemical potential difference (δµ) and difference between gaps in the left and right
reservoir (δ∆), (d) particle number difference (δN) and temperature difference (δT ).
The sharp peak in the currents occurs for the time t at which |δµ| = |∆L −∆R|, i.e.,
when thermally excited quasiparticles are allowed to tunnel between the peaks in the
DOS of the two reservoirs. The initial conditions chosen are N = 2× 104,
δN0/N = 0.04, T 0

L = T 0
R = T0 = 0.07εb, and (k0

F,La)−1 = −1.

process: the BCS DOS at the edges of the gap, E = ±∆, in both reservoirs is diver-
gent, provided that both reservoirs are in the superfluid regime. Hence, if the condition
|δµ(t)| = |∆L(t)−∆R(t)| is satisfied, electrons from a peak in the DOS of one reservoir
are allowed to tunnel into the peak in the DOS of the other reservoir. This condition
creates a logarithmic singularity in the integrals in Eqs. (6.9), (6.10) (in the absence of
gap anisotropy and level broadening) [154]. Moreover, a time-dependent temperature
imbalance δT (t) develops that exhibits a non-monotonic behavior and reaches its max-
imum value δTmax at a certain time, see Fig. 6.5(d). The build-up of this temperature
imbalance is a signature of the Peltier effect. For the case shown in Fig. 6.5 the initial con-
ditions are chosen such that both reservoirs are in the superfluid regime throughout the
time evolution: N = 2 × 104, δN0/N = 0.04, T 0

L = T 0
R = T0 = 0.07 εb, (k0

F,La)−1 = −1.
The corresponding initial values of T 0

c are T 0
c,L = 0.125 εb and T 0

c,R = 0.119 εb.

In Fig. 6.6 we choose a negative initial particle number imbalance δN0/N = −0.04 (while
keeping (k0

F,La)−1 = −1) and an initial temperature T 0
L = T 0

R = T0 = 0.1248 εb that lies
between the initial transition temperatures of the two reservoirs. Since T 0

c,L = 0.119 εb
and T 0

c,R = 0.125 εb in this case, the left reservoir is initially normal and the right one
superfluid. During the time evolution, the left reservoir undergoes a transition to a
superfluid state as shown in Fig. 6.6(b). Interestingly, this is not caused by lowering the
temperature in the left reservoir. On the contrary, the temperature in the left reservoir
actually temporarily rises. But the particle number (and hence the density) in the left
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Figure 6.6: Time evolution of the same quantities as in Fig. 6.5. A negative initial
particle number imbalance and an initial temperature between the transition
temperatures of the two reservoirs leads to a transition of the left reservoir from an
initially normal to a superfluid state at intermediate times. The initial conditions are
N = 2× 104, δN0/N = −0.04, T 0

L = T 0
R = T0 = 0.1248 εb, and (k0

F,La)−1 = −1.

reservoir rises which causes the transition from ∆L = 0 to ∆L 6= 0. As before, the
calculation was done for N = 2× 104.

Figure 6.7 shows a more complex time evolution. The peaks in the current as a function
of time appear for the same reason as in Fig. 6.5(a), but now the condition |δµ| =
|∆L(t)−∆R(t)| is satisfied twice during the time-evolution, see Fig. 6.7(c). The system
also undergoes several superfluid transitions similar to Fig. 6.6(b). Finally, when the
system equilibrates for t→∞, both reservoirs end up in the superfluid state. The initial
conditions were chosen as N = 2 × 104, δN0/N = 0.04, T 0

L = 0.132 εb, T 0
R = 0.115 εb,

T0 = (T 0
L + T 0

R)/2, and (k0
F,La)−1 = −1.

As mentioned earlier, the induced temperature imbalance δT due to an initial particle
number imbalance δN0 is a signature of the Peltier effect. It shows a non-monotonous be-
havior as a function of time with a maximum δTmax at intermediate times, see Figs. 6.5(d)
and 6.6(d). In Fig. 6.8 we show |δTmax| as a function of (k0

F,La)−1 for different values
of the initial particle number imbalance δN0 and initial temperature T 0

L = T 0
R = T0.

Each of the functions is divided into two sections monotonically increasing with increas-
ing (k0

F,La)−1. The left section represents data from a system which is in the normal
state, ∆L(R)(t) = 0, during the whole time evolution, whereas for the right section
∆L(R)(t) 6= 0, as in Fig. 6.5. Between the two sections, there is a “transient” regime,
where superfluid transitions occur, similar to the ones in Figs. 6.6 and 6.7. The general-
ized BCS theory [130] on which our description of the BCS-BEC crossover is based is an
approximation that becomes less accurate on approaching the unitary limit. However,
the increase of the temperature imbalance starts already at relatively large (negative)
values of (k0

F,La)−1 < −2. We therefore expect the trend to be qualitatively correct in
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Figure 6.7: Time evolution of the same quantities as in Fig. 6.5. The system
exhibits several transitions. The peaks in the particle and heat current, zoomed in for
the particle current in the inset, are present for the same reason as in Fig. 6.5. In this
case the condition |δµ| = |∆L −∆R| is satisfied twice during the time evolution. The
initial conditions are N = 2× 104, δN0/N = 0.04, T 0

L = 0.132 εb, T 0
R = 0.115 εb,

T0 = (T 0
L + T 0

R)/2, and (k0
F,La)−1 = −1.

a region approaching (but not too close) to unitarity. This increase of |δTmax| towards
unitarity cannot be explained by particle-hole asymmetry alone but is due to a delicate
interplay of the various factors in the integrands of Eqs. (6.9) and (6.10).

6.4 Conclusion

To summarize, we have investigated particle and heat transport on the BCS side of
the BCS-BEC crossover in a two-terminal setup with two reservoirs of interacting ul-
tracold atoms. We have shown that a system initially out of equilibrium will show
particle and/or thermal currents whose existence leads to characteristic time-dependent
signatures, such as transitions between normal and superconducting states and resonant
features in the currents as a function of time. An initial temperature imbalance can lead
to a difference in chemical potentials at intermediate times. This is a signature of the
Seebeck effect. Conversely, an initial particle number imbalance for two reservoirs at
equal temperatures can lead to the build-up of a temperature difference at intermedi-
ate times, which is a signature of the Peltier effect. The maximal induced temperature
imbalance increases if (kFa)−1 moves closer to the unitarity limit.

In conclusion, this chapter points out a variety of dynamical features visible in the
equilibration process that can be used to pin-point the parameters of the system. An
experimental confirmation of the Peltier effect discussed here is important since an ad-
ditional cooling mechanism for ultracold fermionic atoms will be a valuable resource.
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Figure 6.8: Maximal induced temperature imbalance |δTmax| as a function of
(k0
F,La)−1 for different values of the initial particle number imbalance δN0 and initial

temperature T 0
L = T 0

R = T0. Upper panel: N = 2× 104, T0 = 0.07 εb, and three
different values of δN0/N . Lower panel: N = 2× 104, δN0/N = 0.04, and three
different values of T0. The Peltier effect gets more significant approaching the unitary
point.

Furthermore, transport experiments in systems of ultracold atoms provide a fascinating
laboratory in which the combination of particle and thermal currents can be explored
in a regime that is not accessible to experiments with metallic superconductors.
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CHAPTER 7

SUMMARY

We studied quantum transport of fermionic particles in several systems. In Chapters 3-5
we dealt with transport of electrons in two-dimensional systems with a honeycomb lattice
structure, out of which graphene is the most famous one.

In Chapter 3 we studied the valley polarization of current in a three-terminal device
based on a graphene p-n junction in a uniform quantizing magnetic field. Valley, addi-
tionally to the spin and charge, is a new degree of freedom for electrons in graphene.
It arises within the low-energy description of excitations in materials based on a honey-
comb lattice. The three-terminal device we proposed partitions the valley-unpolarized
current into two branches of valley-polarized currents. Such a valley filter might find its
applications in the field of valleytronics.

In Chapter 4 we investigated a junction between graphene and a superconductor. One
way to create such a junction is by placing a superconducting electrode on top of a
graphene sheet. The superconducting pairing is induced in the sheet via the proximity
effect. If the critical field of the superconductor is large enough, such junctions can be
studied in the quantum Hall regime, where the current in the normal part is carried
by edge states only. We found that in the junction based on graphene there are no
magnetoconductance oscillations in a two-terminal device within the zeroth Landau
level. This is in stark contrast to junctions based on a two-dimensional electron gas in
semiconductor heterostructures. In a three-terminal device, where two leads are in a
normal and one in a superconducting state, we find a spin-filtering effect if the spin-
degeneracy is lifted by the Zeeman field.

Chapter 5 deals with topological insulators on a honeycomb lattice in the presence of dis-
order. As a model, we chose the Kane-Mele Hamiltonian, where the spin-orbit coupling
opens a topologically non-trivial gap. The relevant materials include silicene, germanene,
and stanene. The disorder is represented via random on-site energy. We numerically
calculate the differential conductance map as a function of the disorder strength and
energy. We found that if the system has a topologically trivial gap for zero disorder
strength (two-terminal conductance is zero), it may close and reopen as a topological
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one (two-terminal conductance is 2e2/h) upon increasing the disorder strength. This is
understood via renormalization of the Hamiltonian parameters due to the presence of
disorder. Such a disorder-induced topological insulator is called topological Anderson
insulator. Investigating the effect of magnetic disorder, we found that the topologi-
cal Anderson insulator phase takes place only if the disorder term commutes with the
Kane-Mele Hamiltonian.

In Chapter 6 we studied transport of Bogoliubov quasiparticles between two reservoirs
of ultracold fermionic atoms. In such systems one can tune the strength of interparticle
interactions via the Feshbach resonance. This allows sweeping from the Bardeen-Cooper-
Schrieffer (BCS) regime of large and overlapping Cooper pairs through the strongly
interacting unitary regime to the Bose-Einstein condensate (BEC) regime of tightly-
bound pairs. This is known as the BCS-BEC crossover. Using the generalized BCS
theory, we calculated the time evolution of the weakly-coupled two-reservoir system that
is assumed to be initially prepared in a nonequilibrium state characterized by a particle
number imbalance or a temperature imbalance. We found a number of characteristic
features like sharp peaks in quasiparticle currents or transitions between the normal and
superconducting state.

While the systems studied in this thesis are manifold, they all feature mesoscopic trans-
port of fermions where the quantumness plays a significant role. Research of such systems
is not only fundamentally interesting but gains its relevance in technological applications
due to increasing demand for miniaturization.
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APPENDIX A

NUMERICS IN PART I

A.1 Kwant: an example

The main numerical tool used in the first part of the thesis is the Python package
Kwant [30]. Besides highly efficient and stable algorithms, an essential feature of Kwant
is its user-friendliness. In other words, “... the way one writes down a Hamiltonian in
Kwant is very close to what one would write on a blackboard” [30].

Even though there is plenty of documentation and tutorials on the web [155], we demon-
strate here the usage of Kwant by calculating a two-terminal conductance of a graphene
sample in the quantum Hall regime with Zeeman field. The Python code below is min-
imal, and each box represents a jupyter-notebook cell [156].

First, we import libraries (1-5), define the spin Pauli matrices (7-10) and parameters of
the system (12-17).

1 import kwant , t i nya r ray
2 from math import pi , s q r t
3 from matp lo t l i b import pyplot as p l t
4 from cmath import exp
5 import numpy as np
6

7 s x = t inya r ray . array ( [ [ 0 , 1 ] , [ 1 , 0 ] ] )
8 s y = t inya r ray . array ( [ [ 0 , −1 j ] , [ 1 j , 0 ] ] )
9 s z = t inyar ray . array ( [ [ 1 , 0 ] , [ 0 , −1] ] )

10 s 0 = t inya r ray . array ( [ [ 1 , 0 ] , [ 0 , 1 ] ] )
11

12 t = −1 #nn hopping
13 phi = 0 .01 #magnetic f l u x
14 E F = 0.0 #Fermi energy
15 Delta Z = 0.02 #Zeeman f i e l d
16 L = 60 #length
17 W = 40 #width
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Next, we define a function (1) that creates the system: the scattering region and leads.
The nearest-neighbor hopping in the presence of a magnetic field (27) is position-
dependent but spin-independent. The other two functions defined at lines (33) and
(43) serve to calculate the spin-resolved band structure of a lead.

1 de f make system ( ) :
2 # d e f i n e the honeycomb l a t t i c e
3 l a t = kwant . l a t t i c e . g ene ra l ( [ ( s q r t (3 ) ∗1/2 , 1/2) , (0 , 1) ] ,
4 [ ( 0 , 0) , (1/(2∗ s q r t (3 ) ) ,1/2) ] , norbs = 2)
5

6 de f s c a t t e r i n g r e g i o n ( pos ) :
7 x , y = pos
8 re turn abs ( x ) < L/2 and abs ( y ) < W/2
9

10 de f l ead shape ( pos ) :
11 x , y = pos
12 re turn abs ( y ) < W/2
13

14 # d e f i n e the s c a t t e r i n g r eg i on
15 sys = kwant . Bui lder ( )
16 sys [ l a t . shape ( s c a t t e r i n g r e g i o n , ( 0 , 0 ) ) ] = − E F ∗ s 0 + Delta Z ∗ s z
17 sys [ l a t . ne ighbors ( ) ] = hopping
18

19 # d e f i n e the l e ad s
20 sym = kwant . TranslationalSymmetry ( l a t . vec (( −2 ,1) ) )
21 L 0 = kwant . Bui lder (sym , conse rva t i on l aw = s z )
22 L 0 [ l a t . shape ( lead shape , ( 0 , 0 ) ) ] = −E F ∗ s 0 + Delta Z ∗ s z
23 L 0 [ l a t . ne ighbors ( ) ] = hopping
24 L 1 = L 0 . r eve r s ed ( )
25 re turn sys , L 0 , L 1
26

27 de f hopping ( s i t e i , s i t e j , phi ) :
28 xi , y i = s i t e i . pos
29 xj , y j = s i t e j . pos
30 p h a s e i j = 2 ∗ pi ∗ phi ∗ ( x i − xj ) ∗ ( ( y i + yj ) /2)
31 re turn −t ∗ exp (1 j ∗ p h a s e i j ) ∗ s 0
32

33 de f H k ( lead , phi=phi ) :
34 HL = lead . c e l l h a m i l t o n i a n ( params=d i c t ( phi=phi ) )
35 # get in t e r −c e l l hopping and make i t a square matrix
36 V = lead . i n t e r c e l l h o p p i n g ( params=d i c t ( phi=phi ) )
37 V = np . empty (HL. shape , dtype=complex ) #c r e a t e HL. shape matrix o f

u n i n i t i a l i z e d ( a r b i t r a r y ) data
38 V[ : , : V . shape [ 1 ] ] = V
39 V[ : , V . shape [ 1 ] : ] = 0
40 # return a func t i on that , g iven ’ k ’ , c a l c u l a t e s H( k )
41 re turn lambda k : HL + exp(−1 j ∗ k ) ∗ V + exp (1 j ∗ k ) ∗ V. conjugate ( ) .

t ranspose ( )
42

43 de f e i g (k , p r o j e c t o r ) :
44 Htemp = p r o j e c t o r . conjugate ( ) . t ranspose ( ) @ H( k ) @ p r o j e c t o r
45 e i g s y s = np . l i n a l g . e igh (Htemp)
46 re turn e i g s y s [ 0 ]
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We create the system (1). To get a two-terminal system, we attach the leads to the
scattering region (3-4) and check if the system looks as intended (6). The output is in
Fig. A.1.

1 sys , L 0 , L 1 = make system ( )
2

3 sys . a t t a c h l e a d ( L 0 )
4 sys . a t t a c h l e a d ( L 1 )
5

6 kwant . p l o t ( sys )

Figure A.1: Scattering region (black) with two leads attached (red). Only two unit
cells of each of the leads is shown.

Next, we finalize lead L 0 (1) to make it suitable for numerical calculation. In Kwant,
it is very easy to calculate the band structure of the lead (3-5) and plot it (7-11). The
output is in Fig. A.2.

1 L 0f = L 0 . f i n a l i z e d ( )
2

3 bands = kwant . phys i c s . Bands ( L 0f , params = d i c t ( phi = phi ) )
4 ks = np . l i n s p a c e (−pi , pi , num = 101)
5 e n e r g i e s = [ bands ( k ) f o r k in ks ]
6

7 f , ax = p l t . subp lo t s ( )
8 ax . p l o t ( ks , ene rg i e s , ’ b lack ’ )
9 ax . s e t y l i m ( −0 .5 ,0 .5 )

10 p l t . show ( )

Figure A.2: Band structure of lead L 0.

With the help of the functions H k and eig, we can also calculate (3-7) and plot (9-13)
the spin-projected band structure. The output is in Fig. A.3.
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1 projector down , p r o j e c t o r u p = L 0f . d i screte symmetry ( ) . p r o j e c t o r s
2 H = H k ( L 0f )
3 ks = np . l i n s p a c e (−pi , pi , num = 101)
4 bands down = np . array ( [ e i g (k , pro jector down ) f o r k in ks ] )
5 bands up = np . array ( [ e i g (k , p r o j e c t o r u p ) f o r k in ks ] )
6

7 f , ax = p l t . subp lo t s ( )
8 ax . p l o t ( ks , bands down , ’ b lue ’ )
9 ax . p l o t ( ks , bands up , ’ red ’ )

10 ax . s e t y l i m ( −0 .4 ,0 .4 )
11 p l t . show ( )

Figure A.3: Band structure of lead L 0 with spin resolved bands: spin up (red) and
spin down (blue).

It is equally straightforward to calculate the transmission function as a function of energy
(4) from the scattering matrix and plot it (8-11). The output is in Fig. A.4.

1 s y s f = sys . f i n a l i z e d ( )
2 e n e r g i e s = np . l i n s p a c e ( −0.4 , 0 . 4 , 200)
3 T00 = [ ]
4 f o r energy in e n e r g i e s :
5 smatr ix = kwant . smatr ix ( sy s f , energy , params=d i c t ( phi=phi ) )
6 T00 . append ( smatr ix . t r ansmi s s i on ( ( 1 ) , (0 ) ) )
7

8 f , ax = p l t . subp lo t s ( )
9 ax . p l o t ( ene rg i e s , T00)

10 p l t . t i g h t l a y o u t ( )
11 p l t . show ( )

Figure A.4: Transmission as a function of energy.

A detailed description of the Kwant methods used above can be found on the web [155]
together with plenty other tutorials.
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A note on the ribbon width

Our choice of the coordinate system leads to the following relations between the param-
eter W used in the code and the actual width Wact of the zigzag ribbon

Wact =
√

3
2 (a+ b) + 1

2
√

3
,

a =
⌊
W/2√

3/2

⌋
,

b =
⌊
W/2− 1/(2

√
3)√

3/2

⌋
,

(A.1)

and of the armchair ribbon

Wact =
⌊
(W/2− ε)/(1/2)

⌋
, (A.2)

where bxc is the floor function. The relative difference

δW = Wact −W
Wact +W

(A.3)

vanishes as the system size is increased, as is shown in Figs. A.5(c-d).

Figure A.5: Demonstration that the difference between the parameter W used in
the code and the actual width Wact is negligible and vanishes for wider ribbons.

Another scheme to express the width of a ribbon is shown in Fig. 2 of Ref. [20]. Here,
N is the number of dimer lines for the armchair ribbon and the number of zigzag lines
for the zigzag ribbon. The corresponding relation between Wact and N for the armchair
ribbon is

Wact = N − 1
2 a, (A.4)
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while for the zigzag ribbon it is

Wact =
√

3
2 Na+ a

2
√

3
. (A.5)

Consequently, the condition for the metallic armchair ribbon translates fromN = a (mod 3)
to 2Wact = 2a (mod 3).
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[45] M. M. Grujić, M. Ž. Tadić, and F. M. Peeters, Phys. Rev. Lett. 113, 046601
(2014).

[46] M. O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011).

[47] J. E. Müller, Phys. Rev. Lett. 68, 385 (1992).

[48] S. Park and H.-S. Sim, Phys. Rev. B 77, 075433 (2008).
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