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Summary

In this thesis, we study two different physical systems, namely superconducting circuits
and optomechanical cavities.

In the first part of the thesis, we study superconducting qubits and resonators and their
potential to implement quantum information processing tasks. We propose a circuit quan-
tum electrodynamics realization of a protocol to generate a Greenberger-Horne-Zeilinger
(GHZ) state for transmon qubits homogeneously coupled to a microwave cavity in the
dispersive limit. We derive an effective Hamiltonian with pairwise qubit exchange inter-
actions of the XY type that can be globally controlled. Starting from a separable initial
state, these interactions allow to generate a multi-qubit GHZ state within a time that does
not depend on the number of qubits. We discuss how to probe the non-local nature and
the genuine multipartite entanglement of the generated state. Finally, we investigate the
stability of the proposed scheme to inhomogeneities in the physical parameters and the
weak anharmonicity of transmon qubits.

In the second part of the thesis, we study optomechanical systems in which the po-
sition of a mechanical resonator modulates the resonance frequency of an optical cavity.
The resulting radiation-pressure interaction is intrinsically nonlinear and can be used to
implement strong Kerr nonlinearities and an effective interaction between photons. We
investigate the optical bistability of such a system. The steady-state mean-field equation
of the optical mode is identical to the one for a Kerr medium, and thus we expect it
to have the same characteristic behavior with a lower, a middle, and an upper branch.
However, the presence of position fluctuations of the mechanical resonator leads to a new
feature: the upper branch will become unstable at sufficiently strong driving in certain
parameter regimes. We identify the appropriate parameter regime for the upper branch
to be stable, and we confirm, by numerical investigation of the quantum steady state, that
the mechanical mode indeed acts as a Kerr nonlinearity for the optical mode in the low-
temperature limit. This equivalence of the optomechanical system and the Kerr medium
will be important for future applications of cavity optomechanics in quantum nonlinear
optics and quantum information science.
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Chapter 1

Introduction

The advent of quantum mechanics revolutionized our understanding of physical reality,
explaining many phenomena arising at the smallest scales. In the first place, researchers
devoted themselves to test its validity, never disproved to date, in a wide range of situa-
tions. Progressively, the scope of quantum mechanics was extended to almost all branches
of physics. Major developments in the fields of condensed-matter physics and quantum
optics for instance were accompanied by numerous technological advances. Over the last
decades, the focus of experimental activities moved from the verification of quantum ef-
fects, to the manipulation of the quantum state of systems with a few degrees of freedom.

Nowadays, available experimental techniques allow researchers to control individual
quantum systems such as an atom inside an optical cavity, an ion trapped in an electric
field, an electron spin in a quantum dot, or an artificial atom (e.g., a superconducting
quantum bit) in a superconducting circuit. Recently, even macroscopic mechanical res-
onators have been cooled to their quantum mechanical ground state. These tremendous
achievements have also gradually changed the way we consider quantum mechanics. An
ever growing part of the scientific community rapidly started to explore which potential
applications could take advantage of both the richness of quantum theory and this novel
experimental situation. In particular, sensing and information processing are two promi-
nent examples of tasks that might benefit from the remarkable and intriguing properties
of quantum devices whose state can be reliably controlled and manipulated.

The main feature of quantum mechanics that would make quantum information pro-
cessing devices reach outstanding performance is undeniably the fundamental principle of
superposition. Also, the quantum state of several coupled subsystems can exhibit corre-
lations that are much richer and very different from those classically allowed. In this case
the state of the whole system is said to be entangled. While the complexity of composite
quantum systems can be very challenging at the mathematical level, it simultaneously
enables new applications in the domain of information science.

Information is physical, even in classical devices, in the sense that it is always encoded
in the state of a particular system. The processing, the storage, and the communication
of information are intrinsically physical processes. Thanks to the richness of quantum
correlations, encoding information in systems whose quantum state can be coherently
manipulated can enhance the capabilities or the performance of information processing
devices. For instance, entanglement enables the realization of totally secure quantum
communication schemes without any classical counterpart and certain quantum algorithms
provide exponential computational speedup over classical ones.

In the domain of metrology, quantum effects come into play when we consider the
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Chapter 1. Introduction

ultimate limitations that any sensing device will unavoidably face. To extract quantitative
information about the state of a system we must interact with it. Some limitations on
the measurement sensitivity might arise from the noisy nature of almost any apparatus,
i.e., uncontrolled degrees of freedom spoiling the measurement record. Such technical
noise sources can in principle be eliminated and an ultimate limit on the measurement
performance finds its origin in the intrinsic random nature of quantum mechanics, quantum
fluctuations.

An important prediction of quantum mechanics is that, during the course of a mea-
surement, the imprecision of the record and the disturbance of the measured system – the
back-action – are intimately related and cannot be arbitrarily and simultaneously lowered.
In practice, reaching such ultimate sensitivity where the only remaining source of noise
is of quantum-mechanical origin is not a trivial task. Another consequence of quantum
theory is that there measurement situations where preparing the meter in a non-classical
state can help to reach a better sensitivity.

In this thesis we study two different types of physical systems, namely superconducting
quantum circuits and optomechanical cavities. During the past decade and a half, these
systems have attracted a lot of attention as promising platforms for quantum technolo-
gies. Superconducting circuits have been used to realize a solid-state version of cavity
quantum electrodynamics, where atoms and cavity are replaced by electrically-controlled
integrated elements. This architecture is a candidate to implement some of the elemen-
tary components and functionalities required to perform quantum computations. Cavity
optomechanics explores the effects of the radiation-pressure interaction between light con-
fined inside optical resonators and mechanical oscillators. Optomechanical cavities were
originally studied in the context of interferometric gravitational-wave detectors and this
research helped to understand the implications of quantum mechanics in the measurement
process. More recently, a large assortment of micro-fabricated devices have demonstrated
the potential of optomechanical systems for sensing applications as well as for quantum
information processing tasks such as quantum information storage.

1.1 Quantum information processing

Quantum systems whose components together as well as their mutual interactions can be
accurately controlled might achieve several useful tasks:

• Quantum computation: the execution of quantum algorithms on a register of qubits
to obtain the solution to some computational problem [Nielsen00, Bennett00, Ladd10].
It has been shown that some computational tasks can be carried out more rapidly, in
terms of computational steps, when using quantum algorithms rather than classical
ones. The two most celebrated examples are probably Shor’s factoring algorithm
[Shor97], which provides exponential speedup over any known classical algorithm,
and Groover’s search algorithm [Grover97], whose speedup is quadratic.

• Quantum communication: the reliable transfer of quantum information between
two parties. This task has two major aspects. First, protocols of quantum key
distribution and quantum cryptography enable the transmission of secret information
in a fully secure way [Bennett84, Ekert91, Gisin02, Gisin07, Scarani09]. Quantum
key distribution is actually the first quantum information task to reach the status
of a commercially available technology [ID Quantique, a Geneva-based company]. A
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1.1. Quantum information processing

second important aspect of quantum communication tasks is the transfer of a qubit
of information between two physically different platforms, allowing different modules
in a quantum information processor to communicate [Kimble08].

• Quantum simulation: the simulation of complex quantum systems, in particular
strongly-correlated systems, where numerical or analytical solutions are only ap-
proximate and unsatisfactory [Feynman82, Buluta09, Cirac12].

The two types of systems we will discuss throughout this thesis find direct applica-
tions in the first and second items on this list. Superconducting circuits are a promising
platform for quantum computing, realizing so far an integrated all-electrical version of a
small qubit register on which simple algorithms have been implemented [Devoret13]. A
new generation of micro-fabricated optomechanical devices [Kippenberg08, Aspelmeyer13,
Meystre13] might find applications both in the context of quantum communication and
quantum computing. They are potential candidates to interface different quantum in-
formation encoding platforms [Hill12, Andrews14] and to store quantum information
[Verhagen12, Palomaki13a]. For the purposes of quantum computing with photons, opti-
cal resonators with large optomechanical coupling could implement optical nonlinearities
at the single-photon level [Nunnenkamp11, Rabl11] and nondestructive single-photon de-
tection [Ludwig12].

1.1.1 Basic requirements

A physical system designed to be used as a quantum computer should satisfy stringent
conditions. In short, logical information is encoded in the amplitudes of well-defined basis
states of the quantum system. In the case of a collection of (effective) two-level systems,
we usually talk about the qubit register. The execution of a quantum algorithm requires
the ability to initialize the qubit register in a predefined state, to control its Hamiltonian
while letting it evolve coherently, and finally to measure its state.

The core part of a quantum algorithm is the unitary transformation one needs to apply
on the qubit register. It has been shown that a finite set of single and two-qubit operations
is sufficient and can be used to effectively perform any possible operation that is relevant
for quantum computing. The most common example of such a universal set of quantum
gates is composed of the single-qubit Hadamard gate H, phase gate S, and π/8 gate T
together with the two-qubit CNOT gate. If we denote the two logical states of a qubit by

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
, (1.1)

these gates can be conveniently expressed as

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, T =

(
1 0

0 eiπ/4

)
, (1.2)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.3)

where the two two-qubit computational basis is given by (|00〉, |01〉, |10〉, |11〉). Even if any
unitary transformation acting on the qubit register can be reduced, to arbitrary accuracy,
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Chapter 1. Introduction

to a finite sequence of gates from such a universal set [Williams11], it is generally preferable
if an overcomplete set of gates is available. This is particularly true if the decomposition of
an algorithm requires a large number of simple gates, since decoherence unavoidably sets
in. In any physical implementation, the qubit register will never be completely isolated
from its environment and the interaction with uncontrolled degrees of freedom causes qubit
relaxation and dephasing, introducing errors in the computation.

To circumvent the effect of decoherence, a crucial innovation was the development of
quantum error correction (QEC) methods [Shor95, Steane96, Knill97]. They rely on the
possibility to encode one qubit of information, the logical qubit, in the state of several
physical qubits. Single-qubit errors on a physical qubit, such as bit or phase flips, could
be detected with the help of so-called error syndromes. The latter are non-demolition
measurements of multi-qubit observables that detect if the encoded state was corrupted.
Their outcomes indicate the correcting gate that must be applied to restore the state of
the physical qubits prior to the error. The use of QEC schemes in principle allows the
total calculation time on a quantum computer to be longer than the decoherence time of
its physical subcomponents. However, the implementation of QEC methods, essential for
fault-tolerant quantum computation [Preskill98], requires high gate fidelities at the level
of the physical qubit. An often cited threshold for the required error rate of single and
two-qubit quantum gates is 10−4 [DiVincenzo00]. This translates to the condition that
each gate must be performed within a time that is typically 10’000 times shorter than the
decoherence time of the qubit.

Another more pragmatic approach to limit the effect of decoherence is to have available
a larger set of simpler multi-qubit gates. Experimentally, single-qubit gates are rarely the
main issue and can be performed by rather fast local manipulation only, provided sufficient
control parameters are accessible and can be tuned in situ. Controlled two-qubit gates are
more problematic, because they require an (effective) interaction between the qubits. The
time required for such operations is inversely proportional to the interaction strength and
is the main limiting factor on how many quantum gates can be applied before decoherence
sets in. The application of successive controlled two-qubit gates are in particular needed for
the creation of entanglement among many qubits. These entangled states are an essential
resource for any quantum information processing tasks, and their generation has been the
subject of intense experimental efforts.

1.1.2 Implementing a quantum information processor

Many different physical platforms are considered as potential candidates for the imple-
mentation of a small register of qubits that can be accurately controlled and manipulated.
Among these, superconducting circuits have been used to successfully realize a solid-state
version of cavity quantum electrodynamics [Haroche06, Raimond01, Mabuchi02] in the
microwave domain, where artificial atoms – the superconducting qubits – couple to a
common microwave resonator. External control lines allow to control the frequency of
the qubits in situ while the resonator acts as a quantum bus mediating qubit-qubit in-
teractions by virtual excitations, making possible the implementation of two-qubit gates.
The microwave resonator plays additional roles: it serves as a filter to protect the qubits
against the surrounding electromagnetic environment, improving its coherence properties,
and can carry microwave pulses that perform single-qubit operations. This technology
has reached a quite mature stage and the latest achievements suggest that experiments
with superconducting qubits could implement simplified QEC schemes in a not so distant
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1.2. Quantum metrology

future [Devoret13], first steps towards this goal having already been reported [Reed12].
Another possibility that is currently pursued to realize a quantum information proces-

sor is to use optical networks, where qubits are encoded with photons [O’Brien07]. An
important requirement for photonic quantum information processing is the ability to imple-
ment nonlinear interactions between photons, which are crucial for the realization of two-
qubit gates. These interactions can in principle be obtained with optical media exhibiting
large Kerr nonlinearities [Milburn89], but in practice their implementation turned out to be
very challenging. A major breakthrough was made by Knill, Laflamme, and Milburn who
showed that probabilistic two-qubit gates could be realized with linear optical elements,
single-photon sources and detectors only, using additional ancilla qubits and post-selection
[Knill01]. This approach sounds particularly promising but its non-deterministic nature
could prevent an implementation in its original form. Possible improvements of this scheme
have been explored that make use of quantum teleportation protocols to enhance the suc-
cess probability of two-qubit gates (see e.g. [Kok07, O’Brien09] and references therein).
Despite these conceptual advances, the implementation of effective photon-photon cou-
pling is still highly desirable. In particular, it was realized that even small nonlinearities –
not large enough to realize deterministic two-qubit gates – can still offer potential benefits
in the context of photonic quantum computing [Nemoto04, Barrett05, Munro05].

Like a medium with an optical nonlinearity, optomechanical systems could find applica-
tion for the realization of photonic two-qubit gates. By coupling the motion of a mechanical
resonator to the light field inside an optical cavity, the resulting optomechanical interaction
is intrinsically nonlinear. While in most experiments this radiation-pressure interaction is
in general fairly weak, the progress in the design and the fabrication of such devices and
the most recent accomplishment suggests that they may soon make a significant step to-
wards the implementation of single-photon nonlinearity [Safavi-Naeini12, Chan12]. In the
future, optomechanical devices might offer an alternative to other potential approaches
that are pursued to implement effective photon-photon interactions, such as cavity QED
setups using single atoms [Turchette95, Rauschenbeutel99, Birnbaum05] or photonic crys-
tal nanocavities [Yoshie04, Hennessy07].

Optomechanical systems could play an important role as interfaces between different
quantum information platforms. An important functionality that is thought to be real-
izable with such devices is the transfer of a quantum state of light from the optical to
the microwave domain or vice versa [McGee13]. A first proof-of-principle experiment has
been reported recently with a setup consisting of two optical and microwave resonators,
each one coupling to a common mechanical element via the radiation-pressure interaction
[Andrews14]. The ability to transfer quantum information from one physical platform
to another is also an important functionality with clear applications for the storage of
quantum information. Lately, a major breakthrough was the demonstration of coherent
coupling between a mechanical degree of freedom and an optical mode. This allowed to
realize the transfer and retrieval, after some time, of the state of a light field into a me-
chanical mode that was previously cooled to its ground state [Palomaki13a, Verhagen12].

1.2 Quantum metrology

Any measurement device unavoidably faces some limitations on how small a signal can
still be detected. Real experimental outcomes are subject to noise sources that can mask
the signal. Noise of technical and thermal origin can be avoided with appropriate control
or cooling techniques, but sensitive measurements are ultimately limited by a type of noise
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Chapter 1. Introduction

that find its roots in quantum fluctuations.

Interferometric sensing is a situation where non-classical states find direct applications
and could help to achieve a better measurement sensitivity when some resources, such as
signal integration time, are limited. To illustrate this capability of non-classical states in
the measurement process, we will first consider the situation where a light field is used to
monitor the position of an object.

1.2.1 Quantum noise and quantum limits

Before specifying how systems with quantum correlations might be useful for measurement
tasks, it seems appropriate to first exemplify the consequences of quantum mechanics in
the measurement process. For this purpose, we consider the most relevant example of a
measurement in the field of optomechanics: the interferometric detection of gravitational
waves. It is the precise understanding of the implications of quantum mechanics in the
measurement process that helped developing practical tools for the observation of this
fundamental effect.

The existence of gravitational waves was predicted by general relativity but still lacks
direct experimental evidence. These are tiny perturbations of the space-time curvature,
due to violent astrophysical events, traveling through space at the speed of light and caus-
ing tidal forces on matter. Due to their extremely weak amplitudes, measuring them is a
formidable task and requires very stringent experimental conditions. The initial approach
that is still currently pursued consists in continuously measuring the displacement of large
test masses forming the end mirrors in a L-shaped interferometer.1 In short, a light beam
is divided by a first beam splitter (input port), propagates along two different optical
paths, is recombined by a second beam splitter. The accumulated phase shift contains
information about the length difference between the two arms of the interferometer and
can be measured with balanced detection of the two output modes.

The phase sensitivity of such a measurement device is ultimately limited by the effects
of quantum noise. The Heisenberg uncertainty relation sets a lower threshold on the
achievable precision in the ideal case where the whole setup is at zero temperature, i.e., all
sources of thermal fluctuations influencing the position of the test masses and the statistics
of the light field have been eliminated. The laser shot noise and the mirrors’ zero-point
motion, both intrinsically quantum features, introduce noise in the measurement outcome.

When the laser light entering the interferometer is in a coherent state, the so-called
shot-noise limit, sometimes also referred to as standard quantum limit, applies to the phase
sensitivity. The electromagnetic field can be decomposed in two quadrature components
– the in-phase and out-of-phase amplitudes of the electromagnetic wave – usually called
amplitude and phase quadratures of the field. A coherent state is a quantum state of the
light which most closely resembles a classical field. In such a state, both amplitude and
phase quadrature uncertainties are identical and equal to those of the vacuum: their prod-
uct reaches the lowest possible value according to the Heisenberg uncertainty principle.
The phase sensitivity of an interferometer scales as 1/

√
N , where N is the average photon

number of the coherent light state.

The imprecision noise could then be reduced by raising the input power. At some
point, the shot-noise of the light exerts some back-action on the end mirror that limits
the overall sensitivity at higher input power. Such a limitation actually arises in any
situation where one tries to measure an observable that does not commute with itself at

1For instance, LIGO and VIRGO operate Michelson interferometers with Fabry-Pérot arms.
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different times, like the position of a mechanical resonator. More precisely, this trade-off
between imprecision and back-action noise applies to any linear measurement scheme, i.e.,
that couples linearly the measured observable and an observable of the meter. By raising
the system-meter coupling, the imprecision noise is reduced, but the back-action noise is
increased. As a consequence, there is an optimal coupling at which the overall noise is
minimal. In the case of interferometric position measurements, the back-action of the light
on the mechanical motion is called radiation-pressure shot-noise.2

Caves suggested that a light source exhibiting a particular type of non-classical prop-
erty, named squeezing, might allow to reach a better phase sensitivity [Caves80a, Caves81],
a possibility that was further investigated and verified [Bondurant84]. A squeezed state of
light has reduced fluctuations in one of its quadratures. If it has less noise in one quadra-
ture than a coherent state, the other quadrature exhibits larger fluctuations to satisfy the
Heisenberg uncertainty relation. When phase-squeezed light is fed into an interferometer,
the phase sensitivity is increased compared to the case of a coherent state with the same
average photon number N . This was a major breakthrough as the total power needed
to achieve a given phase-sensitivity is reduced and allows to limit the back-action of the
radiation-pressure shot noise. Using a squeezed state, the limit on the phase sensitivity
scales as 1/N large input power and is known as the Heisenberg limit. While the 1/

√
N

scaling of the standard quantum limit relates to the use of coherent light, or more generally
to the use of a classical resource, the 1/N scaling of the Heisenberg limit is the quantum
limit.

1.2.2 Sensing applications of optomechanical devices

The generation of squeezed light requires a nonlinear optical medium. Such nonlinearities
can be obtained effectively, with atoms in a cavity for instance [Slusher85], or with ma-
terials exhibiting bulk optical nonlinearities [Wu86]. As we have seen, squeezed light is
useful for displacement sensing. Conversely, it has been suggested early on that optome-
chanical systems could themselves act as effective Kerr nonlinear media and used for the
generation of squeezed light [Fabre94, Mancini94, Corbitt06]. This has recently become
an experimental reality as three very different types of optomechanical devices have shown
this effect [Brooks12, Safavi-Naeini13, Purdy13b].

The optomechanical interaction makes possible to use the influence of the light field
to control the mechanical motion. A prominent example is the development of cavity-
assisted cooling techniques [Mancini98, Marquardt07, Wilson-Rae07, Genes08b]. In a se-
ries of experiments, exquisite control made possible to cool mechanical degrees of freedom
into their ground state [Teufel11a, Chan11]. More generally, feedback and cooling tech-
niques have attracted much attention, especially because of their important implications in
the domain of ultra-sensitive force detection [Teufel09, Abbott09b, Winger11, Krause12,
Cohen13, Iwasawa13]. The optomechanical interaction could also allow the preparation
of non-classical states of a mechanical object. For instance, the ability to generate a me-
chanical squeezed state with position uncertainty below the level of vacuum fluctuations
could lead to enhanced sensitivity when detecting small displacements [Mari09].

Finally, particularly relevant in the context of cavity optomechanics are so-called quan-
tum non-demolition measurements, suggested early on by Braginsky [Braginsky80]. Such
measurements can be realized when the Hamiltonian of the measured system commutes

2Even though it has been predicted for more than thirty years, the first experimental evidence of
radiation-pressure shot noise on a macroscopic object was reported only recently [Purdy13a]
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with the system observable. Since the system observable is a constant of motion, a rep-
etition of the measurement produces the same outcome, hence the term quantum non-
demolition. At first sight, the optomechanical interaction should forbid this type of mea-
surement for the position of mechanical resonator. However, the position of an harmonic
oscillator commutes with itself at stroboscopic times, allowing to measure a single quadra-
ture of the mechanical motion while the radiation-pressure back-action only affects the
other quadrature [Clerk08]. A first proof-of-principle experiment was realized with an
optomechanical device operating in the microwave domain [Hertzberg10]. Conversely,
these devices could take advantage of the fact that the radiation-pressure interaction is
intrinsically nonlinear and couples to the light intensity. By monitoring the mechanical
displacement, one could perform a quantum non-demolition detection of the light inten-
sity [Pinard95]. If the optomechanical interaction is strong enough, such a measurement
scheme could implement nondestructive single-photon detection [Ludwig12].

1.2.3 Role of quantum correlations

As discussed above, squeezed states represent a particular type of non-classical states that
are useful for optical interferometry. We now try to show how, in general, states exhibiting
quantum correlations might be useful in the context of metrology. For this purpose, we
briefly introduce a general measurement scheme which both highlights the benefits from
using highly entangled states and applies to interferometric sensing in a broad sense. We
emphasize that the following discussion involves simplified arguments. It is inspired by
Ref. [Giovannetti06], in which a more rigorous treatment can be found.

We model a measurement outcome as the estimation of some parameter λ, obtained by
preparing some system – the probe – in the state |ψ〉, letting it evolve under the influence
of some unitary operator Û , and finally measuring an observable Ô. The information
about the parameter λ is contained in the evolution of the state |ψ〉 and this effect is
captured by a unitary operator of the form Û = exp(−iλÂ), where Â is a known Hermitian
operator Â =

∑
i ai|ai〉〈ai|. Assuming the probe is initially in the state |ψ〉 =

∑
i ψi|ai〉,

by measuring the observable Ô (which must satisfy [Â, Ô] 6= 0) one obtains

〈Ô〉 = 〈ψ|eiλÂÔe−iλÂ|ψ〉 =
∑
i,j

eiλ(aj−ai)ψ∗jψi〈aj |Ô|ai〉. (1.4)

The uncertainty on the parameter λ can be estimated from ∆λ = ∆O
∣∣d〈Ô〉
dλ

∣∣−1
, where ∆O

denotes the uncertainty of the operator Ô evaluated in the final probe state Û |ψ〉.
Repeating the measurement N times or using N independent probes that share only

classical correlations is formally equivalent and can be described with a fully separable
probe state |ΨR〉 and a measurement of ÔR given by

|ΨR〉 =

N⊗
k=1

|ψ〉k, ÔR =

N⊕
k=1

Ôk. (1.5)

According to estimation theory, we have

∆λR =
∆OR

|d〈ÔR〉/dλ|
=

1√
N

∆O

|d〈Ô〉/dλ|
. (1.6)

This relation spells out the error scaling when estimating a parameter with N repeated
measurements. Using the Heisenberg uncertainty relation and the fact that |〈[Â, Ô]〉| =
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|d〈Ô〉/dλ|, the error ∆λR can be related to ∆A, the spread of the operator Â in the initial
state |ψ〉,

∆λR ≥
1

2
√
N∆A

. (1.7)

The minimal error on the parameter λ is obtained by preparing all the probes in the state
(|aM 〉 + |am〉)/

√
2, where am and aM are the respective smallest and largest eigenvalues

of the operator Â, such that the value ∆A = (aM − am)/2 is maximized. To saturate the
inequality (1.7) an appropriate observable would be for instance Ô = |am〉〈aM |+|aM 〉〈am|,
yielding 〈Ô〉 = cosλ(aM − an) and ∆O = | sinλ(aM − am)|. In this case we have

∆λR =
1√

N(aM − an)
. (1.8)

This 1/
√
N scaling of the minimal error is sometimes called standard quantum limit.

Now we consider the situation where the same resource is available, i.e., N probes un-
dergoing an evolution given by the unitary operator Û⊗N , but we allow for a measurement
of the observable ÔN = Ô⊗N , acting separately on the probes, and a highly entangled
state of the N probes.

|ΨN 〉 =
1√
2

(
N⊗
k=1

|aM 〉k +
N⊗
k=1

|am〉k
)
. (1.9)

Since 〈ÔN 〉 = cosNλ(aM − am) and ∆ON = | sinNλ(aM − an)|, we obtain

∆λN =
1

N(aM − an)
, (1.10)

and the minimum error is reduced by a factor
√
N . The above relation for the minimal

error and the N−1 scaling express the so-called Heisenberg limit.
A practical application of this formalism is optical interferometry. In particular, it

applies to the situation where one tries to detect a difference in the length of two optical
paths. In this case, the quantity that one tries to measure is the accumulated phase
shift ϕ that photons acquire by passing through the interferometer. Denoting by â1,2 the
annihilation operators associated with the two paths of the photons, the unitary operator is

Û = e−iϕÂ, where Â = â†1â1−â†2â2. Single photons entering the interferometer after having
passed through a first beam splitter are described by the state |ψ〉 = (|1, 0〉 + |0, 1〉)/

√
2.

An appropriate observable is, for instance, Ô = b̂†1b̂1 − b̂†2b̂2, where b̂1,2 = (â1 ± â2)/
√

2
are the output mode operators after the two beams have been recombined on a second
beam splitter. This form of the observable describes balanced photo-detection and leads
to 〈Ô〉 = cosϕ. Accordingly, when N single photons passing through the interferometer
are measured, the corresponding phase uncertainty is ∆ϕ = 1/

√
N . We recover the

shot-noise limit that applies to coherent states in optical interferometry. This emphasizes
the classical nature of a coherent light beam in the sense that it can be regarded as a
stream of independent photons, i.e., sharing only classical correlations, passing through
the interferometer and acting as N uncorrelated probes. To reach the Heisenberg limit,
one would need to introduce quantum correlations between the photons, i.e., prepare them
in a highly entangled N00N state |Ψ〉 = (|N, 0〉+ |0, N〉)/

√
2.

Another situation where an improvement of the sensitivity could be achieved by re-
sorting to highly entangled states of two-level systems is the case of frequency or time
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measurements [Bollinger96, Huelga97]. For instance, atomic clocks are based on interfer-
ometric sensing. Schematically, one prepares a two-level system in the ground state | ↓〉,
applies a π/2-pulse to create a superposition (| ↓〉 + | ↑〉)/

√
2 of the ground and excited

state | ↑〉, and applies a second π/2-pulse after some time t. One can infer the elapsed
time between the two pulses by measuring the probability that the final state is | ↓〉, given
by p↓ = cos2(ωt/2) where ω is the known transition frequency between the ground and
excited states. If one starts from the maximally entangled state (| ↓ . . . ↓〉+ | ↑ . . . ↑〉)/

√
2,

the sensitivity can be increased by a factor
√
N , where N is the number of entangled

two-level systems.

1.3 Thesis overview

This thesis is organized as follows. In Chapter 2, we review the basic features of supercon-
ducting circuits and how they are used to engineer qubits, based on nonlinear Josephson
junction elements, as well as microwave transmission lines and resonators. We explain
why these systems can effectively be described with a few electromagnetic degrees of free-
doms at low temperatures. In particular, we discuss the properties of superconducting
charge qubits and how they can be strongly coupled to a microwave resonator, realiz-
ing an integrated and electrically-controlled version of cavity quantum electrodynamics
(QED). Finally, we mention the most significant achievements that have been experimen-
tally demonstrated within this approach.

Entangled states are important for several tasks of quantum information processing,
such as fault-tolerant quantum computing or quantum secret sharing. In Chapter 3, we
present a one-step deterministic procedure to generate Greenberger-Horne-Zeilinger (GHZ)
states in the standard circuit QED architecture. We consider the case of superconducting
transmon qubits coupled to a single mode of a transmission line resonator. In the dis-
persive regime, an effective pairwise qubit interaction allows to produce, starting from a
separable state, a GHZ state in a time that does not depend on the number of qubits.
This scheme implements an idea of Mølmer and Sørensen that was originally proposed to
entangle trapped ions [Mølmer99]. We discuss a way to confirm the genuine multi-qubit
entangled nature of the generated GHZ states with an entanglement witness relying on the
Bell-Mermin operator. The consequences of undesirable effects, such as inhomogeneous
qubit-resonator coupling or the weak anharmonicity of transmon qubits, are studied and
quantified.

Chapter 4 introduces the prototypical model of cavity optomechanics and several of
its realizations. We present the basic principles of the radiation-pressure force and how it
couples the light field inside a cavity to the motion of a mechanical object. The important
parameters and their relevance for certain applications are discussed and a brief overview
of the model phenomenology is given. A survey of recent implementations, based on
standard optical Fabry-Pérot cavities, whispering gallery modes, photonic crystals, and
superconducting microwave resonators is provided. Finally, typical parameter regimes and
promising features achieved with these respective implementations are summarized.

The optomechanical interaction, being intrinsically nonlinear, might potentially be
used to create and manipulate non-classical states of the optical mode. It was, for instance,
realized that the radiation-pressure interaction might produce an effective photon-photon
interaction, allowing to exhibit quantum effects such as photon antibunching [Kronwald13]
or photon blockade [Rabl11]. Chapter 5 is dedicated to the comparison between a generic
optomechanical system and an optical cavity filled with a Kerr medium. These two systems
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are investigated with regards to optical bistability. The steady-state mean-field equations
of an optomechanical system are well-known to be equivalent to those of a Kerr medium,
with three possible solutions in certain regimes. However, the optomechanical system, due
to position fluctuations of the mechanical resonator, exhibits a richer stability diagram;
the upper branch can become unstable at high driving power. We identify the parameters
that indicate in which regime the mechanical mode effectively acts a Kerr nonlinearity for
the optical mode.
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Chapter 2

Quantum electrodynamics with
superconducting circuits

Superconducting circuits provide a promising solid-state platform to perform quantum
information processing tasks. In the present chapter, we provide the basic ingredients to
understand how these circuits can realize a solid-state version of cavity quantum electro-
dynamics (QED). We describe how superconducting resonators and qubits are physically
implemented, coupled, and controlled. We also discuss how realistic experimental condi-
tions affect the coherence of such systems.

As mentioned in the introduction, physical quantum systems tailored to be used as
the fundamental building blocks of a quantum information processor – the quantum bits
– and to implement logical operations – quantum gates – should satisfy some essential
requirements.

A single ideal qubit has two well-defined accessible energy levels, defining the logical
states of the qubit. The preparation of a single qubit in any desired linear superposition
of the two logical states is a first condition, for instance by initialization in a predefined
state and subsequent application of a single-qubit gate. Secondly, we need the ability
to perform a minimal set of logical operations – a universal set of quantum gates – on
any pair of qubits, while preserving the quantum coherence between them. Finally, an
accurate readout of the state of the qubits has to be possible. These minimal but restrictive
conditions, which form the first five DiVincenzo criteria [DiVincenzo00], have set a list of
experimental goals and stages to be achieved for the successful realization of quantum
computing devices.

Over the last nearly two decades, several research groups have been working on demon-
strating the potential of integrated quantum circuits to perform these operations and the
progress so far is impressive. The first stage was the design and the characterization
of a single physical qubit, followed by the demonstration of single-qubit operations or
quantum gates. The circuit QED architecture, where multiple charge qubits are capaci-
tively coupled to a common microwave resonator, was a major breakthrough [Wallraff04].
Initially, this architecture allowed to perform two-qubit gates, but was rapidly further
improved and made possible the execution of simple quantum algorithms on three qubits
[DiCarlo10, Fedorov12, Reed12]. Another remarkable achievement was the realization of
quantum non-demolition (QND) measurements of the state of superconducting qubits,
a crucial experimental step before envisioning the implementation of simplified quantum
error correction (QEC) schemes. According to Ref. [Devoret13], proof-of-principle demon-
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strations of QEC algorithms, that is the storage of a single bit of quantum information
into a small register of qubits for a time that is significantly longer than the decoherence
time of its physical sub-components, represent the next experimental challenge.

2.1 Superconducting circuits in the quantum regime

At first sight, it is not obvious why a superconducting qubit made out of N ∼ 109 − 1012

atoms behaves like a quantum-mechanical object with only one or few relevant quantized
degrees of freedom. How can a flux qubit be in a coherent superposition of two states with
supercurrents, made of 2N electrons, flowing in opposite direction? How can a charge
qubit be in a superposition of states with precisely N and N + 1 Cooper pair?

The answer to these questions requires a quick look at the underlying physical mecha-
nisms allowing us to quantize the relevant degrees of freedom of superconducting circuits.
The first effect, superconductivity, explains how we can neglect many electronic degrees of
freedom in these circuits. The second one, Coulomb interaction, prevents the appearance
of undesired collective excitations of the superconducting electrons. In short, supercon-
ductivity is at the origin of currents that flow without dissipation and also provides a
straightforward solution to the problem of decoherence. The strong Coulomb repulsion
lifts collective excitations known as bulk plasmons up to optical frequencies. Another
interpretation is that these effects gap both the single-particle and plasmon excitations,
freezing them into their quantum mechanical ground state at low temperatures. In the
following two sections, we briefly discuss these effects and the consequence for supercon-
ducting circuits.

2.1.1 Superconductivity

A detailed description of the microscopic theory of superconductivity is beyond the scope
of this thesis and can be found in standard condensed-matter textbooks [Tinkham96,
Marder10]. We only review briefly the phenomenological properties of conventional BCS
superconductors such as aluminum or niobium, used in most of the experiments.

The BCS theory predicts how an effective phonon-mediated attractive interaction be-
tween the electrons causes the formation of a condensate of electrons pairs near the Fermi
level, the Cooper pairs [Cooper56, Bardeen57]. As a result of this condensation, an energy
gap of 2∆SC opens in the single-particle density of states around the Fermi level, which
means that 2∆SC is the required energy to break a Cooper pair and create an excited
state. An important prediction of the theory was that the superconducting gap at zero
temperature, ∆SC, is proportional the superconducting transition temperature Tc, via the
relation ∆SC = 1.76kBTc.

Importantly, below the critical temperature Tc, a current can flow without dissipation
in a superconductor, hence its name. To be more precise, a superconductor shows no
resistance for oscillating currents whose frequency is much smaller than the superconduct-
ing gap, ω � 2∆SC/~. Therefore, a resonant superconducting circuit may exhibit large
quality factor if its frequency is small compared to ∆SC/~. This is of course a good omen,
since low energy dissipation rates are generally a synonym of longer-maintained quantum
coherence, if any.

Another consequence of temperatures well below Tc is the exponential suppression
of single-particle excitations. Conducting electrons near the Fermi level form Cooper
pairs, behaving effectively as bosons, that are condensed into a single non-degenerate
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macroscopic ground state. This clarifies the quantum-mechanical nature of macroscopic
quantities such as the current or the charge. The latter are precisely the two dynamical
degrees of freedom we aim to quantize in the resonant superconducting circuits we are
dealing with.

In a resonant circuit, the charge and the current are conjugated degrees of freedom of
electromagnetic modes and are related to a voltage (via a capacitance C) and a magnetic
flux (via an inductance L) respectively. The excitation energy or level spacing of such
electromagnetic modes is therefore approximately ω ' 1/

√
LC. A condition for supercon-

ducting circuit to properly operate in the quantum regime is kBT � ~ω � kBTc. In this
regime, dynamical variables such as the voltage of the magnetic flux are promoted to the
rank of quantum mechanical operators.

A superconductor like aluminum has a superconducting transition temperature Tc =
1.2 K (∆Al = 0.17 meV). Due to their size and geometry, superconducting qubits and
quantum buses have resonance frequencies in the microwave domain, of the order of 10
GHz (∼ 0.5 K), much smaller than the superconducting gap in aluminum, 2∆Al/h ' 82
GHz, or niobium 2∆Nb/h ' 740 GHz. For these reasons, superconducting circuits are
operated at low temperatures, around 10-30 mK (∼ 0.2-0.6 GHz), generally in dilution
refrigerators.

2.1.2 Coulomb interaction and plasma oscillations

According to the BCS theory of superconductivity, only the single-particle excitations are
gapped. However, other types of collective excitation are present in an interacting electron
gas. The Coulomb interaction plays an essential role in limiting the number of low-energy
collective degrees of freedom in superconducting circuits.

The Coulomb interaction is long-ranged. In momentum space, its strength Vq is propor-
tional to 1/q2 and it is clear that this interaction is more important for small momentum
transfer q. It indeed plays a role for collective excitations known as plasma oscillations.
Classically, plasma oscillations can be seen as charge density waves of the electron gas over
the ionic background. We give hereafter a simple description of these collective excitations.

We define the electron charge density as ρe(r, t) = −e[ne + δn(r, t)], where −e is
the electron charge, ne describes the average electron number density compensating the
positively charged ionic background, and δn the fluctuations around ne. If v(r, t) is the
velocity field of the electrons, the current density can be approximated by j = −enev.
We further assume that the motion of the electrons satisfy Newton’s law mev̇ = −eE
and the electrical field Gauss’s law ∇ · E = −eδn/ε, where me is the electron mass and ε
the permittivity of the medium. The current j and charge fluctuation δn can be related
through the continuity equation ∇ · j− eδṅ = 0. We obtain an equation of motion for δn
of the form

δn̈+ ω2
pδn = 0, (2.1)

where ωp =
√

nee2

meε0
is the bulk plasma frequency.

This model is of course very incomplete. A quantum mechanical treatment of the inter-
acting electron gas, using the random-phase approximation, leads to the gapped dispersion
relation [Bruus04]

ω(q) = ωp

[
1 +

3

10

(
qvF
ωp

)2
]
, (2.2)
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where vF is the Fermi velocity. Quantum mechanically, ~ω(q) is the energy required to
create an elementary excitation with wave vector q of this collective plasma mode. Such
a quasiparticle is usually called a bulk plasmon.

In aluminum we have for instance ~ωp ' 14.7 eV (corresponding to 1.7 × 105K or
3.57 × 106 GHz). Hence, at low temperatures down to the Kelvin range, bulk plasmon
are completely absent in superconducting circuits. In conclusion, the Coulomb interaction
is important to understand why superconducting circuits can be described with so few
relevant quantized degrees of freedom. Bulk charge density fluctuations being frozen to
their quantum-mechanical ground state, the remaining dynamical degrees of freedom are
collective plasma excitations that are due to the finite size of superconducting circuit.
These excitations are the resonant modes obtained from the lumped-element description
of such superconducting circuits. They have frequencies in the gigahertz range and are
the modes we aim to quantize, as we discuss in the next section.

2.2 Canonical quantization of an electrical circuit

Now that the basic mechanisms allowing us to understand why superconducting resonant
circuit behave quantum-mechanically have been reviewed, we present the standard proce-
dure of canonical quantization of such systems [Devoret97]. The first step is to describe
these integrated circuits in terms of lumped elements. Then, we derive a classical Hamil-
tonian for variables such as the charge, the voltage, the current, or the magnetic flux.
These variables are then promoted to the rank of operators, whose dynamics is governed
by quantum mechanics.

2.2.1 Lumped-element description

The elementary components of a quantum information processor – qubits and quantum
buses – made out of superconducting circuits can be described in terms of lumped ele-
ments. A quantum bus is modeled as a one-dimensional waveguide supporting stationary
electromagnetic modes with harmonic energy spectrum. Its physical properties like its
resonant frequency and its damping rate are understood from simple models involving
only linear circuit elements: capacitors, inductors, and resistors. Superconducting qubits
– our artificial atoms – are based on the non-dissipative Josephson junction element, which
provides the nonlinearity required for an anharmonic energy spectrum. We briefly list the
linear lumped elements used to describe superconducting circuits and specify our notation
and convention. Josephson junctions will be discussed later in Sec. 2.4.1.

Capacitor

The application of a potential difference V = V2 − V1 across a capacitor produces a
accumulation of charge ±Q on each plates of the capacitor. The capacitance C is a
positive quantity relating Q and V ,

Q = CV.
V2

I

+Q
C
−Q V1

Notice that the current flowing across a capacitor is I = Q̇ = CV̇ .
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−Q
C

+Q

V
I

L

Figure 2.1: Resonant LC circuit. With the chosen convention, the current in the loop
(flowing counterclockwise) and the charge on the capacitor plates are related through
Q̇ = −I.

Inductor

The self-inductance L relates the voltage induced across a conductor V = V2 − V1 to the
time-derivative of the current I,

V = Lİ.
V2

L

I

V1

As we will see later, it turns out to be useful to define also the flux of any inductive element
as Φ(t) =

∫ t
V (s)ds. This quantity is proportional to the current and corresponds to the

magnetic flux through the inductor, Φ = LI. Since a magnetic flux is usually defined for
a loop of current, Φ is sometimes called branch flux (or node flux) [Devoret04].

Resistor

The resistance R relates the current I and the voltage across the conductor V ,

V = RI.
V2

R

I

V1

2.2.2 The LC resonator: a quantum harmonic oscillator

To illustrate the procedure of canonical quantization, we apply it to the LC resonator,
shown in Fig. 2.1. For the moment, we forget about any resistive components in this ideal
superconducting circuit, assuming there is no source of dissipation. In addition, since the
supercurrent flows very rigidly, we can assume that the capacitor is the only place where
charges can accumulate.

An obvious coordinate we may start with is of course the charge Q, related to the
current by I = −Q̇ (see Fig. 2.1). The Lagrangian of the system would be L = K − U ,
where K = LQ̇2/2 is the kinetic inductive energy stored in the inductor, and U = Q2/(2C)
the potential charging energy of the capacitor. The conjugate momentum of Q is Φ =
δL
δQ̇

= LQ̇ = −LI, where LI is the magnetic flux through the inductor.

However, when considering circuits involving Josephson junctions, it turns out to be
easier to use Φ instead of Q as the coordinate [Devoret97]. It can be conceptually under-
stood as applying a canonical transformation that exchanges the role of coordinate and
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momentum, (Q,Φ) → (−Φ, Q). In practice, the derivation of the Lagrangian in this new
representation is done by defining the branch flux [Devoret04]

Φ(t) =

∫ t

V (s)ds, (2.3)

where V is the voltage at the upper node (see Fig. 2.1). The capacitive energy, K =
1
2CV

2 = 1
2CΦ̇2 is now the kinetic energy and the inductive energy, U = Φ2

2L = 1
2LI

2, the
potential energy. The Euler-Lagrange equation is the equation of motion of a harmonic
oscillator with resonance frequency Ω = 1/

√
LC,

Φ̈ + Ω2Φ = 0. (2.4)

The conjugate momentum is Q = δL
δΦ̇

= CΦ̇ = CV and represents the charge of the
capacitor. The classical Hamiltonian reads

H = Φ̇Q− L =
Q2

2C
+

Φ2

2L
, (2.5)

and the corresponding Hamilton equations of motion are

Φ̇ =
Q

C
, Q̇ = −Φ

L
. (2.6)

Obviously, those could have been readily obtained from the rules of circuit theory, V̇ =
−I/C and V = Lİ.

The canonical quantization of the circuit is done as usual by promoting the coordinate
Φ and the momentum Q to the rank of an operator. The flux Φ̂ and charge Q̂ operators
must satisfy the commutation relation

[Φ̂, Q̂] = i~. (2.7)

Like for any other harmonic oscillator, the Hamiltonian can be expressed in terms of
creation and annihilation operators, â† and â,

Ĥ = ~Ω

(
â†â+

1

2

)
. (2.8)

These operators â and â† satisfy the standard bosonic commutation relation [â, â†] = 1,
and are related to Φ̂ and Q̂ by

â =
1

2

(
Φ̂

Φzpf
+ i

Q̂

Qzpf

)
, â† =

1

2

(
Φ̂

Φzpf
− i Q̂

Qzpf

)
. (2.9)

The flux and charge zero-point fluctuations depend on the characteristic impedance Z =√
L/C,

Φzpf =

√
~Z
2
, Qzpf =

√
~

2Z
. (2.10)

When the resonator is coupled to other systems, it is useful to define the voltage
operator V̂ = Q̂/C and the current operator Î = Φ̂/L. The first one is relevant if we
consider capacitive coupling to another system, while the second one is relevant in the
case of inductive coupling.
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2.2. Canonical quantization of an electrical circuit

(a)

C

Φ

Cd

Vd

L

(b)

L C Zenv(ω)

Figure 2.2: (a) Driven LC circuit. A time-dependent voltage Vd(t) is applied to the
LC resonator through the capacitance Cd. (b) LC resonator coupled to its environment.
The electrical environment is modeled as frequency-dependent impedance Zenv(ω).

Driven oscillator

We can now imagine that the LC resonator is coupled, through the capacitance Cd, to
a time-dependent driving voltage Vd(t), as illustrated in Fig. 2.2(a). The Lagrangian
becomes

L =
1

2
CΦ̇2 +

1

2
Cd(Vd − Φ̇)2 − Φ2

2L
. (2.11)

The momentum Q = δL
δΦ̇

= CΦ̇− Cd(Vd − Φ̇) is the difference between the charges on the
capacitors C and Cd. The corresponding Hamiltonian reads

H =
Q2

2CΣ
+

Φ2

2L
+
Cd
CΣ

VdQ, (2.12)

where CΣ = C + Cd. This example shows how the resonance frequency Ω = 1/
√
LCΣ is

modified by the coupling to an external drive and how the charge couples to this external
load. The Hamiltonian operator, expressed in terms of the creation and annihilation
operators, is then

Ĥ = ~Ωâ†â− i~ε(t)
(
â− â†

)
, (2.13)

where the driving amplitude is ε(t) = Cd
CΣ

Qzpf

~ Vd(t).
The Heisenberg equation of motion for the operator â(t) is

˙̂a =
i

~

[
Ĥ, â

]
= −iΩâ+ ε(t), (2.14)

and describes the perfectly coherent and unitary evolution of the system. This comes
from the implicit assumption we made in our derivation, we assumed the drive Vd(t) to be
perfectly classical, noiseless, and absolutely not influenced by the dynamics of the system.
In reality, any external load or circuit has a finite impedance and carries noise of thermal
or quantum origin. On one hand, it modifies the intrinsic properties of the quantum circuit
and, on the other hand, it produces unavoidable dissipative effects, as we discuss below
and later in Sec. 2.3.3.

Electrical environment

In practice, there are unavoidable sources of dissipation in any real circuit. The first source
of dissipation we can think of is obviously some measurement apparatus coupled to the
system or some applied electrical signal used to control or drive the system.
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Chapter 2. Quantum electrodynamics with superconducting circuits

The energy dissipation resulting from the coupling between the quantum circuit and its
environment produces a broadening of the energy levels. The magnitude of this broadening
is characterized by ~κ, where κ is the ratio of the energy dissipation rate over the energy
stored in the system. To give a concrete example, for the quantum LC oscillator, κ stands
for the relaxation rate, at zero temperature, from the first excited state to the ground
state. Also, the rate κ quantifies how strong the coupling between the quantum system
and its environment is and how fast they can exchange energy.

Two important conditions must be satisfied for the flux Φ or the charge Q to be
treated as quantum variables. An important parameter is obviously the temperature of
the environment, i.e., the energy quantum associated with the resonance frequency Ω
must be larger than the thermal fluctuation energy, ~Ω� kBT . Besides the temperature,
another relevant quantity to determine to which extent a circuit is quantum is its quality
factor. The latter is defined as Q = Ω/κ, i.e., the ratio of the resonance frequency over the
dissipation rate. A necessary condition for a superconducting circuit to remain quantum
when coupled to external loads is Q � 1.

As shown in Fig. 2.2(b), the influence of the electrical environment can be modeled as
an impedance Zenv(ω) with unspecified frequency dependence, coupled in parallel to the
LC resonator [Devoret97]. The impedance Zenv modifies the response of the circuit. The
imaginary part of Z−1

env changes the resonance frequency and the real part of Z−1
env produces

a broadening of the response, that is otherwise delta-peaked.

Assuming that the quality factor Q is large, the shift of the resonance frequency δΩ
and the dissipation rate κ remain small compared to the bare resonance frequency Ω0 =
1/
√
LC. In this case, δΩ/Ω0 and κ/Ω0 can be approximated by

δΩ

Ω0
=

1

2
Im

(
Z

Zenv(Ω0)

)
, Q−1 =

κ

Ω0
= Re

(
Z

Zenv(Ω0)

)
, (2.15)

where Z =
√
L/C is the characteristic impedance of the resonator only. These expressions

are valid in the limit Z/|Zenv(Ω0)| � 1. Moreover, it is implicitly assumed that the
environment impedance Zenv(ω) is nearly constant over the range of frequency where
|ω − Ω0| . κ.

The latter two assumptions turn out to be important when giving a quantum treat-
ment of dissipation, the so-called quantum input-output theory. The impedance-mismatch
condition, |Z/Zenv| � 1, means that the system couples only weakly to its environment.
The approximation Zenv(ω) ∼ Ze(Ω0) suggests that the LC resonator mainly couples to
environmental modes with frequency close to Ω0. In addition it assumes that the coupling
is nearly constant in this frequency range.

A more rigorous treatment of dissipation is given in Sec. 2.3.3, which treats supercon-
ducting transmission lines.

2.3 Superconducting transmission lines

A superconducting transmission line, as pictured in Fig. 2.3(a), is generally made of a
conducting wire placed between two metallic ground planes, patterned by optical lithog-
raphy on an insulating substrate such as single-crystal sapphire. When the central wire
is of finite length, typically a few millimeters, such a transmission line forms a microwave
resonator that can sustain photonic modes with high quality factors. In this configuration,
the system is equivalent to an optical Fabry-Pérot cavity, but with resonance frequencies
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2.3. Superconducting transmission lines

(a)

superconductor

(b)

ZS,ΩS
ZTL,vp

sy
st

em
S

transmission line input

output

Figure 2.3: Superconducting transmission line. (a) Schematic representation of a su-
perconducting transmission line resonator. The transmission line is formed by patterning
a thin superconducting film (blue) on an insulating substrate (gray). The central wire
(dark blue) is placed between two grounded planes (light blue). (b) Circuit diagrams
showing a transmission line coupled to an arbitrary quantum system S. The transmission
line is described by an impedance ZTL =

√
l/c and a wave phase velocity vp = 1/

√
lc,

where l and c are its inductance and capacitance per unit length. From the transmission
line perspective, the system is characterized by a generic impedance ZS and a typical
resonance frequency ΩS.

in the gigahertz range. In this typical coplanar waveguide geometry, the electrical field
is mainly confined in the gap between the wire and the ground planes, allowing strong
capacitive coupling to other elements such as qubits.

A transmission line whose length is much longer can be used to measure or control some
resonant circuits. The transmission line couples, at one of its ends, to a particular system
of interest and is consider to be infinite on the other side. This type of transmission line no
longer acts as a photonic resonator but rather as a waveguide that carries electromagnetic
waves traveling towards or away from the system (see Fig. 2.3(b)). They are thought of
as semi-infinite in the sense that energy leaving the system through the line never comes
back. The ‘infinite’ end can be seen as being terminated by some environment, for instance
a meter recording the signal coming out the line (output), or a signal generator that drives
the system by sending waves down the line (input).

We proceed by first describing how to quantize the electromagnetic modes of finite-
length superconducting transmission line resonator (TLR). Then we discuss semi-infinite
transmission lines and their role in describing the dissipation and the coupling to exter-
nal environment. Finally, we briefly present the input-output formalism, which can be
conveniently derived in this framework even if its applicability goes beyond the scope of
superconducting circuits.

2.3.1 Quantized modes of a transmission line resonator

A superconducting transmission line is modeled as a one-dimensional continuous chain of
LC resonators, as shown in Fig. 2.4 [Blais04]. We denote its length by L0, its capacitance
per unit length by c, and its inductance per unit length by l. The current I and voltage
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Chapter 2. Quantum electrodynamics with superconducting circuits

x

c dx

V (x, t)

I(x, t)
l dx

c dx

V (x+ dx, t)

I(x+ dx, t)
l dx

Figure 2.4: Continuous model of a transmission line resonator used to derive wave
equations for the voltage V (x, t) and the current I(x, t). Capacitances are in parallel and
inductances are in series, where c and l are the capacitance and inductance per unit of
length respectively.

V are functions of the time t and the position x ∈ [0, L0]. They are related through

∂xV (x, t) + l∂tI(x, t) = 0, (2.16a)

∂xI(x, t) + c∂tV (x, t) = 0. (2.16b)

The capacitive energy per unit length is cV (x, t)2/2 and the inductive energy per unit
length is lI(x, t)2/2. As in the treatment of the LC-resonator, we prefer to use the flux
variable Φ(x, t) =

∫ t
V (x, s)ds. The definition of Φ and Eq. (2.16) lead to the following

relations:

∂tΦ(x, t) = V (x, t), (2.17a)

∂xΦ(x, t) = −lI(x, t). (2.17b)

Defining the phase velocity vp = 1/
√
lc, Eq. (2.16) translates to

v2
p∂

2
xΦ(x, t)− ∂2

t Φ(x, t) = 0, (2.18)

which is the wave equation obtained from the Lagrangian

L =

∫ L0

0
dx

{
c

2
[∂tΦ(x, t)]2 − 1

2l
[∂xΦ(x, t)]2

}
. (2.19)

The conjugate momentum of the flux Φ is the linear charge density

q(x, t) =
δL

δ [∂tΦ(x, t)]
= c∂tΦ(x, t), (2.20)

and the Hamiltonian is given by

H =

∫ L0

0
dx

{
1

2c
[q(x, t)]2 +

1

2l
[∂xΦ(x, t)]2

}
. (2.21)

Before proceeding to the quantization of the Hamiltonian H, we decompose the field
Φ(x, t) into spatial normal modes φn(x),

Φ(x, t) =
∑
n≥0

ξn(t)φn(x). (2.22)
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2.3. Superconducting transmission lines

The arbitrary real functions ξn(t) parametrize Φ(x, t) completely. The normal mode func-
tions φn are given by

φn(x) =

√
2

L0
cos(knx− ϕn), kn =

nπ

L0
, (2.23)

for n > 0, while φ0(x) = 1/
√
L0. The boundary conditions at x = 0 and x = L0 set

the value of the phases ϕn. For a transmission line resonator, we should consider open
circuit boundary conditions, I(0, t) = I(L0, t) = 0, which lead to ϕn = 0. For short circuit
boundary conditions, V (0, t) = V (L0, t) = 0, we would have instead ϕn = π/2, with the
additional constraint of ξ0 being constant. The normal mode functions φn satisfy∫ L0

0
dx φn(x)φm(x) = δn,m, (2.24a)∫ L0

0
dx ∂xφn(x)∂xφm(x) = k2

nδn,m. (2.24b)

The Lagrangian takes the form of a collection of independent harmonic oscillators with
frequency ωn = knvp

L =
1

2

∑
n

cξ̇2
n −

k2
n

l
ξ2
n =

c

2

∑
n

ξ̇2
n − ω2

nξ
2
n. (2.25)

At this point, we can readily obtain the quantum version of the Hamiltonian in terms
of position ξ̂n and momentum q̂n operators that satisfy the canonical commutation relation
[ξ̂n, q̂n′ ] = i~δn,n′ . We define the operators

ân =

√
cωn
2~

ξ̂n + i
1√

2~cωn
q̂n, (2.26a)

â†n =

√
cωn
2~

ξ̂n − i
1√

2~cωn
q̂n, (2.26b)

which annihilate or create a photon with energy ~ωn in the corresponding n-th spatial
mode. They satisfy the standard commutation relations [ân, â

†
n′ ] = δn,n′ . The Hamiltonian

of the TLR reads

Ĥ =
∑
n>0

1

2c
q̂2
n −

1

2
cω2

nξ̂
2
n =

∑
n>0

~ωn
(
â†nân +

1

2

)
. (2.27)

Here, we have omitted the constant energy shift due to the zeroth mode (n = 0). Since
ω0 = 0, the variable ξ̂0 has a particular status because its momentum is a constant of
motion, ˙̂q0 = 0. As one can verify, it actually describes the effect of a uniform dc-voltage
Vdc, q̂0(t) =

√
L0cVdc.

The form of the Hamiltonian Eq. (2.27) indicates that a superconducting TLR of
finite size can be seen as a one-dimensional microwave photonic cavity. The fundamental
frequencies ω1 = πvp/L0 of such a superconducting resonator can be roughly estimated.
It appears that l ∼ ν0 (vacuum permeability) and c ∼ ε0 (vacuum permittivity), and
therefore, the wave phase velocity vp is approximately the speed of light in vacuum. For a
length L0 ' 10 mm, it translates to a frequency ω1/2π ' 15 GHz. In practice, the exact
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Chapter 2. Quantum electrodynamics with superconducting circuits

geometry of the TLR, the type of substrate, and the coupling to other elements influence
the exact value of ω1 significantly.

For the later discussion about semi-infinite TLRs and the coupling between supercon-
ducting qubits and a TLR, it is convenient to define the flux and charge density field
operators Φ̂(x) and q̂(x). The latter can be expressed in terms of the operators x̂n and q̂n

Φ̂(x) =
∑
n

ξ̂nφn(x) =
∑
n

√
~

2cωn

(
ân + â†n

)
φn(x), (2.28a)

q̂(x) =
∑
n

q̂nφn(x) = −i
∑
n

√
~cωn

2

(
ân − â†n

)
φn(x). (2.28b)

Using Eq. (2.28), we obtain the commutation relation[
Φ̂(x), q̂(x′)

]
= i~

∑
n

φn(x)φn(x′) = i~δ(x− x′), (2.29)

as well as the Hamiltonian

Ĥ =

∫ L0

0
dx

{
1

2c
q̂(x)2 +

1

2l

[
∂xΦ̂(x)

]2
}
. (2.30)

Superconducting TLR can easily be coupled capacitively to some circuit elements
placed between the central wire and the grounded planes. In this case, the voltage operator

V̂ (x) = ∂tΦ̂(x) =
i

~

[
Ĥ, Φ̂(x)

]
=
q̂(x)

c

= Vdc − i
∑
n>0

√
~ωn
2c

(
ân − â†n

)
φn(x)

(2.31)

couples to some charge degree of freedom.

2.3.2 Semi-infinite transmission line and classical input-output relation

We now extend our discussion to the case of semi-infinite superconducting transmission
lines. First, we show how the voltage or the current field in an infinitely long transmission
line can be decomposed into modes propagating toward the quantum system (incoming)
and away from it [Clerk10]. Then, an example shows how this produces dissipation in the
system.

Classical input-output theory

In a transmission line, the current-voltage relations Eq. (2.16) translates to the wave
equations

∂2
t V (x, t)− v2

p∂
2
xV (x, t) = 0, (2.32a)

∂2
t I(x, t)− v2

p∂
2
xI(x, t) = 0, (2.32b)
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2.3. Superconducting transmission lines

Thus, the voltage and the current can be decomposed into incoming and outgoing modes

V (x, t) = Vout

(
t− x

vp

)
+ Vin

(
t+

x

vp

)
, (2.33a)

I(x, t) =
1

Zc

[
Vout

(
t− x

vp

)
− Vin

(
t+

x

vp

)]
, (2.33b)

where Zc =
√
l/c is the impedance of the line. We assume that the line is terminated

at its left side end (x = 0) by some system S (see Fig. 2.3(b)). The incoming Vin and
outgoing Vout modes propagate toward and away from the system. Their shapes can in
principle be arbitrary. From now on, we drop the position argument and assume that all
the functions are taken at x = 0 and only depend on the time t. Thus, we can write

Vout(t) = Vin(t) + ZTLI(t), (2.34a)

V (t) = 2Vin(t) + ZTLI(t), (2.34b)

We emphasize that it only makes sense to speak about incoming and outgoing modes in
the limit L0 →∞, such that no other boundary conditions apply at the right side of the
transmission line. In the limit of a semi-infinite transmission line, Vin(t) and Vout(t

′) are
independent for t > t′. In other words, we assume the incoming mode Vin to be independent
of the system dynamics. On the contrary, Eq. (2.34a) means that the outgoing mode Vout

is the sum of the reflected incoming mode and an additional contribution ZTLI coming
from the system dynamics.

If the transmission line is terminated by some system S, a boundary condition relates
the voltage V and the current I. The boundary condition is better expressed in the
frequency domain and reads

V (ω) = −Z(ω)I(ω), (2.35)

where Z(ω) is the frequency-dependent impedance of the system S. It yields a input-output
relation between the incoming and outgoing modes

Vout(ω)

Vin(ω)
=
Z(ω)− ZTL

Z(ω) + ZTL
. (2.36)

In short, Eq. (2.36) expresses the relation between the output signal Vout, influenced by a
system with impedance Z(ω), and the input signal Vin.

Semi-infinite line and dissipation

At the end of Sec. 2.2.2, we briefly discussed how to account for the dissipative effect of
an electrical environment coupling to a quantized circuit. It appears that a semi-infinite
transmission line appropriately models such an environment.

We briefly illustrate this mechanism in a classical framework, assuming that the system
S is a LC-resonator (see Fig. 2.2(b)). The transmission line plays now the role of the
electrical environment with impedance Zenv(ω) = ZTL.

We take the flux Φ, Eq. (2.3), as the dynamical variable. Using Eq. (2.34b), we obtain
the equation of motion of a driven and damped oscillator

Φ̈ + κΦ̇ + Ω2
SΦ =

2

ZTLC
Vin(t). (2.37)
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Chapter 2. Quantum electrodynamics with superconducting circuits

The damping rate is κ = ΩS
ZS
ZTL

, where ΩS = 1/
√
LC is the unperturbed LC-resonator

frequency and ZS =
√
L/C its characteristic impedance.

We notice how the LC resonator is damped via the coupling to the transmission line.
In the absence of any input driving, Vin = 0, the transmission line acts as a resistance,
V = ZTLI, as it can be seen from Eq. (2.34b). Moreover, the damping rate of the system
becomes large when its impedance matches the one of the transmission line, ZS ' ZTL,
causing the system to easily lose energy by radiating through the line.

The characteristic impedance ZS should not be confused with the frequency-dependent
impedance Z(ω), which characterizes the system response to an external drive. For an LC
resonator, we have Z(ω) = i [ωC − 1/(ωL)]−1.1 The expression for Z(ω) can be simplified
if the quality factor of the system is large, ΩS � κ. In this case, we have, for positive
frequency ω,

Z(ω)

ZTL
' i

2

ZS

ZTL

ΩS

ω − ΩS
=

iκ/2

ω − ΩS
. (2.38)

The response of the system to the input is characterized by the response function χ(ω),
defined as

χ(ω) =
V (ω)

Vin(ω)
=

2Z(ω)

Z(ω) + ZTL
=

κ

κ/2− i(ω − ΩS)
. (2.39)

Eq. (2.39) shows that the system mainly responds the input modes with frequencies close
to its resonance frequency, provided Q � 1. As we will discuss in the next section, this
narrow bandwidth response is a necessary assumption to derive the quantum version of
the input-output relations.

Finally, for the LC resonator, the classical input-output relation, Eq. (2.36), becomes

Vout(ω)

Vin(ω)
= χ(ω)− 1 =

κ/2 + i(ω − ΩS)

κ/2− i(ω − ΩS)
. (2.40)

Since the LC resonator contains no dissipative elements, |Vout(ω)/Vin(ω)| = 1. Its dynam-
ics is contained in the relative phase between the input and output signals only.

2.3.3 Quantum input-output formalism

Our goal is to give a quantum description of some setup involving a semi-infinite transmis-
sion line together with a coupled system, as depicted in Fig. 2.3(b). Using the formulation
given in Sec. 2.3.1, we show how the propagating modes of a single infinitely long transmis-
sion line are expressed as a continuous set of independent left and right-moving quantized
modes. Finally, we introduce the so-called quantum input-output theory. This general
model involves a quantum system coupled to an unspecified environment, represented as
a large collection of harmonic oscillators. A possible interpretation of such a model is pre-
cisely a transmission line terminated by some quantum system. The environmental modes
are expressed as propagating modes, which split into incoming modes, that drive the quan-
tum system and carry noise, and outgoing modes, radiated by the quantum system into
the environment.

1Here, we use the convention f(ω) =
∫
eiωtf(t)dt for the Fourier transform. It follows that −iωf(ω) =∫

eiωtḟ(t)dt.
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2.3. Superconducting transmission lines

Quantized propagating modes of a transmission line.

The quantized photonic modes of the finite-length transmission line are actually standing-
wave modes. This is a consequence of the boundary conditions which were set at both
ends of the transmission line. To give a simplified picture, we consider the operator â†n,
Eq. (2.26), which creates a photon with frequency ωn in the spatial mode φn(x). The
Heisenberg equation of motion of this operator is

˙̂a†n(t) = iωnâ
†
n(t), â†n(t) = eiωntâ†n(0). (2.41)

We notice that the term â†n(t)φn(x) contains both a right-moving component with neg-
ative wave vector, e−ikn(x−vpt), and a left-moving component with positive wave vector,
eikn(x+vpt). For ân(t)φn(x), the opposite is true. Therefore we need some reformulation if
we want to decompose operators which contain both of these terms, such as the voltage
V̂ , Eq. (2.31), into left and right-moving modes.

Assuming the classical flux Φ(x, t) and charge density q(x, t) fields satisfy periodic
boundary conditions, we write their most general solution in a form that anticipates the
quantum version [Clerk10],

Φ(x, t) =
1√
L0

∑
k

√
~

2cωk

[
bke

i(kx−ωkt) + b∗ke
−i(kx−ωkt)

]
, (2.42a)

q(x, t) =
−i√
L0

∑
k

√
~cωk

2

[
bke

i(kx−ωkt) − b∗ke−i(kx−ωkt)
]
, (2.42b)

where the sum is taken over all k = 2πm/L0, m ∈ Z, and ωk = vp|k|. The new mode index
k is still discrete, but it can be either positive or negative, and replaces the previous index
n ∈ N. The above equation allows to clearly distinguish the right-moving components
(k > 0) from the left-moving ones (k < 0). Note that since we have considered periodic
boundary conditions, rather than open- or short-circuit terminations, the coefficients bk
and b−k are completely independent, as we expect for an infinitely long transmission line.

It is clear how to decompose the Hamiltonian Eq. (2.30), written in terms of quantum
field operators Φ̂(x) and q̂(x), into modes propagating either to the left or to the right.
For this purpose, we define the operators b̂k,

b̂k =
1√
L0

∫ L0

0
dx e−ikx

[√
cωk
2~

Φ̂(x) +
i√

2c~ωk
q̂(x)

]
. (2.43)

This leads to the following expressions for Φ̂(x) and q̂(x):

Φ̂(x) =
1√
L0

∑
k

√
~

2cωk

[
b̂ke

ikx + b̂†ke
−ikx

]
, (2.44a)

q̂(x, t) =
−i√
L0

∑
k

√
~cωk

2

[
b̂ke

ikx − b̂†ke−ikx
]
. (2.44b)

Using the commutation relation [Φ̂(x), q̂(x)] = i~δ(x− x′), we obtain

[b̂k, b̂
†
k′ ] = δk,k′ . (2.45)
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The Hamiltonian, Eq. (2.30), takes the form

Ĥ =
∑
k

~ωk
(
b̂†k b̂k +

1

2

)
. (2.46)

Using Eq. (2.44), we can express the voltage operator V̂ = q̂/c, taken at x = 0, as

V̂ (t) = V̂→(t) + V̂←(t) (2.47)

V̂→(t) =
−i√
L0

∑
k>0

√
~ωk
2c

(
b̂k(t)− b̂†k(t)

)
, (2.48)

V̂←(t) =
−i√
L0

∑
k<0

√
~ωk
2c

(
b̂k(t)− b̂†k(t)

)
. (2.49)

The time dependence indicates that the operators are given in the Heisenberg representa-
tion,

b̂k(t) = e−iωk b̂k, b̂†k(t) = eiωk b̂†k. (2.50)

We now formally let the length of the transmission line go to infinity and introduce a
continuous indexing of the modes by their frequency ω,

b̂→(ω) = 2π

√
vp
L0

∑
k>0

b̂kδ(ω − ωk), (2.51a)

b̂←(ω) = 2π

√
vp
L0

∑
k<0

b̂kδ(ω − ωk). (2.51b)

Notice that these operators can be expressed as the Fourier transform operators of the
temporal right and left-moving modes

b̂→(t) =

√
vp
L0

∑
k>0

b̂k(t), (2.52a)

b̂←(t) =

√
vp
L0

∑
k<0

b̂k(t). (2.52b)

The conjugated operators are defined as b̂†�(t) =
[
b̂�(t)

]†
and therefore, in the frequency

domain, they satisfy b̂†�(ω) =
[
b̂�(−ω)

]†
.2 Changing the summation over the index k

into an integral ∑
k>0

→ L0

2π

∫ ∞
0

dk, (2.53)

allows us to compute the relevant non-vanishing commutators between either the temporal
or the frequency-resolved operators,[

b̂→(ω), b̂†→(ω′)
]

=
[
b̂←(ω), b̂†←(ω′)

]
= 2πδ(ω + ω′), (2.54a)[

b̂→(t), b̂†→(t′)
]

=
[
b̂←(t), b̂†←(t′)

]
= δ(t− t′). (2.54b)

2This is due to the following choice for the definition of Fourier-transformed operators: ô(ω) =∫
dt eiωtô(t). Accordingly, ô†(ω) =

∫
dt eiωtô†(t) = [ô(−ω)]†.
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2.3. Superconducting transmission lines

Later, we will consider the coupling between a transmission line and some quantum
system. For this purpose, it is important to consider the case of propagating modes having
a finite temperature. If for instance the left-moving modes are in thermal equilibrium, we
have 〈

b̂†←(ω′)b̂←(ω)
〉

= 2πδ(ω + ω′)nB(~ω), (2.55a)〈
b̂←(ω)b̂†←(ω′)

〉
= 2πδ(ω + ω′) [1 + nB(~ω)] , (2.55b)

where nB is the thermal occupation number given by the Bose-Einstein statistics,

nB(~ω) =
1

e
~ω
kBT − 1

. (2.56)

Quantum input-output theory

Dissipation in a quantum system results from the coupling to an environmental bath.
The latter is usually considered as a much larger system, more precisely larger in terms
of the number of degrees of freedom. The system and its environment exchange energy
and because of the large number of degrees of freedom, this exchange is incoherent and
produces dissipation in the quantum system.

The available quantum description of transmission lines allows for a direct quantum
treatment of environmental effects in electrical circuits. For convenience, we base the pre-
sentation of the quantum input-output formalism on this description of quantum circuits.
However, we emphasize that this formalism applies to quantum systems and environment
other than electrical circuits. Originally, it was derived in the context of quantum op-
tics and this model actually encompasses several types of system described by bosonic
operators, such as optical cavities or mechanical resonators.

Following standard references on the subject [Gardiner85, Gardiner04, Walls08], we
define an Hamiltonian for the quantum system and the bath

Ĥ = ĤS + Ĥint + ĤB. (2.57)

The system Hamiltonian ĤS satisfies the following conditions. First, we assume that the
system S has only a single degree of freedom with some characteristic resonance frequency
Ω. Secondly, ĤS is expressed in terms of bosonic creation and annihilation operators, â†

and â, that oscillates approximately like â(t) ∼ e−iΩt. The Hamiltonian of the bath is

ĤB =

∫ ∞
−∞

dω ~ω b̂†ω b̂ω, (2.58)

and the interaction between the system and the bath reads

Ĥint =

∫ ∞
−∞

dω i~γ(ω)
(
b̂†ωâ− b̂ωâ†

)
(2.59)

The operators of the bath satisfy
[
b̂ω, b̂

†
ω′

]
= δ(ω − ω′). These operators should not

be confused with the operators defined in the previous section, Eq. (2.51). In fact ĤB

should rather be seen as the continuous version of an Hamiltonian like the one for a TLR,
Eq. (2.27), with the mode frequency ω as a continuous index. When the bath, which might
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Chapter 2. Quantum electrodynamics with superconducting circuits

be thought of as an infinitely long transmission line, is coupled to a quantum system, we
cannot yet define independent counter-propagating modes.3

The form given for the bath Hamiltonian ĤB and the interaction Ĥint already presup-
poses two important approximations. First, the rotating wave approximation (RWA) is
made for the interaction, and secondly, the domain for the bath frequencies is ω ∈ (−∞,∞)
rather than the more natural domain of positive frequency.

We consider a concrete example of electrical circuits to illustrate theses points. Imagine
we capacitively couple a transmission line to an LC resonator. The coupling between a
voltage, as given in Eq. (2.31), and a charge degree of freedom should involve terms like b̂ωâ

and b̂†ωâ† and the frequency domain should be (0,∞). The RWA relies on the assumptions
that the coupling rate γ(ω) is small, such that the dynamics of â is mainly governed by ĤS.
The neglected counter-rotating terms are oscillating rapidly with frequencies ' ±(Ω +ω).

In the same way, we argue that the terms b̂ωâ
† and b̂†ωâ are important for the dynamics

of the system only near resonance, that is for bath frequencies ω close to Ω. This last
point allows us to extend the domain of integration over ω to (−∞,∞), because the added
terms at negative bath frequencies are all non-resonant.

In the language of electrical circuitry, the approximation of small coupling rates trans-
lates to an impedance mismatch between the environment and the system, such that the
latter exhibits a high quality factor Q as we discussed in Sec. 2.2.2. In addition, in the
context of classical input-output theory (see Sec. 2.3.2), we have seen that a system with
high Q is mainly sensitive to components of the input field with frequency close to Ω. In
the same way, for the generic model given by Ĥ, we understand that, if Ĥint is small, the
main influence on the system comes from the bath modes b̂ω with frequencies ω ∼ Ω.

We now derive the quantum Langevin equations for the operator â, starting from the
Heisenberg equations of motion for the system and bath operators

˙̂a =
i

~

[
Ĥ, â

]
=
i

~

[
ĤS, â

]
−
∫ ∞
−∞

dω γ(ω) b̂ω, (2.60a)

˙̂
bω =

i

~

[
Ĥ, b̂ω

]
= −iωb̂ω + γ(ω) â. (2.60b)

The formal time-dependent solution of Eq. (2.60b) is

b̂ω(t) = e−iω(t−t0)b̂ω(t0) + γ(ω)

∫ t

t0

ds e−iω(t−s)â(s) (2.61)

where the time t0 < t sets the boundary condition in the past. This expression for b̂ω(t)
can be inserted into Eq. (2.60a) to obtain

˙̂a =
i

~

[
ĤS, â

]
−
∫ ∞
−∞

dω γ(ω) e−iω(t−t0)b̂ω(t0)

−
∫ ∞
−∞

dω γ(ω)2

∫ t

t0

dse−iω(t−s)â(s).

(2.62)

At this point, we make the Markov approximation which assumes that the coupling γ(ω)
is constant over some range of frequency near the system frequency Ω. Therefore we can
set

γ(ω) =

√
κ

2π
. (2.63)

3Recall that this can be done only for a transmission line with periodic boundary conditions.
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2.3. Superconducting transmission lines

The above approximation is valid only when the system, even coupled to a bath, still has
a well-defined resonance frequency Ω. In a sense, we can understand it as κ ' 2π[γ(Ω)]2.
The broadening of the energy levels of the system, due to the energy exchange with this
environment, should remain limited, which means that κ � Ω. We can therefore make
use of the relations∫ ∞

−∞

dω

2π
e−iω(t−s) = δ(t− s),

∫ t

t0

ds δ(t− s)â(s) =
1

2
â(t), (2.64)

to simplify Eq. (2.62).
The input operator is now defined as

âin(t) =
1√
2π

∫ ∞
−∞

dω e−iω(t−t0)b̂ω(t0). (2.65)

The operator âin(t) express the free evolution of the bath modes until they interact with
the system at time t. It is actually equivalent to the temporal left-moving modes b̂←(t),
as defined for an infinitely long transmission line in Eq. (2.52), hence its name of input
operator. The commutator [

âin(t), â†in(t′)
]

= δ(t− t′) (2.66)

can be compared to the one given in Eq. (2.54b). With these simplifications, the equation
of motion for the system operator reads

˙̂a =
i

~

[
ĤS, â

]
− κ

2
â−√κâin(t), (2.67)

and is referred to as quantum Langevin equation. The fact that the time t0 is taken to be
in the distant past, such that the system and the bath have not interacted yet, allows us
to interpret âin as a driving term for the system. Since this driving is a superposition of
quantum modes, it can be seen as a noisy drive carrying vacuum noise from the outside.
The operator âin is therefore usually referred to as quantum noise operator. In addition,
the emergence of a damping term proportional to κ in Eq. (2.67) shows how the opening
of the quantum system to its surrounding environment produces energy dissipation.

The noise operators being delta-correlated, Eq. (2.66), indicates that such quantum
noise is actually white noise. This is the consequence of the frequency range having been
extend to ω ∈ (−∞,∞). This white noise is not physical but gives a good approximation
over the range of frequency the system is mainly sensitive to, provided its quality factor
is large.

If the system is a harmonic oscillator, ĤS = ~Ωâ†â, we notice that Eq. (2.67) is the
quantum analog of Eq. (2.37) which describes an LC-resonator driven and damped by
a transmission line. Let Q̂ = Qzpf(â + â†) be the charge operator of this LC-resonator,

where Qzpf =
√

~/2ZS and ZS =
√
L/C. We assume that the charge Q̂ couples to the

voltage V̂ at the end of some transmission line, Eq. (2.31),

V̂ = −i
∑
k

√
~ωk
L0c

(
b̂k − b̂†k

)
= −i

∫ ∞
0

dω

√
~ωZTL

π

(
b̂ω − b̂†ω

)
. (2.68)

The interaction Q̂V̂ , within the RWA, leads to the frequency-dependent value of the
coupling rate

√
2πγ(ω) =

√
ωZTL

ZS
. (2.69)
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It yields a damping rate κ = 2π[γ(Ω)]2 = ΩZTL
ZS

, which is the value expected from the
classical analysis, where the transmission line acts like a resistance R = ZTL for the LC
resonator.

The example of the harmonic oscillator helps us to show that the system mainly re-
sponds to the bath modes with frequencies close to Ω. First we define the Fourier trans-
formed input operator

âin(ω) =

∫
dt eiωtâin(t). (2.70)

In the frequency domain, the quantum Langevin equation for the harmonic oscillator,
Eq. (2.67), becomes

â(ω) = −
√
κ

κ/2− i(ω − Ω)
âin(ω) = − 1√

κ
χ(ω)âin(ω). (2.71)

The system probes the bath only in a narrow frequency range around ω = Ω.

The noise carried by the bath or the transmission line to the system might be of pure
quantum origin if the input modes are taken to be in their ground state. When considering
a bath in equilibrium at temperature T , the input noise operator also contains noise of
thermal origin and satisfies〈

â†in(t)âin(t′)
〉

= nthδ(t− t′), (2.72a)〈
âin(t)â†in(t′)

〉
= (nth + 1)δ(t− t′). (2.72b)

The value of nth expresses the thermal occupation number of the bath modes at the
frequency of the system. It assumes a narrow frequency response around Ω. For the
harmonic oscillator, one typically takes nth = nB(~Ω). This is consistent with the similar
equation we obtained for the propagating modes of a transmission line, Eq. (2.54a).

Finally, we can derive the quantum input-output relation. Solving Eq. (2.60b) for fixed
boundary condition in the future t1 > t, we end up with the so-called output operator

âout(t) =
1√
2π

∫ ∞
−∞

dω e−iω(t−t1)b̂ω(t0), (2.73)

together with the corresponding quantum Langevin equation

˙̂a =
i

~

[
ĤS, â

]
+
κ

2
â−√κâout(t). (2.74)

The output operator âout(t) expresses the free evolution of the bath modes after they
interact with the system at time t. Comparing Eq. (2.67) and (2.74), we obtain the
important input-output relation

âout(t) = âin(t) +
√
κâ. (2.75)

This equation is the quantum analog of the classical input-output relation that we obtain
for a transmission line terminated by some arbitrary system, Eq. (2.34a). In contrast to a
single transmission line, the incoming and outgoing modes are no longer independent but
related to each other by the boundary conditions set by the presence of the system.
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2.4. Superconducting charge qubits

Remarks

The quantum input-output formalism allows to describe quantum-dissipative systems
when a measurement is carried on the output fields. This particular situation requires
the modes of the semi-infinite transmission line, or more generally the modes of the envi-
ronment, to be effectively kept into the description as input and output noise operators.
However, this formalism remains valid even in the absence of any measurement of the
output fields and would describe dissipation through a bath of harmonic oscillators. In
such a case, it allows to obtain information about the quantum system such as average
quadrature amplitudes, average occupation numbers, or correlation functions. The quan-
tum input-output formalism can be shown to be equivalent to other treatments where
environmental degrees of freedom are traced out, like the standard Lindblad quantum
master equation in particular [Gardiner04].

The description of the environment as a collection of harmonic oscillators is also remi-
niscent of other models used to characterize dissipative quantum systems. A close example
is the quantum Brownian motion formalism, which get rids of the RWA and allows to con-
sider systems with a low quality factor [Caldeira83a, Gardiner04]. Another prominent
example to be mentioned is the spin-boson model for non-bosonic quantum systems such
as two-level systems [Caldeira83b, Leggett87]. Results of the latter model will be discussed
in Sec. 2.4.3, when considering decoherence effects affecting superconducting qubits.

2.4 Superconducting charge qubits

We show how resonant circuits can behave as artificial atoms with anharmonic spec-
trum, forming what we call superconducting qubits. We first discuss the properties of the
Josephson junction, which is the essential nonlinear and dissipationless electrical element
incorporated in any superconducting qubit. Secondly, we study a particular type of qubit
implementation, the so-called Cooper pair box, as well as one of its improved design, the
transmon qubit.

2.4.1 Josephson junction

The Josephson tunnel junctions encountered in superconducting circuits are made of a thin
insulating barrier sandwiched between two superconducting metal pieces. The coherent
tunneling of Cooper pairs through the junction produces a supercurrent whose intensity I is
related to the superconducting phase difference φ = ϕ2−ϕ1 between the superconductors.4

The equation relating I and φ is known as the first Josephson relation,

I = Ic sinφ. (2.76)

The maximal tunneling current Ic depends on the geometry of the junction. It is pro-
portional to the area and the transparency of the insulating barrier. When an voltage
V = V2−V1 is applied across the junction, the phase difference φ evolves according to the
second Josephson relation,

~φ̇ = 2eV. (2.77)

The convention for the direction of the current I, the sign of the phase difference φ and
the voltage drop V is specified in Fig. 2.5.

4see e.g. [Tinkham96]
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S1

S2

Insulator
ϕ1, n1

ϕ2, n2
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V1

V2

φ ≡ or

V2

LJ(I)
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V1

V2

EJ

I

V1
Φ

(a) (b)

Figure 2.5: Josephson junction. (a) Josephson junction made of two superconducting
metal leads, S1 and S2, separated by a thin insulating tunnel barrier. The important
quantities entering the Josephson relations, Eqs. (2.76) and (2.77), are the superconduct-
ing phase difference, φ = ϕ2−ϕ1, the tunneling current I (positive when flowing from S2

to S1), and the potential difference V = V2 − V1. (b) Equivalent circuit representations
of a Josephson junction, either by a nonlinear inductance LJ(I) or by a cross with the
associated Josephson energy EJ .

The Josephson junction acts as a nonlinear inductive element. Eqs. (2.76) and (2.77)
can be combined into a single current-voltage relation similar to the one of a inductor, but
with current-dependent inductance LJ(I). This relation reads

V = LJ(I)İ , LJ(I) =
Φ0

2π
√
I2
c − I2

, (2.78)

where Φ0 = h/(2e) denotes the magnetic quantum flux. The energy of the junction is

E =

∫
V I dt =

Φ0Ic
2π

∫
sinφdφ = −EJ cosφ, (2.79)

where the quantity EJ = Φ0Ic/(2π) is known the Josephson energy.
It is often convenient to consider the superconducting phase difference as a dimension-

less magnetic flux,

φ = 2π
Φ

Φ0
. (2.80)

If we define Φ as a branch flux, like we did for the LC resonator, Eq. (2.3), then the second
Josephson relation, Eq. (2.77) is automatically satisfied since Φ̇ = V . The remaining
constitutive equations for a Josephson junction are

I = Ic sin

(
2π

Φ

Φ0

)
, E = −EJ cos

(
2π

Φ

Φ0

)
. (2.81)

Microscopic derivation of the Josephson relations

The periodic dependence of the current I on the flux Φ is a remarkable property of the
Josephson junction. As we discuss below, such nonlinear behavior originates from a tun-
neling process that is simultaneously discrete and coherent.

The state of an homogeneous superconducting piece of metal at temperature kBT �
∆SC is usually considered as a macroscopic quantum state described by the wavefunction
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2.4. Superconducting charge qubits

Ψ =
√

∆SCe
iϕ. The superconducting order parameter ∆SC appears in the wavefunction

amplitude, while the phase ϕ, for an isolated superconductor, is undetermined. This
comes from the fact that an isolated superconductor carries a well-defined number of
Cooper pairs n. Since the number n and the phase ϕ are conjugated quantities, ϕ is
completely undetermined if n is fixed. The phase becomes observable only when two
superconductor can exchange charges, which is precisely the case in a Josephson junction.
Hence, the gauge-invariant phase difference φ = ϕ2 − ϕ1 is the relevant quantity entering
the Josephson relations.

We consider two superconductors, denoted by S1 and S2, which can coherently ex-
change Cooper pairs through an insulating barrier, as shown in Fig. 2.5. We assume that
each one is described by a state with a well-defined phase |ϕj〉. As stated previously, the
phase and the number of Cooper pairs are conjugate variables. Therefore, we can define
states with fixed number of Cooper pairs, denoted by |nj〉, that are related to the states
|ϕj〉 by

|nj〉 =

∫ 2π

0

dϕj
2π

e−injϕj |ϕj〉, (2.82)

|ϕj〉 =
∑
nj

einjϕj |nj〉. (2.83)

With the above convention the number of Cooper pairs nj is a position-like variable, while
the phase ϕj is a momentum-like variable.

We can model a Josephson junction by the state |ϕ1, ϕ2〉 (equivalent to |ϕ1〉 ⊗ |ϕ2〉),

|ϕ1, ϕ2〉 =
∑
n1,n2

ei(n1ϕ1+n2ϕ2)|n1, n2〉. (2.84)

But we have omitted the overall charge conservation, which requires that n1 + n2 = N
where N is a constant. When imposing this constraint on the state |ϕ1, ϕ2〉, we find that,
up to an overall phase factor,

|ϕ1, ϕ2〉 =
∑
n

ein(ϕ2−ϕ1)|N − n, n〉. (2.85)

We can therefore redefine the above number and phase states as |n〉 = |N − n, n〉 and
|φ〉 = |ϕ1, φ+ ϕ1〉, that is φ = ϕ2 − ϕ1,

|φ〉 =
∑
n

einφ|n〉, (2.86a)

|n〉 =

∫ 2π

0

dφ

2π
e−inφ|φ〉. (2.86b)

In addition, these states satisfy 〈n|m〉 = δn,m and 〈φ|φ′〉 = 2πδ(φ− φ′). As we will show,
the states with fixed superconducting phase difference |φ〉 form a suitable basis to derive
the Josephson relations. At this point, it might be useful to define the charge number n̂

and phase eiφ̂ operators as

n̂ =
∑
n

|n〉n〈n| =
∫ 2π

0

dφ

2π
|φ〉i ∂

∂φ
〈φ| (2.87a)

eiφ̂ =

∫ 2π

0

dφ

2π
|φ〉eiφ〈φ| =

∑
n

|n〉〈n+ 1|. (2.87b)
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The operators e±iφ̂ are lowering and raising operators for the number state |n〉, as it can
seen from the commutation relations[

e±iφ̂, n̂
]

= ±e±iφ̂. (2.88)

We can now introduce a Hamiltonian for the discrete and coherent tunneling of Cooper
pairs across the junction,

ĤT = −EJ
2

∑
n

(|n+ 1〉〈n|+ |n〉〈n+ 1|) , (2.89)

where EJ is the Josephson energy. It follows from Eq. (2.87) that ĤT = −EJ cos φ̂. The
state |φ〉 is therefore an eigenstate of ĤT with eigenvalue E(φ) = −EJ cosφ.

The charge number operator n̂ describes the charge configuration of the two supercon-
ductors, in units of Cooper pair charge. Thus, its time-derivative ˙̂n describes the charge
transfer across the junction. According to our convention, an increase of n̂ involves a
transfer of negative charges from the first (S1) to the second superconductor (S2). We
define the current operator as Î = 2e ˙̂n. Notice that Î gives the intensity of the current
flowing from S2 to S1 (see Fig. 2.5) The Heisenberg equation of motion for n̂ leads to

Î = 2e ˙̂n = 2e
i

~

[
ĤT , n̂

]
= Ic sin φ̂. (2.90)

We recognize here the Josephson current-phase relation, where we recover the relation
between the critical current and the Josephson energy, EJ = IcΦ0/(2π).

To investigate the second Josephson relation we must include in the Hamiltonian the
effect of an electrostatic potential applied across the junction. If we define V = V2 − V1

as the potential drop across the junction from S2 to S2, the total Hamiltonian, including
the electrostatic energy, reads

Ĥ = −EJ cos φ̂− 2eV n̂. (2.91)

The Heisenberg equation of motion for the phase difference expresses the second Josephson
relation

~ ˙̂
φ = −i d

dt

(
eiφ̂
)
e−iφ̂ =

[
Ĥ, eiφ̂

]
e−iφ̂ = 2eV. (2.92)

We will later consider superconducting circuits involving Josephson junctions together
with other linear elements. For this purpose, we define a flux operator, based on the phase
operator, Φ̂ = Φ0

2π φ̂. Any Josephson junction embedded in a larger circuit is assumed to
have the following Hamiltonian:

ĤJ = −EJ cos

(
2π

Φ̂

Φ0

)
. (2.93)

Accordingly, if the voltage across the junction is an operator, it will be given by V̂ =
˙̂
Φ.

The nonlinear Hamiltonian ĤJ is the starting point to describe implementations of
superconducting qubits, that is resonant circuits with anharmonic energy spectrum.
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(a)

CJ EJ ≡ EJ ,CJ

(b)

EJ1 Φext EJ2 ≡ EJ(Φext)

Figure 2.6: (a) Circuit diagram of a Josephson junction, formed by a nonlinear in-
ductance (cross) with Josephson energy EJ , in parallel with a capacitance CJ . The
combination of both elements is conventionally denoted by a box with a cross. (b) The
split junction is formed by two Josephson junctions in parallel. This element is equiva-
lent to a single junction whose Josephson energy EJ(Φext) can be tuned by applying an
external magnetic field.

Junction capacitance

In the above discussion about the Josephson effect, we have omitted the effect of the junc-
tion capacitance. The thin insulating barrier forming the Josephson junction has a finite
capacitance which cannot be neglected. A Josephson junction should therefore considered
as a nonlinear inductance in parallel with a capacitance CJ , as shown in Fig. 2.6(a).

To derive an Hamiltonian for such a system, we must additionally include the electro-
static energy of the capacitance CJ . Classically, this energy is related to the voltage across
the junction by E = 1

2CJV
2. We emphasize that this situation should not be confused

with the case of an applied voltage, but rather corresponds to an isolated junction. The
voltage V is due to the charge having formed on each side of the junction. Another way
to see it is to consider the junction as an LC resonator with a nonlinear inductance.

Using the relation between the voltage and the phase difference, Eq. (2.77), we readily
obtain the Lagrangian

L =
1

2
CJ

(
~
2e
φ̇

)2

+ EJ cosφ. (2.94)

One can verify that the conjugate momentum δL
δφ̇

is the charge on the capacitance CJ , in

units of 2e, multiplied by ~. We rather define the conjugate momentum n as

n = −1

~
δL
δφ̇

= −1

~
CJ

(
~
2e

)2

φ̇ =
CJV

−2e
. (2.95)

The minus sign in the above definition comes from the negative charge of Cooper pairs.
The corresponding quantum-mechanical operator is the charge number operator n̂ we
already encountered, Eq. (2.87). The Hamiltonian reads

Ĥ =
(2e)2

2CJ
n̂2 − EJ cos φ̂. (2.96)

Defining the canonically conjugated charge Q̂ = −2en̂ and flux operators Φ̂ = Φ0
2π φ̂, the

Hamiltonian can also be written as

Ĥ =
Q̂2

2CJ
− EJ cos

(
2π

Φ̂

Φ0

)
, (2.97)
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where [Φ̂, Q̂] = i~, like we obtained for the LC resonator. The Heisenberg equations of
motion for Q̂ and Φ̂ express the two Josephson relations,

Î = − ˙̂
Q = − i

~

[
Ĥ, Q̂

]
= Ic sin

(
2π

Φ̂

Φ0

)
, (2.98a)

˙̂
Φ =

i

~

[
Ĥ, Φ̂

]
=

Q̂

CJ
= V̂ . (2.98b)

The split Josephson junction

A split junction is formed by two Josephson junctions in parallel, as depicted in Fig 2.6(b).
The two junctions are embedded in a SQUID-like ring which enclose an external magnetic
flux Φext. It effectively behaves as a single junction whose Josephson energy is tunable.

The energy of two junctions with Josephson energies EJ1 and EJ2 is given by

E = −EJ1 cos (φ1)− EJ2 cos (φ2) , (2.99)

where φ1,2 are the phase differences across each junctions. The quantization of the mag-
netic flux inside a superconducting loop sets the difference between φ1 and φ2,

φ2 − φ1 = 2π
Φext

Φ0
+ 2kπ, (k ∈ N). (2.100)

The value of the integer k is physically irrelevant and can be set to zero without loss
of generality. The only effective degree of freedom is therefore the phase difference φ =
1
2(φ1 + φ2). In terms of the corresponding operator φ̂, the Josephson Hamiltonian can be
written as

ĤJ = −EJ(Φext) cos
(
φ̂− φ0

)
, (2.101)

where the tunable energy EJ(Φext) and the phase shift φ0 are given by

EJ(Φext) =

√
E2
J1 + E2

J2 + 2EJ1EJ2 cos

(
2π

Φext

Φ0

)
, (2.102)

tanφ0 =
EJ2 − EJ1

EJ2 + EJ1
tan

(
π

Φext

Φ0

)
. (2.103)

The phase shift φ0, if constant in time, can be eliminated by a displacement of the variable
φ̂, that is by a gauge transformation Û = e−in̂φ0 ,

ÛĤJ Û
† = −EJ(Φext) cos φ̂. (2.104)

In case of a perfectly symmetric split junction, EJ1 = EJ2, the flux-dependent Josephson
energy takes the simpler form, EJ(Φext) = 2EJ1 cos(πΦext/Φ0).

2.4.2 Cooper pair box

A Cooper pair box (CPB), or charge qubit, is one of the simplest quantum circuit in-
volving a Josephson junction that can produce two-level physics. Its functioning was first
described theoretically in [Büttiker87]. The first experimental realization was presented
in [Bouchiat98], and the first demonstration of quantum coherent oscillations with super-
position of energy eigenstates was reported in [Nakamura99].
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V

Vg
island

CgCJ

EJ

Figure 2.7: Cooper pair box. The superconducting island (gray) is connected to a voltage
source Vg, via a capacitance Cg, and to the ground via a Josephson junction with energy
EJ and capacitance CJ . The potential on the island is related to the phase difference

across the junction by V = ~φ̇
2e

A CPB is formed by a superconducting island that is part of a tunnel junction with
Josephson energy EJ and capacitance CJ (see Fig. 2.7). The island is biased by an
additional gate voltage Vg applied in series with a gate capacitance Cg. The electrostatic
energy required to place an electron e on the island is

EC =
e2

2CΣ
(2.105)

at zero voltage, where CΣ = CJ +Cg is the total capacitance of the island. The energy EC
is usually called charging energy or Coulomb energy. If the island, and therefore its capac-
itance CΣ, are small enough, the energy EC is much larger than the Josephson energy EJ .
In the regime EC � EJ , the number of Cooper-pair transferred to the island is a discrete
variable exhibiting quantized behavior at low enough temperature. An environment with
T ' 1 K typically requires CΣ � 1 fF in order to satisfy EC � kBT [Clarke08].

We are now rather familiar to the procedure used to obtain the Hamiltonian of such a
circuit. Including the effect of the gate voltage Vg, the Lagrangian of the CPB is

L =
1

2
CΣ

(
~φ̇
2e
− CgVg

CΣ

)2

+ EJ cosφ. (2.106)

The conjugate momentum to the phase difference across the junction φ is related to charge
on the island, expressed as a number of Cooper pair n. To make this clear we use the

simplification V = ~φ̇
2e , where V is the potential on the island. We have then

n = −1

~
δL
δφ̇

= − 1

2e
[CJV − Cg(Vg − V )] . (2.107)

Therefore, we can think of the variable n as the number of additional Cooper pairs on the
island, with respect to the neutral configuration. As we have seen in the previous section
treating the Josephson junction, the associated charge number operator n̂ has a discrete
spectrum, due to the 2π-periodicity of the phase variable φ. The Hamiltonian of the CPB
is

Ĥ = 4EC (n̂− ng)2 − EJ cos φ̂, (2.108)

where ng =
CgVg

2e is the dimensionless gate charge.
The CPB box is a quantum circuit behaving like an artificial atom, with highly anhar-

monic spectrum. We now show that it can be approximated by a two-level system, when
operated in the appropriate regime. This can be better seen if we write the Hamiltonian
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in the discrete basis of eigenstates of the charge number operator n̂. The different repre-
sentations of the phase and charge number operators were given previously in Eq. (2.87).
We obtain the Hamiltonian [Bouchiat98]

Ĥ =
∑
n

[
4EC(n− ng)2|n〉〈n| − EJ

2

(
|n〉〈n+ 1|+ |n+ 1〉〈n|

)]
. (2.109)

The spectrum of Ĥ is periodic for integer shift of the dimensionless gate charge ng. Thus,
for convenience, we can take ng to be in the interval [0, 1) without loss of generality. Under
this assumption, we see from the form of Ĥ, that in the regime EC � EJ , the low-energy
physics is dominated by the states with charge number n close to zero.

If we completely neglect the influence of the Josephson Hamiltonian, setting EJ = 0,
the charge number states |n〉 are energy eigenstates. If 0 < ng < 1, the two lowest
energy eigenstates are |0〉 and |1〉. If ng = 0, the ground state is |0〉, while | ± 1〉 are the
degenerate first excited states. In the particular case where ng = 1/2, the states |0〉 and
|1〉 are degenerate.

A finite Josephson energy EJ couples states with different charge number n. We notice
that for finite, but small ratio EJ/EC , the effect of coupling is only relevant near the point
ng = 1/2, where it lifts the degeneracy between the states |0〉 and |1〉. Away from this
point the charging energy dominates and the energy eigenstates are well approximated by
the charge number eigenstates |n〉.

The particular working point where the condition ng = 1/2 is satisfied is called sweet
spot or charge degeneracy point. Two-level physics can be realized near this particular
working point of the CPB, since the states |n 6= 0, 1〉 are well-separated in energy from
the states |0〉 and |1〉 [You03b]. The energy splitting between the states |0〉 and |1〉 is of
the order of EJ , while the other states have energies of at least EC . Therefore, a large
ratio EC/EJ produces a very anharmonic energy spectrum, allowing us to truncate the
Hamiltonian Ĥ to the low energy sector,

Ĥ = 2EC(1− 2ng)
(
|1〉〈1| − |0〉〈0|

)
− EJ

2

(
|0〉〈1| − |1〉〈0|

)
. (2.110)

If ng = 1/2, the ground state is |g〉 = 1√
2
(|1〉+ |0〉), and the first excited is |e〉 = 1√

2
(|1〉 −

|0〉). Expressed in terms of the Pauli matrices

σx = |g〉〈e|+ |e〉〈g|, (2.111a)

σy = i
(
|g〉〈e| − |e〉〈g|

)
, (2.111b)

σz = |e〉〈e| − |g〉〈g|, (2.111c)

we obtain the Hamiltonian for a spin-1/2 particle

Ĥ =
~ωge

2
σz +

~Ωx

2
σx, (2.112)

where ωge = EJ/~ and Ωx = 4EC(1−2ng)/~. The form of Ĥ reminds us of the spin Hamil-
tonian in NMR, with the Josephson and charging energies playing the role of the Zeeman
and transverse fields. At this point, we see that such an effective two-level structure allows
us to really talk about a quantum bit, whose computational subspace is spanned by the
states |g〉 and |e〉. The control field Ωx and the energy splitting

∆E =
√
E2
J + 16E2

C(1− 2ng)2 (2.113)
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are functions of the dimensionless gate charge ng. This enables the manipulation and the
preparation of arbitrary qubit states, by application of control voltage pulses Vg(t). For
the CPB and its derivatives, the control field couples to the charge degree of freedom,
hence the name of charge qubit. This is the major distinction with the two other generic
types of superconducting qubits that are phase and flux qubits, whose control fields are
rather a current modulating the phase or an external magnetic flux, respectively.

The CPB is an example of artificial atom, which can be controlled and whose energy
spectrum can be tuned by an external gate voltage. Its properties can be parametrized
even further if the Josephson junction is replaced by a split junction. In this case, we
have additional control on the Josephson energy, EJ = EJ(Φext), by applying an external
magnetic field. As we will see, the CPB is quite sensitive to surrounding electrical noise. In
the next section, we show how the noise in the control fields affects the qubit performance.

2.4.3 Effects of noise on the qubit performance

A qubit is never completely isolated and a coupling to uncontrolled environmental degrees
of freedom cannot be avoided. This coupling leads to an exchange of energy between
the qubit and its environment, causing relaxation, or produces fluctuations of the qubit
transition frequency. As we know from the treatment of dissipation in linear resonant
circuits, the energy dissipation produces a broadening of the energy levels and a loss
of coherence. In the case of a two-level system, the decoherence effect splits up in two
contributions. The first one is relaxation, the emission or absorption of energy by the
qubit. The second one is dephasing, the loss of coherence in a superposition of two energy
eigenstates.

The decoherence of a qubit is characterized by two timescales, the relaxation time T1

and the dephasing time T2. The state of a qubit, expressed with its density matrix ρ̂,
is expected to have the following time-dependence: off-diagonal elements decay at rate
1/T2, while diagonal elements relax to their equilibrium value at rate 1/T1. The diagonal
elements of ρ̂ are defined with respect to the energy eigenbasis, that is the basis in which
the qubit Hamiltonian reads

Ĥqb =
~ω01

2
σz. (2.114)

The relaxation and dephasing processes are exponential decays

σz(t) = σz(0)e−t/T1 + σeq

(
1− e−t/T1

)
, (2.115)

σ±(t) = σ±(0)e±iω01te−t/T2 , (2.116)

where we have defined σ± = (σx ± iσy)/2. Here, σi(t) = Tr [ρ̂(t)σi].

In quantum-state engineering and quantum information processing, one generally needs
to be able to control the dynamics of a qubit, i.e., apply quantum gates, before the
coherence is lost. This requires both the coupling to the environment to be weak enough,
and the temperature to be low enough, such that the evolution of the qubit state is nearly
coherent and governed by its Hamiltonian on the timescale set by the gate time. The time
required to perform a quantum gate is determined by a coupling energy J , to an external
control field or between two qubits. The value of JT2/~ being appreciably much larger
that unity is a minimal condition to allow efficient quantum-state manipulations.

The relaxation alone produces dephasing of the qubit. This can be illustrated as
follows: if the qubit makes a transition form the excited state |e〉 to the ground state
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|g〉, the coherent superposition of |e〉 and |g〉 is destroyed. One can show that the rate of
such relaxation-induced dephasing is (2T1)−1. However, additional causes of decoherence,
producing pure dephasing, might still be possible. We can distinguish the contributions to
the total dephasing rate into pure dephasing, described by the rate T−1

ϕ , and relaxation-
induced dephasing. This distinction leads to the important relation

1

T2
=

1

2T1
+

1

Tϕ
. (2.117)

We notice that, ultimately, when pure dephasing has been completely eliminated (T−1
ϕ =

0), the coherence is limited by relaxation only. Such decomposition of the decoherence
process in two distinct contributions coming from relaxation or pure dephasing is in general
only possible if the temperature is low, ~ω01 � kBT , and the coupling to the environment
weak [Makhlin01].

Pure dephasing is the consequence of fluctuations of the transition frequency ω01. This
process can be described by an environment that couples to the longitudinal component
σz,

Ĥ = Ĥqb + Fz(t)σz. (2.118)

The random field Fz can be either considered as a classical or quantum noise term. For the
moment, we focus on the first case and assume Fz to be a time-dependent random quantity.
Evidently, the coupling cannot induce qubit transition, the longitudinal component σz(t)
is conserved, and such Hamiltonian shows pure dephasing only. To obtain an expression
for the dephasing time Tϕ, we consider the off-diagonal elements of the density matrix

σ±(t) = σ±(0)e±iω01t
〈
e±iϕ(t)

〉
, (2.119)

where the accumulated phase is ϕ(t) = 2/~
∫ t

0 dsFz(s). If the noise is Gaussian with zero
mean, it is fully characterized by its correlation function g or its power spectrum SFzFz ,

g(t− t′) = 〈Fz(t)Fz(t′)〉, SFzFz(ω) =

∫
dτ eiωτg(τ). (2.120)

In this case, the average can be carried out using the cumulant expansion,〈
eiϕ(t)

〉
= e−

1
2
〈ϕ(t)2〉 = exp

(
− 2

~2

∫
dω

2π
SFzFz(ω)

sin2(ωt/2)

(ω/2)2

)
. (2.121)

Assuming the noise has a typical correlation time tc such that g(τ) ∼ e−|τ |/tc , one can show
that that for t � tc, Eq. (2.121) reduces to exp

[
−2|t|SFzFz(ω = 0)/~2

]
. This expression

directly gives an exponential decay law. The resulting dephasing time is

Tϕ =
~2

2SFzFz(ω = 0)
. (2.122)

This situation corresponds to the case of homogeneous broadening and the above analysis
holds only when the noise power spectrum is regular at low frequencies. More relevant
experimentally is the case of 1/f noise, with a typical power spectrum

SFzFZ (ω) =
A

|ω| . (2.123)
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However, one needs to introduce a low-frequency cutoff ωir, which reflects the finite time
of any measurement protocol. For t� ω−1

ir , one obtains [Ithier05]

1

2
〈ϕ(t)2〉 =

2A

π~2
t2| ln(ωirt)|. (2.124)

Since the decay of the off-diagonal components σ±(t) is not exponential, the pure dephas-
ing time is approximated by the typical time needed for a decay by a factor e−1. The
dependence of Tϕ on the frequency cutoff ωir is only logarithmic. For K = A

π~2ω2
ir
� 1, we

obtain

Tϕ = ~
√

π

lnKA

[
1−O

(
ln(lnK)

lnK

)]
. (2.125)

The numeric and logarithmic prefactors can generally be omitted. We end up with the
approximate dephasing time

Tϕ '
~√
A

(2.126)

for 1/f noise.
To describe the effect of relaxation and obtain an expression for the relaxation time

T1, the model should include a coupling to the transversal component of the qubit. We
now turn to the case of a quantum field F̂ coupling to both the σx and σz components of
the qubit,

Ĥ =
~ω01

2
σz + (sin θσx + cos θσz) F̂ + ĤB. (2.127)

The Hamiltonian ĤB describes the evolution of the noise source only and commutes with
the qubit operators.

In the case of pure dephasing (sin θ=0), the previous result for the time Tϕ is recov-
ered. Instead of the classical power spectrum, we need to consider the symmetrized power
spectral density

S̄FF (ω) =
1

2
[SFF (ω) + SFF (−ω)] , SFF (ω) =

∫
dteiωt〈F̂ (t)F̂ (0)〉. (2.128)

The approximation of weak coupling means that the quantum expectation value 〈. . .〉 is
to be taken for the unperturbed environment alone.

If the noise source couples to the transverse component only (cos θ=0), it causes tran-
sitions between the ground state and the excited state of the qubit. The transition rates
for emission Γ↓ and absorption Γ↑ of an excitation by the qubit can be evaluated using
Fermi’s Golden rule in the limit of weak-coupling and for short correlation time of the
noise source. Under these approximations, we obtain

Γ↓ =
1

~2
SFF (ω01), Γ↑ =

1

~2
SFF (−ω01). (2.129)

The positive-frequency part of the spectral density SFF is a measure of the ability of the
noise source to absorb energy, while the negative frequency part is a measure of the ability
to emit energy. If the noise source is in thermal equilibrium at temperature T � ~ω01/kB,
the absorption rate is exponentially suppressed compared to the emission rate. The total
relaxation rate of the qubit is then T1 = (Γ↑ + Γ↓)

−1 and the equilibrium value of σz(t)
becomes

σeq =
Γ↑ − Γ↓
Γ↑ + Γ↓

. (2.130)
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If the noise source couples to both σx and σz, the contributions to relaxation and pure
dephasing come from the high-frequency, respectively low-frequency, part of its power
spectrum. Namely,

1

T1
= sin2 θ

2S̄FF (ω01)

~2
, (2.131a)

1

Tϕ
= cos2 θ

2S̄FF (0)

~2
, (2.131b)

1

T2
=

1

2T1
+

1

Tϕ
, (2.131c)

provided the noise power spectrum is regular at low frequencies.

Sensitivity of the CPB to charge noise

The fluctuations and offsets of the gate charge ng are the dominating sources of relaxation
and dephasing for the CPB. Since the gate voltage Vg is the main control parameter of
such a qubit, the CPB is directly exposed to surrounding charge fluctuations and parasitic
electrical fields, which causes relaxation of the qubit and fluctuations of its energy splitting
∆E.

As we have seen in the section treating semi-infinite transmission lines and the quantum
input-output theory, the noise coming from the coupling to external control fields can
be regarded as effectively produced by dissipative elements, such as resistors. For the
CPB, the gate voltage can be decomposed into a dc-component and fluctuating term,
Vg = V dc

g + V̂ . Dissipative behavior of the CPB can be investigate if one regards the

operator V̂ as the voltage at the end of a semi-infinite transmission line. Equivalently, one
may think of the CPB being connected to a voltage source with a finite impedance Z(ω),
microscopically modeled as collection of harmonic oscillators [Shnirman97].

We now derive the Hamiltonian for the coupled system in the two-level approximation.
The interaction is obtained by replacing the gate charge ng by ng+CgV̂ /(2e) in Eq. (2.112).
Reducing the CPB to an effective two-level system, we obtain, after an appropriate rotation
of the qubit basis,

Ĥ =
∆E

2
σz +

Cge

CΣ
(sin θσx + cos θσz) V̂ + ĤB, (2.132)

where ∆E is given in Eq. (2.113) and cot θ = 4EC(1− 2ng)/EJ . The voltage operator V̂
and the bath Hamiltonian ĤB for the transmission line were derived previously and read

V̂ =
∑
k

√
~ωk
L0c

(
âk + â†k

)
, ĤB =

∑
k

~ωkâ†kâk. (2.133)

Such microscopic model for the decoherence of the two-level system, known as the spin-
boson model, as been studied extensively [Caldeira83b, Leggett87, Weiss08]. It has been
successfully applied to different types of superconducting qubits for different noise channels
[Makhlin01].

Here, the coupling strength to the k-th mode of the transmission line has a particular

form, i.e., it is proportional to ω
1/2
k . This corresponds to the case of Ohmic dissipation
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and the fluctuations of the voltage source, taken to be in thermal equilibrium, have a
Johnson-Nyquist power spectrum

SV V (ω) = 2ZTL~|ω|
[
Θ(ω)

(
nB(~ω) + 1

)
+ Θ(−ω)nB(~|ω|)

]
. (2.134)

In other words, the source impedance is taken to be purely resistive, Z(ω) = ZTL. The
relaxation and the dephasing times have been evaluated in the context of the spin-boson
model and are given by [Makhlin01]

1

T1
= λ sin2 θ

∆E

~
coth

(
∆E

2kBT

)
, (2.135)

1

Tϕ
= λ cos2 θ

2kBT

~
, (2.136)

where λ = 2e2

~ ZTL

(
Cg
CΣ

)2
is a dimensionless parameter expressing the strength of the

coupling to the environment. These expressions are valid when the conditions λ� 1 and
∆E � λkBT are satisfied. They coincide with the expressions obtained in the previous
section, Eq. (2.131), using the relation S̄FF = (eCg/CΣ)2S̄V V , where

S̄V V (ω) = ZTL~ω [2nB(~ω) + 1] . (2.137)

Regarding the decoherence induced by dissipative elements, the CPB should exhibit
longer Tϕ when operated at the charge-degeneracy point, θ = π/2. At the charge-
degeneracy point, hence its name, the two low-energy eigenstates which form the qubit
cannot be distinguished by their charge configuration. At first sight, this is obviously an
advantage when the major source of decoherence is a noisy environment that couples to
the charge degree of freedom. The dependence of the energy splitting ∆E to the dimen-
sionless charge ng, also called charge dispersion, has a minimum at the charge-degeneracy
point.

However, other sources of noise such as fluctuations of the background charge might
still affect the qubit coherence. They typically have 1/f power spectrum and mainly
produce pure dephasing. Their contribution to the dephasing time Tϕ can be evaluated
using Eq. (2.126). Away from the charge-degeneracy point, it yields

Tϕ '
2~√
A

∣∣∣∣∂∆E

∂ng

∣∣∣∣−1

(2.138)

where A is the amplitude of the noise in the gate charge ng, whose power spectrum is
assumed to be given by Sngng(ω) = A/|ω|.

Sensitivity to charge noise with 1/f spectrum is reduced at the charge-degeneracy
point. As can be seen from Eq. (2.113), ∆E is only sensitive to second-order fluctuations
in the gate charge if ng = 1/2 and fluctuations of the transition energy are reduced, hence
the name of sweet spot. By operating at this particular point, the coherence time of the
charge qubit was greatly improved [Vion02]. The dephasing time due to second-order
effects for typical 1/f noise was calculated in [Ithier05],

Tϕ '
2~
Aπ

∣∣∣∣∂2∆E(ng = 1/2)

∂n2
g

∣∣∣∣−1

' ~
Aπ

EJ
32E2

C

. (2.139)
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The ratio EC/EJ being large for the CPB, the second-order contribution of the charge
noise is still the dominating cause of decoherence, as reported in Ref. [Metcalfe07].

The sensitivity against charge noise is precisely the weakness of the CPB that is tack-
led by the transmon design. As we will see, by reducing the ratio EC/EJ , we can greatly
suppress the charge dispersion while conserving enough anharmonicity in the energy spec-
trum.

2.4.4 Exact solutions of the charge qubit Hamiltonian

The exact energy spectrum and the corresponding eigenstates of the charge qubit Hamil-
tonian Eq. (2.108) can be obtained analytically in the phase representation [Cottet02].
These expressions turn out to be useful when discussing the properties of the system for
smaller ratio EC/EJ .

We first notice that the dimensionless gate charge ng can be eliminated from the charge

qubit Hamiltonian with the unitary transformation Û = eingφ̂,

ÛĤÛ † = 4EC n̂
2 − EJ cos φ̂. (2.140)

Since the wave function ψ(φ) = 〈φ|ψ〉 is 2π-periodic, ψ(φ+2π) = ψ(φ), we cannot strictly
think of Û as a gauge transformation, unless ng ∈ Z. In other words, the transformed
wave function ψ̃(φ) = 〈φ|Û |ψ〉 satisfies new boundary conditions,

ψ̃(φ+ 2π) = ei2πng ψ̃(φ). (2.141)

Using the phase representation of the charge number operator, n̂ = i ∂∂φ , the Schrödinger
equation reads

−
(

4Ec
∂2

∂φ2
+ EJ cosφ

)
ψ̃k(φ) = Ekψ̃k(φ), (2.142)

where k denotes the band index. This equation is reminiscent of the Schrödinger equa-
tion of a particle moving in periodic potential. Its Bloch solution is of the form ψ̃k(φ) =
eimkφuk(φ), where uk(φ) must be 2π-periodic. Because of the periodicity of the wave func-
tion, only discrete ‘particle’ momenta mk are allowed and mk−ng ∈ Z. More precisely, the
above differential equation has the canonical form of a Mathieu equation [Abramowitz70].

For vanishing Josephson energy, EJ = 0, the spectrum is given by the shifted parabolas,
Ek(ng) = 4Ec[ng − o(k, ng)]2, where o(k, ng) ∈ Z is an ordering function.5 For finite EJ ,
the value of the eigenenergies are

Ek(ng) = EC


a2[ng−o(k,ng)]

(
− EJ

2EC

)
, 2ng 6∈ Z,

ak+(2ng mod 2)

(
− EJ

2EC

)
, k even and 2ng ∈ Z,

bk+(2ng+1 mod 2)

(
− EJ

2EC

)
, k odd and 2ng ∈ Z,

(2.143)

where aν(q) and bν(q) denotes the Mathieu characteristic values. The energy spectrum
Ek(ng) for different values of the ratio EJ/EC is shown in Fig. 2.8. For small values of
EJ/EC , we notice that the Josephson coupling produces an avoided crossing, as expected,
between the two lowest eigenstates at the charge-degeneracy points (ng − 1

2) ∈ Z, while
leaving the spectrum almost unchanged in the other regions. When increasing the ratio
EJ/EC , the charge dispersion of the lowest energy eigenstates gets reduced.

5o(k, ng) = dnge+ (−1)b1+2ngc ( mod 2)
[
b1 + 2ngc (mod 2) + (−1)kdk/2e

]
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Figure 2.8: Energy spectrum of the CPB as a function of the dimensionless gate charge
ng. We show the first three energy levels Ek for the cases: EJ/EC = 0 (black dashed),
EJ/EC = 0.5 (red), EJ/EC = 1 (blue), EJ/EC = 3 (green).

Denoting by |k〉 the eigenstates with energy Ek , its wave functions ψk(φ) = 〈φ|k〉 can
be written in term of the Mathieu cosine and sine functions, Mc and Ms.

6 If 2ng 6∈ Z, we
have

ψk(φ) = N e−ingφMc

(
Ek
EC

,− EJ
2EC

,
φ

2

)
+ i(−1)k+(b2ngc mod 2)Ms

(
Ek
EC

,− EJ
2EC

,
φ

2

)
,

(2.144)

while if 2ng ∈ Z,

ψk(φ) = N e−ingφ
 Mc

(
Ek
EC
,− EJ

2EC
, φ2

)
, k even,

Ms

(
Ek
EC
,− EJ

2EC
, φ2

)
, k odd.

(2.145)

Therefore we notice that the periodic Bloch function uk have a well-defined parity given
by (−1)k for 2ng ∈ Z.

2.4.5 Transmon qubit

The transmon qubit is a charge qubit operated in the regime where the Josephson energy
dominates over the charging energy. The consequences of such an operating regime are
reduced charge dispersion and anharmonicity of the energy levels. On one hand, this is
beneficial since it protects the qubit against charge noise and enhances its coherence time
[Houck09]. On the other hand, the reduced anharmonicity requires particular precautions
when applying control pulses, in order not to leak out of the computational subspace
spanned by the lowest energy eigenstates.

The Hamiltonian of the transmon qubit is structurally the same as the CPB Hamil-
tonian, the main difference is that the Josephson junction is shunted, in parallel, by
an additional large capacitance CB � CJ (see Fig. 2.9). The charging energy becomes

EC = e2

2CΣ
, where CΣ = CB +Cg +CJ , and can be made small compared to the Josephson

6The functions Mc(a, q, x) and Ms(a, q, x) are defined as the even and odd solutions of the canonical
Mathieu equation, g′′(x) +

(
a− cos(2x)

)
g(x) = 0.
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(a)
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CJ

EJ(Φext)

(b)

Figure 2.9: Transmon qubit. (a) Simplified circuit representation of the transmon qubit.
The superconducting islands are connected by a split Josephson junction with tunable
EJ(Φext) and an additional large capacitance CB . (b) Actual planar geometry of the
first generation of transmon qubits [Houck09], patterned by electron-beam lithography
on single-crystal sapphire substrate. The dc-SQUID (red) is formed by two Josephson
junction in parallel (black) and connects the two superconducting islands (blue).

energy, EC � EJ . As we will see, the energy spectrum cannot be changed by an external
static gate voltage. Therefore, they are generally made with a split junction, with tunable
effective Josephson energy EJ = EJ(Φext). The external magnetic flux Φext is a control
parameter which makes possible to changes the level spacing.

Operated in the transmon regime, typically EJ/EC ∼ 50−100, a charge qubit exhibits
a suppressed charge dispersion of the low-energy levels. This can already be seen for much
smaller value of the ratio EJ/EC , as shown in Fig. 2.8. For larger values of EJ/EC , the en-
ergy bands Ek(ng) are nearly flat, as shown in Fig. 2.10(a). In addition, the anharmonicity
of the low-energy spectrum is reduced when increasing EJ/EC . The main benefit of such
regime comes the fact that the charge dispersion is exponentially suppressed, while the
loss in anharmonicity only follows a power law. The main properties and advantages of
the transmon qubit were first theoretically predicted in Ref. [Koch07]. The experimental
verification of these properties was reported in Refs. [Schreier08, Houck08], even if experi-
ments involving such charge qubits with a ratio EJ/EC well above unity had already been
performed [Schuster07, Majer07].

The reduction of the charge dispersion and the weaker anharmonicity can be under-
stood in the following way. The cosine Josephson potential becomes deeper when the
Josephson energy is large. The low-energy eigenstates have their wave functions ψk(φ)
exponentially suppressed for φ → ±π, as illustrated in Fig. 2.10(b). The charge dis-
persion can be thought of as due to tunneling to adjacent cosine wells. Since the wave
functions ψk(φ) gets localized around φ = 0, they become less sensitive to the pseudo-
periodic boundary conditions on the wave function, Eq. (2.141). Therefore, the energy
bands Ek(ng) become flatter when EJ/EC is increased. At the same time, the cosine
potential gets closer to a parabolic potential for the low-energy states and their spectrum
approaches the one of a harmonic oscillator in the limit EJ/EC →∞.

Charge dispersion and increased coherence time

In the limit EJ � EC , an approximation for the charge dispersion relation of the k-th
energy band, εk, was derived in [Koch07],

εk =
∣∣Ek(ng = 1/2)− Ek(ng = 0)

∣∣ ' EC 24k+5

k!

√
2

π

(
EJ

2EC

) k
2

+ 3
4

e−
√

8EJ/EC . (2.146)
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Figure 2.10: Energy spectrum and eigenstates of the charge qubit in the transmon
regime. (a) Flat energy bands as a function of the dimensionless gate charge ng, for
EJ/EC = 50, obtained from Eq. (2.143). (b) The energy levels (red) and modules of
the wave function |ψk(φ)|2 (blue), obtained from the exact diagonalization of the charge
qubit Hamiltonian, Eq. (2.145), are shown in the cosine Josephson potential (black) for
EJ/EC = 50 and ng = 0.5.

The exponential suppression of the charge dispersion explains the robustness of the trans-
mon qubit against charge noise. Actually, its transition energies becomes practically in-
dependent of the bias ng, as shown in Fig. 2.11(b). The worst-case estimation for the
dephasing time, due to charge noise only, is given by T2 ' ~/ε0, which is extremely long
for the typical parameters of transmon qubits. By going from EJ/EC = 1 to 50, the
expected improvement of T2 is about six order of magnitudes [Houck09]. The limitation
on the dephasing time would actually be set by other noise sources such as magnetic flux
and critical current fluctuations, or quasiparticle tunneling [Koch07].

The first generation of transmon qubits, that is the standard planar geometry, pat-
terned by electron-beam lithography on single-crystal sapphire substrate, as depicted in
Fig. 2.9, reached dephasing times up to 3 µs and were mainly limited by relaxation,
T2 = 2T1. The dominant source of decoherence was assumed to be critical current fluctu-
ations in the Josephson junction. However, a more recent generation of transmon qubits
[Paik11, Rigetti12] exhibiting surprisingly long dephasing times, up to 0.1 ms, seems to
disprove the latter assumption.

An anharmonic quantum oscillator

In the transmon regime, a charge qubit can be described as a weakly anharmonic LC
resonator. As we have seen previously, the phase fluctuations 〈φ̂2〉 are small for the low-
energy eigenstates (see Fig. 2.10). This allows us to neglect the effect of the gate charge
ng and to expand the Josephson cosine term of the charge qubit Hamiltonian, Eq. (2.108),

Ĥ = 4Ecn̂
2 − EJ

(
1− φ̂2

2
+
φ̂4

24

)
. (2.147)

Without the fourth-order term, Ĥ is the Hamiltonian of a harmonic LC-resonator with ca-

pacitance CΣ and inductance LJ = EJ/I
2
c =

(
Φ0
2π

)2
E−1
J . We usually refer to its resonance
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Figure 2.11: Transition energies E0k = Ek−E0 (a), charge dispersion εk (b), and relative
anharmonicity αr (c) of the charge qubit as a function of the ratio EJ/EC . Exact values
(red) are compared to the perturbative results given in Eqs. (2.146), (2.152), and (2.155)
(dashed black).

frequency

ωp =
1√
LJCΣ

=

√
8ECEJ
~

(2.148)

as Josephson plasma frequency. The quartic term of Ĥ can be treated perturbatively to
find approximate eigenenergies and eigenstates. We express n̂ and φ̂ in terms of creation
and annihilation operators, ĉ† and ĉ,

n̂ = nzpf

(
ĉ+ ĉ†

)
, nzpf =

(
EJ

32Ec

)1/4

, (2.149)

φ̂ = −iφzpf

(
ĉ− ĉ†

)
, φzpf =

(
2EC
EJ

)1/4

. (2.150)

The Hamiltonian becomes

Ĥ = −EJ +
√

8EJEC

(
ĉ†ĉ+

1

2

)
− EC

12

(
ĉ− ĉ†

)4
. (2.151)

Using first-order perturbation theory, we obtain the approximate energy spectrum

Ek ' −EJ +
√

8EJEC

(
k +

1

2

)
− EC

4
[2k(k + 1) + 1] . (2.152)

The above approximate energies are compared to the exact values in Fig. 2.11(a). The
energy transition between to adjacent levels changes linearly with the band index k,

Ek,k+1 = Ek+1 − Ek = E01 − kEC , E01 =
√

8EJEC − EC . (2.153)

The absolute anharmonicity of the transmon qubit is therefore negative and proportional
to the charging energy,

α = E12 − E01 ' −EC . (2.154)
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From the above expression, we can find the scaling of the relative anharmonicity, defined
as αr = α/E01,

αr ' −
(
EC
8EJ

)1/2

. (2.155)

This approximate behavior is shown in Fig. 2.11(b) and compared to the exact solution
of the full Hamiltonian.

A sufficient anharmonicity of the energy spectrum allows us to use such system as a
qubit, where only the two lowest energy levels are addressed and form the computational
basis states. However, the reduced anharmonicity imposes some constraint on the fre-
quency bandwidth of control pulses used to manipulate the state of the qubit. In other
words, it sets a lower bound on the pulse duration, typically of the order of ~/α, in order
not to excite higher energy states. Specific strategies have be developed and implemented
to perform shorter control pulses with such weakly anharmonic qubit systems while avoid-
ing leakage out of the computational subspace. They rely on the addition of a simultaneous
second control whose optimal time-dependence is a function of the original control pulses
to be performed [Motzoi09].

The perturbation theory also provides an approximation for the eigenstates of such a
nonlinear resonator. They are conveniently expressed in the eigenbasis of the operator ĉ†ĉ,
defined as the states |k0〉, which satisfy

ĉ†ĉ|k0〉 = k0|k0〉, k0 ∈ N. (2.156)

The k-th eigenstates of the transmon qubit, with the eigenenergy Ek given in Eq. (2.152),
is approximately

|k〉 ' |k0〉 −
1

48

√
EC
2EJ

∑
m0 6=k

〈m0|(ĉ− ĉ†)4|k0 = k〉
m0 − k

|m0〉. (2.157)

The quartic term of Ĥ produces a small mixing of |k0〉 with the states |k0±2〉 and |k0±4〉.
Defining the level frequencies as ωk = Ek/~, the Hamiltonian of the transmon qubit reads

Ĥ =
∑
k

~ωk|k〉〈k|. (2.158)

From now, unless otherwise specified, the sum over the level indices is taken over k ≥ 0.
When considering the coupling of the transmon qubit to some external electrical field,

it will be important to know the expression of the charge number operator n̂ in terms of
the eigenstates |k〉. For this purpose, we might examine the matrix elements 〈k|ĉ|k + l〉.
Obviously, the leading order of the perturbation yields the terms with l = 1. The elements
with even l vanish, and those with odd l 6= 1 are smaller by a factor

√
EC/EJ at least.

Using the exact solution of the full Hamiltonian, one can actually show that the matrix
elements 〈k|n̂|k+ l〉 decay algebraically in the small parameter EC/EJ for odd l > 0, and
fall off exponentially for even l [Koch07]. At the particular points where 2ng ∈ Z, the
matrix elements with even l are identically zero. This can be inferred from the parity of
the wave functions ψk(φ) = 〈φ|k〉, Eq. (2.145).

Consequently we approximate the charge number operator by

n̂ '
(

EJ
32EC

)1/4∑
k

√
k + 1

(
|k + 1〉〈k|+ |k〉〈k + 1|

)
. (2.159)
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When restricting to the computational subspace (|g〉 = |0〉 and |e〉 = |1〉), the Hamiltonian
Eq. (2.158) and the operator n̂ can be expressed in terms of the standard Pauli matrices

σx = |0〉〈1|+ |1〉〈0|, (2.160a)

σy = i (|0〉〈1| − |1〉〈0|) , (2.160b)

σz = |1〉〈1| − |0〉〈0|. (2.160c)

The charge operator becomes n̂ ' (EJ/32EC)1/4σx. Remarkably, the coupling to some
electrical field is enhanced by a factor (EJ/2EC)1/4 in comparison to the CPB, where we
had n̂ = 1

2σx. This stronger coupling to a transverse field arises despite the level splitting
begin almost independent of the gate voltage.

The expression for the charge number operator given in Eq. (2.159) turns out to be
useful when discussing the coupling to a transmission line cavity, where the voltage is
the one of a quantized microwave cavity mode. The system formed by one or several
superconducting qubits and a TLR will be discussed in the next section and gives rise to
the field known as circuit QED.

2.5 Circuit quantum electrodynamics

Circuit QED is an active field of research that considers superconducting qubits coupled
to superconducting microwave cavities. This term was invented in analogy to the cavity
QED [Raimond01, Mabuchi02], where atoms, placed in an optical cavity, couple to the
electromagnetic modes via the dipole interaction. When the coupling to a particular cavity
mode is strong, typically larger than the relaxation rates of the atom and the cavity, the
latter can coherently exchange energy. The so-called regime of strong coupling between
an effective two-level system and a single photonic modes gives rise to many interesting
quantum effects that have been studied extensively in circuit QED experiments.

In circuit QED setups, the superconducting qubits – the artificial atoms – are placed
inside an effective one-dimensional microwave cavity – the superconducting TLR we have
considered previously – and realize an on-chip solid-state version of the Jaynes-Cummings
Hamiltonian. This seminal idea was first proposed in Ref. [Blais04], but earlier suggestions
of solid-state implementations of this Hamiltonian are worth mentioning [Marquardt01,
You03a]. Charge qubits can naturally be coupled to the electrical mode of TLRs by placing
them between the central wire and the ground planes, as shown in Fig. 2.12. In contrast
to atomic cavity QED, the strong confinement of the electrical field in the circuit QED
architecture already provides a big step towards the strong-coupling regime [Schoelkopf08].

We first present an Hamiltonian that describes the coupling between a single transmon
qubit and a microwave cavity. Under appropriate conditions, this model can be effectively
reduced to an conventional Jaynes-Cummings Hamiltonian involving only two levels of the
qubit, akin to the one encountered in atomic QED. This model captures most of the effects
arising in circuit QED and allows to discuss essential operations such as qubit readout and
single-qubit rotations. Afterwards, we review some of the most notable quantum effects
that have been observed in the strong-coupling regime of circuit QED. The straightforward
generalization of the model to setups involving multiple qubits – the Tavis-Cummings
Hamiltonian – is an important starting point in the description of many experiments
and quantum information protocols. Postponing the presentation of this model to the
next chapter, we conclude this chapter by giving some prominent examples of quantum
information protocols that have been successfully implemented with this architecture.
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Figure 2.12: Circuit QED setup with superconducting transmon qubits. Schematic rep-
resentation of the setup geometry consisting of four charge qubits (red), placed within the
gap between the central wire (dark blue) and the ground planes (light blue) of a coplanar
TLR (see Fig. 2.9(b) for an enlarged view). Input and output transmission lines (gray)
couples to the TLR via gap capacitors and allow to probe the qubits-cavity system in
transmission. External control lines (black) produces a local magnetic field that allows
to tune the frequency of the qubits, provided the latter are made with a split Josephson
junction.

2.5.1 Jaynes-Cummings Hamiltonian

We consider the situation where a single superconducting charge qubit is coupled capaci-
tively to the electrical field between the central wire and the ground plane of a TLR. The
full system Hamiltonian contains three terms: the charge qubit Hamiltonian, Eq. (2.108),
the resonator Hamiltonian, Eq. (2.27), and a term describing the dipole coupling be-
tween the charge number operator of the qubit n̂ and the voltage operator V̂ (x) given
in Eq. (2.31). Generally the system is only probed near a particular frequency, typically
close to the qubit transition frequency and one specific cavity resonance. The qubit are
designed to have frequency tunable close to the fundamental or first harmonic frequency
of the TLR. This choice mainly depends on the qubit position along the TLR; if close to
the ends, the qubit can couple to the fundamental mode, while this is not the case if the
qubit is placed near the center of the resonator, where the voltage due to the fundamen-
tal mode is essentially zero. Thus, only one resonator mode is taken into account since
the influence of other resonator modes, largely detuned from the qubit frequency, on the
coherent dynamics of the qubit is negligible.

In principle, the exact expression for the dipole coupling requires a careful circuit anal-
ysis, however, an appropriate expression can be obtained by replacing the dimensionless
gate ng that appears in the qubit Hamiltonian by the sum of a dc-component ndc

g , due to
the overall biasing of the resonator, and a term proportional to the quantum voltage oper-
ator, CgV̂ (x)/(2e), due to the presence of photons in the resonator. The voltage operator,
taken at the qubit position xq, is written as

V̂ (xq) = Vrms

(
âm + â†m

)
φm(xq), (2.161)

where âm(â†m) is the annihilation (creation) operator of the relevant resonator mode with

index m, Vrms =
√

~ωr
2c the zero-point fluctuation of the voltage, ωr = mπvp/L0 the mode

frequency, and φm the mode spatial distribution, with φm(xq) =
√

2/L0 if the qubit
position xq matches an anti-node of the electrical field (see Sec. 2.3.1 for details). Since
we only consider a single mode of the TLR, the index mode m will be dropped as from
now. The Hamiltonian for the qubit and the cavity reads

Ĥ = 4EC

(
n̂− ndc

g

)2
− EJ cos φ̂+ ~ωrâ†â+ 2βeVrmsn̂

(
â+ â†

)
, (2.162)
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where β = Cg/CΣ.
The above Hamiltonian can be expressed in the qubit eigenbasis. We now focus on

the case where the superconducting charge qubit is in the transmon regime, using the
results from Sec. 2.4.5. In Eq. (2.159), an expression for the charge number operator n̂
was derived. We can rewrite Eq. (2.162) in the form

Ĥ =
∑
k

~ωk|k〉〈k|+ ~ωrâ†â+
∑
k

~gk
(
|k + 1〉〈k|+ |k〉〈k + 1|

) (
â+ â†

)
. (2.163)

Here, the frequency of the kth transmon level, ωk = Ek/~, is obtained from the transmon
eigenenergies given in Eq. (2.152). The coupling strengths are approximated by gk '√
k + 1g0, where

~g0 = eVrms
Cg
CΣ

(
EJ

32EC

)1/4

. (2.164)

If the transition frequency of the transmon qubit, ωk,k+1 = ωk+1 − ωk, is close to the
resonator frequency ωr and ωr � gk, it is reasonable to invoke the RWA and drop the
counter-rotating terms âσk,− and â†σk,+. The resulting expression,

Ĥ =
∑
k

~ωk|k〉〈k|+ ~ωrâ†â+
∑
k

~gk
(
â|k + 1〉〈k|+ â†|k〉〈k + 1|

)
, (2.165)

has the form of a generalized Jaynes-Cummings Hamiltonian for a cavity coupled to a
multilevel artificial atom. Eq. (2.165) is the starting point to many studies about circuit
QED.

Two-level approximation

For the purpose of quantum information processing, it is obviously desirable that the
transmon anharmonicity is sufficiently large for this qubit to be treated as an effective
two-level system. When the transition frequency between the two lowest transmon levels
is nearly resonant with the resonator frequency, ω01 ' ωr, the influence of higher level
can be neglected and Eq. (2.165) can be written as a conventional Jaynes-Cummings
Hamiltonian [Jaynes63]7

Ĥ =
~ω01

2
σz + ~ωrâ†â+ ~g0

(
âσ+ + â†σ−

)
, (2.166)

where σ+ = |1〉〈0| and σ− = |0〉〈1|. While rather simple, the Jaynes-Cummings Hamil-
tonian is probably one of the most important model for understanding the light-matter
interaction. This Hamiltonian, well-known from the field of cavity QED, contains highly
non-trivial physics and captures various quantum effects.

In the dispersive regime, when the detuning between the qubit transition frequencies
and the cavity resonance frequency, ∆k,k+1 = ωk,k+1 − ωr, is large compared to their
coupling strength, gk � |∆k,k+1|, a two-level approximation can also be made. The
standard procedure, when dealing with genuine two-level system, is to treat the interaction
term in Eq. (2.166) perturbatively by making an unitary transformation ÛĤÛ †, where
Û = exp[(g0/∆01)(âσ+ + â†σ−)], and an expansion in the small parameter g0/∆01. This

results in a dynamical Stark shift
g2
0

∆01
σzâ
†â, which can be seen as shift of the cavity

7Details about the validity of such truncation of the Hilbert space can be found in Appendix A.1
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frequency depending on the qubit state, or as a shift of the qubit frequency depending on
the photon number.

However in circuit QED, when considering weakly anharmonic multilevel systems like
transmon qubits, it is important to treat the interaction perturbatively at the level of
the generalized Jaynes-Cummings Hamiltonian Eq. (2.165) before making the two-level
approximation. Applying the unitary transformation Û = exp(Ŝ), where

Ŝ =
∑
k

gk
∆k,k+1

(
â|k + 1〉〈k| − â†|k〉〈k + 1|

)
, (2.167)

to Eq. (2.165) and expanding up to second order in gk/∆k,k+1, we obtain

ÛĤÛ † = ~ω0|0〉〈0|+
∑
k≥1

~ (ωk + χk−1) |k〉〈k|

+

~ωr − ~χ0|0〉〈0|+
∑
k≥1

~ (χk−1 − χk) |k〉〈k|

 â†â
+
∑
k

~ηk
(
â2|k + 2〉〈k|+ â†2|k〉〈k + 2|

)
.

(2.168)

Here the generalized Stark shifts χk and two-photon transition rates ηk are given by

χk =
g2
k

∆k,k+1
, ηk =

1

2

gkgk+1

∆k,k+1∆k+1,k+2
(ωk,k+1 − ωk+1,k+2) . (2.169)

In the two-level approximation, two-photons processes are neglected and the resulting
dispersive Hamiltonian8

Ĥ =
~ω′01

2
σz + ~

(
ω′r + χσz

)
â†â (2.170)

contains the dispersive ac-Stark shift χ = χ0 − χ1/2, as well as Lamb-shifted qubit and
resonator frequencies, ω′01 = ω01 + χ0 and ω′r = ωr − χ1.

The dispersive Hamiltonian Eq. (2.170) allows to understand how qubit readout can
be performed in circuit QED by probing the cavity. The presence of the qubits cause a
state-dependent shift χ of the cavity frequency, whose sign depends on the qubit state.
When this frequency shift is comparable or larger than the cavity linewidth, it can be
determined by driving the cavity close to its unperturbed resonance frequency. The fre-
quency shift influences the measured amplitude and phase of the microwave field that is
either reflected or transmitted from the cavity [Wallraff04, Schuster05, Wallraff05]. This
measurement scheme is usually referred to as dispersive readout. When several qubits are
dispersively coupled to the same microwave cavity, this scheme even allows to perform
a joint qubit readout [Filipp09, Chow10b]. Importantly, the state of the qubit can be
determined nondestructively. Since the interaction commutes with the free Hamiltonian,
the dispersive readout is in principle a QND measurement scheme. It leaves the qubit into
one of the σz eigenstates and does not affect later repetition of the measurement.

Driven Jaynes-Cummings Hamiltonian and single-qubit operations

We now want to show how single-qubit rotations can be performed with a microwave
driving field acting on the TLR. The Hamiltonian

Ĥd = ~
[
ε∗(t)eiωdtâ+ ε(t)e−iωdtâ†

]
(2.171)

8The validity of this approximation is discussed in Appendix A.2
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models a coherent field with frequency ωd and time-dependent amplitude ε(t) that drives
the resonator mode. In the above expression, the RWA was made, assuming that the
condition |ε| � ωr, ωd is satisfied. The Hamiltonian for the qubit-resonator system and
the drive is

Ĥ =
∑
k

~ωk|k〉〈k|+ ~ωrâ†â+
∑
k

~gk
(
â|k + 1〉〈k|+ â†|k〉〈k + 1|

)
+ Ĥd. (2.172)

It is more convenient to express the Hamiltonian in the rotating frame of the driving field
by performing the unitary transformation Ĥnew = ÛĤÛ † + i~(∂tÛ)Û †, where

Û = exp

[
iωdt

(
â†â+

∑
k

|k〉k〈k|
)]

. (2.173)

The new Hamiltonian reads

Ĥrot =
∑
k

~δk|k〉〈k|+ ~δrâ†â

+
∑
k

~gk
(
â|k + 1〉〈k|+ â†|k〉〈k + 1|

)
+ ~

[
ε(t)â† + ε∗(t)â

]
,

(2.174)

where δk = ωk − ωd and δr = ωr − ωd.
When a coherent drive is applied, the resonator state is well described as the sum of

a coherent state, with amplitude α(t), plus corrections. This coherent amplitude α(t) can
be controlled by the driving field and allows to act on the qubit via the qubit-resonator
interaction. To see how the driving term can act directly on the transmon operators,
it is useful to write the Hamiltonian in a displaced frame. This can be done with the
displacement operator

D̂ = exp
[
α∗(t)â− α(t)â†

]
(2.175)

which transforms the resonator mode operator as D̂âD̂† = α(t) + â. If the displaced
amplitude α(t) is chosen such that it satisfies the differential equation

α̇(t) = −i [δrα(t) + ε(t)] (2.176)

the displaced Hamiltonian, found from D̂ĤrotD̂
† + i~(∂tD̂)D̂†, reads

Ĥdispl =
∑
k

~δk|k〉〈k|+ ~δrâ†â

+
∑
k

~gk
(
â|k + 1〉〈k|+ â†|k〉〈k + 1|

)
+
∑
k

~gk
[
α(t)|k + 1〉〈k|+ α∗(t)|k〉〈k + 1|

]
.

(2.177)

Examining the last term of Ĥdispl, it becomes clear that the microwave drive can be used
to induce transition between different transmon levels.

In the dispersive regime, we can apply the transformation given in Eq. (2.167) to the
Hamiltonian Ĥdispl and truncate it to the two lowest transmon levels. We end up with the
driven dispersive Hamiltonian in the rotating frame

Ĥ =
~δ′01

2
σz + ~

(
δ′r + χσz

)
â†â+

~
2

[
Ω∗0(t)σ− + Ω0(t)σ+

]
, (2.178)
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where δ′01 = ω′01 − ωd and δ′r = ω′r − ωd are the detunings of the Lamb-shifted qubit and
cavity frequencies with respect to the drive. In addition, we have introduced the Rabi
frequency for the 0 ↔ 1 transition Ω0(t) = 2g0α(t). Eq.(2.178) shows that by choosing
the phase of the drive, qubit rotations around any axis in the xy-plane can in principle be
directly performed by applying microwave driving pulses with ωd ' ω′01.

In practice, well-controlled pulse shapes and careful calibration allow to perform such
rotations with very high fidelities [Chow09]. Nevertheless, we should keep in mind that the
microwave drive also couples to the 1↔ 2 transition with a Rabi frequency Ω1 = 2g1α(t).
Due to their weak anharmonicity, of the order of EC , this effect is particularly important
for transmon qubits as it can produce leakage out of the computational subspace. The
duration of control pulse cannot be made arbitrarily short and the time ~/EC sets a
typical lower bound. This issue of weakly nonlinear artificial atoms was later reexamined
and it was shown that specific pulse envelopes allow to reduce the leakage to higher states
[Motzoi09, Gambetta11b]. This approach led to further improvements on single-qubit gate
fidelities and durations for transmon qubits [Chow10a, Bianchetti10, Chow12] as well as
for phase qubits [Lucero10].

2.5.2 Strong-coupling regime

The strong-coupling regime of cavity QED is reached when the atom-cavity coupling rate
exceeds the relaxations rates of both the cavity and the atom. The quantum phenomena
that can arise in this regime are diverse. If the energy splitting of the qubit match the
resonance frequency of the cavity, the eigenstates of the coupled system are no longer
purely photonic or atomic; in the language of quantum information, they are entangled.
The degeneracy between the two states containing exactly one excitation of either atomic
of photonic nature is lifted by the coupling. This effect, known as the vacuum Rabi mode
splitting, was the first experimental demonstration of the strong-coupling regime in circuit
QED. It was observed in 2004 both with charge qubits in the CPB regime [Wallraff04]
and flux qubits [Chiorescu04]. In the strong-coupling regime, one energy quantum can be
exchanged back and forth between the qubit and the cavity several times before it is lost.
These so-called Rabi oscillations have been observed shortly after [Wallraff05].

As we have seen previously, the transmon regime further enhances the qubit-resonator
interaction compared to CPB regime. This enhancement made possible the exploration
of additional quantum effects. For instance, an important consequence of the strong-
coupling regime is the anharmonic spectrum of the qubit-resonator system, also known as
Jaynes-Cummings ladder, as revealed in a circuit QED setup [Fink08, Fink09]. This an-
harmonicity enables the observation of well-known quantum-optical effects such as photon
number states [Schuster07, Houck07], or photon blockade [Lang11, Hoffman11b].

Another remarkable phenomenon exhibited in the resonant strong-coupling regime is
the acceleration of the qubit decay, through the cavity mode, when the intrinsic qubit
relaxation time is longer than the one the cavity. In contrast, when the qubit and cavity
frequencies are detuned, the qubit has an improved lifetime as compared to the case where
is couples to a continuum of vacuum modes. The cavity isolates the qubit and filters part
of the vacuum noise that affects the qubit coherence. This enhancement or suppression
of the qubit decay through the cavity modes is a well-know effect named after Purcell
[Purcell46]. In the circuit QED architecture with transmon qubits, the Purcell decay is
actually the main limiting effect for T1 and is used to either implement a fast qubit reset
or to limit qubit relaxation [Houck08, Reed10, Gambetta11a].
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2.5.3 Realization of quantum information protocols and recent develop-
ments

The circuit QED architecture provides a number of features which make it a promising
platform for the purpose of quantum information processing. We shall mention a few suc-
cessful experiments that have implemented some of the important functionalities required
to realize a quantum computer.

We already mentioned how the coupling to a microwave cavity turns out to be useful
for the preparation, the control, and the readout of superconducting qubits. In addition,
when several qubits are dispersively coupled to a common TLR, they can act as a small
qubit register that can be addressed and on which quantum algorithms can be run. In
this configuration, the resonator mediates effective dispersive interactions between the
qubits and plays the role of a quantum bus, distributing quantum information among the
qubits. These interactions, whose exact form will be specified in the next chapter, typically
couple the transverse components of the qubits and, to some extent, their strength can
be controlled by changing the qubit-resonator detunings. Importantly, the interaction
between two qubits can be effectively turned on, by bringing these qubits on resonance
(but still detuned from the resonator frequency), or switched off by setting large detunings
between all components. These qubit-qubit interactions play a major role as they are
required to implement entangling gates, i.e., gates that cannot be described as the product
of local operations on each qubit, essential for any quantum algorithms.

The coupling of two transmon qubits via a quantum bus in a circuit QED setup has
been reported in Ref. [Majer07]. Again, the development of superconducting transmon
qubits has played an important role for the experimental demonstration of such effective
qubit-qubit coupling. For the latter to be a coherent coupling, in other words to allow the
coherent transfer of quantum information between qubits or to used for the implementation
of two-qubit gates, its strength should exceed typical relaxation and dephasing rates. The
dispersive coupling between two qubits directly depends on their bare individual couplings
to the resonator. Therefore, transmon qubits, with their large capacitive coupling to the
resonator, turn out to be particularly advantageous compared to the previous CPB qubit
designs.

The implementation of qubit-qubit interaction, combined with high-fidelity single qubit
operations, enables the realization of quantum information protocols. Circuit QED ex-
periments with two transmon qubits have successfully achieved the creation of Bell states
[Leek09, Filipp09, Chow10b], the realization of conditional two-qubit gates [DiCarlo09,
Chow10b, Chow12], and the implementation of Grover search and Deutsch-Josza quan-
tum algorithms [DiCarlo09]. The potential scalability of this architecture has made a step
forward with experimental setups involving three transmon qubits and showing a high level
of controllability. The generation of three-qubit entangled states [DiCarlo10, Mlynek12],
the implementation of a three-qubit Toffoli gate [Fedorov12], as well as the first proof-of-
principle demonstration of a quantum teleportation protocol have been reported [Baur12].
This last experiment has only demonstrated the coherent part of quantum teleportation,
lacking the single-shot readout and feed-forward steps. These missing aspects have been
implemented in a recent experiment where a complete quantum teleportation protocol has
been realized [Steffen13].

Other remarkable achievements that are worth mentioning are the observation of
Berry’s phase in a Ramsey fringe interference experiment [Leek07], the realization of a
transmon-like qubit with tunable qubit-resonator coupling [Srinivasan11, Hoffman11a],
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and experiments involving higher transmon levels [Bianchetti10].

Regarding the readout of the qubit state, an important aspects of the measurement
performance is the ability to realize a QND measurement. Such a measurement leaves the
qubit in a definite eigenstate of the measured observable. In addition, it does not affect the
qubit state if this one is already an eigenstate of the observable. Other important aspects
are the ability to perform such a measurement in a single-shot fashion, i.e., to obtain a
reliable outcome without the need for repeated measurement, and the rate at which such a
readout can be carried out. QND measurements are of utmost importance to envision the
realization of QEC schemes. To detect and correct errors, their occurrence should happen
at a much slower rate than the rate at which successive qubit readouts can be performed.
For the ultimate purpose of building a fault-tolerant quantum information processor, the
qubit readout should therefore be a QND measurement, provide a single-shot record with
a high fidelity, and be realizable at fast pace.

As we have mentioned previously, spectroscopic QND measurement of the qubit state
can be performed in the standard circuit QED architecture with linear transmission line
cavities by measuring the dispersive ac-Stark shift of the cavity resonance frequency
[Schuster05, Wallraff05, Houck08]. This measurement scheme has been extended to ex-
periments with several qubits were it serves as the main method to perform a joint qubit
readout [Filipp09, Chow10b]. However, the latter implementations suffer from rather
low single-shot fidelity. A single-shot qubit readout has been implemented in a slightly
different architecture where a superconducting transmon qubit couples to a nonlinear
resonator, demonstrating low back-action and good QND character [Mallet09], but the
rate at which such readout could be performed was still comparable to the qubit relax-
ation rate. Recent experimental efforts to improve the readout techniques take advan-
tage of nearly quantum-limited Josephson parametric amplifiers [Castellanos-Beltran08,
Bergeal10b, Bergeal10a], whose use has significantly impacted the measurement perfor-
mance. Using such amplifiers, fast and repeated single-shot dispersive QND measurements
have been realized to monitor quantum jumps between qubit states [Vijay11], to apply a
coherent feedback in order to perform a fast qubit reset [Ristè12a], or to stabilize Rabi
[Vijay12, Campagne-Ibarcq13] and Ramsey oscillations [Campagne-Ibarcq13]. In addi-
tion, this advanced technique has been used for the initialization of two-qubit state by
joint dispersive measurement [Ristè12b].

Finally, it is important to emphasize that the most recent experiments benefit from
the improved coherence properties of a new circuit QED architecture design [Paik11,
Rigetti12]. The latter replaces the on-chip coplanar waveguide resonator by a three-
dimensional superconducting microwave cavity, hence the nickname 3D circuit QED. The
actual geometry of the transmon qubits embedded in such cavities differs from the one
we have presented in this chapter. They are a fabricated on a sapphire substrate that is
mounted inside the hollow microwave cavity. Although the working principle remains un-
changed, this type of transmon qubits exhibits dephasing time of some tens of microseconds
[Paik11] up to nearly hundred microseconds [Rigetti12], representing an improvement of
more than one order of magnitude with respect to original transmon qubits. Such trans-
mon qubits are fabricated with significantly larger electrodes (they are made of nearly
millimeter-scale superconducting islands) reducing their sensitivity to dielectric surface
loss compared to the initial planar geometry [Paik11]. The larger electrodes also lead to
an increased dipole moment and compensate the reduction of the electrical field, due to
the larger mode volume of these three-dimensional cavities compared to one-dimensional
transmission line cavities. The dipole coupling is still sufficiently large for these setups to
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reach the strong-coupling regime of quantum electrodynamics.
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Chapter 3

One-step deterministic generation
of GHZ states

The present chapter essentially follows the line of our publication

S. Aldana, Y.-D. Wang, and C. Bruder,
Greenberger-Horne-Zeilinger generation protocol for N superconducting transmon
qubits capacitively coupled to a quantum bus,
Phys. Rev. B 84, 134519 (2011).

Entangled quantum states are one of the essential resources for quantum information
processing. They are necessary for the realization of quantum communication and the most
important computational tasks [Nielsen00, Horodecki09]. Many efforts have been devoted
to the elaboration of physical systems enabling to generate and control such states. In
particular, different types of superconducting qubits are promising candidates to solve this
problem.

In the previous chapter, we have discussed some properties of superconducting circuits,
focusing in particular on the circuit QED architecture with charge qubits. A great deal of
interest in these systems originates from their potential for quantum information process-
ing tasks. So far, we have seen how these systems implement physical qubits and how to
control them individually. In the present chapter, we explore the possibility to generate
Greenberger-Horne-Zeilinger (GHZ) states [Greenberger90] with superconducting trans-
mon qubits dispersively coupled to a microwave cavity, i.e., the circuit QED architecture
realized in a number of experiments [Majer07, Houck08, Filipp09, DiCarlo09, DiCarlo10,
Leek10, Chow10b, Baur12, Chow12, Fedorov12, Reed12].

Although the mathematical description of multipartite entanglement for more than
three qubits is still being debated [Verstraete02, Lamata07, Borsten10], GHZ states re-
main paradigmatic states that are considered to be maximally entangled. These states
are in particular useful for fault-tolerant quantum computing or quantum secret shar-
ing [Hillery99, Gao05]. In addition, they are considered as optimal resource states for
measurement-based computation [Anders09] and Heisenberg-limited measurement schemes
[Bollinger96, Guillaume06, Giovannetti04, Giovannetti06]. Such highly entangled states
have also received considerable attention in the context of violation of Bell-type inequali-
ties [Mermin90a, Mermin90b, Cabello02].

This chapter is organized as follows: in Sec. 3.1, we briefly discuss several ways to
generate GHZ states like successive application of single and two-qubit gates or proba-
bilistic entangling schemes based on multi-qubit joint measurements. In particular, we
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focus on the Mølmer-Sørensen scheme [Mølmer99], a multi-qubit entangling gate based
on a pairwise exchange interaction between any pair of qubits. In Sec. 3.2 we consider
on a system made of N transmon qubits homogeneously and dispersively coupled to a
common microwave field. We derive an effective Hamiltonian, characterized by effective
qubit interactions of the XY type that can be globally controlled. Sec. 3.3 shows how
these interactions enable a solid-state implementation of the Mølmer-Sørensen idea. This
procedure allows us to generate GHZ states in a one-step deterministic procedure, starting
from a fully separable state. In Sec. 3.4, we discuss ways to confirm the N -partite nature
of the entanglement in the generated states. Finally, in Sec. 3.5, we study how non-ideal
physical parameters, such as inhomogeneities in the qubit-resonator coupling constants,
thermal occupation of the microwave cavity, or weak transmon anharmonicity, might affect
the generated state.

3.1 Generating GHZ states

GHZ states are maximally entangled states that involve at least three subsystems. For N
qubits, they are defined as the quantum superposition of two product states, one with all
qubits being in a particular state and one with all of them being in the orthogonal and
fully distinguishable state. Up to single-qubit rotations, a GHZ state is commonly written
as

|GHZ〉 =
1√
2

 N⊗
q=1

|0q〉+
N⊗
q=1

|1q〉

 , (3.1)

where the index q labels the qubits. In principle, any entangled state of several qubit can
be created if a limited but universal set of single and two-qubit gates is available. For
instance, a three-qubit GHZ state can be obtained, starting from the separable state of all
qubits in their ground state, by the successive application of a Hadamard gate on the first
qubit H1, followed by two CNOT gates, controlled by qubit 1, on qubits 2 and 3, CNOT12

and CNOT13,

|000〉 H1−−→ 1√
2

(
|000〉+ |100〉

)
(3.2)

CNOT12−−−−−→ 1√
2

(
|000〉+ |110〉

)
(3.3)

CNOT13−−−−−→ 1√
2

(
|000〉+ |111〉

)
. (3.4)

In the circuit QED architecture with charge qubits, an effective qubit-qubit interaction
is mediated by virtual excitations of the resonator in the dispersive regime [Majer07].
This interaction can be turned on and off via external control lines to realize two-qubit
gates [DiCarlo09]. Entangling two-qubit gates have also been successfully realized with
superconducting phase [Steffen06, Ansmann09] and flux qubits [Plantenberg07]. Based on
these remarkable achievements, similar protocols involving a sequence of gates have been
implemented to successfully entangle three qubits [DiCarlo10, Neeley10].

Such a procedure to produce highly entangled states might become tedious and tech-
nically difficult when the number of qubits increases. Alternative schemes have been
proposed to generate such states in a different and possibly more efficient way. In partic-
ular, many proposals specifically address the question of GHZ state production in circuit
QED setups [Tsomokos08, Helmer09, Hutchison09, Bishop09b, Galiautdinov09, Wang10].
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Some measurement-based schemes are of a probabilistic nature, i.e., if a measurement
on the N -qubit system has a specific result, the system is known to be in a GHZ state after
the measurement [Helmer09, Hutchison09, Bishop09b]. These elegant schemes do not need
the application of two-qubit gates and can therefore work in the absence of qubit-qubit
interaction. Instead, the creation of entanglement requires the measurement to be a joint
readout of several qubits. In circuit QED setups, such a multi-qubit measurement can
be achieved with a dispersive readout [Filipp09, Chow10b]. It is also worth mentioning
that these schemes allow for the generation of other type of entangled states, such as
W states. These proposals extend an earlier and similar two-qubit entangling scheme
[Sarovar05, Rodrigues08], that has been recently realized for the production of Bell states
in a 3D circuit QED setup with two transmon qubits [Ristè13]. While particularly adapted
to the current experimental situation, this promising type of state preparation suffers
from its probabilistic nature. Indeed, the probability to achieve a GHZ state decreases
exponentially with the number of qubits.

3.1.1 Mølmer-Sørensen scheme

A particular type of protocol considers the possibility to make use of a multi-qubit in-
teraction to generate GHZ states in a deterministic way. It relies on the presence of
an homogeneous effective exchange interaction between any pair of qubits. Named after
Mølmer and Sørensen [Mølmer99, Sørensen00], this entangling technique was originally
proposed to create GHZ states in ion traps and has proven to be remarkably efficient.
Implementing this method, ion trap experiments were able to generate GHZ states with
four [Sackett00], six [Leibfried05], and up to fourteen qubits [Monz11]. Later, it was sug-
gested that this seminal idea could as well be employed to generate entangled states of
Bose-Einstein condensed atoms [Helmerson01, You03b].

Any physical system where all the qubits are effectively coupled via a pairwise exchange
interaction of the XY type, a situation we will refer to as a fully connected network
of qubits, enables a direct implementation of the Mølmer-Sørensen idea [Tsomokos08,
Galiautdinov09].

The protocol can be summarized as follows:

1. If the effective qubit-qubit interaction is homogeneous, the Hamiltonian is

Ĥ =
~g
4

∑
(q,q′)

(
σ(q)
x σ(q′)

x + σ(q)
y σ(q′)

y

)
, (3.5)

where the sum runs over all possible qubit pairs. This Hamiltonian can be concisely
written as Ĥ = −~gĴ2

z , where Ĵz is a shorthand notation to denote the total spin
operator along the z direction.

2. The N qubits are initialized in a product state with all qubits oriented in a specific
direction in the xy plane, characterized by the angle θ,

|ψ0〉 =
N⊗
q=1

|0q〉+ eiθ|1q〉√
2

. (3.6)

3. Under the influence of Ĥ, the state |ψ0〉 coherently evolves, after a time t = π/(2g),
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to the state

|ψ〉 = ei
π
2
Ĵ2
z |ψ0〉 =

1√
2

 N⊗
q=1

|0q〉+ eiθ
′ |1q〉√

2
+ eiφ

N⊗
q=1

|0q〉 − eiθ′ |1q〉√
2

 , (3.7)

which is a GHZ state, up to single-qubit rotations. Here, the phase angles θ′ and φ
depend on θ and N .

4. The final state |ψ〉 can then be transformed to a conventional GHZ state, in the
sense of Eq. (3.1), by applying single-qubit rotations.

We notice that the duration of the step that produces entanglement between the qubits
(step 3) does not depend on the number of qubits, highlighting the one-step nature of the
protocol. The preparation of the qubit in the appropriate state |ψ0〉, as well as the final
step, still requires the application of N single-qubit gates each. Nevertheless, the latter can
generally be realized much faster than two-qubit gates. For this reason, when N becomes
large, the procedure might turn out to be more favorable than conventional approaches
requiring typically N two-qubit gates.

In the context of quantum information processing with superconducting circuits, a
possible realization of the Mølmer-Sørensen scheme with phase qubits was investigated in
Ref. [Galiautdinov08], but no specific circuit design or details about physical implementa-
tions is provided. In Ref. [Wang10], a Mølmer-Sørensen type one-step scheme to generate
GHZ states both for flux qubits or charge qubits coupled to a transmission line resonator
(TLR) was proposed. A new design of charge and flux qubits is considered, where the
qubit-resonator interaction commutes with the free Hamiltonian of the qubits. They au-
thors show that the time-evolution operator takes the form of a Mølmer-Sørensen gate at
stroboscopic times. The procedure is independent of the initial state of the resonator and
works in the presence of multiple low-excitation modes. However, higher excitation modes
of the resonator will introduce inhomogeneity because of the shorter wavelengths of the
higher modes and decrease the GHZ fidelity. Moreover, uncontrolled dissipation might be
coupled through the higher excitation modes and induce extra noise. It would be ideal to
devise a GHZ generation scheme that, while keeping the one-step, deterministic nature,
would involve only a single mode of the quantum bus mediating the qubit interaction.

In the following, we consider a circuit QED architecture with weakly anharmonic
transmon qubits capacitively coupled to a single quantized mode of the field inside a
microwave cavity. In the dispersive regime, the system is characterized by an effective
qubit-qubit exchange interactions of the XY type, mediated by virtual excitations of the
resonator. We show that the time evolution of the system is described by an effective
Hamiltonian that allows a direct implementation of the Mølmer-Sørensen idea. This one-
step deterministic generation protocol of GHZ states could potentially be implemented in
the currently available circuit QED design.

3.2 Fully connected network of transmon qubits in the dis-
persive limit

We consider the superconducting circuit made of N transmon qubits capacitively coupled
to a microwave cavity, for instance a TLR coupled at both ends to input and output
lines as depicted in Fig. 2.12. In the dispersive regime, the resonator acts a quantum
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bus, mediating interaction between the qubits. We derive an effective Hamiltonian for the
system that exhibits the appropriate XY exchange interaction.

The properties of superconducting transmon qubits have been discussed in Sec. 2.4.5.
We start by recalling their main features. Transmon qubits consist of a superconducting
island connected to a superconducting electrode through a Josephson tunnel junction with
capacitance CJ and an extra shunting capacitance CB. A gate voltage Vg is applied to the
island via a gate capacitance Cg, yielding to the definition of the dimensionless gate charge
ng = CgVg/(2e). The system is characterized by the charging energy EC = e2/(2CΣ),
where CΣ = Cg +CJ +CB is the total capacitance of the island, and EJ is the Josephson
energy of the tunnel junction.

Such Josephson junction based qubits behave effectively as quantum two-level systems
in different regimes, categorized by the ratio EJ/EC . We will focus on the so-called
transmon regime, when EJ/EC ∼ 50− 100. The Hamiltonian of a single transmon qubit
has the form

Ĥq = 4EC(n̂− ng)2 − EJ cos φ̂ . (3.8)

In the following we assume that the Josephson junctions form a dc-SQUID i.e., EJ is
tunable by an external applied magnetic flux Φext allowing us to control independently the

frequency of each qubit. In this case, CΣ = Cg+2C
(1)
J +CB and EJ = 2ẼJ cos(πΦext/Φ0),

with C
(1)
J and ẼJ the capacitance and the Josephson energy of a single junction.

If a qubit is capacitively coupled to a superconducting transmission line cavity, Cg
is now the capacitance between the superconducting island and the resonator. In that
particular situation, the gate voltage involves a dc-part and an extra term depending on
the state of the resonator,

Vg = V dc
g + V̂ (x). (3.9)

Therefore, the interaction with the resonator appears via the gate charge ng, which implic-
itly includes the voltage V̂ (x). In addition, we assume that each qubit can be controlled
separately by microwave pulses applied through the transmission line in order to perform
single-qubit quantum-gates.

For simplicity we consider the qubits to be coupled to a single mode of the resonator.
This is a reasonable assumption if the qubits are nearly resonant with only one mode.
Since higher modes have frequencies that are multiples of the fundamental frequency, we
can tune the qubit transition frequencies such that the detuning with respect to one mode
of the resonator is one order of magnitude smaller than the detuning to all the other
modes. Under these conditions, we can realize the dispersive limit for a single mode of the
resonator and neglect the influence of higher modes, as is the case in experiments using
one transmon qubit [Bishop09a].

For instance, the qubits could be mainly coupled to the second mode if they are placed
near the ends or the center of the resonator, that is, the positions where the electrical
field amplitude is maximal. Such a possible geometry is sketched in Fig. 3.1. Following
the procedure of canonical quantization of a (quasi-) one-dimensional superconducting
resonator, the voltage across the resonator for this made is given by

V̂ (x) =

√
~ωr
L0c

cos

(
2πx

L0

)(
â+ â†

)
. (3.10)

The length of the resonator is L0 and its resonance frequency ωr = 2π/
√
L2

0lc depends
on its capacity c and inductance l per unit length. The position along the resonator is
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Figure 3.1: Sketch of a possible coplanar geometry for the proposed device with N = 4
qubits. Qubits (small blue squares) are placed around the maxima of the electrical field
amplitude (red line), i.e., near the center and the ends of the one-dimensional resonator
(gray strip). The second mode of the electrical field (red arrows) mediates the qubit-qubit
interaction. Input and output ports of the resonator are drawn in black.

denoted by x ∈ [−L0/2, L0/2], and â(â†) represent bosonic annihilation (creation) field
operators.

The system, composed of the resonator and N transmon qubits, can be described
with a generalized Tavis-Cummings Hamiltonian, which is the Jaynes-Cummings given in
Eq. (2.165), extended to more than one qubit. This Hamiltonian is expressed on the basis
of transmon eigenstates |jq〉, where the indices q label the transmon qubits,

Ĥ = ~ωrâ†â+
N∑
q=1

∑
j

[
~ω(q)

j |jq〉〈jq|+ ~g(q)
j

(
â
∣∣(j + 1)q

〉〈
jq
∣∣+ â†

∣∣jq〉〈(j + 1)q
∣∣)] . (3.11)

The qubits frequencies ω
(q)
j are presumed to be tunable through external magnetic fields

Φ
(q)
ext, changing the effective Josephson energies of the qubits E

(q)
J = 2Ẽ

(q)
J cos(πΦ

(q)
ext/Φ0),

and the coupling frequencies g
(q)
j depend on the position of the qubits. Invoking the

rotating-wave approximation, we have neglected rapidly oscillating terms. In the transmon
regime, we can only keep transmon-resonator coupling coefficients for neighboring levels,
since terms like |iq〉〈jq| for |i − j| > 1 are comparatively small. Moreover, in the large

EJ/EC limit, an asymptotic expression has been be obtained for ω
(q)
j and g

(q)
j in first-order

perturbation theory,

ω
(q)
j '

1

~

√
8E

(q)
C E

(q)
J

(
j +

1

2

)
− E

(q)
C

12~
(6j2 + 6j + 3), (3.12a)

g
(q)
j ' g

(q)
0

√
j + 1 cos

(
2πxq
L0

)
, (3.12b)

g
(q)
0 '

√
ωr

~L0c

eC
(q)
g

C
(q)
Σ

(
E

(q)
J

2E
(q)
C

)1/4

. (3.12c)

This form of the coupling frequencies g
(q)
j describes the situation shown in Fig. 3.1.

The amplitudes of these coupling coefficients g
(q)
j can be assumed to be approximately

homogeneous if the positions xq of the qubits satisfy |xq/L0| ' 0 or 1/2, since the electrical
field amplitude decreases quadratically with the distance from its maxima and since the
size of the qubits is typically much smaller than the resonator wavelength in realistic
systems. However, even if they are close to the center or the ends of the resonator, the
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3.2. Fully connected network of transmon qubits in the dispersive limit

qubits should be placed sufficiently far apart to reduce direct inductive or capacitive qubit-
qubit coupling. There are also other positions in which the qubits can be placed (e.g. nodes
of higher modes). However, the homogeneity of the coupling constants is important in our
approach and should be taken care of.

In the so-called dispersive regime |g(q)
j /∆

(q)
j,j+1| � 1, when transition frequencies of the

transmon qubits ω
(q)
j,j+1 are detuned from the resonator frequency ωr, excitations of the

resonator are virtual and the latter will rather act as a quantum bus mediating effective
qubit-qubit interactions. The transition frequencies of the transmon qubits are defined as

ω
(q)
j,j+1 = ω

(q)
j+1−ω

(q)
j and their respective detuning as ∆

(q)
j,j+1 = ω

(q)
j,j+1−ωr. In this regime,

eliminating the direct interaction between resonator and transmon qubits to lowest order in

g
(q)
j /∆

(q)
j,j+1, we exhibit an effective qubit-qubit interaction. This can be seen by performing

the canonical transformation eŜĤeŜ
†
, where

Ŝ =
N∑
q=1

∑
j

g
(q)
j

∆
(q)
j,j+1

(
â
∣∣(j + 1)q

〉〈
jq
∣∣− â† ∣∣jq〉〈(j + 1)q

∣∣) . (3.13)

Keeping terms up to second order in gj/∆j,j+1, we obtain.

ÛĤÛ † ' ~

ωr +

N∑
q=1

−χ(q)
0 |0q〉〈0q|+

∑
j≥1

(
χ

(q)
j−1 − χ

(q)
j

)
|jq〉〈jq|

 â†â

+
N∑
q=1

~ω(q)
0 |0q〉〈0q|+

∑
j≥1

~
(
ω

(q)
j + χ

(q)
j−1

)
|jq〉〈jq|


+

N∑
q=1

∑
j

~η(q)
j

(
â2
∣∣(j + 2)q

〉〈
jq
∣∣+ â†2

∣∣jq〉〈(j + 2)q
∣∣)

+
∑
q 6=q′

∑
j,j′

~g̃(qq′)
jj′

2

( ∣∣(j + 1)q, j
′
q′
〉 〈
jq, (j

′ + 1)q′
∣∣

+
∣∣jq, (j′ + 1)q′

〉 〈
(j + 1)q, j

′
q′
∣∣ ).

(3.14)

Here the dispersive shifts χ
(q)
j , the two-photon transition rates η

(q)
j , and the effective qubit-

qubit coupling coefficient g̃
(qq′)
jj′ are given by

χ
(q)
j =

(
g

(q)
j

)2

∆
(q)
j,j+1

, (3.15)

η
(q)
j =

1

2

g
(q)
j g

(q)
j+1

∆
(q)
j,j+1∆

(q)
j+1,j+2

(
ω

(q)
j,j+1 − ω

(q)
j+1,j+2

)
, (3.16)

g̃
(qq′)
jj′ = g

(q)
j g

(q′)
j′

∆
(q)
j,j+1 + ∆

(q′)
j′,j′+1

2∆
(q)
j,j+1∆

(q′)
j′,j′+1

. (3.17)

Two-photon transitions can be safely neglected since the parameters η
(q)
j are small in

the dispersive regime.1 An effective Hamiltonian Ĥeff is now obtained by restricting our

1see Appendix A.2
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Chapter 3. One-step deterministic generation of GHZ states

Hilbert space to the computational subspace, that is the first two levels of each transmon
qubit. In principle, the qubit-qubit interaction couples any states of the qubits with more
than one excitation to states that do not belong to the computational subspace (e.g. for
N = 3, the state |110〉 or |111〉 will be coupled to |020〉 or |021〉). However, the amplitudes
for these mixing processes of computational states with such non-computational states are
of order g2/(EC∆) and will be neglected for the moment.2 (This effect will be investigated
in Sec. 3.5.4.) Under these conditions,

Ĥeff = ~

(
ω +

∑
q

χ(q)σ(q)
z

)
a†a+

∑
q

~ω̃(q)
01

2
σ(q)
z +

∑
q,q′

~g̃(qq′)
00

4

(
σ(q)
x σ(q′)

x + σ(q)
y σ(q′)

y

)
,

(3.18)

where the ac-Stark shifts are χ(q) = χ
(q)
0 −χ

(q)
1 /2, and we introduce Lamb-shifted resonator

and qubit frequencies ω = ωr −
∑

q χ
(q)
1 /2 and ω̃

(q)
01 = ω

(q)
01 + χ

(q)
0 . The single-qubit

Pauli matrices σ(q) are expressed in terms of computational transmon eigenstates, see
Eq. (2.160).

The Hamiltonian Ĥeff has the desired XY -form, provided that all qubits have identical

parameters: that is all qubit and coupling frequencies are homogeneous, ω̃
(q)
01 = Ω, |g(q)

0 | =
g, ∆

(q)
0 = ∆, and g̃

(qq′)
00 = χ

(q)
0 = g̃ = g2/∆. Using Eq. (3.12), we infer that χ(q) =

χ = −g̃EC/(∆ − EC) < g̃, where EC = ω01 − ω12 is the weak anharmonicity of the
transmon qubits. As mentioned earlier, in Eq. (3.12) the qubit transition frequencies can

be made homogeneous by tuning the flux biases Φ
(q)
ext. From now on we assume the g

(q)
j are

homogeneous. This is motivated by a promising new transmon architectures with tunable
coupling that has been proposed recently [Srinivasan11, Hoffman11a]. Inhomogeneous
coupling constants will be discussed in Sec. 3.5.3.

Previous GHZ state generation protocols based on homodyne measurement of the
transmission line neglected the effective exchange interaction because of the large differ-
ences in qubit frequencies [Helmer09, Hutchison09, Bishop09b]. In our case, the qubit

frequencies ω
(q)
01 are tuned to be identical using the flux biases, and this effective interac-

tion plays a significant role in the generation of the GHZ state in a one-step procedure, as
shown below.

If the qubit and coupling frequencies are homogeneous, the total spin operators

Ĵi =
1

2

N∑
q=1

σ
(q)
i , (i = x, y, z), (3.19)

and their corresponding Casimir operator Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z can be used to write the

effective Hamiltonian in a very convenient form,

Ĥeff = ~ωâ†â+ ~g̃ Ĵ2 + ~(Ω + 2χâ†â)Ĵz − ~g̃ Ĵ2
z . (3.20)

Evidently, Ĥeff is diagonal in the basis |J, Jz〉 ⊗ |n〉, where |n〉 denotes a state of the
resonator containing n excitations and the state |J, Jz〉, describing a state of the N qubits,
is an eigenstate of the operators Ĵ2 and Ĵz with respective eigenvalues J(J + 1) and
Jz. Since [Ĥ, Ĵ2] = 0, any eigenstates of Ĵ2 will remain so under the action of this
Hamiltonian. In the following, we will restrict ourselves to such states with J = N/2. For

2This can be seen by applying perturbation theory in g̃
(qq′)
jj′ for |j − j′| > 1 to Eq. (3.14) [Koch11].
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3.3. Protocol for generating GHZ states

example states with all spins aligned in a particular direction belong to this type and are
therefore an appropriate choice for the initial state. Setting J = N/2 in what follows, we
denote |J=N/2, Jz〉 by |Jz〉. Thus, the eigenstates of Ĥeff are |Jz〉 ⊗ |n〉 with eigenvalues

EJz ,n = ~ωn+ ~g̃
(
N

2
+ 1

)
N

2
+ ~(Ω + 2χn)Jz − ~g̃J2

z . (3.21)

3.3 Protocol for generating GHZ states

The effective Hamiltonian Ĥeff allows us to produce GHZ states by turning on the inter-
action for a definite duration tGHZ. It was shown in Refs. [Mølmer99, Sørensen00] that a
Hamiltonian of the type ~g̃Ĵ2

x will produce a GHZ state after the time π/(2g̃), starting,
for instance, from the fully separable state |0 . . . 0〉. The multi-qubit gate exp(iπĴ2

x/2) is
sometimes referred to as the Mølmer-Sørensen gate.

We conveniently choose an initial state with all the qubits aligned in the same direction,
that is, the maximal superposition state

|ψ0〉 =
N⊗
q=1

|0q〉+ |1q〉√
2

. (3.22)

We assume that the qubits and the resonator are initially in a product state and the state
of the resonator at t = 0 is denoted ρres,

ρ(t=0) = |ψ0〉〈ψ0| ⊗ ρres. (3.23)

Moreover, |ψ0〉 = |Jx=N/2〉 and can be expressed as a linear superposition of the states
|Jz〉,

|ψ0〉 =
1√
2N

N∑
k=0

√(
N
k

)
|Jz=k−N/2〉. (3.24)

where
(
N
k

)
is a binomial coefficient.3

We define ρ(t) as the density matrix evolving under the action of the time-evolution
operator U(t) = exp(−iĤefft/~), where Ĥeff is the effective Hamiltonian Eq. (3.20),

ρ(t) = U(t) ρ(t=0)U †(t). (3.25)

We assumed that g/∆ � 1 and therefore we have neglected the effect of the canonical

transformation eŜ on the state vector. This turns out to be particularly useful, since U(t)
is diagonal in the basis |n〉, thus we can describe directly the time evolution of the reduced
density matrix of the qubits ρqb(t), obtained by tracing over the resonator state,

ρqb(t) =
1

2N

∑
n,k,k′

〈n|ρres|n〉
√(

N
k

)(
N
k′

)
e−i[ϕk,n(t)−ϕk′,n(t)]|Jz=k−N/2〉〈Jz=k′−N/2|, (3.26)

where ϕk,n(t) = k (Ωt+ 2χtn+ g̃t(N − k)).
The GHZ states we aim to produce are of the following form:

|GHZ±〉 =
1√
2

 N⊗
q=1

|0q〉+ |1q〉√
2

± i
N⊗
q=1

|0q〉 − |1q〉√
2

 , (3.27)

3Details about such decomposition can be found in Appendix B.
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which are standard GHZ states up to single-qubit rotations. These states can be expressed
as a linear superposition of the states |Jz〉 as well,3

|GHZ±〉 =

N∑
k=0

1± i eiπk√
2N
√

2

√(
N
k

)
|Jz=k−N/2〉. (3.28)

To see why a GHZ state is produced after some time tGHZ, we consider the effects of
either exp(ig̃tĴ2

z ) or exp[ig̃t(Ĵ2
z − Ĵz)] (for N either even or odd) on the state |Jz=k−N/2〉.

We establish that one of the two possible GHZ states Eq. (3.27) is produced when g̃t = π/2
by noticing that

1 + ieiπ(k+N
2
−1)

√
2

= e−i
π
4

+iπ
2

(k−N
2

)2
, (N even), (3.29)

1 + ieiπ(k+N−1
2

)

√
2

= e−i
π
8

+iπ
2 [(k−N2 )2−(k−N

2
)], (N odd). (3.30)

The shortest preparation time is

tGHZ =
π

2g̃
, (3.31)

but a GHZ state is produced for every odd multiple of time tGHZ.
However, the remaining term of the effective Hamiltonian in Eq. (3.20), the one that

is proportional to Ĵz, induces a collective rotation of the final state. The rotation angle
depends again on N and the state of the resonator. The state ρqb(tGHZ) is,

ρqb(tGHZ) =
∑
n

〈n|ρres|n〉
∣∣GHZ(αn)

〉〈
GHZ(αn)

∣∣. (3.32)

Here,

∣∣GHZ(α)
〉

= e−iαĴz
1√
2

 N⊗
q=1

|0q〉+ |1q〉√
2

+eiπ
N−1

2

N⊗
q=1

|0q〉 − |1q〉√
2

 , (3.33)

and 2αn/π = (Ω + 2nχ)/g̃ for N even. For N odd, 2αn/π = (Ω + 2nχ)/g̃ − 1, and the
relative phase exp(iπ(N − 1)/2) in Eq. (3.33) is changed to exp(iπN/2).

We notice that the produced states ρ(tGHZ) is not exactly the state depicted in
Eq. (3.27), and therefore certain constraints on the angles αn in Eq. (3.32) are required
to generate the proper state |GHZ+〉. At low temperature, only the ground state of the
resonator is significantly populated and 〈0|ρres|0〉 � 〈n|ρres|n〉 for n ≥ 1. Thus we can
restrict our considerations to αn=0, and this translates to some condition on the ratio Ω/g̃.

To illustrate this, we consider the resonator to be initially in its ground state ρres =
|0〉〈0|. The state |GHZ+〉 is indeed produced at tGHZ, provided we can tune the frequencies
Ω and g̃ such that

Ω

g̃
= 4m+ 2−N , m ∈ Z . (3.34)

If the above condition cannot be satisfied, some correcting pulse exp(iδN Ĵz) can be applied
to the final state ρqb(tGHZ) to obtain a proper |GHZ+〉 state. The appropriate pulse length
δN depends on N and the ratio Ω/g̃,

δN =
π

2

[(
Ω

g̃
+N − 2

)
mod 4

]
. (3.35)
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3.4. Measuring the generated GHZ states

Furthermore, δN = 0 implies Eq. (3.34).
If not only the ground state of the resonator is populated, higher photon numbers n

produce rotated GHZ states, according to Eq. (3.32). We notice that

〈GHZ(αn)|GHZ(αn+k)〉 = cosN
(
kπχ

2g̃

)
, (3.36)

which means that if a |GHZ+〉 state is produced for excitation number n, a slightly rotated
state exp(−iπχĴz/g̃)|GHZ+〉 is produced for n+1 (since χ < g̃). Assuming some correcting
pulse exp(iδN Ĵz) has been applied, the reduced density matrix of the qubits ρqb is a
mixture of rotated GHZ states with classical probabilities depending only on the initial
state of the resonator,

eiδN Ĵzρqb(tGHZ)e−iδN Ĵz

= 〈0|ρres|0〉|GHZ+〉〈GHZ+|+
∑
n>0

〈n|ρres|n〉e−iπn
χ
g̃
Ĵz |GHZ+〉〈GHZ+|eiπn

χ
g̃
Ĵz .

(3.37)

We will now show that it is possible to choose realistic physical parameters in agreement
with our assumptions. We use parameters from a setup involving four transmon qubits
[DiCarlo10], where the qubits have frequencies Ω/2π that are tunable in the range 6-11
GHz, the coplanar waveguide resonators (the quantum bus) has a frequency ω/2π ' 9
GHz, the transmon-resonator coupling frequencies are g/2π ' 220 MHz. Detuning the
qubits from the resonator such that g/∆ ' 1/10 would lead to an effective qubit-qubit
coupling g̃ = 22 MHz and to a preparation time tGHZ of approximately 11 ns, which is
approximately 1 % of the dephasing time of the qubits.

3.4 Measuring the generated GHZ states

3.4.1 Bell-Mermin operator

The question of detecting and probing the states generated in our scheme naturally arises.
For N ≥ 4, there is no unique way to quantify entanglement. We will focus on a measure-
ment of the Bell-Mermin operator [Mermin90a] defined as

B̂ =
eiπN

2i

 N⊗
q=1

(
σ(q)
z − iσ(q)

y

)
−

N⊗
q=1

(
σ(q)
z + iσ(q)

y

)
= 2N−1

(
|GHZ+〉〈GHZ+| − |GHZ−〉〈GHZ−|

)
,

(3.38)

whose expectation value for N -qubit quantum states is bounded by |〈B̂〉| ≤ 2N−1, and the
extremal values ±2N−1 are reached for the states |GHZ±〉. The maximal value predicted
by local hidden-variable theory is

√
2N (
√

2N−1) for N even (odd)[Mermin90a], leading to
an exponentially increasing violation for the states |GHZ±〉 with N , the number of qubits.
Therefore, a measurement of the Bell-Mermin operator leading to a result greater than√

2N (
√

2N−1) indicates the non-local nature of the generated quantum states.

Detection scheme

The Bell-Mermin operator expectation value can, in principle, be obtained experimentally
but it is in general not amenable to a direct measurement. This operator can be expressed
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Figure 3.2: Behavior of the function G0
N (tGHZ + τ) for different N , assuming for sim-

plicity that δN = 0.

as a sum of parity operators, which are more easily accessible by experiment, and inferring
its expectation value would require 2N−1 parity measurements,

〈B̂〉 =

N∑
l=1 (odd)

∑
p

(−1)N−
l+1
2

〈
N−l⊗
q=1

σp(q)z

N⊗
q′=N−l+1

σp(q
′)

y

〉
. (3.39)

For each term, l is the number of factors σy and
∑

p stands for the sum over the
(
N
l

)
permutations p that give distinct products. The states |GHZ±〉 defined in Eq. (3.27) are
those that give exactly ±1 for each of the 2N−1 terms.

There are, therefore, 2N−1 parity measurements to realize which is possible only if
one is able to generate GHZ states with high accuracy in a repeated way. Following
Ref. [Hutchison09], these parity operators could be measured by dispersive readout. Since
the resonator frequency is Stark-shifted, ω → ω + 2χĴz, it is possible to access the value

of the operator Ĵz. The value of the parity operator
⊗

q σ
(q)
z can then be unambiguously

deduced from Jz = 〈Ĵz〉, 〈
N⊗
q=1

σ(q)
z

〉
= (−1)

N
2
−Jz . (3.40)

Hence, we can measure all the needed parities by rotating the operators σ
(q)
y appearing in

Eq. (3.39) to σ
(q)
z using single-qubit rotations.

Time evolution of the Bell-Mermin operator

By means of Eq. (3.26), we can give an expression for the time evolution of the expectation

value of the Bell-Mermin operator, 〈B̂(t)〉 = Tr
[
B̂ρqb(t)

]
. For this purpose, we can

express the matrix elements of B̂ in the basis of the states |Jz〉, which diagonalizes the
effective Hamiltonian,

B̂ =

N∑
k,k′=0

bk,k′ |Jz=k′−N/2〉〈Jz=k−N/2| , (3.41)
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where

bk,k′ =
1

2i

√(
N
k

)(
N
k′

) [
(−1)k − (−1)k

′
]
. (3.42)

Hence, 〈B̂(t)〉 can be expressed as a sum of oscillating functions GnN , indexed by the
photon number n,

〈B̂(t)〉 = 2N−1
∞∑
n=0

〈n|ρres|n〉 GnN (t) . (3.43)

The functions GnN are Fourier series over a finite range of frequencies ω̃nk,k′ defined as
ω̃nk,k′ = (k − k′) [(k + k′ −N)g̃ − Ω− 2nχ],

GnN (t) =
N∑

k,k′=0

ak,k′ sin(ω̃nk,k′t) , (3.44)

where ak,k′ = 2−2N
(
N
k

)(
N
k′

)
[(−1)k − (−1)k

′
].

Equation (3.43) shows that 〈B̂(t)〉 is characterized by many oscillations on timescales
of the order of tGHZ, since the ω̃nk,k′ are of the same order as Ω � g̃, χ. However, the
envelope indeed reaches its maximum at tGHZ, provided that only the ground state of
the resonator is significantly populated. These fast oscillations are the manifestation of
local rotations of the qubits, Eqs. (3.32-3.33). We have seen that this issue can be solved
equivalently in two different ways and that the state |GHZ+〉 is indeed generated after
tGHZ, either by applying some correcting pulse exp(iδN Ĵz), defined in Eq. (3.35), or by
tuning the frequencies Ω and g̃ to satisfy the condition Eq. (3.34). Assuming for simplicity
that δN = 0, we have then

GnN (tGHZ) = cos2N

(
n
π

2

χ

g̃

)
− sin2N

(
n
π

2

χ

g̃

)
. (3.45)

The fast oscillations of 〈B̂(t)〉 around tGHZ become sharper as the number of qubits N
increases, as shown in Fig. 3.2. In the simpler case δN = 0, the behavior of G0

N around
tGHZ is given by

G0
N (tGHZ + τ) ' 1− τ2NΩ2

4
, |τ | � 1

Ω
, (3.46)

and that also means that we need a higher precision, for larger N , in controlling either
the protocol time tGHZ or the correcting pulse.

3.4.2 Detection of genuine N-partite entanglement

Other bounds than those predicted by local-hidden variable theory can actually be derived
for the expectation value Bell-Mermin operator. For instance, it can easily be shown that
any fully separable state ρS satisfies |Tr(ρSB̂)| ≤ 1. A significant bound can also be derived
if the state is m-separable, i.e., describes a system that is partitioned in m subsystems
that only share classical correlations. In other words, a pure state is called m-separable,
for 1 < m ≤ N , if it can be written as a product of m states,

|ψ(m)〉 =
m⊗
i=1

|ψi〉Pi , (3.47)

where the {Pi} describe a partition of the N qubits. Thus, a fully separable state in the
traditional sense is N -separable. A mixed m-separable state ρ(m) is defined as a convex
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sum of pure m-separable states, which might belong to different partitions [Gühne09].
Such an m-separable state satisfies

Tr
[
ρ(m)B̂

]
≤ 2N−m. (3.48)

Thus, any measurement of the operator B̂ with outcome above 2N−2 indicates that the
state is not even biseparable (2-separable) and demonstrates the existence of genuine N -
partite entanglement.

We now provide a derivation of the inequality Eq. (3.48). For this purpose, we define
two distinct Bell-Mermin operators

M̂Sk = 2k−1i

⊗
q∈Sk

|0q〉〈1q| −
⊗
q∈Sk

|1q〉〈0q|

 (3.49a)

M̂ ′Sk = 2k−1

⊗
q∈Sk

|0q〉〈1q|+
⊗
q∈Sk

|1q〉〈0q|

 (3.49b)

that act on an arbitrary subset, denoted by Sk, of k among N qubits. We denote the
complementary subset of size N − k by S̄k. The Bell-Mermin operator acting on the
complete set SN can then be expressed as

M̂SN = M̂SkM̂
′
S̄k + M̂ ′SkM̂S̄k , (∀ 0 ≤ k ≤ N). (3.50)

Importantly, this definition does not depend on the choice of the subset Sk, neither on
its size. One can easily verify that the operator M̂SN is equivalent, up to local rotations
of the qubit basis, to the operator B̂ given in Eq. (3.38).4 The subsets Sk and S̄k define
a partition of the N qubits. Without loss of generality, we can partition the N qubit
in a simple way, i.e., the subset Sk contains the qubits q = 1, . . . , k and S̄k the qubits
q = k + 1, . . . , N .

Any pure biseparable N -qubit state |ψ(2)〉, where the two subsets Sk and S̄k only share
classical correlations, can be written as a product state

|ψ(2)〉 = |ψSk〉 ⊗ |ψS̄k〉, (3.51)

where |ψSk(S̄k)〉 is a quantum state of k qubits (N−k qubits) which can exhibit an arbitrary
degree of entanglement. In addition, we notice that the only non-zero matrix elements of
the operators M̂S and M̂ ′S involve states like |0 . . . 0〉 and |1 . . . 1〉. Therefore, we can infer
the form of the state |ψ(2)〉 that maximizes the value of the N -qubit Bell-Mermin operator
M̂SN . It yields

|ψSk〉 = cos θ1

k⊗
q=1

|0q〉+ eiϕ1 sin θ1

k⊗
q=1

|1q〉, (3.52a)

|ψS̄k〉 = cos θ2

N⊗
q=k+1

|0q〉+ eiϕ2 sin θ2

N⊗
q=k+1

|1q〉. (3.52b)

4The form of the operator M̂SN actually corresponds to the one originally presented in Ref. [Mermin90a].
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3.4. Measuring the generated GHZ states

Using the relations

〈ψSk |M̂Sk |ψSk〉 = 2k−1 sin(2θ1) cosϕ1, (3.53a)

〈ψSk |M̂ ′Sk |ψSk〉 = 2k−1 sin(2θ1) sinϕ1, (3.53b)

we obtain

〈ψ(2)|M̂SN |ψ(2)〉 = 2N−2 sin(2θ1) sin(2θ2) sin(ϕ1 + ϕ2) < 2N−2. (3.54)

Thus, upper and lower bounds of the Bell-Mermin operator expectation value for pure
biseparable states are ±2N−2. The generalization to mixed states is straightforward and
we conclude that any state ρ satisfying |Tr(ρB̂)| > 2N−2 exhibits genuine N -partite en-
tanglement.

In addition, we notice that the alternative N -qubit operator M̂ ′SN is

M̂ ′SN = M̂ ′SkM̂
′
S̄k − M̂SkM̂S̄k , (3.55)

which yields
〈ψ(2)|M̂ ′SN |ψ

(2)〉 = 2N−2 sin(2θ2) sin(2θ2) cos(ϕ1 + ϕ2). (3.56)

The argument to obtain an inequality form-separable states, Eq. (3.48), goes as follows:
for any partitioning of the N qubits into m subsets Sk1 , . . . ,Skm , we can express the
operator M̂SN as a sum of 2m−1 products of m operators, each acting on the subset Skm .
In the case m = 3, we have for instance

M̂SN = M̂Sk1
M̂ ′Sk2

M̂ ′Sk3
− M̂Sk1

M̂Sk2
M̂Sk3

+ M̂ ′Sk1
M̂Sk2

M̂ ′Sk3
+ M̂ ′Sk1

M̂ ′Sk2
M̂Sk3

, (3.57)

where (Sk1 ,Sk2 ,Sk3) define a partition of the N qubits in three subsets of size k1, k2, and
k3 such that k1 + k2 + k3 = N . Using the same argument as before, the m-separable state
that maximizes the value of the N -qubit Bell-Mermin operator has the form

|ψ(m)〉 =
m⊗
l=1

|ψSkl 〉, (3.58)

where
|ψSkl 〉 = cos θl

⊗
q∈Skl

|0q〉+ eiϕl sin θl
⊗
q∈Skl

|1q〉. (3.59)

Using such a decomposition of the N -qubit Bell-Mermin operator, one can show that

〈ψ(m)|M̂SN |ψ(m)〉 = 2N−m sin

(
m∑
l=1

ϕl

)
m∏
l=1

sin(2θl), (3.60)

which, by generalizing to mixed states, proves Eq. (3.48).
Therefore, besides ruling out local-hidden variable theories, the Bell-Mermin operator

can be used as an entanglement witness5 that discriminates m-separable states from states
exhibiting genuine (m+ 1)-partite entanglement, in the sense that a result |〈B̂〉| > 2N−m

indicates that the state is not m-separable.

5Strictly speaking, an entanglement witness is an observable Ŵ such that Tr(ρSŴ ) ≥ 0 for all separable
state ρS , and Tr(ρEŴ ) < 0 for at least one entangled state ρE [Gühne09].
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Chapter 3. One-step deterministic generation of GHZ states

3.5 Undesirable effects

We investigate how non-ideal physical parameters might affect the generated state and
the efficiency of the protocol. In particular, we study the effects related to a finite disper-
sive parameter g/∆ and thermal occupation of the resonator mode. We also discuss the
consequences of inhomogeneous qubit-resonator coupling. Finally, we address the issue of
weak anharmonicity of the transmon qubits.

3.5.1 Finite dispersive parameter g/∆

The validity of the effective Hamiltonian Eq. (3.20) depends on how small the dispersive
parameter g/∆ is. In the strong dispersive regime, when g � ∆, the Hamiltonian Ĥeff is
an accurate approximation to obtain the dynamics of the system. However the smaller is
the parameter g/∆, the longer it takes to create a GHZ state. Reducing the detuning in
order to obtain a GHZ state in a shorter time cannot be done without investigations on
how it affects the actual generated state.

To estimate whether our scheme remains valid for finite values of g/∆, we investigate
numerically the coherent dynamics of the system. To limit the effects caused by other types
of non-ideal parameters, we assume that all qubits have the same transition frequency,
that they couple homogeneously to the resonator, and that the resonator is initially in
its ground state. In addition, we neglect the influence of higher transmon levels and
truncate the Hamiltonian Eq. (3.11) to the two lowest levels. This should capture the main
consequences of a finite dispersive parameter. The consequences of the weak anharmonicity
of transmon qubits will be investigated in Sec. 3.5.4.

We consider the time-evolution of the Bell-Mermin operator due to the Hamiltonian

Ĥ ′ = ~ωrâ†â+ ~ω01Ĵz + ~g
(
âĴ+ + â†Ĵ−

)
, (3.61)

where Ĵ± = Ĵx ± iĴy. In practice, we look at the time-dependent reduced density matrix
of the qubits

ρ′qb(t) =
∑
n

〈
n
∣∣e−iĤ′t/~ (∣∣ψ0

〉〈
ψ0

∣∣⊗ ρres

)
eiĤ

′t/~∣∣n〉. (3.62)

The time-evolution of Tr[B̂ρ′qb(t)] is characterized by many oscillations, at the qubits

frequency, on the timescale tGHZ. We rather consider the value of the operator B̂ in a
frame rotating at the frequency ω01 + g2/∆ (or ω01 for N odd), that is

〈B̂′(t)〉 = Tr
[
B̂eit(ω01+g2/∆)Ĵzρ′qb(t)e−it(ω01+g2/∆)Ĵz

]
. (3.63)

This equivalently takes account of the correcting pulses that should be applied at t ' tGHZ

in order to obtain exactly the state |GHZ+〉 Eq. (3.27).
The value of 〈B̂′(t)〉, obtained from Eq. (3.63) for N = 4 and |g/∆| between 0.04

and 1, is shown in Fig. 3.3. The value of g/∆ is changed by tuning the qubits frequency
ω01 = ∆ + ωr while the resonator frequency ωr and the coupling strength g are kept
constant. As expected, for very small values of the dispersive parameter, |g/∆| < 0.05,
the Bell-Mermin operator is close to its ideal value ±2N−1 at times close to odd multiple of
tGHZ, indicating that a GHZ states is produced. When increasing the dispersive parameter,
around |g/∆| ∼ 0.1, we observe that the value of 〈B̂′(t)〉 is still close to maximal for
t & tGHZ. The protocol efficiency is obviously affected when the detuning is further
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Figure 3.3: Coherent evolution of the Bell-Mermin operator expectation value as a func-
tion of the dispersive parameter g/∆ for identical two-level systems dispersively coupled
to a common resonator mode. We show the time-evolution of the operator B̂ in a frame
rotating at the qubit frequency, obtained from Eq. (3.63). The time t (horizontal axis)
is normalized for each value of g/∆ by the time tGHZ, whose value is indicated on the
right vertical axis. The value of g/∆ is changed by tuning the frequency of the qubits
ω01 = ∆ + ωr, while the resonator frequency ωr and the coupling strength g are kept
constant. The parameters are N = 4, g/ωr = 0.02, and ∆ < 0.

reduced. For |g/∆| > 0.1, additional structures in the time-dependence of 〈B̂′〉 indicate
that the dispersive Hamiltonian Eq. (3.20) is no longer a good approximation to describe
the dynamics of the system and that contributions of higher order in g/∆ should be taken
into account.

The maximally allowed value of the Bell-Mermin operator, both for biseparable states
and according to local-hidden variable theory, is 2N/2 = 2N−2 = 4 for N = 4. Values of
〈B̂′(t)〉 above this limit are found for relatively small detuning, |g/∆| ∼ 0.3 − 0.5, and
even if we cannot make any conclusive remark about the state of the qubits, the latter
clearly exhibits N -partite entanglement and violates local hidden-variable theory.

3.5.2 Thermal occupation of the quantum bus

The maximal value 〈B̂(tGHZ)〉 can reach also depends on the initial state of the resonator
ρres. Provided the considerations about the ratio Ω/g̃ or the correcting pulse angle δN
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Figure 3.4: Temperature dependence of the maximal value reached by 〈B̂(t)〉, denoted
by max〈B̂〉, for t ∼ tGHZ (blue squares) and normalized by 2N−1. The solid line shows
the theoretical bound tanh(β~ω) for a resonator initially in the thermal state Eq. (3.65).
Inset: relative deviation ε = tmax/tGHZ − 1 of the time tmax at which max〈B̂〉 is realized
compared to the predicted time tGHZ = π/(2g̃). Local hidden-variable theory only allows
values of 〈B̂〉 below the dashed line. For N = 4 this value also corresponds to the upper
bound for biseparable states.

have been taken into account, uncontrolled excitations of the resonator might affect the
final state of the qubits. Combining Eqs (3.37) and (3.38), we find that

Tr
[
B̂(eiδN Ĵzρqb(tGHZ)e−iδN Ĵz)

]
= 2N−1

∞∑
n=0

〈n|ρres|n〉
[
cos2N

(
n
π

2

χ

g̃

)
− sin2N

(
n
π

2

χ

g̃

)]
.

(3.64)

For instance, we assume ρres to be a thermal state characterized by an inverse temperature
β = (kBT )−1,

ρres =
(

1− e−β~ω
)∑

n

e−nβ~ω|n〉〈n| . (3.65)

In this simple case, the outcome of the Bell-Mermin operator measurement 〈B̂(tGHZ)〉
should be at least 2N−1 tanh(β~ω/2).

A numerical evaluation of 〈B̂(t)〉, using the Tavis-Cummings Hamiltonian Eq. (3.61),
shows good agreement with our simple estimate. We consider the ideal case of homoge-
neous qubit and coupling frequencies and we choose frequencies satisfying Eq. (3.34) such
that no correcting pulse needs to be applied (δN = 0). We look for the maximal value of
〈B̂(t)〉 around tGHZ, that is, for |t − tGHZ| < π/(2ω01)−1, and for the time tmax at which
this maximal value is realized. The results for N = 4 qubits are shown in Fig. 3.4.
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Figure 3.5: Effect of inhomogeneous coupling frequencies g
(q)
0 with mean g and stan-

dard deviation δg. We show the dependence of the maximal mean value 〈B̄(tmax)〉 of
〈B̂(t)〉{gq} on δg/g for t ∼ tGHZ (squares). The error bars show the standard deviation of

〈B̂(tmax)〉{gq} above and below the mean value. The median of 〈B̂(tmax)〉{gq} (red circles)

is clearly above the mean value. Local hidden-variable theory only allows values of 〈B̂〉
below the dashed line. For N = 4 this value also corresponds to the upper bound for
biseparable states.

3.5.3 Inhomogeneous coupling frequencies

To estimate whether our scheme is robust against small random deviations in the physical

parameters, we consider small inhomogeneities in the coupling strengths g
(q)
j . This effect

will be investigated numerically, and for this purpose we compute the real-time evolution of
the Bell-Mermin operator, using the Tavis-Cummings Hamiltonian Eq. (3.11), truncated
to the two lowest levels of the transmon qubits. This should capture the main features
of this effect, since in our effective description of the system Eq. (3.18), the third levels
of the transmon qubits only affect the ac-Stark shifts χ(q) and renormalize the resonator
frequency. Assuming the qubit transition frequencies are still homogeneous, the inho-

mogeneity of the coupling frequencies g
(q)
0 produces inhomogeneous qubit-qubit couplings

coefficients g̃
(qq′)
00 = |g(q)

0 g
(q′)
0 |/∆.

The coupling constants g
(q)
0 are assumed to be Gaussian distributed with mean g and

standard deviation δg. The notation {gq} denotes a particular set of coupling frequen-

cies g
(q)
0 . The real-time evolution of the Bell-Mermin operator for one set of coupling

frequencies {gq} is denoted 〈B̂(t)〉{gq}.
For a given number nr of random realizations {gq} (nr around 200) with fixed δg, we
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first calculate the mean value,

〈B̄(t)〉 =
1

nr

∑
{gq}

〈B̂(t)〉{gq}. (3.66)

Then, the maximal value 〈B̄(tmax)〉 defined by

〈B̄(tmax)〉 = max
t≥0
〈B̄(t)〉 (3.67)

is found. Finally the variances, above and below the maximal mean value 〈B̄(tmax)〉, of the
particular set 〈B̂(tmax)〉{gq} are calculated. The variances are calculated separately above

and below, because the 〈B̂(tmax)〉{gq} are not Gaussian-distributed. We also calculate the

median among the 〈B̂(tmax)〉{gq} and notice that the distribution is strongly asymmetric.
Results for N = 4 and δg/g between 0 to 20 % are shown in Fig. 3.5. The time at

which the maximum is attained is generally in good agreement with the predicted value
tGHZ = π/(2g̃), as long as g/∆ is small. The value of 〈B̄(tmax)〉 remains close to the ideal
one for δg/g of the order of a few percents, and thus we notice that our scheme can tolerate
some inhomogeneity in the coupling constants.

3.5.4 Influence of the weak transmon anharmonicity

Transmon qubits have a weakly anharmonic energy spectrum. As a consequence, leakage
out of the computational subspace might affect the performance of our protocol. Examin-
ing the last term of the Hamiltonian Eq. (3.14), it is clear that the dispersive qubit-qubit
interaction couples any transition between adjacent levels in one qubit to another transi-
tion in another qubit. Thus, any computational qubit state with more than one excitation
is coupled to states that do not belong to the computational subspace (e.g., for N = 3,
the state |111〉 is mixed with |021〉). Even if the anharmonicity is sufficiently large for
these mixing amplitudes to be small, this might still affect the generated state. In order
to test the robustness of our scheme against this effect, we compute the numerically exact
coherent evolution of the Bell-Mermin operator, using the generalized Tavis-Cummings
Hamiltonian Ĥ Eq. (3.11).

We consider the case of identical transmon qubits that are homogeneously coupled
to the resonator. Their transition frequencies ωj,j+1 = ωj+1 − ωj and coupling rates
gj are given in Eq. (3.12). We use typical transmon parameters leading to a relative
anharmonicity

αr =
ω12 − ω01

ω01
(3.68)

which is negative and of the order of a few percent. In our protocol the qubits are
initially prepared in a state involving up to N qubit excitations (the initial state |ψ0〉 has
a component |1 . . . 1〉). The interaction Hamiltonian will mostly populate transmon levels
with index k ≤ N and resonator states with n ≤ N . This gives an indication on how
many qubit and resonator levels should be included to obtain relevant information about
the influence of the weak anharmonicity.

We compute the coherent evolution the operator B̂ in a frame rotating at the frequency
ω01 + χ0 (for N even)

〈B̂′(t)〉 = Tr
[
B̂eit(ω01+χ0)Ĵzρ′qb(t)e

−it(ω01+χ0)Ĵz
]
, (3.69)
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Figure 3.6: Time evolution of the Bell-Mermin operator as a function of the dispersive
parameter g0/∆01 for N = 4 identical transmon qubits. We show the value of the operator
B̂ in a frame rotating at the qubit frequency, obtained from Eq. (3.69). Different values of
g0/∆01 are obtained by changing the frequency of the qubits ω01 = ∆01 +ωr. We assume
homogeneous qubit-resonator couplings g0/ωr = 0.02 and ∆01 < 0. The ratio EJ/EC =
50 leads to a relative anharmonicity αr = −5.3% of the qubits’ energy spectrum.

where ρ′qb(t) is the reduced density matrix of the qubits, obtained by tracing out both

the resonator states and non-computational states of the transmon qubits, and Ĥ the
Hamiltonian given in Eq.(3.11).

The results for N = 4 are shown in Fig. 3.6. We observe that the relatively weak
anharmonic spectrum of transmon qubits imposes some constraints on the dispersive pa-
rameter g0/∆01. Smaller values, of the order of |g0/∆01| ∼ 0.08, are required to generate
a GHZ state, at time t = tGHZ, with reasonably high fidelity. Importantly, we have ob-
served that the sign of the detuning has an effect on the generated state. Leakage out of
the computational subspace is reduced when the detuning ∆01 is negative. This effect is
probably a consequence of the negative anharmonicity of transmon qubits (ω12 < ω01).
When |∆12| > |∆01|, the mixing to higher transmon levels is smaller, compared to the
case ∆12 > ∆01 > 0, as it can be seen from a perturbative treatment of Eq. (3.14).

Surprisingly large values of |〈B̂′(t)〉| are found for relatively small detuning and times
larger than the ideal preparation time (g0/∆01 ∼ 1/3 and t ∼ 2.2tGHZ). The reason why
such a highly entangled state is generated in these conditions is not completely clear.
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However it might indicate that a GHZ state could be produced in a relatively short time,
recalling that tGHZ ∝ |∆01/g

2
0|.

3.6 Concluding remarks

To conclude, we have shown that it is possible to generate multipartite GHZ states on a
set of transmon qubits in a circuit QED setup in a one-step deterministic protocol. In the
dispersive limit g � ∆, such a system behaves as a fully connected qubit network with
exchange interactions proportional to g̃ = g2/∆. The preparation time of the protocol
is inversely proportional to g̃. The non-local nature of the generated state can be inves-
tigated using a Bell-Mermin inequality. Moreover, we have derived and applied bounds
on the expectation value of the Bell-Mermin operator as a detection criterion for genuine
N -partite entanglement. We have shown that our scheme is robust against small inho-
mogeneities in the coupling frequencies. Finally, we have investigated the consequences of
the weakly anharmonic spectrum of transmon qubits. The implementation proposed here
looks like a promising way to generate GHZ states, and hopefully can be experimentally
realized in a circuit QED setup.
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Chapter 4

Cavity optomechanics

4.1 Hamiltonian of the optomechanical interaction

Since the 19th century and Maxwell’s theory of electromagnetism, it is known that light
can produce a radiation-pressure force. In the language of quantum theory, one can think
of the radiation-pressure force as being exerted by photons carrying a momentum and
bouncing off the reflective surface of an object. This effect is small and its experimental
signatures have remained elusive for more than a century.1 First observations of the
radiation pressure were reported in Refs. [Lebedew01, Nichols01].

The radiation pressure exerted by a light beam with intensity I is Prad = 2I/c, where
c is the speed of light. A mechanical object is therefore likely to experience the radiation-
pressure force if it has a small mass or if the light intensity is particularly large. A way to
reveal this effect is to use the strong confinement of the light field in a optical resonator.
The density of states of the electromagnetic field is very particular in an optical cavity.
The different standing modes have well-defined resonances whose frequencies depend on
the length of the cavity. When a laser drive is applied near a resonance, one of these
modes is populated and the light intensity increases. If one of the end mirrors is movable,
the radiation-pressure force can displace it. The mirror motion changes the length of the
cavity and thereby its resonance frequency, modifying the light intensity, and accordingly,
the radiation pressure acting on the mirror varies. This mechanism, even if rather simple,
leads to a wide variety of phenomena. The study of the effects arising from such cou-
pling between a confined and resonant optical field and the motion a mechanical object is
nowadays known as cavity optomechanics.

The generic optomechanical system, as depicted in Fig. 4.1, is described by two coupled
bosonic modes: an optical mode and a mechanical resonator, whose position modulates
the cavity resonance frequency. The physics of the system is captured by the Hamiltonian

Ĥ0 = ~ωc(x̂)â†â+ ~ωmb̂†b̂, (4.1)

where â and b̂ are the creation operators for the optical and mechanical degrees of freedom,
respectively. The position of the mechanical resonator is x̂ = xzpf(b̂ + b̂†), where xzpf =√

~/2mωm is the amplitude of the zero-point fluctuations, ωm the mechanical frequency,
and m its mass. For small resonator displacements, the dependence of the cavity resonance

1We should however mention here the notable Kepler’s speculation on the comet tails being blown by
a solar ’breeze’.
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x̂
γm, T

~ωmb̂†b̂

~ωc(x̂)â†â

Laser: ωd, ε

κ

Figure 4.1: Schematic optomechanical system. The cavity consists of a fixed input
mirror and a small movable end mirror harmonically coupled to a support. A laser with
frequency ωd and amplitude ε drives a cavity mode (â) with resonance frequency ωc.
The light intensity stored inside the optical mode exerts a radiation-pressure force on
the mechanics whose motion conversely changes the cavity resonance frequency via the
mechanical displacement x̂ = xzpf(b̂ + b̂†). The finite transmission of the mirrors causes
the decay, at rate κ, of the light intensity. The small mirror is described as an harmonic
oscillator with frequency ωm. The support act as a mechanical bath at temperature T
and γm is the energy dissipation rate.

frequency on the position x̂ is linearized around its unperturbed value,

ωc(x̂) ' ωc −Gx̂. (4.2)

The frequency pull parameter G = −∂ωc/∂x describes the frequency shift of the cavity per
displacement. It is defined with a minus sign such that G > 0, according to the fact that,
when the cavity length increases, the resonance frequency decreases. For a cavity of length
L, it is given by G = ωc/L. Now, we introduce the coupling rate of the optomechanical
interaction, as g0 = Gxzpf, which can be interpreted as the frequency shift per phonon.
The optomechanical interaction

ĤI = −~g0â
†â(b̂+ b̂†) (4.3)

is intrinsically nonlinear, as it contains the product of three field operators. The radiation-
pressure force operator acting on the resonator is

F̂rad = −∂ĤI

∂x̂
=

~g0

xzpf
â†â. (4.4)

Furthermore, we notice that the resonator displacement, induced by the presence of one
photon in the cavity, is 2xzpfg0/ωm. The above expression for the interaction, ĤI , is a good
starting point to study many effects in cavity optomechanics. For a more careful derivation
of the optomechanical interaction, based on a classical nonrelativistic description and the
subsequent canonical quantization of the optical and mechanical degrees of freedom, we
refer the reader to the publication by Law [Law95].

The description of a cavity optomechanics experiment would be incomplete if we do
not consider the effect of the driving field,

Ĥd = i~ε
(
âeiωdt − â†e−iωdt

)
. (4.5)
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The Hamiltonian Ĥd models a monochromatic coherent light field of frequency ωd and
amplitude ε that drives the optical mode. Generally, there are more than a single optical
and mechanical mode in an optomechanical cavity. We can consider only one optical
degree of freedom because the frequency of the drive selectively reveals the optomechanical
interaction for a single cavity mode. In a high-finesse cavity, the driving near a particular
resonance only populates the corresponding mode. The influence of other optical modes
with frequencies much different from ωd can be safely neglected. In addition, we focus
on the case where the driven cavity mode interacts with a single mechanical mode. This
assumption is mostly arbitrary and depends on the mechanical properties of the system
at hand. This approximation is only valid if the different mechanical modes are decoupled
and well-resolved in frequency. If several mechanical modes interact with the radiation
field, their effect on the cavity frequency might still be described as a single harmonic
mode with an effective mass and susceptibility [Pinard99].

The Hamiltonian is commonly written in a frame rotating at the frequency ωd, such
that the explicit time-dependence of the driving term Ĥd is eliminated. The new Hamil-
tonian is obtained from a unitary transformation, Ĥnew = ÛĤÛ † + i~(∂tÛ)Û †, where

Û = eiωdtâ
†â. The system and drive Hamiltonian now read

Ĥ0 = −~∆0â
†â+ ~ωmb̂†b̂− ~g0â

†â
(
b̂+ b̂†

)
, (4.6)

Ĥd = i~ε
(
â− â†

)
, (4.7)

where ∆0 = ωd − ωc is the detuning of the drive from the unperturbed cavity resonance.
An optomechanical setup is an open quantum system. Its dynamics can be properly

investigated only if we also consider the effects of dissipation. A photon inside the cavity
decays due to the finite transmission of the end mirrors or by absorption. This decay
process occurs at the rate κ and is the consequence of the coupling between the light field
inside the cavity and the electromagnetic modes outside the cavity. The input modes
carry some noise of either quantum or thermal origin. The cavity resonance frequency
being generally larger than the temperature of the input modes we only consider quantum
noise. The mechanical resonator, whose frequency is generally much smaller than the
cavity frequency ωc, is subject to damping. This effect is described by the coupling
to an environmental bath of phonons with finite temperature T , that yields an energy
damping rate γm. The coupling to the bath induces the emission, at rate γm(nth + 1),
or the absorption, at rate γmnth, of mechanical excitations into the bath. The parameter
nth = nB(~ωm) is the thermal occupation of the bath, where nB is the occupation number
given by the Bose-Einstein statistics. If solely coupled to the environmental bath, the
average energy of the mechanical mode is ~ωmnth. The dissipative effects are included in
the description by means of two additional terms in the Hamiltonian,

Ĥ = Ĥ0 + Ĥd + Ĥκ + Ĥγm . (4.8)

In practice, the influence of the environment can be treated using standard Lindblad
quantum master equations or in terms of quantum Langevin equations, using the quantum
input-output formalism.

This prototypical model applies to many experimental situations and the optomechan-
ical interaction gives rise to many interesting effects and practical applications. Cav-
ity optomechanics has undergone a rapid development during the last years, both from
experimental and theoretical perspectives. The optomechanical model has been widely
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studied and a number of review articles has been published, covering the important fea-
tures and most recent achievements [Aspelmeyer08, Kippenberg08, Marquardt09, Genes09,
Milburn12, Meystre13, Aspelmeyer13].

4.2 Applicability and phenomenology of the model

Despite its apparent simplicity, the generic model of cavity optomechnanics, as described
previously, gives rise to rich physics and applies to numerous physical systems. The
radiation-pressure interaction describes the coupling of the light field to the mechanical
motion of objects that range from clouds of ultracold atoms in submillimeter-long Fabry-
Pérot cavities to massive mirrors of several kilograms in a kilometer-scale interferometer.

We can distinguish a few important steps in the development of this research field. One
cannot talk about cavity optomechanics without evoking the pioneering work of Braginsky
and coworkers, who studied and investigated the effects of the radiation-pressure force as
early as the 1960s. The optical enhancement or reduction of mechanical damping was
probably one of the first phenomena that has been studied and observed with a microwave
cavity and a gram-scale mechanical oscillator [Braginsky67, Braginsky70].

The dynamical back-action of the light field enables the cooling or the amplification
of the mechanical motion [Braginsky01, Braginsky02]. This effect has attracted much
attention because of its important implications for sensitive force detection. Reducing
the thermal motion of a mechanical object allows to determine its position more pre-
cisely. This potential cavity-assisted cooling was soon understood to be analogous to the
laser cooling of ions [Neuhauser78] and atoms [Chu85, Aspect88, Lett88]. The quantum
treatement of this passive sideband cooling scheme has been extended to optomechanical
systems [Marquardt07, Wilson-Rae07]. In parallel, an alternative way to reduce the ther-
mal motion of the oscillator has been proposed. It makes use of an active feedback loop
that conditions the laser drive on the continuous monitoring of the mechanical position via
homodyne detection [Mancini98]. This active scheme is often referred to as cold damping
or feedback cooling. An insightful comparison of these cooling processes can be in found
in Ref. [Genes08b].

The theoretical studies of Braginsky [Braginsky68, Braginsky75, Braginsky92], to-
gether with those of Caves [Caves80a, Caves80b, Caves81, Caves82], of the limitations
that the quantum nature of light sets on sensitive position measurements, somehow en-
compassed in a more general theory of quantum measurements, paved the way for gen-
erations of physicists concerned with metrology. When trying to optically measure the
displacement of a mechanical object, the fluctuations of the laser intensity, known as shot
noise, induce a random motion of the object to be measured. This back-action noise
might become the limiting source of imprecision if the laser power is large. The role of
this quantum-measurement back-action has originally been studied in the context of in-
terferometric gravitational-wave detection, but its great significance extends to the scope
of all measurements or amplification processes limited by the effect of quantum noise (see
[Clerk10] for a comprehensive review).

In the mid-1980s, experimental implementations of cavity optomechanics have ob-
served the optical bistability induced by the radiation-pressure force of both optical
[Dorsel83, Meystre85] and microwave light sources [Gozzini85] acting on truly macroscopic
oscillators, with masses of tens of milligrams and resonance frequencies in the Hertz range.
Similar results have recently been obtained with a torsion balance oscillator [Mueller08].
In addition, the stiffening or softening of the mechanical restoring force by the optical field,
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referred to as optical-spring effect, was observed with a gram-scale mirror [Sheard04]. A
similar setup was then used to perform active cavity-assisted cooling [Corbitt07].

For the purpose of gravitational wave detection [Abramovici92, Abbott09a], exper-
imental investigations with even more massive mechanical objects have been carried on
[Cuthbertson96]. Recently, the feedback cooling of a kilogram-scale mirror up to a thermal
occupation number of two hundred mechanical quanta was achieved [Abbott09b], nearly
facing the limitation set by the quantum back-action on the detection sensitivity.

In the last years, another trend was pursued with the miniaturization of the me-
chanical element. The advances in the design and the nanofabrication techniques of
devices with large mechanical frequency and high quality factor have led to the explo-
ration of a completely new territory: bringing cavity optomechanics to the quantum
regime. Most of the recent setups realizing the optomechanical interaction are presented
in Sec. 4.3. Beyond the usual prospects for quantum-limited measurements, these de-
velopments allow to envision completely new applications for optomechanical devices.
The coherent control and manipulation of the quantum state of mechanical objects also
makes conceivable tests of quantum mechanics in a unattainable regime of parameters
up to now. A considerable amount of theoretical studies has appeared in the litera-
ture. From the most ambitious intents to create non-classical states of macroscopic ob-
jects [Mancini97, Bose97] and test foundational theories (wave function reduction models
[Bose99, Marshall03, Romero-Isart11, Kaltenbaek12], quantum gravity [Pikovski12]), to
the prospects of using nanomechanical systems for the purpose of quantum-state storage
[Zhang03, Safavi-Naeini11b] or transfer [Stannigel10, Tian10, Wang12] in the context of
quantum information processing, cavity optomechanics nowadays spans a large spectrum
of experimental motivations.

4.2.1 Important parameters and operating regimes

The parameters (ωm, g0, γm, κ), that characterize cavity-optomechanics experiments, can
be controlled in a wide range. Together with the additional parameters of the driving
field, (∆0, ε), as well as the temperature of the mechanical bath T , a large variety of
operating regimes is possible, leading to a rich phenomenology. Ratios of these parameters
characterize the setup and determine if it can be used for one or another application. We
review the most common of them and interpret them in simple physical terms.

Mechanical quality factor and thermal occupation number

The mechanical quality factor is defined as Qm = ωm/γm, where γm is the mechanical
energy dissipation rate. The rate γm describes the loss of mechanical energy and also
quantifies the strength of the coupling to the mechanical bath. Another important quantity
to describe the mechanical bath is the thermal occupation number nth = nB(~ωm). The
majority of the recent implementations exhibit relatively high quality factors, at least
Qm > 103 (with the exception of ultracold atom cloud experiments). Another important
quantity is the so-called thermal decoherence rate nthγm. It describes the rate at which a
mechanical mode initially in the ground state heats up.

From a theoretical point of view, one can treat the mechanical dissipation with stan-
dard methods of quantum optics, such as the quantum input-output formalism or Lindblad
quantum master equations, when the condition Qm � 1 is satisfied. For low quality fac-
tors, one should resort to other methods like quantum Brownian motion [Caldeira83a,
Gardiner04]. (See the remarks at the end of Sec. 2.3.3.)

87



Chapter 4. Cavity optomechanics

Sideband resolution

The sideband parameter is defined as the ratio of the mechanical frequency over the cavity
decay rate ωm/κ. If the condition ωm > κ is satisfied, the system is said to be in the
resolved-sideband regime or good-cavity limit. In short, due to the harmonic motion of the
end mirror (see Fig. 4.1), the light emitted by the cavity is phase-modulated. Consequently,
the emission spectrum exhibits a series of sidebands at frequencies ωc±kωm, where k ∈ N.
These peaks can only be resolved if the mechanical frequency ωm is larger than the cavity
linewidth κ.

In general, the good-cavity limit is a precondition for the observation of many in-
teresting effects. In particular, the sideband parameter determines the ability to realize
ground-state cooling of the mechanical mode. (A full quantum description of this effect
can be found in Ref. [Marquardt07].)

Linear optomechanical coupling rate

In most of the current realizations of cavity optomechanics, the optomechanical coupling
rate g0 is small compared to the mechanical frequency ωm and the cavity decay rate κ. To
reveal the effects of the optomechanical interaction, the cavity is driven into a coherent
state with large amplitude. In this case, we can split the cavity field into a steady-state
amplitude ā and a fluctuating term d̂, that is â = ā + d̂. (Without loss of generality, we
assume that ā is real.) This transformation generates an interaction

ĤI = −~g0ā
2(b̂+ b̂†)− ~g0ā(d̂+ d̂†)(b̂+ b̂)− ~g0d̂

†d̂(b̂+ b̂†). (4.9)

The first term represents a constant radiation-pressure force F̄rad = ~Gā2, causing a
static displacement of the mechanical resonator x̄ = 2xzpfg0ā

2/ωm that can be absorbed
by shifting the reference frame for x̂.2 The second term describes the linear interaction
between the mechanical mode and the quantum fluctuations of the optical field. If ā� 1,
this term dominates over the nonlinear interaction (last term). The linearized Hamiltonian
reads3

Ĥ ′0 = −~∆â†â+ ~ωmb̂†b̂− ~g(d̂+ d̂†)(b̂+ b̂†), (4.10)

where g = g0ā denotes the linear optomechanical coupling rate and ∆ = ∆0 − Gx̄ is
the effective detuning resulting from the displacement x̄. This rate is often expressed
as g = g0

√
n̄, where n̄ = ā2 denotes the average number of photons circulating inside

the cavity. The coupling strength g is sometimes referred to as enhanced or parametric
optomechanical coupling rate since it depends on n̄� 1 and can be modified by changing
the driving strength and thereby the coherent amplitude ā.

If the system is in the resolved-sideband regime and if the coupling rate g exceeds
both the mechanical and cavity decay rates, g > {γm, κ}, the system enters the so-called
strong-coupling regime. In this regime, the driven optical mode and the mechanical modes
hybridize to form two new modes with frequencies

ω± =
ωm −∆

2
±
√
g2 +

(
ωm + ∆

2

)2

. (4.11)

2However, for very large driving amplitudes this static displacement may significantly change the cavity
line shape, resulting in a bistable behavior.

3The Hamiltonian Ĥ ′0 is referred to as ‘linearized’ since the resulting coupled equations of motion for d̂
and b̂ are linear in this approximation.
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The mechanical response splits into two peaks, an effect known as normal-mode splitting.

If, in addition, the linear coupling rate is larger than the thermal decoherence rate,
g > nthγm, the interaction between the mechanical mode and the cavity field becomes
coherent. This regime is a precondition for quantum state transfer between the optical
mode and the mechanical mode.

Detuning

Depending on the value of the detuning ∆, we can distinguish three important regimes
with respect to the optomechanical interaction, namely cooling, amplification, and position
measurement of the mechanical resonator. In the following, we assume that the system is
in the resolved-sideband regime such that we can make the rotating-wave approximation
for the linearized optomechanical interaction

Ĥ ′I = −~g(d̂+ d̂†)(b̂+ b̂†). (4.12)

Sideband cooling – For red-detuned driving frequency such that ∆ ' −ωm, the inter-
action becomes −~g(d̂†b̂+ d̂b̂†). The process d̂†b̂ describes the absorption of a mechanical
excitation by the optical mode and is enhanced by the cavity, which acts as a second zero-
temperature bath for the mechanical mode. In particular, phonon numbers well below
unity can be achieved if ωm � κ [Marquardt07, Wilson-Rae07].

Amplification – If the driving field is injected on the upper sideband (blue detuning),
∆ ' ωm, the interaction takes the form −~g(d̂†b̂† + d̂b̂). The cavity enhances the process
d̂†b̂†, resulting in heating or parametric amplification [Clerk10] instead of cooling. If the
amplification rate exceeds the intrinsic mechanical damping rate, the mechanical motion
experiences a parametric instability [Marquardt06, Ludwig08].

Position measurement – If the cavity is driven on resonance, ∆ = 0, it works as
an interferometer. The interaction Eq. (4.12) means that the mechanical position x̂ =
xzpf(b̂+ b̂†) leads to a phase shift in the reflected (or transmitted) light. This mechanism
is also evident when considering the nonlinear optomechanical interaction Eq. (4.3). Thus,
a measurement of the mechanical motion can be obtained by monitoring this phase shift.

Driving strength

An important quantity involving the amplitude ε of the driving field is the input power
launched into the cavity P = ~ωdε2/κ. If the driving field is on resonance (∆ = 0), the
average number of photons circulating inside the cavity is given by (2ε/κ)2.

Single-photon coupling rate

Nonclassical effects can be revealed if the single-photon coupling rate g0 becomes com-
parable to both the mechanical frequency ωm or the cavity decay rate κ [Ludwig08,
Nunnenkamp11, Rabl11, Qian12, Kronwald13]. Two important ratios involve the single-
photon coupling rate g0: the ‘granularity parameter’ g0/κ [Murch08b] and the photon-
blockade parameter g2

0/(ωmκ).

To interpret these ratios, we may consider the radiation-pressure force exerted by
a single photon ~g0/xzpf (see Eq. (4.4)). A single photon passing through the cavity
for a time κ−1 gives a momentum kick 2pzpfg0/κ to the mechanical resonator, where
pzpf = ~/(2xzpf) is the amplitude of the momentum zero-point fluctuations. The regime
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g0/κ > 1 allows to reveal the granularity of the light field and is usually referred to as
single-photon strong coupling regime.

The force exerted by a single photon produces a displacement of the mechanical res-
onator 2xzpfg0/ωm and thereby shifts the cavity resonance frequency by 2g2

0/ωm. If this
shift is larger than the cavity linewidth, g2

0/(ωmκ) > 1, a second photon cannot enter the
cavity. This leads to the mechanically-induced photon-blockade regime, which additionally
requires ωm > κ [Rabl11].

4.3 Recent experimental implementations

The generic model of cavity optomechanics, as shown in Fig. 4.1, applies to a large variety
of physical systems. We review the recent and most common experimental realizations
of cavity optomechanics, give some typical regimes of parameters they can reach and
their respective achievements so far. By no means we pretend to be exhaustive and the
interested reader can find a detailed overview of experimental parameters in Refs. [Poot12,
Aspelmeyer13].

4.3.1 Optical Fabry-Pérot cavities

The range of parameters encountered in this category of experiments spans a wide range
of values. The devices most resembling the situation shown in Fig. 4.1 consist of an
optical Fabry-Pérot cavity with one fixed mirror and one small movable mirror. The small
mirror forms or is mounted on a flexible element like a cantilever, a suspended or clamped
oscillator, or a mechanical beam. Many experiments have been conducted with setups in
this configuration and we only mention a few remarkable achievements.

In one of the first experiments a silicon torsional oscillator was used. The thermal
motion of the mechanical resonator could be observed [Tittonen99]. Experiments with
cantilevers have successfully implemented active feedback cooling [Kleckner06, Poggio07],
allowing to reach effective temperatures of the mechanical mode around 3 mK [Poggio07].
The mechanical frequency in these setups was rather low, in the kilohertz range, and the
mechanical quality factors quite high, Qm ∼ 104 − 105.

Higher mechanical frequencies (several hundred kHz) and similar quality factors can
for instance be reached with clamped micromechanical oscillators. An experiment with
this type of optomechanical device has successfully implemented cavity-assisted feedback
cooling and monitored the thermal motion of the resonator with a nearly quantum-limited
sensitivity [Arcizet06b]. Two experiments have demonstrated passive cavity-assisted cool-
ing with this type of setup as well [Gigan06, Arcizet06a]. In addition, parametric insta-
bilities have been observed for blue-detuned laser frequency [Arcizet06a].

In general, optomechanical devices need to combine both good quality factors, i.e.,
high mechanical frequencies, and high optical finesse. The first point is typically achieved
by reducing the size of the mechanical element but in return it unavoidably affects the
optical properties of the cavity. Operating in the resolved-sideband regime (ωm > κ)
is therefore particularly challenging with this ‘standard’ geometry. An experiment us-
ing a micro-mirror pad mounted a on mechanical beam with large resonance frequency
(ωm/2π ' 1 MHz) has however reached this regime (ωm/κ ' 5). With this setup, sideband
cooling up to a few tens of mechanical quanta was achieved [Groblacher09b]. Furthermore,
this device entered the strong-coupling regime (g & κ), exhibiting normal-mode splitting
[Groblacher09a].
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Finally, a series of experiments has been realized with an optomechanical system that
separates the optical and the mechanical components, the so-called ‘membrane-in-the-
middle’ setup [Thompson08]. In this setup, a thin dielectric silicon nitride membrane is
inserted inside a Fabry-Pérot cavity with fixed end mirrors. Experimentally, this approach
is beneficial as it allows to eliminate the optical losses that arise when using small mirrors.
The membrane motion couples to the optical field through a dispersive interaction. A
major achievement with this particular geometry was the first experimental observation of
radiation-pressure shot noise on a macroscopic object [Purdy13a]. Shortly after, the same
setup was able to generate squeezed light below the shot-noise level [Purdy13b]. These
experiments operate in the unresolved-sideband regime, ωm/κ ∼ 0.3, and the mechanical
resonance frequency of the micromechanical membrane is of the order of 100 kHz.

4.3.2 Whispering gallery mode resonators

A relatively recent implementation of cavity optomechanics was realized with optical mi-
croresonators. These are silicon micrometer-scale structures where light is guided in whis-
pering gallery modes [Vahala03]. They exist in three different geometries: microdisk res-
onators [Ding11], microsphere resonators [Park09, Fiore11, Dong12], and microtoroidal res-
onators [Carmon05, Schliesser06, Schliesser08, Schliesser09, Verhagen12]. In these struc-
tures, mechanical distortions influence the optical properties. In short, normal modes
of vibrations can change the optical path length of the resonator, shifting the optical
resonance frequency, thus producing an optomechanical coupling.

In general, the small size of these structures gives rise to high mechanical frequencies.
Microdisk resonators exhibit very high mechanical frequencies in the gigahertz range and
optomechanical coupling close to 1 MHz, but suffer from relatively high optical loss which
prevents them to operate in the resolved sideband regime [Ding11]. Experiments with
spherical and toroidal cavities achieve very high optical finesse, with decay rates κ/2π ∼
10 − 40 MHz, and mechanical frequencies around 100 MHz, thus showing high sideband
resolutions.

Microtoroids and microspheres have been used to demonstrate several remarkable ef-
fects. The large sideband resolution of these setups allows to implement sideband cooling
schemes [Schliesser08, Rivière11, Schliesser09], as well as nearly quantum-limited displace-
ment sensitivity [Schliesser09]. An optomechanical dark mode was observed by coupling
two optical modes to a common mechanical breathing mode. The three modes hybridize
and one of the resulting modes is decoupled from the mechanical mode [Dong12]. A
proof-of-principle experimental demonstration of storing the optical state into the me-
chanical mode was reported with a microsphere resonator [Fiore11]. However, this setup
did not operate in the strong coupling regime (g > κ) that is required to coherently ex-
change optical and mechanical states. This regime has been reached in a experiment with
a toroidal microcavity, demonstrating the transfer and retrieval of the optical quantum
state[Verhagen12].

4.3.3 Circuit cavity electromechanics

A new class of optomechanical systems, based on microfabricated superconducting cir-
cuits, has emerged in the last few years, that had remarkably quickly gained ground and
made his way to the quantum regime. The coupling of a mechanically compliant and
electrically active element to the electromagnetic field of a resonant microwave circuit
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Figure 4.2: Cavity optomechanics in the microwave domain. An LC circuit forms a
resonator for electromagnetic radiation in the microwave domain, i.e. ωc/2π ∼ GHz. A
mechanical element is capacitively coupled to this microwave cavity and its motion results
in a shift of the capacitance, and thereby of the cavity resonance frequency.

can be similar to the radiation-pressure interaction. Schematically, the optical Fabry-
Pérot cavity of the generic optomechanical system is replaced by a microwave resonator.
The cavity might be a stripline transmission line or a lumped-element LC resonator,
and the coupling to the mechanical resonator is capacitive. The mechanical motion
changes the capacitance C(x̂) and thereby the resonance frequency of the microwave
cavity ωc(x̂) = 1/

√
LC(x̂). The cavity resonance frequency ωc typically lies in the gi-

gahertz range and the use of a dilution refrigerator, to reach cryogenic temperature in the
millikelvin range, is needed for the microwave input modes to be effectively at zero tem-
perature. Nevertheless, these experiments profit from the available and highly accurate
manipulation and readout techniques of microwave light, inherited from the related fields
dealing with superconducting circuitry, such as nearly quantum-limited Josephson para-
metric amplifier [Castellanos-Beltran07, Castellanos-Beltran08, Bergeal10b, Bergeal10a].
This field, which investigates the coupling of mechanical resonator to the resonant modes
of a microwave circuit in similar terms as ‘standard’ optomechanical experiments, has been
nicknamed circuit cavity electromechanics.

First experiments in this direction have used a nanomechanical beam coupled to the
center conductor of a superconducting stripline resonator [Regal08]. Similar setups have
successfully implemented cooling close to the mechanical ground state [Rocheleau10].
Worth mentioning is also the first nearly back-action-evading measurement of mechanical
motion [Hertzberg10], implementing an early scheme of quantum non-demolition measure-
ment proposed in Ref. [Braginsky80]. These achievements rest upon the particularly good
sideband resolution and the large enhanced optomechanical coupling rate g = g0

√
n̄. A

similar experiment has lowered imprecision noise in the measurement of mechanical motion
below the level of the standard quantum limit [Teufel09]. The latter device is formed by a
lumped-element LC circuit instead of a transmission line resonator. The nanomechanical
beam has been made longer, enhancing the optomechanical coupling at the expense of a
lower mechanical frequency. Finally, another experiment has used a vibrating membrane
as the capacitor of lumped-element LC resonator, as illustrated in Fig. 4.2(a). The latter
setup exhibits a remarkably high optomechanical coupling rate, g0/2π ' 200 MHz, and
a sideband resolution among the highest, ωm/κ ∼ 50. The parametric optomechanical
coupling g could be made larger than the cavity decay rate κ, entering the strong-coupling
regime [Teufel11b] and allowing sideband cooling of the mechanical motion with average
phonon occupation well below unity [Teufel11a]. Lately, taking advantage of such a high
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coupling, the same setup was used to coherently transfer the state of the incoming mi-
crowave field to the mechanical mode, and to retrieve it at later times [Palomaki13a].
Coherent coupling is an important prerequisite to exhibit truly quantum features and
a major breakthrough was made by demonstrating entanglement between the itinerant
microwave field and the mechanical motion [Palomaki13b].

Let us briefly mention the recent realization of a setup involving an optical cavity
and a microwave resonator, both coupling to the same mechanical element [Andrews14].
This optomechanical device, interfacing two electromagnetic modes of widely different
frequencies, was used as an optomechanical frequency converter between itinerant optical
and microwave fields [Tsang11]. The remarkable performance achieved in both frequency
upconversion and downconversion underlines the potential applications of optomechanical
system for quantum-state transfer [Tian10, Safavi-Naeini11b, Barzanjeh12, Wang12], for
instance between two different platforms like superconducting circuits and optical networks
[McGee13].

Other types of devices aimed at measuring and controlling the mechanical motion of
small resonators by electrical means have gained interests over the past years. These are
refereed to as micro- and nano-electromechanical systems and implement coupling of a
mechanical element to a single-electron transistor [LaHaye04], a quantum point contact
[Cleland02] or a superconducting two-level system such as a Cooper-pair box [LaHaye09]
or a phase qubit [O’Connell10] for instance. General reviews reporting experiments con-
ducted with such systems are available in Refs. [Blencowe04, Schwab05, Poot12].

We give now a simple description of optomechanical systems where the mechanical
resonator couples capacitively to a microwave cavity. A qualitative description of the
setup can be obtained using a simple Lagrangian approach, similar to the one described
in the chapter treating superconducting circuits. The microwave cavity is modeled as a
simple LC resonator, as described in Sec. 2.2 and shown in Fig. 4.2(b). This description
remains valid even if the cavity is actually a transmission line resonator, as long as only
one mode is excited by the drive. The Lagrangian of the coupled system is simply obtained
from the inductive and charging energies of the LC resonator, together with the kinetic
and potential energies of the mechanical resonator

L =
1

2
LQ̇2 +

1

2
mẋm −

Q2

2C(xm)
− 1

2
mωmx

2
m, (4.13)

where m is an effective mass for the mechanical resonator and ωm its frequency. The
mechanical displacement being generally small, one can approximate the coupling to linear
order,

1

C(xm)
' 1

C0
− C ′0
C2

0

xm. (4.14)

The quantum mechanical Hamiltonian associated to the Lagrangian is

Ĥ =
Φ̂2

2L
+

Q̂2

2C0
+
p̂2
m

2m
+

1

2
mω2

mx̂
2
m −

C ′0
2C2

0

Q̂2x̂m, (4.15)

where [Q̂, Φ̂] = [x̂m, p̂m] = i~. Introducing the corresponding optical (â) and mechanical
(b̂) mode operators, one can rewrite the Hamiltonian as

Ĥ = ~ωcâ†â+ ~ωmb̂†b̂−
~g0

2
(â+ â†)2(b̂+ b̂†), (4.16)
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where the unperturbed cavity frequency ωc = 1/
√
LC0 is in the GHz range. The op-

tomechanical coupling rate is given by g0 = xzpfωcC
′
0/(2C0). The usual form of the

radiation-pressure interaction is recovered by neglecting the fast rotating terms â2 and
â†2.

Having a large fraction of the overall capacitance responding to the mechanical motion
is important to achieve large coupling rates g0. This explains why the recent experiments
using a flexural membrane, as depicted in Fig. 4.2(a), with a thin gap for the capaci-
tance [Teufel11b, Teufel11a, Palomaki13a, Palomaki13b] can achieve a value of g0 that is
comparable to optomechanical devices in the optical domain.

4.3.4 Ultracold atom clouds

Recently, a particular branch of cavity optomechanics has developed where the solid-state
mechanical resonator is replaced by a cloud of ultracold atoms [Botter09, Stamper-Kurn12].
The basic setup consists of two distinct components: a driven Fabry-Pérot resonator,
whose length is ∼ 200µm, and a cloud of atoms (see Fig. 4.3). The pioneering experi-
ments conducted by the groups of Stamper-Kurn [Murch08b] and Esslinger [Brennecke08]
use a gas of Rb atoms. In the first case, the atoms are kept in the cavity using far off-
resonance optical trapping: a deep optical lattice is formed by a longitudinal laser beam
that is largely detuned from the cavity resonance frequency. In the second case, the atom
cloud, trapped by a transversal crossed-beam dipole trap, forms a Bose-Einstein conden-
sate whose density fluctuations couple to the cavity light field and play the role of the
mechanical resonator. In both these setups, the atoms were precooled before the interac-
tion with the resonator light field was turned on. Successful observations of bistable be-
havior [Gupta07, Ritter09] and quantum-measurement back-action [Murch08b] have been
reported. A similar experiment demonstrated motional cooling of a cloud of Cs atoms
[Schleier-Smith11]. Lately, a remarkable achievement was the first observed signature of
noise squeezing, caused by the mechanical motion, of the light coming out of the cavity
[Brooks12].

We give a simplistic description of the setup used in [Gupta07, Murch08b], many details
of which can be found in [Murch08a]. The dispersive interaction between atoms and the
light field gives rise to an effective optomechanical coupling between the center of mass
motion of the atomic cloud and the optical field. The ac-Stark shift of the cavity frequency,
produced by the atoms absorbing and re-emitting photons into the cavity mode, depends
on the position of the atoms. Hence, the atom cloud acts as a dielectric medium moving
in the light field, collectively changing the refractive index of the cavity. We start by
considering the Tavis-Cummings Hamiltonian,

Ĥ = ~ωcâ†â+
~ωa

2

N∑
i=1

σ(i)
z + ~

N∑
i=1

g(ri)
(
âσ

(i)
+ + â†σ

(i)
−

)
(4.17)

which describes the dipole interaction, in the rotating-wave approximation, of N identical
atoms with transition frequency ωa, to a single mode of the cavity with frequency ωc.

Here, σ
(i)
j (j = z,±) denote the usual spin Pauli operators of the i-th atom, â(â†) are the

annihilation (creation) operators of the optical cavity mode. The coupling rate of each
atom to the cavity field, g(ri), depends on the atom position ri.

An effective Hamiltonian can be obtained in the dispersive limit, when the atom-cavity
detuning ∆ac = ωa−ωc is large compared to the coupling rate, |g/∆ac| � 1. The effective
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Figure 4.3: Cavity optomechanics with ultracold atoms. Schematic representation of
the setup. The optical cavity is formed by two mirror (light purple). The probe laser,
with wave vector kp, excites a cavity mode (red) which interacts dispersively with the
atoms (gray dots). The atoms are caught inside the cavity by an optical trap, formed by a
second off-resonant longitudinal laser at kt. This dipole trap is shown as a lattice potential
(blue), which is approximated by an harmonic potential, Vt(zi) = 1

2maω
2
z(zi− z̄i)2, (black

parabola) near the atom equilibrium positions z̄i. The dipole coupling of each atom to
the probe field varies, from 0 to ζ, between the sites of the optical lattice (green). The
cavity mode is probed in transmission.

Hamiltonian is found from the unitary transformation Û = eŜ , where

Ŝ =
N∑
i=1

g(ri)

∆ac

(
âσ

(i)
+ − â†σ

(i)
−

)
. (4.18)

To second-order in g/∆ac we obtain

ÛĤÛ † =~

(
ωc +

N∑
i=1

g2(ri)

∆ac
σ(i)
z

)
â†â+

~
2

N∑
i=1

(
ωa +

g2(ri)

∆ac

)
σ(i)
z

+ ~
∑
i,j

g(ri)g(rj)

∆ac

(
σ

(i)
+ σ

(j)
− + σ

(i)
− σ

(j)
+

)
+O

(
~g3

∆2
ac

)
.

(4.19)

Far from resonance, atomic transitions are suppressed, provided ∆ac is much larger than
both the dipole coupling rate and the linewidth of the atomic transition. In this case, the
atomic degrees of freedom are effectively frozen and the virtual absorption and re-emission
of a photon by the atoms produces an ac-Stark shift of the cavity frequency,

ω′c = ωc −
N∑
i=1

g2(ri)

∆ac
. (4.20)

The coupling rate g depends on the spatial distribution of the electrical field inside the
cavity. Neglecting transversal variations, it can be approximated by g(ri) = ζ sin(kpzi),
where zi denotes the atom position along the cavity axis, and kp the wavevector of the
cavity mode used to probe the atomic motion. The positions are written as zi = z̄i + δzi,
where z̄i is the equilibrium position, mainly fixed by the deep trapping potential of the
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optical trap Vt(z̄i), and δzi describes fluctuations. Around z̄i, the optical lattice is approx-
imated by an harmonic potential Vt(zi) ' maω

2
zδzi

2/2 (see Fig. 4.3). This assumption is
valid in the Lamb-Dicke regime, ωz � ~k2

p/(2ma), and for low temperature, ~ωz � kBT .
In this regime, the atoms most likely stay in their motional ground state and the condition
kδzi � 1 is satisfied, yielding

ω′c ' ωc −∆N −GZ. (4.21)

Here ∆N is the static contribution to the frequency shift produced by all the atoms sitting
at their equilibrium position, G is a frequency shift per unit displacement, and Z is a
collective displacement variable, namely

∆N =
N∑
i=1

g2(z̄i)

∆ac
, (4.22)

G = Neffk
ζ2

∆ac
, (4.23)

Z =
1

Neff

N∑
i=1

δzi sin(2kpz̄i). (4.24)

The effective number of atoms, whose motion couples to the probe field, is given by

Neff =
N∑
i=1

sin2(2kpz̄i). (4.25)

The collective variable Z is approximately a center of mass coordinate for the mass M =
Neffma, whose motion is relevant for the optical mode frequency shift. The mass M feels an
effective harmonic potential characterized by the trapping frequency ωz. The coordinate
Z is treated as the position operator of a vibrational harmonic mode,

Z =

√
~

2Mωz

(
b̂+ b̂†

)
. (4.26)

Including the mechanical energy and neglecting the internal atomic degrees of freedom,
the Hamiltonian finally reads

Ĥ = ~(ωc −∆N )â†â+ ~ωz b̂†b̂− ~g0â
†â
(
b̂+ b̂†

)
, (4.27)

and we recognize the generic form of the radiation pressure-interaction. The optomechan-
ical coupling rate g0 for this setup is given by

g0 = Neff
ζ2

∆ac
k

√
~

2Mωz
. (4.28)

Experiments implementing cavity optomechanics with a cloud of ultracold atoms op-
erate almost in the single-photon strong coupling regime g0/κ ∼ 1. The large dispersive
coupling of the atoms to the light field, the effective number of atoms Neff ∼ 105, and most
importantly the small effective mass M (resulting in large zero-point fluctuations) explain
the large value of the single-photon coupling rate (g0/2π ∼ 1 MHz). Such a high ratio g0/κ
allows to explore nonlinear optical effects at low photon number and is at the moment
only encountered in this particular implementation of cavity optomechanics. However, in
these setups the small sideband resolution generally precludes the observation of quantum
features of the collective mechanical mode.
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4.3.5 Optomechanical crystals

Optomechanical crystals are one of the most recent designs of cavity optomechanics. In
these systems, based on photonic crystal cavities [Vahala04], the light field is confined in
a periodic in-plane silicon nanostructure. The photonic crystal simultaneously supports
vibrational modes, whose motion modulates optical properties and therefore couples to
the light field. Such optomechanical crystals have been realized in one-dimensional con-
figurations [Eichenfield09, Safavi-Naeini10], where the photonic and phononic modes are
localized in a small volume and couple strongly. In these setups, the mechanical reso-
nance frequency can be as high as a few gigahertz. Optomechanical crystals combine both
high mechanical quality factors and large sideband resolution. Remarkable experiments
have been conducted, demonstrating cooling to the mechanical ground state [Chan11],
mechanically-induced transparency [Agarwal10, Safavi-Naeini11a], frequency conversion
between two different optical modes [Hill12], and ultimately generation of squeezed light
[Safavi-Naeini13]. In addition, optomechanical coupling rates among the highest so far,
of the order of MHz, and reaching a considerable fraction of cavity decay rate compared
to other solid-state device (g0/κ ∼ 0.25%) have been reported [Safavi-Naeini12]. In con-
sequence, this type of optomechanical system is a strong candidate for the observation of
quantum nonlinear effects.
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Chapter 5

Equivalence between an
optomechanical system and a Kerr
medium

This chapter has been published in essentially the form presented here in

S. Aldana, C. Bruder, and A. Nunnenkamp
Equivalence between an optomechanical system and a Kerr medium,
Phys. Rev. A 88, 043826 (2013).

Photons are ideal carriers of quantum information. They can propagate large distances
in optical fibers before being absorbed, and their polarization has been used for quantum
communication and quantum information applications [O’Brien07, O’Brien09]. However,
photons barely interact, and thus it is difficult to implement the quantum two-qubit gates
needed for universal quantum computation. This situation changes in an optical medium
where the photons can inherit an effective interaction, often modeled as a Kerr nonlinearity.
This is why so-called Kerr media are important for quantum technology based on photons
[Milburn89, Chuang95, Chuang96, Hutchinson04].

Recently, it was suggested that optomechanical systems operated in the single-photon
strong-coupling regime offer strong effective photon-photon interactions [Nunnenkamp11,
Rabl11]. In optomechanical systems the position of a mechanical oscillator modulates
the properties and (most commonly) the frequency of the optical cavity mode. The
radiation pressure interaction is intrinsically nonlinear. It induces many interesting ef-
fects and enables many applications, e.g. sideband cooling [Wilson-Rae07, Marquardt07],
radiation-pressure shot noise [Caves81, Braginsky92, Børkje10, Purdy13a], photon block-
ade [Rabl11], non-Poissonian photon statistics and multiphoton transitions [Kronwald13],
and non-Gaussian and nonclassical mechanical states [Mancini97, Bose97, Nunnenkamp11,
Qian12].

In this chapter, we will focus on the phenomenon of optical bistability, produced by
the radiation pressure, and neglect other nonlinear effects such as the photothermal effect
[Braginsky89, Fomin05, Marino11, Marino13] or a mechanical Duffing nonlinearity. Under
certain conditions and sufficiently strong driving there are two classically stable equilibrium
positions for the mechanical oscillator and correspondingly for the optical cavity. Optical
bistability in optomechanical systems has been discussed in the context of ponderomotive
squeezing [Fabre94, Mancini94] and entanglement [Ghobadi11], and led to one of the
first experimental observations of optomechanical coupling [Dorsel83, Gozzini85]. Optical
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Figure 5.1: Schematic representations of an optomechanical setup (upper panel) and a
Kerr medium in a cavity (lower panel). This chapter investigates in detail whether and
in which way the two systems are equivalent.

bistability has also been discussed widely in the context of a Kerr medium [Drummond80,
Walls08]. This raises the question whether and in which way the optomechanical system
and the Kerr medium in a cavity can be considered to be equivalent, see Fig. 5.1 that
shows both of these systems schematically. In the following we will investigate in detail
the similarities and differences between optical bistability in an optomechanical system
and a Kerr medium.

This chapter is organized as follows. In Sec. 5.1 we introduce the standard model of
optomechanics – a cavity whose frequency is modulated by the position of a mechanical
oscillator. We briefly introduce the steady-state mean-field equations of the system and
the quantum Langevin description of quantum and thermal fluctuations for a linearized
radiation-pressure interaction. In Sec. 5.2 we show that the mean-field equation for the
optical mode is identical to the one for a Kerr medium, with a lower, a middle and an upper
branch. In the optomechanical system, fluctuations of the mechanical mode change the
picture. A study of the stability of the different mean-field solutions against fluctuations
reveals a feature that is absent from the Kerr medium: the upper branch becomes unstable
for certain parameters. We derive conditions on the parameters for this upper branch to
remain stable. The stability requires the system to be in the resolved sideband regime with
a mechanical quality factor that is not too large. In this case we expect the mechanical
resonator to act as an effective Kerr medium for the optical mode, even in the quantum
regime. This is confirmed in Sec. 5.3, where we compare the quantum steady states of both
the optomechanical system and the Kerr medium, obtained from numerical solutions of
the quantum master equations in the low-temperature limit. The optomechanical system
exhibits the expected characteristic quantum signatures proving that it can be regarded
as an effective Kerr medium.
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5.1 Models for the optomechanical system and the Kerr
medium

We first recall the standard model of optomechanics where the resonance frequency of an
optical cavity is modulated by the position of a mechanical resonator (dispersive coupling).
A monochromatic coherent light field with frequency ωd and amplitude ε drives the optical
mode. The full Hamiltonian, accounting for driving and dissipation, is Ĥ = Ĥ0 + Ĥd +
Ĥκ + Ĥγm , where, in the rotating frame of the driving,

Ĥ0 = ~ωmb̂†b̂− ~∆0â
†â− ~g0â

†â(b̂+ b̂†) , (5.1)

and Ĥd = i~ε(â − â†). Here, â and b̂ are the bosonic operators for the optical and
mechanical modes, ∆0 = ωd−ωc is the detuning of the drive from the unperturbed cavity
resonance frequency ωc, and ωm the resonance frequency of the mechanical mode. The
optomechanical coupling is given by g0 = −xZPF(∂ωc/∂x), where xZPF = (2Mωm/~)−1/2

is the zero-point fluctuation amplitude of the mechanical resonator, M its mass, and
(∂ωc/∂x) is the derivative of the cavity frequency with respect to the resonator position
x̂ = xZPF(b̂ + b̂†). The term Ĥκ describes the damping of the optical cavity at rate κ,
and Ĥγm the damping of the mechanical resonator at rate γm. This leads to the definition
of two important ratios, the sideband parameter ωm/κ and the mechanical quality factor
Qm = ωm/γm.

Using the input-output formalism [Walls08, Clerk10], the dissipative dynamics of the
system is described by the quantum Langevin equations (QLEs)

˙̂a =
(
i∆0 −

κ

2

)
â+ ig0â(b̂+ b̂†)−√κ âin , (5.2a)

˙̂
b = −

(
iωm +

γm
2

)
b̂+ ig0â

†â−√γm η̂ , (5.2b)

where âin(t) = āin + ξ̂(t) consists of a coherent driving amplitude āin = ε/
√
κ and a

vacuum noise operator ξ̂ which satisfies 〈ξ̂(t)ξ̂†(t′)〉 = δ(t − t′) and 〈ξ̂†(t)ξ̂(t′)〉 = 0. Sim-
ilarly, the noise operator η̂ describes coupling to a Markovian bath at temperature T ,
i.e., 〈η̂(t)η̂†(t′)〉 = (nth + 1)δ(t − t′) and 〈η̂†(t)η̂(t′)〉 = nthδ(t − t′). In the absence of
any other coupling, the bath gives rise to a thermal state with mean occupation number
nth = [exp(~ωm/kBT )−1]−1 for the mechanical oscillator. This treatment of the mechan-
ical dissipation in the form of a QLE for the mechanical amplitude b̂, rather than for the
displacement x̂, is correct as long as Qm � 1.

The optical and mechanical field operators can be split into a coherent mean-field
amplitude and fluctuations: â(t) = ā+ d̂(t) and b̂(t) = b̄+ ĉ(t). Inserting these expressions
in the QLEs (5.2), we obtain two coupled mean-field equations (MFEs) for the amplitudes
ā and b̄. In steady state they read

0 =
[
i∆0 + ig0

(
b̄+ b̄∗

)
− κ

2

]
ā− ε , (5.3a)

0 = −
(
iωm +

γm
2

)
b̄+ ig0|ā|2 . (5.3b)

The coherent amplitude of the optical field ā corresponds to a mean cavity occupation n̄ =
|ā|2 and produces a static radiation-pressure force g0 n̄/xZPF on the resonator, displacing
its equilibrium position by an amount xZPF(b̄ + b̄∗). Proceeding this way we eliminate
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the coherent drive ε from the QLEs for the operators ĉ and d̂ which describe thermal and
quantum fluctuations around the mean-field values.

For large optical mean-field amplitudes |ā| � 1 and small coupling g0 � κ, ωm, we can
neglect the nonlinear terms like d̂†d̂ or d̂ĉ in the QLEs. As a result, the optomechanical
interaction becomes bilinear: g0â

†â(b̂ + b̂†) → g0(ā∗d̂ + ā d̂†)(ĉ + ĉ†). Introducing the
convenient vector notation û = (d̂†, d̂, ĉ†, ĉ)T and ûin = (

√
κξ̂†,
√
κξ̂,
√
γmη̂

†,
√
γmη̂)T , we

can write the linearized QLEs in matrix form,

d

dt
û(t) = −A · û(t)− ûin(t) , (5.4)

where A reads

A =


κ
2 + i∆ 0 ig∗ ig∗

0 κ
2 − i∆ −ig −ig

ig ig∗ γm
2 − iωm 0

−ig −ig∗ 0 γm
2 + iωm

 . (5.5)

The new parameters entering the matrix A are the enhanced optomechanical coupling
g = g0ā and the effective detuning ∆ = ∆0 + g0(b̄+ b̄∗) = ∆0 + 2n̄g2

0/ωm.
The Kerr medium [Drummond80, Walls08], to which we aim to compare the optome-

chanical system, is described by the Hamiltonian Ĥ ′ = ĤK + Ĥd + Ĥκ, where, in the
rotating frame of the driving,

ĤK = −~∆0â
†â− ~

g2
0

ωm

(
â†â
)2

, (5.6a)

Ĥd = i~ε(â− â†) , (5.6b)

and Ĥκ describes again the damping of the optical cavity at rate κ. The QLE for this
optical mode â is

˙̂a =

[
i

(
∆0 +

g2
0

ωm

)
− κ

2

]
â+ 2i

g2
0

ωm
â†â2 −√κâin , (5.7)

where the input operator âin(t) is the same as for the optomechanical system. The steady-
state equation for the mean-field amplitude ā is

0 =

[
i

(
∆0 +

g2
0

ωm

)
− κ

2

]
ā+ 2i

g2
0

ωm
|ā|2ā− ε . (5.8)

Replacing ∆0 by ∆0−g2
0/ωm in Eq. (5.8) yields the equation for the optical mean-field

amplitude ā of the optomechanical system obtained from Eq. (5.3) by eliminating the
mechanical mean-field amplitude b̄. This frequency shift of the detuning ∆0 is consistent
with the fact that Ĥ0 and ĤK are connected by the canonical (polaron) transforma-
tion Û = exp[(g0/ωm)(b̂ − b̂†)â†â]. Applying Û to the optomechanical Hamiltonian Ĥ0,
Eq. (5.1), we obtain ÛĤ0Û

† = ĤK +ωnb̂
†b̂. In this frame, the optomechanical interaction

is eliminated and the optical mode acquires a Kerr nonlinearity of the form of Eq. (5.6a)
[Nunnenkamp11, Rabl11].

5.2 Optical bistability in the semiclassical regime

In the following, we will first show that the optomechanical system has MFEs with three
solutions in a certain range of driving frequency and driving amplitude, just as the Kerr
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medium does. After discussing the characteristic behavior of the mean-field solutions in
the regime of optical bistability, we study the stability of the mean-field solutions against
fluctuations of both the optical and mechanical mode and point out the differences with
the Kerr medium. Finally, we find parameters for which the optomechanical system is
accurately described by an effective Kerr medium.

5.2.1 Bistability at the mean-field level

We briefly review the origin of bistability in the mean-field equations of the optomechanical
system [Meystre85, Meystre07, Gozzini85, Fabre94, Mancini94].

To simplify the notation we define the dimensionless nonlinearity parameter χ, detun-
ing y, and driving power z by

χ =
g2

0

ωmκ
, (5.9)

y = −∆0

κ
, (5.10)

z = χ
( ε
κ

)2
. (5.11)

Combining Eqs. (5.3a) and (5.3b) we obtain a third-order polynomial root equation for
the mean-field cavity occupation, p(χn̄) = 0, where

p(λ) = 4λ3 − 4yλ2 +

(
y2 +

1

4

)
λ− z . (5.12)

The MFE for the Kerr medium, Eq. (5.8), leads to the same equation for n̄, provided we
replace y by y − χ in Eq. (5.12).

Equation (5.12) indicates that the MFEs can have either one or three solutions, de-
pending on the number of real roots of the polynomial. The three roots depend on the
dimensionless detuning y and driving power z. Since the mean-field cavity occupation n̄
follows from p(χn̄) = 0, the nonlinearity parameter χ determines whether optical bista-
bility occurs at small or large driving power and photon number.

The optical mean-field amplitude is ā = −eiϕ
√
λ/χ, where ϕ = arctan(4λ − 2y). If

the detuning y and driving power z are such that the equation p(λ) = 0 has three real
roots, the smaller χ, the more distant in phase space are the different optical mean-field
amplitudes ā. A similar observation can be made concerning the mechanical resonator:
the equation p(λ) = 0 also holds for λ =

√
χωm/(4κ)(b̄+b̄∗), where b̄+b̄∗ is the equilibrium

position of the mechanical resonator in units of xZPF. Therefore, the smaller χ and the
sideband parameter ωm/κ, the more distant are the different equilibrium positions.

We now examine some characteristic features of the MFEs, which occur both in an
optomechanical system (5.3) and a Kerr medium (5.8). To this end, we find the conditions
on the detuning y and the driving power z for the MFEs to have three solutions, and
illustrate them with a few examples.

First we observe that the equation p(λ) = 0 can have three real roots only if the
detuning y and the driving power z exceed some threshold value ỹ and z̃ [Risken87,
Vogel89, Fabre94, Mancini94],

y > ỹ =

√
3

2
' 0.87 , (5.13a)

z > z̃ =
1

6
√

3
' 0.1 . (5.13b)
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Therefore, optical bistability can only be found for red-detuned driving frequencies. In
addition, the three roots are real only if

z−(y) < z < z+(y) , (5.14)

where

z±(y) =
1

27

[
y(y2 + 3ỹ2)± (y2 − ỹ2)3/2

]
. (5.15)

The region in (y, z)-parameter space where Eqs. (5.13) and (5.14) are satisfied is shown
in Fig. 5.2(c) with the labels II (blue) and III (purple). In this region the three mean-field
occupations satisfy n̄1 < n− < n̄2 < n+ < n̄3, where n± are found from p′(χn±) = 0 and
read

χn±(y) =
1

6

[
2y ± (y2 − ỹ2)1/2

]
. (5.16)

In the following, we refer to n̄1, n̄2, and n̄3 as the lower, middle, and upper branch of the
MFEs.

In Fig. 5.2(a) we show the mean-field occupation χn̄ as a function of the driving power z
for fixed detuning y. For an increasing driving power z and a detuning above the threshold
y > ỹ, the three branches of the mean-field occupation n̄ form a characteristic S-shaped
curve. The lower branch starts from the origin and ends at the turning point given by
(z+, n−) where the middle branch starts. The upper branch starts from the second turning
(z−, n+), where the middle branch ends, and increases further.

In Fig. 5.2(b) we plot the mean-field occupation χn̄ as a function of the detuning y
for fixed driving power z. The cavity line shape is approximately Lorentzian if the driving
power is far below the threshold z � z̃ (not shown). For larger and larger z it becomes
more and more asymmetric and tilts until for z = z̃, it has an infinite slope at y = ỹ.
For a driving power beyond this threshold the cavity line-shape has three branches in the
range of detuning y determined by Eq. (5.14).

According to these considerations, the optomechanical system and the Kerr medium
are equivalent at the level of the steady-state MFEs. Our next goal is to discuss the
stability of the different branches of the MFEs. The existence of three solutions to the
MFEs indicates that the optomechanical system may be in a regime of bistability, with
stable lower and upper branches, as well as an unstable middle branch. While for the
Kerr medium this is always true [Drummond80], a stability analysis leads to different
conclusions in the case of the optomechanical system. In addition, if the detuning y
and driving power z lead to a unique solution for the mean-field cavity occupation n̄, this
solution is always stable for the Kerr medium, but not necessarily so for the optomechanical
system.

5.2.2 Stability analysis of the mean-field solutions

The upper and lower branches are always stable for the Kerr medium. To find the range
of parameters where the optomechanical system reproduces this behavior, we analyze the
stability of the different branches of the MFEs (5.3) against fluctuations of both the optical
and mechanical modes.

The stability of a point in any of the branches of the MFEs is established, if the
linear QLEs (5.4), describing the fluctuations around this point, are stable. This in turn
is ensured if all the eigenvalues of the matrix A given in Eq. (5.5), derived from the
corresponding mean-field amplitudes ā and b̄, have positive real parts. This has to be
verified even if the MFEs have only one solution.
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Figure 5.2: Optical bistability in the semiclassical regime. Typical curves for the mean-
field cavity occupation n̄ as a function of the dimensionless driving power z (a) and the
dimensionless detuning y (b), obtained from the condition p(χn̄) = 0 [see Eq. (5.12)].
According to the stability criteria c1,2 > 0 [see Eqs. (5.17)], Gaussian fluctuations lead
to stable (solid black) or unstable (dotted blue and dashed red) mean-field solutions.
As in the case of the Kerr medium, the first criterion c1 > 0 always yields an unstable
middle branch (dotted blue), while the additional criterion for the optomechanical system
c2 > 0 can turn part of the upper or only branch unstable (dashed red). In (b) we also
show the critical mean-field occupation nc (dash-dotted gray) obtained from the condition
c2 = 0. In (c) we summarize the behavior of the mean-field solution as a function of the
parameters y and z. In regions II and III, between the curves z− and z+, Eqs. (5.13) and
(5.14) are satisfied and there are three distinct mean-field solutions; the middle branch is
always unstable. In region II (blue) the lower and upper branches are stable. In region
III (purple) the second stability criterion shows the upper branch to be unstable (c2 < 0)
and only the lower branch is stable. In regions I and IV the mean-field equations (MFEs)
have only one solution. Below the zc curve in region I (gray) this unique branch is stable,
while in region IV (red) the second criterion again shows that this solution is unstable
(c2 < 0). The values of the detuning y and driving power z used in (a) and (b) are
indicated by the orange and green dashed lines. Note that none of these features depends
on the nonlinearity parameter χ, due to appropriate scaling of the axes. The threshold
detuning ỹ and driving power z̃ indicate the minimal values of y and z needed for the
MFEs to have three solutions. The sideband parameter and mechanical quality factor
chosen to show the influence of the second stability criterion c2 > 0 are ωm/κ = 10 and
Qm = 1000.
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Branch
Kerr medium Optomechanical system

No. Type

3

Lower Stable Stable
Middle Unstable Unstable

Upper Stable
Stable Unstable
n̄ < nc n̄ > nc

1 - stable
stable unstable
n̄ < nc n̄ > nc

Table 5.1: Stability for the different branches in an optomechanical system and a Kerr
medium determined from the QLEs (5.4) and (5.7). The critical mean-field occupation nc
is found from the stability criterion, Eq. (5.17b), and depends on the detuning y = −∆0/κ,
the sideband parameter ωm/κ, and the mechanical quality factor Qm.

The differences and similarities between the optomechanical system and the Kerr
medium are summarized in Table 5.1.

The difference between the two systems is explained by the parametric instability in the
optomechanical system [Marquardt06, Ludwig08] that occurs at a mean-field occupation
n̄ above some critical value nc. Around such a mean-field solution, the linear dynamics
of optical and mechanical fluctuations becomes unstable. This particular feature of the
optomechanical system is illustrated in Fig. 5.2; it is absent for the Kerr medium.

In Figs. 5.2(a) and 5.2(b), we indicate the unstable segments of the branches where
n̄ > nc. In case the MFEs have three branches, this critical value for the mean-field
occupation nc systematically lies in the upper branch or in its extension to the region
where there is only one branch.

In Fig. 5.2(a), for a fixed detuning above threshold y > ỹ, the upper branch is stable
only in a finite segment near the second turning point n+ at the beginning of the upper
branch. The size of this stable segment diminishes as the detuning y increases, and shrinks
to a single point in the limit of a far red-detuned driving frequency. The same effect is
seen in Fig. 5.2(b). With increasing driving power z the stability in the upper branch is
confined to a smaller and smaller segment near the maximum of the cavity line shape.

In Fig. 5.2(c), the regions in (y, z)-parameter space where the upper or only branch
turns unstable are labeled by III and IV. These are the regions where the driving power z
is larger than the critical value zc, found by solving the equation p (χnc) = 0 for z, where
p is given in Eq. (5.12). The range of detuning y or driving power z at which bistability
is observed shrinks with increasing y or z.

We now characterize the regime leading to optical bistability in the optomechani-
cal system, and therefore examine how the stability of the branches depends on the pa-
rameters. To this end, we apply the Routh-Hurwitz criterion [DeJesus87] to the linear
QLEs (5.4). Two conditions have to be satisfied for a particular mean-field solution to be
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stable, c1,2 > 0, where 1

c1 = 4|g|2∆ + ωm

(
∆2 +

κ2

4

)
, (5.17a)

c2 = κ γm

[(
∆2 − ω2

m

)2
+

1

2

(
∆2 + ω2

m

)
(κ+ γm)2

+
1

16
(κ+ γm)4

]
− 4|g|2∆ωm (κ+ γm)2 . (5.17b)

The identification of the parameter regime leading to c1,2 > 0 is done as follows. We
replace |g|2 and ∆ by their n̄-dependent expressions,

|g|2 = κωm χn̄ , (5.18)

∆ = κ(2χn̄− y) , (5.19)

in Eqs. (5.17), and express c1,2 as functions of the rescaled mean-field occupation χn̄,
the detuning y, the sideband parameter ωm/κ, and the mechanical quality factor Qm =
ωm/γm.

From the condition c1 < 0 we conclude that the middle branch is unstable [Meystre85,
Meystre07, Fabre94, Mancini94]. This follows from sgn(c1) = sgn [(n+ − n̄)(n− − n̄)],
where n±, Eq. (5.16), are the values of the mean-field cavity occupation at the lower and
upper limits of the middle branch. The physical interpretation of this condition is simple.
In the middle branch, the modification of the mechanical frequency due to radiation pres-
sure, also known as the optical spring effect, is such that the modified mechanical force is
no longer a restoring force.

In the Kerr medium, the same stability condition, c1 > 0, is found from the linear
QLEs, obtained by substituting â = ā + d̂ in Eq. (5.7) and neglecting second- and third-
order terms in d̂, d̂†. No other criteria are needed to establish the stability of the system,
and therefore the lower and upper branches are always stable.

The condition c2 = 0 is equivalent to the relaxation rate of the system going to zero
[Genes08a]. In a stable system, this relaxation rate is the real part of the eigenvalue of
A closest to zero. Above the critical mean-field occupation, n̄ > nc, this relaxation rate
becomes negative, c2 < 0, and the branch turns unstable. If in addition n̄ is the only
mean-field solution, the system is parametrically unstable. We find nc by solving the
equation c2 = 0 for n̄, as a function of the detuning y, the sideband parameter ωm/κ, and
the mechanical quality factor Qm.

It turns out that nc always lies in the upper branch or in its extension to the region with
only one branch. This can be seen as follows. Since the condition c2 > 0 is automatically
satisfied for negative effective detuning, ∆ ≤ 0, we find a lower bound for the critical
occupation,

nc ≥ n∆ =
y

2χ
. (5.20)

In addition, the effective detuning ∆ always turns positive in the upper branch, since
n∆ ≥ n+. Thus the upper branch is only stable in the range n+ < n̄ < nc. This stable
portion can be very small, e.g., in the extreme case −∆0 � κ and γm = 0, we have
nc = n∆ ' n+.

1In Refs. [Genes08a, Vitali07a, Vitali07b, Genes08b], similar criteria have been obtained using a quan-
tum Brownian motion approach to treat mechanical dissipation. Their criteria are equivalent to c1,2 in the
limit Qm � 1.
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Figure 5.3: Critical cavity occupation nc in units of n∆, as a function of the sideband
parameter ωm/κ and the mechanical quality factor Qm. At nc the mean-field solution n̄
leads to unstable linear dynamics for the optomechanical system. The cavity occupation
n∆ = y/(2χ) marks the point at which the effective detuning ∆ becomes positive. We find
nc from the second stability criterion, Eq. (5.17b). The bare detuning is y = −∆0/κ = 1.5.
Note that the ratio nc/n∆ does not depend on the nonlinearity parameter χ. The black
cross indicates the parameters used in Fig. 5.4.

In Fig. 5.3 we compare the critical mean-field cavity occupation nc to the occupation
n∆ at which ∆ changes sign. The ratio nc/n∆ is shown as a function of ωm/κ and
Qm. If nc/n∆ is large, the upper branch is stable beyond the parameter range leading
to bistability, nc � n+, mimicking the behavior of the Kerr medium. On the contrary,
if nc/n∆ ' 1, the upper branch turns unstable for ∆ > 0 and is only stable on a finite
segment near its beginning.

We can distinguish four parameter regimes which encompass most experimental situ-
ations.

Resolved sideband and large mechanical damping (Ia)

For extremely low cavity damping, ωm > γm > κ, the critical occupation nc is approxi-
mately

χnc =
1

4

(
y +

√
y2 + 2Qm

ωm
κ

)
. (5.21)

In the case of a fixed detuning satisfying y2 � 2Qmωm/κ, we have nc � n∆ and the
upper branch is stable on a considerable segment, extending up to driving powers z and
mean-field occupations n̄ that are much larger than those needed for bistable MFEs, i.e.,
zc � z+ and nc � n+. We recall that zc is found by solving the equation p(χnc) = 0,
with p defined in Eq. (5.12). Therefore, the mean-field behavior of the optomechanical
system is equivalent to the behavior of a Kerr medium in the regime of bistability. In
Ref. [Kronwald13], the optomechanical system was compared to the Kerr medium in terms
of the full counting statistics of photons. Although the two systems can behave differently
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5.2. Optical bistability in the semiclassical regime

in some regime of parameters, the authors demonstrate that the influence of the mechanical
resonator reduces to an effective Kerr nonlinearity when γm ∼ κ, in particular with y =
ωm/κ.

Resolved sideband and small mechanical damping (Ib and IIa)

In the regime characterized by ωm > κ > γm, the critical mean-field cavity occupation is
found to be approximately

χnc =
1

4

(
y +

√
y2 + 2

(ωm/κ)3

Qm

)
. (5.22)

In this case, the parameter (ωm/κ)3/Qm plays an important role to characterize the mean-
field behavior.

If Qm > (ωm/κ)3, we obtain nc ' n∆ for a detuning above the bistability threshold
y > ỹ. In this case, the upper branch turns unstable if the effective detuning is positive,
∆ > 0. In addition, this means that if the detuning is negative and large, such that
−∆0 � κ, the stable segment is small, as n∆ ' n+.

In the opposite limit, Qm � (ωm/κ)3, we can have nc � n∆ as in the previous case
(γm > κ), provided the detuning y satisfies y2 � (ωm/κ)3/Qm. The same conclusions
then apply, i.e., zc � z+ and nc � n+, and the mean-field behavior of the optomechanical
system and the Kerr medium is equivalent in the parameter regime of bistability.

Using the exact expression for nc, we see in Fig. 5.3 that the border between the region
where the optomechanical system experiences a parametric instability as soon as ∆ > 0
(black region), and the region where the system is still linearly stable for some positive
effective detuning, nc > n∆, is approximately given by y2 = 2(ωm/κ)3/Qm. Above this
line, an optomechanical system driven to the regime of bistability behaves like a Kerr
medium, as described by Eqs. (5.6) and (5.7). This will be confirmed in the next section
by obtaining the quantum steady state of both systems numerically and showing that the
states of the optical mode are similar.

Many experimental realizations of cavity optomechanics are in the resolved-sideband
limit and fall into this category: coated micromechanical resonators [Groblacher09a], mi-
cromechanical microwave resonators [Regal08, Rocheleau10, Teufel11b, Massel11], pho-
tonic crystal cavities [Chan11], microspheres [Park09], and microtoroids [Schliesser08,
Verhagen12].

Unresolved sideband and small mechanical damping (IIb)

The critical occupation nc can be approximated in the limit of a small sideband parameter
ωm/κ and large enough mechanical quality factor, such that 1 > ωm/κ > 1/Qm, as

χnc =
1

4

(
y +

√
y2 +

κ/ωm
8Qm

)
. (5.23)

If the bare detuning ∆0 is negative and exceeds the threshold value for possible bistability,
y > ỹ, we obtain that nc ' n∆. The upper branch turns unstable as soon as the effective
detuning ∆ is positive, and for large bare red detuning, −∆0 � κ, the upper branch is
only stable on a small segment close to its beginning.
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In this regime we find several experimental implementations of optomechanics: ultra-
cold atoms [Murch08b, Schleier-Smith11, Brooks12], suspended membranes [Thompson08],
and coated mechanical resonators [Arcizet06a, Kleckner11].

A simple interpretation of the critical mean-field occupation nc in Eqs. (5.22) and
(5.23) can be provided by considering the total mechanical damping γtot = γm + Γopt,
where Γopt is the additional mechanical damping induced by coupling to the optical de-
gree of freedom. In the weak-coupling limit of linearized optomechanics, i.e., g, γm < κ,
this contribution is given by Γopt = −2 Im Σ(ωm) where Σ(ω) = −ig2 [χc(ω)− χ∗c(−ω)]
is the so-called optomechanical self-energy and χc(ω) = [κ/2− i(∆ + ω)]−1 the optical
susceptibility [Marquardt07]. In this case, the condition n̄ = nc coincides with γtot = 0 in
both limits ωm ≶ κ.

Very small sideband parameter

In the regime where the sideband parameter is so small that ωm/κ� 1/Qm, the situation
is different. The upper branch is unconditionally stable as long as the detuning y is not
too large, y < κ/(

√
32Qmωm). For larger values of y, an unstable segment of the upper

branch develops, from the second turning point n+ up to some value n′ of the mean-field
cavity occupation given by

χn′ = y

(
1

2
+Qm

ωm
κ

+

√(
Qm

ωm
κ

)2
− 1

32y2

)
. (5.24)

The dynamical timescales of the two modes are different in this limit. The optical
mode adiabatically follows the mechanical motion and produces an effective mechanical
potential with two stable equilibrium positions. However, as we have seen in the previous
paragraph, this picture holds only if Qm is not too large compared to κ/ωm.

In this parameter regime, early experiments with hertz-scale mechanical resonance
frequencies enabled the first observations of optical bistability and the related hysteresis
cycle both in the optical [Dorsel83] and the microwave domain [Gozzini85].

In low-finesse cavities, the optical field can create several stable minima in the me-
chanical potential, a phenomenon sometimes referred to as multistability [Meystre85,
Meystre07]. It has recently been observed with a torsion balance oscillator acting as
the moving mirror [Mueller08]. This effect should not be confused with dynamical mul-
tistability [Marquardt06], where mechanical limit-cycle orbits of stable amplitudes arise
due to parametric instability.

5.3 Optical bistability in the quantum regime

So far we have focused on the semiclassical regime, considering the mean-field solutions as
well as the effect of fluctuations around them, and have identified the regime of parameters
where the optomechanical system and the Kerr medium exhibit similar behavior. In the
remainder, we want to confirm that the conclusions of this approach also hold in the
quantum limit. To this end, we compare the quantum steady states of the optomechanical
system and the Kerr medium, obtained from numerical solutions of the quantum master
equations.
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5.3.1 Quantum master equations description of dissipation

An alternative description of either the optomechanical system or the Kerr medium can be
given in the form of quantum master equations, which describe the dynamics of their den-
sity operators ρ̂, respectively ρ̂K . This treatment is equivalent to the quantum Langevin
description given by Eqs. (5.2) and (5.7). Instead of using input noise operators ξ̂ or η̂,
dissipation is taken into account with Lindblad dissipative terms.

The quantum master equation for the optomechanical system reads

dρ̂

dt
= L [ρ̂] =

−i
~

[
Ĥ0 + Ĥd, ρ̂

]
+ κDâ [ρ̂] + (nth + 1)γmDb̂ [ρ̂] + nthγmDb̂† [ρ̂] , (5.25)

where the dissipative terms have the standard form, Dô[ρ̂] = ô ρ̂ ô† − 1
2

(
ô†ô ρ̂+ ρ̂ ô†ô

)
.

In the same way, the quantum master equation for the equivalent Kerr medium is given
by

dρ̂K
dt

= LK [ρ̂K ] =
−i
~

[
ĤK + Ĥd, ρ̂K

]
+ κDâ [ρ̂K ] . (5.26)

The steady-state density operators are found from the numerical solutions of L[ρ̂] = 0
and LK [ρ̂K ] = 0, respectively.

5.3.2 Comparison of the quantum steady states

To corroborate the fact that the optomechanical system behaves like an effective Kerr
medium, we compare the quantum steady states of both systems for parameters that
lead to bistable behavior. To this end, we calculate the photon number 〈â†â〉, the cavity
amplitude |〈â〉|2, and the second-order correlation function

g(2)(0) =
〈â†â†ââ〉
〈â†â〉2 , (5.27)

which describes fluctuations in the photon number. We also characterize the similarity
between the optomechanical system and the Kerr medium with the help of the overlap

F (ρ̂opt, ρ̂K) = Tr

[√√
ρ̂K ρ̂opt

√
ρ̂K

]
, (5.28)

where ρ̂opt is the reduced density matrix of the system, obtained by tracing out the me-
chanical degree of freedom from ρ̂. Finally, we investigate the Wigner distribution function
of the optical mode, which reads

Wopt(α) =
1

π2

∫
d2λTr

[
ρ̂opt e

λ(â†−α∗)−λ∗(â−α)
]
. (5.29)

The steady states of both systems are compared for a constant detuning above the
bistability threshold, y > ỹ, and as a function of the driving power z. In this configuration
the mean-field cavity occupation n̄ forms a characteristic S-shaped curve.

The results are presented in Figs. 5.4 and 5.5. In Fig. 5.4, we show the mean-field
cavity occupation n̄, the photon number 〈â†â〉, and the cavity amplitude |〈â〉|2 for both
the optomechanical system, with zero and finite temperature of the mechanical bath, as
well as for the equivalent Kerr medium. The two insets show the second-order correlation
g(2)(0) and the overlap F (ρ̂opt, ρ̂K). In Fig. 5.5, we show the optical Wigner density
function of the optomechanical system.
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〈â

† â
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Figure 5.4: Optical bistability in the quantum regime. (a) Mean-field cavity occupation
n̄, with stable (black solid line) and unstable (black dotted line) branches, steady-state
photon number 〈â†â〉 (red), and cavity amplitude |〈â〉|2 (purple) of the optomechanical
system, as a function of the dimensionless driving power z. The upper branch turns
unstable outside the range of z parameters we plot, beyond zc ' 92 and nc ' 42. For
comparison we also show 〈â†â〉 (black dashed line) and |〈â〉|2 (black dash-dotted line) for
the equivalent Kerr medium. For both systems, y = −∆0/κ = 1.5 and χ = 0.08. The
parameters of the optomechanical system are ωm/κ = 30, Qm = 300 (indicated by the
black cross in Fig. 5.3), and kBT = 0 (dots) or kBT = ~ωm (crosses). Inset (b) shows
the second-order correlation function g(2)(0) = 〈â†â†ââ〉/〈â†â〉2 for the optomechanical
system with kBT = 0 (green solid line) as well as kBT = ~ωm (green dashed line) and
for the Kerr medium (black dash-dotted line). The first and third curves are indistin-
guishable. Inset (c) shows the overlap F (ρ̂opt, ρ̂K), as defined in Eq. (5.28), between the
density matrices of the pure Kerr medium ρ̂K and the reduced density matrix of the
optomechanical system ρ̂opt, obtained by tracing out the mechanical degree of freedom
from ρ̂. The temperatures chosen are kBT = 0 (solid line) and kBT = ~ωm (dashed line).

At low driving power before entering the region of bistability, z < z−, the state of
the optical mode is rather well described by a coherent state in both systems, as 〈â†â〉 =
|〈â〉|2 ' n̄.

In the range of driving power where two stable mean-field solutions exist, z− < z < z+,
the master equations (5.25) and (5.26) have unique quantum steady states. Thus, instead
of any bistable behavior, a transition of 〈â†â〉 and |〈â〉|2, from the lower to the upper
branch, occurs, as the driving power z increases. Simultaneously, both systems show large
fluctuations in the photon number, g(2)(0) > 1. Such behavior, in the regime where the
MFEs lead to bistability, is well-known from the Kerr medium [Drummond80].

In this regime, the Wigner function Wopt(α), shown in Fig. 5.5, exhibits two separate
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Figure 5.5: Wigner function Wopt(α) of the optical mode of the optomechanical system
for six different driving powers z and two different temperatures. The white crosses
indicate the mean-field amplitudes ā of the stable branches. The values of z are indicated
by blue dots and lines in Fig. 5.4(a).

lobes peaked at the mean-field amplitudes, α ' ā. This is another well-known feature of
the Kerr medium [Risken87, Vogel89, Vogel90] and shows how classical bistability persists
in the quantum regime. The two lobes are distinguishable if the phase-space separation
of the two stable mean-field amplitudes ā is larger than the fluctuations around them,
which is satisfied here since χ � 1. Since Wopt > 0 everywhere, the optical mode can
be regarded as an incoherent statistical mixture of two states with different amplitudes
and non-Gaussian fluctuations. As the driving power z increases from z− to z+, the
relative weights of the lobes continuously change from the lower branch to the upper one,
describing the shift in probability for the system to be found in one or the other. This
effect is robust to finite temperature of the mechanical environment.

The particular situation where the two stable branches are approximately equally likely
(z ' 0.26 for kBT = ωm) would enable the observation of noise-induced switching between
both branches [Rigo97, Kerckhoff11] and constitute a clear signature of the nonlinear
interaction between the optical and mechanical mode.

At higher driving power, z > z+, when the MFEs have only one solution, both the
optomechanical system and the Kerr medium exhibit sub-Poissionian statistics, g(2)(0) <
1. Photon blockade in optomechanical systems has already been predicted for χ > 1
[Rabl11]. In our case, photon blockade is not very pronounced: we chose χ � 1 to
have bistable mean-field solutions that are appreciably distant in phase space. For the
parameters of Fig. 5.4, this effect is slightly suppressed even further due to the finite-
temperature bath, nth > 0.

At various points of this chapter, we have already demonstrated that the optomechan-
ical system can be regarded as an effective Kerr medium in some range of parameters that
we have specified. In particular, in the present section we have shown numerically that
both systems exhibit the same features. For example, the photon number and the second-
order photon correlation function follow the same parameter dependence, the Wigner
function has a two-lobe structure, and both systems show photon blockade. As a further
strong confirmation of this equivalence, we compare the states ρ̂opt and ρ̂K of the optical
field in both systems. As can be seen in inset (c) of Fig. 5.4, their overlap F is close to
1 even at a finite thermal occupation of the mechanical mode. All of these calculations
clearly establish the equivalence of the optomechanical system and a Kerr medium in the
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appropriate parameter range.

5.4 Concluding remarks

The mean-field equations for the optical mode of a dispersively coupled optomechanical
system agree with those of a Kerr medium, a paradigmatic quantum optics system whose
nonlinearity induces optical bistability. This raises the question of whether and under
which conditions the two systems can be considered to be equivalent. We have therefore
compared the optical bistability in an optomechanical system and a Kerr medium. A
stability analysis of the mean-field solutions reveals differences between the two systems:
the upper branch of an optomechanical system can become unstable due to position fluc-
tuations of the mechanical degree of freedom. We have identified the regime of parameters
where the two systems are equivalent. Corroborating this semiclassical approach, we have
shown that the (optical) quantum steady states of both systems, obtained numerically,
show large overlap. These results help to clarify when an optomechanical system can be
used as a Kerr nonlinearity in applications of quantum optics and quantum information.
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Conclusions

In this thesis, we have investigated quantum effects associated with two rather differ-
ent physical systems with possible applications for quantum information processing and
sensing technologies.

In the first part of this thesis, we have reviewed how superconducting circuits are cur-
rently used for the implementation of quantum information processing tasks. We have
seen how the quantum state of qubits can be manipulated and measured and how the in-
teraction between qubits – essential for the realization of quantum gates – is implemented.

In particular, we have discussed how highly entangled GHZ states can be generated
in a circuit QED setup with transmon qubits. The entanglement protocol that we have
proposed relies on a pairwise exchange interaction between qubits which could effectively
be implemented by coupling dispersively and homogeneously several qubits to a single
microwave mode. We have shown how the entangled nature of the GHZ state can be ver-
ified with a measurement of the Bell-Mermin operator, which we use as an entanglement
witness. The necessary joint parity measurements are readily implemented in the cur-
rent architecture. Finally, we have investigated the robustness of the entangling scheme
against small inhomogeneities in the coupling frequencies and weak transmon anharmonic-
ity. Using parameters of a recent experiment, we have found that the dispersive pairwise
interaction could entangle the qubits in a time that is about one percent of the qubit
dephasing time.

In the second part of this thesis, we have presented the generic model of cavity optome-
chanics and some of its recent implementations with micro-fabricated devices operating
both in the optical and the microwave domain. Remarkable achievements like mechanical
ground state cooling suggest that these devices might soon find practical applications for
sensitive displacement detection.

In the future, optomechanical devices with large coupling constants could potentially
implement the long-sought strong optical nonlinearities that are required for photonic
quantum information processing. Understanding how optomechanical systems compare
to optical nonlinear media is therefore of practical relevance for applications in nonlinear
quantum optics. In our work, we have investigated the differences and similarities between
an optomechanical cavity and a cavity filled with a Kerr medium with regard to optical
bistability. We have found additional features in the stability diagram of optomechanical
systems due to position fluctuations of the mechanical resonator. We have identified the
parameter regime where both systems are equivalent and we have observed characteristic
quantum features proving the optomechanical system can be regarded as an effective Kerr
medium. Also, for large optomechanical coupling, this regime opens up the possibility to
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explore other nonlinear quantum effects such as noise-induced switching between the two
stable branches.

Finally, we would like to comment on the possibility to bring on a common playground
the two types of systems we have been discussed throughout this thesis. The general
development of the circuit QED architecture shows a very consistent trend where each ad-
vance has involved interconnected aspects: careful characterization of system parameters,
robustness to noise from external control channels and improvement of the coherence time
with proper circuit design, and development of accurate control techniques and sensitive
readout schemes. The basic functionalities of a future quantum processor have been suc-
cessfully implemented, but so far only within a relatively small qubit register. A first step
towards the scalability of such devices probably relies on the ability to transfer quantum
information between different qubit registers. Recently, it appears that optomechanical
systems are particularly appealing for the transfer of quantum states between different
frequency domains of light [Andrews14], in particular, microwave and optical photons.
This would make possible to combine the fast gate times of superconducting circuits with
the long coherence times of photonic qubits. One could therefore imagine that, in a not
so distant future, combined systems taking advantage of each platform capabilities would
make quantum information processing with superconducting circuits enter one of its most
interesting phases of development.
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Appendix A

Hilbert space truncation for
weakly anharmonic transmon
qubits

A.1 Two-level approximation in the resonant regime

We have obtained an effective two-level Jaynes-Cummings Hamiltonian, Eq. (2.166), by
truncating the generalized Hamiltonian involving all transmon levels, Eq. (2.165), to the
two lowest-lying energy levels forming the computational subspace. As we will show, this
Hilbert space truncation is justified as long as the anharmonicity of the transmon spectrum
is large enough, such that the mixing of computational basis states with higher energy
states is small.

We start by writing Eq. (2.165) as the sum Ĥ0 + Ĥ1, where

Ĥ0 = ~ωrâ†â+
∑
k

~ω0k|k〉〈k|+ ~g0

(
â|1〉〈0|+ â†|0〉〈1|

)
(A.1)

Ĥ1 =
∑
k>0

~gk
(
â|k + 1〉〈k|+ â†|k〉〈k + 1|

)
. (A.2)

Here ωkl = ωl − ωk is the transition frequency between levels k and l and |k〉 denotes the
transmon eigenstate with energy ~ωk. We denote product states of the coupled system
by |n, k〉, where |n〉 is a resonator state with n photons. Using knowledge about the
conventional Jaynes-Cummings Hamiltonian, the eigenstates and eigenenergies of Ĥ0 can
readily be obtained. The ground state is simply |0, 0〉 with energy E0,0 = 0. The coupling
term of Ĥ0 induces mixing of the states |n− 1, 1〉 and |n, 0〉, for n > 0. Thus, eigenstates
of Ĥ0 belonging to the computational subspace are

|n,+〉 = cos θn|n− 1, 1〉+ sin θn|n, 0〉, (A.3)

|n,−〉 = cos θn|n, 0〉 − sin θn|n− 1, 1〉, (A.4)

with eigenenergies

En,± = n~ωr +
~∆01

2
± ~

2

√
∆2

01 + 4ng2
0. (A.5)

Here, ∆01 = ω01 − ωr is the qubit-cavity detuning and the angles θn are obtained from

tan(2θn) =
2g0
√
n

∆01
. (A.6)
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Eigenstates of Ĥ0 which do not belong to the computational subspace are all states |n, k〉
where k > 1 and there eigenenergies are simply En,k = ~(nωr + ωk0).

The Hamiltonian Ĥ1 causes mixing between states involving the non-computational
third transmon level, |n, 2〉, and computational states containing one qubit excitation and
n + 1 photonic excitations. For instance, the state |n,±〉 couples to the state |n − 2, 2〉.
Using perturbation theory, we can evaluate the amplitude of such a mixing at resonance,
∆01 = 0. To leading order, the states |n,±〉 acquire a correction for n ≥ 2

|̃n,±〉 ' |n,±〉+

√
n− 1g1√
ng0 ∓ α/~

|n− 2, 2〉, (A.7)

where α = ~(ω01 − ω12) is the absolute anharmonicity of the transmon qubit, typically
of the order of the charging energy EC . Thus, as long as the ratio |~g0/α| is sufficiently
small, we may neglect this mixing to higher states. Finally, it is straightforward to see
that there is no first-order correction to the eigenenergies En,±, hence the form of the
truncated version of the generalized Jaynes-Cummings Hamiltonian given in Eq. (2.166).

A.2 Two-level approximation in the dispersive regime

In the dispersive regime, the truncation of the Hilbert space to the two lowest energy
levels of the transmon qubit, as given in Eq. 2.170, can be justified with basically the
same arguments that were given in Appendix A.1. Regarding the dispersive Hamiltonian
with all transmon levels, a similar procedure can be carried out to show that the mixing
of states with either zero or one qubit excitation with states that do not belong to the
computational subspace is small provided the anharmonicity of the spectrum is large
enough.

Two-photon processes (last term of Eq. 2.168) cause mixing of the states |n, k〉 and |n−
2, k+2〉, and the amplitude of such mixing can be approximated by applying perturbation
theory. We define the Hamiltonian

Ĥ0 =
∑
k≥1

~ (ω0k + χk−1) |k〉〈k|+

~ωr − ~χ0|0〉〈0|+
∑
k≥1

~ (χk−1 − χk) |k〉〈k|

 â†â, (A.8)

whose eigenstates are |n, k〉 with eigenenergies given by

E0,0 = 0, En,0 = n~ (ωr − χ0) (A.9)

En,k = ~(ωk0 − χk−1) + n~ (ωr + χk−1 − χk) , (k > 0). (A.10)

Two-photon processes

Ĥ1 =
∑
k

~ηk
(
â2|k + 2〉〈k|+ â†2|k〉〈k + 2|

)
(A.11)

give no first-order corrections to the above energies, but lead to corrections for the states
belonging to the computational basis,

|̃n, 0〉 = |n, 0〉+
~η0

√
n(n− 1)

En,0 − En−2,2
|n− 2, 2〉, (A.12)

|̃n, 1〉 = |n, 1〉+
~η1

√
n(n− 1)

En,1 − En−2,3
|n− 2, 3〉. (A.13)
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A.2. Two-level approximation in the dispersive regime

The mixing amplitudes are ∼ g2α
~∆3 and can be neglected if the transmon anharmonicity

α is small compared to the qubit-cavity detuning. This allows to truncate Ĥ0 to the two
lowest level of the transmon qubit and to take it as an approximation of Eq. (2.168).
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Appendix B

Schwinger representation of total
spin operators

We present briefly the Schwinger representation [Milburn97, Zheng01, You03b] of the total
spin operators

Ĵx =
1

2

N∑
q=1

σ(q)
x , Ĵy =

1

2

N∑
q=1

σ(q)
y , Ĵz =

1

2

N∑
q=1

σ(q)
z . (B.1)

This turns out to be particularly useful for calculations in the subspace of Ĵ2-eigenstates
with maximal eigenvalue N

2

(
N
2 + 1

)
, where N is the number of spins. From now on we

set J = N/2 and denote the states |J=N/2, Ji〉 simply by |Ji〉 (i = x, y, z).
States like |Jz〉 are sometimes referred to as Dicke states [Dicke54]. They form a

complete basis of symmetric N -qubit states, i.e., states invariant under any permutation
of qubits. We use for each qubit, labeled by q, the usual basis states |0q〉 and |1q〉 with

the convention σ
(q)
z |1q〉 = |1q〉 and σ

(q)
z |0q〉 = −|0q〉. This yields

|Jz=k −N/2〉 =
1√(
N
k

)∑
p

|1p(1)〉 · · · |1p(k)〉|0p(k+1)〉 · · · |0p(N)〉, (B.2)

with 0 ≤ k ≤ N and where the sum is taken over the
(
N
k

)
= N !

k!(N−k)! nonequivalent possible
permutations p that give different product states.

The operators Ĵi are defined by means of two independent bosonic operators â and b̂,
with the usual commutation relations [â, â†] = [b̂, b̂†] = 1 and [â, b̂] = [â, b̂†] = 0,

Ĵx =
1

2
(b̂†â+ â†b̂), (B.3)

Ĵy =
1

2i
(b̂†â− â†b̂), (B.4)

Ĵz =
1

2
(b̂†b̂− â†â), (B.5)

fulfilling the SU(2) algebra [Ĵl, Ĵm] = iεlmnĴn. Eigenstates of Ĵz can be expressed as

|J, Jz〉 =

(
b̂†
)J+Jz |

(
â†
)J−Jz√

(J + Jz)!(J − Jz)!
|na=0, nb=0〉, (B.6)
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where |na=0, nb=0〉 is the vacuum state of the operators â and b̂. Since the choice of the
operators â and b̂ is not unique, we can equivalently introduce the operators ĉ = (â−b̂)/

√
2

and d̂ = (â+ b̂)/
√

2, leading to Ĵx = 1
2(d̂†d̂− ĉ†ĉ) and

|J, Jx〉 =

(
d̂†
)J+Jx (

ĉ†
)J−Jx√

(J + Jx)!(J − Jx)!
|na=0, nb=0〉. (B.7)

We straightforwardly obtain the decomposition of the states |J, Jx〉 in terms of |J, Jz〉 and
in particular

|Jx=±N/2〉 =
N⊗
q=1

|0q〉 ± |1q〉√
2

=

(
â† ± b̂†

)N
√

2NN !
|na=0, nb=0〉

=
1

2N/2

N∑
k=0

(±1)k
√(

N
k

)
|Jz=k−N/2〉.

(B.8)

Defining the ladder operators Ĵ± = Ĵx ± iĴy of the total spins, the Dicke states can
also be expressed as

|Jz=k−N/2〉 =

(
Ĵ+

)k
k!
√(

N
k

) N⊗
q=1

|0q〉 =

(
Ĵ−

)N−k
(N − k)!

√(
N
k

) N⊗
q=1

|1q〉. (B.9)
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Fink, M. Göppl, L. Steffen, J. M. Gambetta, A. Blais, and
A. Wallraff, Two-Qubit State Tomography Using a Joint Disper-
sive Readout . Phys. Rev. Lett. 102, 200402 (2009).

[Fink08] J. M. Fink, M. Goppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais,
and A. Wallraff, Climbing the Jaynes-Cummings ladder and ob-
serving its nonlinearity in a cavity QED system. Nature 454, 315
(2008).

130

http://dx.doi.org/10.1038/nature09416
http://dx.doi.org/10.1038/nature09416
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1063/1.3563711
http://dx.doi.org/10.1063/1.3563711
http://onlinelibrary.wiley.com/doi/10.1002/1521-3978(200009)48:9/11%3C771::AID-PROP771%3E3.0.CO;2-E/abstract
http://onlinelibrary.wiley.com/doi/10.1002/1521-3978(200009)48:9/11%3C771::AID-PROP771%3E3.0.CO;2-E/abstract
http://dx.doi.org/10.1126/science.1228370
http://dx.doi.org/10.1126/science.1228370
http://dx.doi.org/10.1103/PhysRevLett.51.1550
http://dx.doi.org/10.1103/PhysRevLett.51.1550
http://dx.doi.org/10.1088/0305-4470/13/2/034
http://dx.doi.org/10.1088/0305-4470/13/2/034
http://dx.doi.org/10.1364/OE.17.020078
http://dx.doi.org/10.1364/OE.17.020078
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevA.49.1337
http://dx.doi.org/10.1103/PhysRevA.49.1337
http://dx.doi.org/10.1038/nature10713
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1103/PhysRevLett.102.200402
http://dx.doi.org/10.1103/PhysRevLett.102.200402
http://dx.doi.org/10.1038/nature07112
http://dx.doi.org/10.1038/nature07112


Bibliography

[Fink09] J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Fil-
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and V. Vuletić, Optomechanical Cavity Cooling of an Atomic En-
semble. Phys. Rev. Lett. 107, 143005 (2011).

[Schliesser06] A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kip-
penberg, Radiation Pressure Cooling of a Micromechanical Oscil-
lator Using Dynamical Backaction. Phys. Rev. Lett. 97, 243905
(2006).

[Schliesser08] A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J.
Kippenberg, Resolved-sideband cooling of a micromechanical os-
cillator . Nat. Phys. 4, 415 (2008).

[Schliesser09] A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J.
Kippenberg, Resolved-sideband cooling and position measurement
of a micromechanical oscillator close to the Heisenberg uncer-
tainty limit . Nat. Phys. 5, 509 (2009).

[Schoelkopf08] R. J. Schoelkopf and S. M. Girvin, Wiring up quantum systems.
Nature 451, 664 (2008).

[Schreier08] J. A. Schreier, A. A. Houck, J. Koch, D. I. Schuster, B. R. John-
son, J. M. Chow, J. M. Gambetta, J. Majer, L. Frunzio, M. H.
Devoret, S. M. Girvin, and R. J. Schoelkopf, Suppressing charge
noise decoherence in superconducting charge qubits. Phys. Rev. B
77, 180502 (2008).

[Schuster05] D. I. Schuster, A. Wallraff, A. Blais, L. Frunzio, R.-S. Huang,
J. Majer, S. M. Girvin, and R. J. Schoelkopf, ac Stark Shift and
Dephasing of a Superconducting Qubit Strongly Coupled to a Cav-
ity Field . Phys. Rev. Lett. 94, 123602 (2005).

[Schuster07] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M.
Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. H. De-
voret, S. M. Girvin, and R. J. Schoelkopf, Resolving photon num-
ber states in a superconducting circuit . Nature 445, 515 (2007).

[Schwab05] K. C. Schwab and M. L. Roukes, Putting mechanics into quantum
mechanics. Physics Today 58, 36 (2005).

143

http://dx.doi.org/10.1038/nature12307
http://dx.doi.org/10.1038/nature12307
http://dx.doi.org/10.1103/PhysRevA.72.062327
http://dx.doi.org/10.1103/PhysRevA.72.062327
http://dx.doi.org/10.1103/PhysRevA.72.062327
http://dx.doi.org/10.1103/RevModPhys.81.1301
http://dx.doi.org/10.1103/RevModPhys.81.1301
http://dx.doi.org/10.1103/PhysRevLett.107.143005
http://dx.doi.org/10.1103/PhysRevLett.107.143005
http://dx.doi.org/10.1103/PhysRevLett.97.243905
http://dx.doi.org/10.1103/PhysRevLett.97.243905
http://dx.doi.org/10.1038/nphys939
http://dx.doi.org/10.1038/nphys939
http://dx.doi.org/10.1038/nphys1304
http://dx.doi.org/10.1038/nphys1304
http://dx.doi.org/10.1038/nphys1304
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1103/PhysRevB.77.180502
http://dx.doi.org/10.1103/PhysRevB.77.180502
http://dx.doi.org/10.1103/PhysRevLett.94.123602
http://dx.doi.org/10.1103/PhysRevLett.94.123602
http://dx.doi.org/10.1103/PhysRevLett.94.123602
http://dx.doi.org/10.1038/nature05461
http://dx.doi.org/10.1038/nature05461
http://dx.doi.org/10.1063/1.2012461
http://dx.doi.org/10.1063/1.2012461


Bibliography

[Sheard04] B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, D. E. McClelland,
and S. E. Whitcomb, Observation and characterization of an op-
tical spring . Phys. Rev. A 69, 051801 (2004).

[Shnirman97] A. Shnirman, G. Schön, and Z. Hermon, Quantum Manipulations
of Small Josephson Junctions. Phys. Rev. Lett. 79, 2371 (1997).

[Shor95] P. W. Shor, Scheme for reducing decoherence in quantum com-
puter memory . Phys. Rev. A 52, R2493 (1995).

[Shor97] P. W. Shor, Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM journal on
computing 26, 1484 (1997).

[Slusher85] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F.
Valley, Observation of Squeezed States Generated by Four-Wave
Mixing in an Optical Cavity . Phys. Rev. Lett. 55, 2409 (1985).

[Sørensen00] A. Sørensen and K. Mølmer, Entanglement and quantum com-
putation with ions in thermal motion. Phys. Rev. A 62, 022311
(2000).

[Srinivasan11] S. J. Srinivasan, A. J. Hoffman, J. M. Gambetta, and A. A. Houck,
Tunable Coupling in Circuit Quantum Electrodynamics Using a
Superconducting Charge Qubit with a V -Shaped Energy Level Di-
agram. Phys. Rev. Lett. 106, 083601 (2011).

[Stamper-Kurn12] D. M. Stamper-Kurn, Cavity optomechanics with cold atoms.
arXiv:1204.4351 (2012).

[Stannigel10] K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin,
Optomechanical Transducers for Long-Distance Quantum Com-
munication. Phys. Rev. Lett. 105, 220501 (2010).

[Steane96] A. Steane, Multiple-Particle Interference and Quantum Error
Correction. Proceedings of the Royal Society of London. Series
A: Mathematical, Physical and Engineering Sciences 452, 2551
(1996).

[Steffen06] M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero,
R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M.
Martinis, Measurement of the Entanglement of Two Supercon-
ducting Qubits via State Tomography . Science 313, 1423 (2006).

[Steffen13] L. Steffen, Y. Salathe, M. Oppliger, P. Kurpiers, M. Baur,
C. Lang, C. Eichler, G. Puebla-Hellmann, A. Fedorov, and
A. Wallraff, Deterministic quantum teleportation with feed-
forward in a solid state system. Nature 500, 319 (2013).

[Teufel09] J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow,
and K. W. Lehnert, Nanomechanical motion measured with an
imprecision below that at the standard quantum limit . Nat. Nano.
4, 820 (2009).

144

http://dx.doi.org/10.1103/PhysRevA.69.051801
http://dx.doi.org/10.1103/PhysRevA.69.051801
http://dx.doi.org/10.1103/PhysRevLett.79.2371
http://dx.doi.org/10.1103/PhysRevLett.79.2371
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevLett.55.2409
http://dx.doi.org/10.1103/PhysRevLett.55.2409
http://dx.doi.org/10.1103/PhysRevA.62.022311
http://dx.doi.org/10.1103/PhysRevA.62.022311
http://dx.doi.org/10.1103/PhysRevLett.106.083601
http://dx.doi.org/10.1103/PhysRevLett.106.083601
http://dx.doi.org/10.1103/PhysRevLett.106.083601
http://arxiv.org/abs/1204.4351
http://dx.doi.org/10.1103/PhysRevLett.105.220501
http://dx.doi.org/10.1103/PhysRevLett.105.220501
http://dx.doi.org/10.1098/rspa.1996.0136
http://dx.doi.org/10.1098/rspa.1996.0136
http://dx.doi.org/10.1126/science.1130886
http://dx.doi.org/10.1126/science.1130886
http://dx.doi.org/10.1038/nature12422
http://dx.doi.org/10.1038/nature12422
http://dx.doi.org/10.1038/nnano.2009.343
http://dx.doi.org/10.1038/nnano.2009.343


Bibliography

[Teufel11a] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman,
K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W.
Simmonds, Sideband cooling of micromechanical motion to the
quantum ground state. Nature 475, 359 (2011).

[Teufel11b] J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D.
Whittaker, and R. W. Simmonds, Circuit cavity electromechanics
in the strong-coupling regime. Nature 471, 204 (2011).

[Thompson08] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M.
Girvin, and J. G. E. Harris, Strong dispersive coupling of a high-
finesse cavity to a micromechanical membrane. Nature 452, 72
(2008).

[Tian10] L. Tian and H. Wang, Optical wavelength conversion of quantum
states with optomechanics. Phys. Rev. A 82, 053806 (2010).

[Tinkham96] M. Tinkham, Introduction to Superconductivity. 2nd edition,
McGraw-Hill (1996).

[Tittonen99] I. Tittonen, G. Breitenbach, T. Kalkbrenner, T. Müller, R. Con-
radt, S. Schiller, E. Steinsland, N. Blanc, and N. F. de Rooij,
Interferometric measurements of the position of a macroscopic
body: Towards observation of quantum limits. Phys. Rev. A 59,
1038 (1999).

[Tsang11] M. Tsang, Cavity quantum electro-optics. II. Input-output rela-
tions between traveling optical and microwave fields. Phys. Rev.
A 84, 043845 (2011).

[Tsomokos08] D. I. Tsomokos, S. Ashhab, and F. Nori, Fully connected network
of superconducting qubits in a cavity . New Journal of Physics 10,
113020 (2008).

[Turchette95] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J.
Kimble, Measurement of Conditional Phase Shifts for Quantum
Logic. Phys. Rev. Lett. 75, 4710 (1995).

[Vahala03] K. J. Vahala, Optical microcavities. Nature 424, 839 (2003).

[Vahala04] K. Vahala, Optical Microcavities. Advanced series in applied
physics, World Scientific (2004).
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