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Summary

In the first part of this thesis we propose interferometric schemes to probe the properties
of edge states of topological insulators and superconductors. First, we consider two helical
liquids on opposite edges of a narrow two-dimensional topological insulator, which are
connected by one or several local tunnel junctions. In the presence of spatially inhomoge-
neous Rashba spin-orbit coupling, the spin textures of the helical states on opposite edges
are different. We demonstrate that this has a strong impact on the electron transport
between the edges. In particular, in the case of many random tunnel contacts, the local-
ization length depends strongly on the spin textures of the edge states. We also propose
to realize a Fabry-Pérot interferometer to measure the spin texture.

Second, we consider domain walls between superconducting and magnetic regions
placed on top of a topological insulator, that were predicted support transport channels for
Majorana fermions. We propose to study noise correlations in a Hanbury Brown-Twiss
type interferometer and find three signatures of the Majorana nature of the channels.
First, the average charge current in the outgoing leads vanishes. Furthermore, we predict
an anomalously large shot noise in the output ports for a vanishing average current signal.
Adding a quantum point contact to the setup, we find a surprising absence of partition
noise which can be traced back to the Majorana nature of the carriers. Finally, we calcu-
late the full counting statistics of this structure. At zero bias, we find an interpretation of
Majorana-mediated charge transport in terms of two independent half-charge processes.

In the second part of this thesis, we explain how the quantum theory of weak measure-
ments inspired a new method for the measurement of small effects and precision metrol-
ogy. Many successful implementations of the weak-value amplification scheme have been
recently reported. We review this scheme in some details with an emphasis on its benefits
and limitations. We then generalize the method, and propose to use weak measurements
away from the weak-value amplification regime to carry out precision measurements of
time delays of light. Our scheme is robust to several sources of noise that are shown to
only limit the relative precision of the measurement. Thus, they do not set a limit on
the smallest measurable phase shift contrary to standard interferometry and weak-value
based measurement techniques. Our idea is not restricted to phase-shift measurements
and could be used to measure other small effects using a similar protocol.
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Chapter 1

Introduction

In many ways, quantum mechanics is nothing but a very complicated interferometer. The
manifestation of this statement is most clearly seen in Feynman’s path integral represen-
tation. The propagator

K(x, t;x′, t′) =

∫
Dy(τ) exp

(
i
S[y(τ), ẏ(τ), τ ]

~

)
, (1.1)

which describes the full time evolution of the quantum state of a particle, is written as
the sum over all possible paths y(τ) that the particle can take, subsumed to the boundary
conditions y(t) = x, y(t′) = x′. All of these trajectories interfere together according to
the phase, given by the classical action functional over the quantum of action S/~, they
pick-up along the way.

Reciprocally, practical interferometry experiments are described by very simple quan-
tum mechanics. But simple does not mean uninteresting. Roughly speaking, an interfer-
ometer with two arms can be viewed as a device that singles out two trajectories y1(τ) and
y2(τ) in Eq. (1.1), with the corresponding actions S1 and S2. The resulting probability

|K(x, t;x′, t′)|2 =
1 + cos (φ)

2
(1.2)

allows us to probe very sensitively the phase difference φ = (S1−S2)/~, and thereby learn
about various physical phenomena in a controlled way.

The Aharonov-Bohm effect [Aharonov59] is a striking illustration of this line of thought.
In a celebrated gedanken experiment Aharonov and Bohm considered the motion of an
electron subject to an electromagnetic vector potential A due to a magnetic field. The
electron is constrained to move along two paths that go around the magnetic region, with-
out entering it. As a result the electron never feels any classical force during its motion.
Quantum mechanics, however, predicts that there is a nontrivial phase φAB associated to
these trajectories due to the vector potential A

φAB = − e
~

∮
C
A · dl , (1.3)

where C describes the closed curve formed by the two interferometer arms. Although
the Aharonov-Bohm phase only depends on the magnetic flux enclosed in the loop C,
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it has far reaching consequences for the significance of the electromagnetic potentials in
quantum physics; they are not mere computational tools, but have a real, measurable,
physical effect.

1.1 Thesis overview

In the first part of this thesis,we pursue this paradigm of using interferometric techniques
as a tool to probe the edge states of topological states of matter. First, in Chapter 2,
we give an introduction to the topic of topological insulators and superconductors that
host the edge states of interest. In Chapter 3 we propose a Fabry-Pérot interferometer
that allows to map the spin structure of 2d topological insulators. We also show a strong
dependence of the localization length of the edge states on the spin texture in disordered
and narrow samples. In Chapter 4 we look for transport signatures of Majorana fermions in
interferometric schemes. Most notably, we find an absence of partition noise for Majorana
fermions that can be connected to their charge neutrality.

In the second part, we explain how the quantum theory of weak measurements inspires
new methods in interferometric schemes. In Chapter 5 we introduce the weak-value am-
plification method with a focus on its benefits and disadvantages. In Chapter 6 we give a
generalization of this method that allows for further improvements of precision metrology.
We propose an explicit scheme to measure ultrasmall time delays of light that outperforms
weak-value amplification.



Part I

Probing topological edge states
with interferometry





Chapter 2

Edge states and topology

The recent theoretical prediction [Kane05a, Bernevig06] and subsequent discovery [König07]
of topological insulators triggered a lot of interest from the scientific community. The sur-
prise also came from the simple description of topological insulators in terms of their
single-particle band structure only; a theory that had allegedly already revealed all its
secrets.

Topological insulators [Hasan10, Qi11] look like ordinary insulators in the bulk, in
particular they display an electronic bulk band gap, but their peculiarity is revealed at
interfaces with ordinary, topologically trivial, insulators (like vacuum): there lives a gap-
less electronic mode. Moreover these modes possess unusual properties. Edge states of 2D
topological insulators are helical, spin-up electrons, say, run counterclockwise around the
sample and spin-down run clockwise. Moreover, due to time-reversal symmetry, backscat-
tering is forbidden and charge transport occurs without dissipation. Surface states of 3D
topological insulators are described by the Dirac equation for massless fermions somewhat
like in graphene, although without the spin and valley degeneracy of the latter.

Edge states of 2D topological insulators were rapidly connected to a bulk property of
the materials: a Z2 topological invariant [Kane05b], an analogue to the Chern number of
the integer quantum Hall effect [Thouless82, Simon83], for time-reversal-invariant systems.
The strength of such topological invariants is their robustness to small perturbations;
as long as perturbations do not close the band gap, the topological invariant remains
unchanged. The novelty here is the realization of the role of symmetry. In this case time-
reversal symmetry is crucial to force the topological invariant to take values 1 or 0 and no
intermediate values.

Generalizing these ideas to include particle-hole symmetry and the chiral symmetry
along with higher spatial dimensions leads to a whole periodic table of topological in-
sulators and topological superconductors [Schnyder08, Ryu09, Kitaev09, Budich13] that
all display interesting surface states with interesting properties. For instance Majorana
fermions, fermions which are their own antiparticle, appear at the boundary of topological
superconductors.

The goal of this chapter is to introduce the concept of topologically protected edge
states to the reader. To this end, we first review briefly the edge state description of the
integer quantum Hall effect, and the related quantum anomalous Hall effect and quantum
spin Hall effect. Second, we make the connection between these edge states and the
topological properties of the bulk materials. Finally, we introduce Majorana fermions
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IQH

Left edge Right edge

a) b)

Figure 2.1: (a) Energy of ideal Landau levels across a sample with boundaries with filling
fraction ν = 2. The two first Landau levels cross the Fermi energy near the edges. (b)
Corresponding chiral edge states of the IQH in a rectangular sample in real space. The
arrows mark the direction of propagation.

which naturally arise as edge states of topological superconductors.

2.1 Three quantum Hall effects

2.1.1 Integer quantum Hall effect

The story starts with the experimental discovery of the integer quantum Hall (IQH) effect
[Klitzing80]. Soon afterwards, theorists came up with ingenious ideas to explain the re-
markably accurate Hall conductance quantization to integer multiples of the conductance
quantum G = νe2/h, where ν is the filling factor. Laughlin showed [Laughlin81] that the
Hall conductivity ought to be quantized due to gauge invariance and the presence of a
mobility gap. Halperin [Halperin82] refined the argument and predicted the existence of
current-carrying edge states even in the presence of a moderate amount of disorder.

The intuitive picture for the edge states is that the Landau levels are pushed higher
in energy at the boundaries of the sample and thus cross the Fermi level. Each occupied
Landau level in the bulk gives rise to a metallic one-dimensional electron channel localized
near the edge, see Fig. 2.1. The key property of these edge states is their chirality : they
locally allow electrons to move in one direction only; they propagate either clockwise or
anticlockwise around the whole sample. The consequence is that an electron moving in
one of these chiral channels cannot experience backscattering unless it goes through the
bulk to the other side of the sample, but the mobility gap of the bulk material makes this
process effectively impossible for sufficiently large samples.

The transport properties of a 2D electron gas in the IQH state can be entirely described
by the chiral edge states even though there is also a nonvanishing bulk current density in
general [Komiyama96]. In this context, we can easily understand the observed conductance
quantization for ν = 1 within the Landauer-Büttiker formalism. The conductance of a
one-dimensional channel is given by Te2/h, where T is the transmission probability of
electrons across the channel. In the absence of backscattering T = 1 and the conductance
is quantized. The origin of this quantization is the exact cancellation between the density
of states and the group velocity of electrons. Büttiker [Büttiker88] showed that local
elastic and inelastic scattering between the channels (ν > 1) and disordered contacts does
not break the picture for macroscopic Hall samples, i.e. samples larger than the inelastic
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mean free path. Each edge state contributes equally to the transport of electrical current
and the quantized conductance νe2/h is robust in transport experiments.

2.1.2 Quantum anomalous Hall effect

Haldane [Haldane88] came up with a model to obtain a quantum Hall effect without the
need for an external magnetic field. He was able to show that the crucial ingredient is, in
fact, the breaking of time-reversal symmetry (TRS). More precisely, the mobility gap of
the bulk material must have a time-reversal-symmetry breaking origin.

The model he considered is based on “2D graphite” (nowadays, graphene) with a
bipartite honeycomb lattice. The biparticity allows to define two sublattices A,B such that
nearest neighbour hopping connects A sites to B sites only and vice-versa. The unit cell
contains one A site and one B site. It is natural to introduce an abstract two-dimensional
sublattice space together with the Pauli matrices σ acting in this space. Additionally he
introduced a phase-dependent next-nearest neighbour hopping term t2e

iφ that connects
sites of the same sublattice. The hopping phase φ breaks TRS for φ 6= 0, π. The physical
origin of such a term is of little importance for us now (we shall see a relevant example in
the discussion of the quantum spin Hall effect). Finally, there is a “staggered potential”
term Mσz, which preserves TRS, that competes with the next-nearest neighbour hopping.
The Hamiltonian in k-space reads

H(k) = 2t2 cosφ
∑
i

cos(k · bi) + t1
∑
i

cos(k · ai)σx + t1
∑
i

sin(k · ai)σy (2.1)

+

(
M − 2t2 sinφ

∑
i

sin(k · bi)

)
σz , (2.2)

where ai are the 3 vectors connecting nearest neighbour A sites to B sites, and bi are
the next-nearest neighbour equivalents. For M = t2 = 0 the spectrum is gapless and the
low-energy sector of the model is described by two Dirac cones centered around the two
“valleys” of graphene, i.e. the two unequivalent corners of the Brillouin zone.

With nonzero values of M and t2 gaps

∆α = M − α3
√

3 t2 sinφ (2.3)

open at the two valleys (α = ±1). The low energy spectrum becomes that of two massive
Dirac fermions Eα =

√
(mαc2)2 + (ckα)2, with mαc

2 = ∆α and where kα are the momenta
measured from the center of the valleys.

The result of his analysis is that when the strength of the TRS breaking term overcomes
the trivial mass term, |3

√
3 t2 sinφ| > M , the Hall conductivity is nonzero and is quantized

to ±e2/h. As in the IQH effect there is a gapless chiral edge state associated to this
nontrivial conductivity.

2.1.3 Quantum spin Hall effect

Similarly to the classical Hall effect, where a voltage transverse to the direction of propa-
gation of an electric current in the presence of a magnetic field builds up, an intrinsic spin
Hall effect, where spin accumulates on the edges transverse to the direction of propagation
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QSHI

Figure 2.2: Helical edge states of the quantum spin Hall (QSH) state. Electrons with spin
up propagate counterclockwise around the sample, while spin-down electrons propagate
clockwise. Both edge states are at the same spatial position, the shift is only for readability.

of an electric current without a magnetic field, was predicted [Dyakonov71]. The origin
of this effect is spin-orbit coupling: roughly speaking, an electric current looks like an ef-
fective magnetic field of opposite direction for the two spin orientations; the conventional
Hall effect thus leads to a spin accumulation on the edges of the sample. The first reported
observation of the intrinsic spin Hall effect was made in 2005 [Wunderlich05].

Kane-Mele model

The quantized version, the quantum spin Hall (QSH) effect, was predicted to occur in the
then recently discovered graphene [Kane05a] by an analogy to the quantum anomalous
Hall effect (QAH). The key idea is to replace the phase-modulated hopping term, t2 term
in Eq. (2.2), by an intrinsic spin-orbit coupling.

Kane and Mele consider a low-energy effective model around the two valleys of graphene.
They consider the Hamiltonian

H = −i~vF (σxτx∂x + σy∂y) + ∆soσzτzsz (2.4)

where the Pauli matrices τ act in valley space, σ in sublattice space, and s in spin space.
The spin-orbit term is even under time-reversal as is the whole Hamiltonian. In this model,
the z component of the spin is a good quantum number. It thus suffices to consider the two
sectors sz = ±1 independently. Each sector taken separately violates TRS and reduces to
the continuum version of the Haldane model (2.2) with M = 0,∆so = 3

√
3 t2 sinφ and is

thus in the QAH state. The chirality of the QAH state produced depends on the sign of
sz. Therefore, we obtain two copies of QAH states with opposite chiralities. This state
possesses so-called helical edge states: electrons with spin up propagate counterclockwise
around the sample while spin-down electrons propagate clockwise, see Fig. 2.2. The elec-
trical Hall conductivity vanishes σxy = 0, as it must be for a TRS preserving system.
However, the spin Hall conductivity is quantized

σsxy =
~
2

(
e

h
− (−)

e

h
) =

e

2π
, (2.5)

hence the name of quantum spin Hall effect.
The robustness of the helical edge states against backscattering is less obvious than for

chiral edge states; at first it seems that any kind of disorder will couple them and induce a
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gap. However, this is not the case. The argument is that the two edge states are Kramers
partners and no time-reversal-symmetric perturbation can couple them. The helical edge
states are thus protected against electrostatic disorder for instance. On the other hand,
magnetic disorder will generically induce a gap.

The quantization of the spin Hall conductivity is also not robust against any breaking
of the spin axial symmetry. For instance if we include a Rashba spin-orbit coupling term

HR = λR(σxτzsy − σysx) , (2.6)

then sz is no longer a good quantum number and the spin rotates while propagating
along the edge states. Such a term generically occurs in the presence of an electric field
perpendicular to the plane. Nevertheless, Kane and Mele showed that the edge states
persist in this case, as long as λR < ∆so [Kane05a].

Unfortunately, later calculations showed that the spin orbit gap opened at the Dirac
point is too small (∆so < 0.01 meV) for the QSH effect to be observed in graphene [Min06,
Yao07]. A recent proposal [Weeks11, Hu12] suggests that the spin orbit gap could be
enhanced by several orders of magnitude by doping the graphene sheet with heavy atoms,
and make the QSH effect visible at accessible temperatures.

Bernevig, Hughes, and Zhang predicted that quantum wells CdTe-HgTe-CdTe would
display the QSH effect in the HgTe layer when the latter is thicker than a critical thick-
ness d ≈ 64 Å. This was famously confirmed by a subsequent experiment by König et
al. [König07] which observed dissipationless transport with an (almost) quantized conduc-
tance.

To conclude, the QSH state is essentially two copies of the QAH state. Reciprocally, the
QAH state is half the QSH state: while the QAH effect inspired the theoretical prediction
and experimental discovery of the QSH state, the realization of the QSH state led to
the experimental discovery of the QAH state [Chang13]. The idea [Qi06, Yu10] is rather
simple. By combining the strong SOC present in QSH insulators with ferromagnetism
we may suppress one spin component from the edge and naturally end up with a QAH
state. Chang et al. reported the observation of the QAH in chromium doped thin films of
(Bi,Sb)2Te3.

2.2 Topological protection of edge states

It was realized early on that the quantization of the IQH conductance can be explained
by a topological property of the groundstate wavefunction. Thouless et al. [Thouless82]
wrote the Kubo formula for the Hall conductance σxy in terms of an integral of the
variation of the phase of Bloch wavefunctions along the boundary of the Brillouin zone;
the famous TKNN invariant. Since the phase can only change by an integer multiple ν
of 2π, the quantization σxy = νe2/h follows. This argument is only valid in the presence
of a gap in the spectrum, so that each band is either fully occupied or fully empty. Soon
afterwards [Avron83], it was realized that the TKNN integral is invariant under smooth
changes of the Hamiltonian that do not close the gap. No matter how much the occupied
bands are mixed together by the deformation, the value of the invariant does not change.
This is the key property of topological quantities. This already explains, to a certain
extent, the robustness of the quantization of the Hall conductivity.
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There is a deep principle that connects the topological properties of a given material to
the occurence of edge states at its boundaries: the bulk-boundary correspondence. One of
the early example are solitons in polyacetylene [Su79]. More important for us, the gapless
edge states of the quantum Hall effects can be understood similarly. An intuitive way to
understand this concept is semi-classical: imagine a boundary that separates two regions
characterized by a different topological number. Going smoothly from one region to the
other, the topological number has to jump along the way; but this is impossible unless
the gap closes, i.e. there must be a gapless excitation somewhere near the boundary that
connects the two regions. In fact, this argument hints that we expect to find gapless exci-
tations near all topological defects, be it the surface of a topologically nontrivial material
(=interface with the trivial vacuum), or, say, a vortex in a topological superconductor.
The argument can be formalized in some cases by an index theorem, see e.g. [Volovik03].

The recent burst of research in topological insulators can be conceptually attributed to
a refinement of the topological characterization of electronic states in different symmetry
classes. The TKNN invariant of the IQH state does not require any symmetry of the
system. For QSH states however, it is clear that time-reversal invariance plays a crucial
role. It is therefore meaningful to investigate what kinds of topological invariants can be
defined when nontrivial symmetries are present. We proceed to illustrate these ideas with
a one-dimensional toy model.

2.2.1 A toy model to illustrate bulk-boundary correspondence

One could argue that the first manifestation of the bulk-boundary correspondence goes
back to the year 1939 [Shockley39]. In this work, Shockley showed that if the bulk energy
bands of a crystal have “crossed” there are surface states at the boundary of the material.
More precisely, he considered the problem of electrons in a one-dimensional periodic po-
tential due to a chain of atoms spaced with a lattice constant a. He first considers widely
separated atoms a → ∞ for which the energy levels of electrons are simply the atomic
orbitals. By bringing the atoms closer and closer energy bands start to form. By further
reducing the lattice constant the bandwidths grow and at some critical value a1 two bands
touch each other. Continuing the process, a gap between the two bands reopens but two
edge states (one at each boundary, neglecting spin) remain in the middle of the gap.

To derive this result, Shockley made two assumptions about symmetries of the system.
First, time-reversal symmetry is not broken. Second, the crystal is centro-symmetric and
thus there is a global parity symmetry. We now want to consider a simple effective tight-
binding two-band model with these symmetries. The general Hamiltonian in k-space reads
H(k) = ε(k) + (∆ + 2t cos k)σz + λ sin k σy, where the σ matrices are in band space (we
neglect spin here as it does not play an essential role). To simplify the discussion we
neglect the band-independent term ε(k) and obtain

H(k) = (∆ + 2t cos k)σz + λ sin k σy . (2.7)

This simple Hamiltonian has the additional chiral symmetry σxHσx = −H. The spectrum
is therefore symmetric around zero energy and reads E(k) = ±

√
(∆ + 2t cos k)2 + (λ sin k)2.

The analogue of Shockley’s procedure of starting with a large lattice constant is starting
with very small hopping terms t, λ→ 0. As the atoms are brought together, the hopping
terms grow and at the critical value ∆ = 2t the bands touch at k = π. For ∆ < 2t the
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a) b) c)

Figure 2.3: (a) trivial integration contour to calculate the winding number w, see Eq. (2.13)
of the current topological state. The crosses mark the degeneracy points of the Hamilto-
nian in complex k-space. (b) integration contour to calculate the winding number of the
topological state wi after a band crossing (c) difference of winding numbers w − wi be-
tween the current topological state and topological state after a band crossing. The whole
contribution comes from singularities at the degeneracy points where the edge states lie.

bands have crossed and a gap reopens if λ 6= 0. The two questions we want to answer here
are: (1) How can we associate a topological invariant to this band crossing? (2) How can
we relate this topological property to the presence of edge states?

Logically, we start by answering a third question: (3) Why is there an edge state after
the band crossing? By definition, edge states must decay in the bulk and, in the presence
of translation symmetry, they are characterized by a complex wave number k̃ = k+ iκ. It
is therefore natural to study the analytical structure of the Hamiltonian in the complex
plane. The main interesting feature of H(k̃) is the appearance of degeneracy points that
occur in pairs at k̃0 = k0 + iκ0 and at the complex conjugate k̃∗0 for which E(k̃0) = 0. At
these points, the Hamiltonian takes the form H(k̃0) ∝ (σz ± iσy). Crucially, which sign
(±) is realized depends both on the sign of ∆− 2t and on the sign of κ0. We obtain

H(k̃0) = λ sin k̃0(σz + i sgn(κ0)sgn(∆− 2t)σy) . (2.8)

The corresponding zero-energy eigenstates are given by

ψ(x) =

(
1

−sgn(κ0)sgn(∆− 2t)

)
exp(ik0x) exp(−κ0x) . (2.9)

We now consider two regions separated by a sharp domain wall at x = 0 described by
the Hamiltonian (2.7) with parameters ∆L, tL, λL for x < 0, and ∆R, tR, λR for x > 0. To
find a normalizable bound state at the interface between two regions, we must require that
sgn(κL0 ) = −1 in the left region sgn(κR0 ) = 1 in the right region. Moreover, the continuity
of the wavefunction requires sgn(κL0 )sgn(∆L − 2tL) = sgn(κR0 )sgn(∆R − 2tR). If follows
from these considerations that there is a bound state if the equation

sgn(∆L − 2tL) = −sgn(∆R − 2tR) (2.10)

holds. In other words, there is a bound state at the interface of a material with crossed
bands and a material with uncrossed bands (e.g. the vacuum). This answers question (3).

At this point, there is a clear connection between edge states and bulk band cross-
ing. We would now like to make a further connection between the edge states to a
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bulk topological invariant. To this end, consider the matrix U(k) that diagonalizes
H(k): H(k) = E(k)U(k)σzU

†(k). Because of the symmetries of the Hamiltonian we
can parametrize U(k) with a single real parameter θ(k)

U(k) = exp(i
θ(k)

2
σx) . (2.11)

Since the overall phase of U(k) is not physically relevant we identify θ + 2π ≡ θ. Up to
this equivalence, we also have the periodicity θ(k + 2π) = θ(k) due to the periodicity of
the Hamiltonian. The set of all possible U(k) is thus equivalent to the set of all periodic
functions over the circle. The latter can be easily classified by their winding number
w ∈ Z. This leads us to consider the bulk topological invariant

w =

∫
B.Z.

dk

2π

dθ

dk
. (2.12)

It is possible to give an equivalent definition that does not involve θ(k)

w =

∫
B.Z.

dk

2πi
Tr

(
U(k)−1σx

dU

dk

)
. (2.13)

For the Hamiltonian 2.7 an explicit computation of the winding number yields w = 0 for
the uncrossed bands case (∆ > 2t) and w = 1 for the crossed bands case (∆ < 2t). This
answers question (1).

To make the bulk-boundary correspondence even more manifest, we again consider
complex wave numbers k̃. This allows us to deform the integration contour in Eq. (2.13)
in the complex plane. At the degeneracy points k̃0, the matrix U(k̃) is ill-defined. By
going around the degeneracy points, see Fig. 2.3b, we can compute the winding number
after a band crossing. Due to the degeneracy points we cannot deform continuously the
contour (a) to the contour (b). The difference in winding numbers after a band crossing
originates from the degeneracy points alone, see Fig. 2.3c. Now, there is an bound state
at the interface between two regions only when the bands have crossed in one region and
not in the other, this is Eq. (2.10). But as we have just seen a band crossing necessarily
comes with the associated topological charge of the degeneracies; the presence of a bound
state and winding number difference go hand in hand. This is a very clear manifestation
of the bulk-boundary correspondence and an answer to question (2).

We now want to take advantage of the power of topological considerations to find
explicit edge states for different values of the winding number. First, we take the Hamil-
tonian (2.7) for a finite chain of length N and choose the parameters 2t = w, ∆ = 0.
This is a perfectly valid representative of the class of parameters for which w = 1. The
surprise come if we go back to the real space representation, in which the tight-binding
Hamiltonian reads

H = −2t
N∑
i=1

a†i (σz − iσy)ai+1 + a†i+1(σz + iσy)ai , (2.14)

where ai is a vector of two annihilation operators of electrons on site i for the two bands.
Since σz ± iσy act as ladder operators for σx we find that the state on the first lattice
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Figure 2.4: Top panel : real space picture of a representative of the w = 1 topological
phase of the Hamiltonian given by (2.7) for ∆ = 0, w = 2t. Each site of the chain hosts
two electronic states for which σx = ±1 respectively. The grayed leftmost state with
σx = −1 and rightmost state with σy = 1 are fully uncoupled from the rest of the chain
and are eigenstates with zero energy. The remaining states have energy ±2t. There are
thus two midgap edge states in this phase. Bottom panel : representative of the w = 2
topological phase that can be obtained by doubling k → 2k and setting ∆ = 0, w = 2t in
the Hamiltonian (2.7). There are four edge states (grayed circles) uncoupled from the rest
of the chain. Any coupling between neighbouring edge states is forbidden by the chiral
symmetry.

site with σx = −1 and the state of the last lattice site with σx = +1 do not enter the
Hamiltonian at all: they are the two zero energy edge states, see the top panel of Fig. 2.4.
The rest of the states are coupled in pairs and have energy ±2t. Similarly, we can check
that a finite chain with w = 2 has four edge states, see the bottom panel of Fig. 2.4.

The role of symmetry

The winding number defined by Eq. (2.13) is quantized (it takes only integer values) which
makes it unsensitive to continuous changes in the Hamiltonian as long as the gap does
not close. However, the topological invariant itself is symmetry protected; breaking the
symmetries of the Hamiltonian also breaks the quantization of the winding number. If
we allow for chirality breaking terms proportional to σx in the Hamiltonian we must also
enlarge the group of matrices U(k) necessary to diagonalize H(k). This opens up the
possibility of continuously interpolating between, say, w = 0 and w = 2 without closing
the gap. For instance, the two edge states at the bottom of Fig. 2.4 would couple by the
σx term and go away from zero energy.
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Topological invariant and homotopy group

More formally, running over the one-dimensional Brillouin zone from k = 0 to k = 2π
naturally defines a loop U(k) in the groupG of matrices U . For our purposes, the homotopy
group π1(G) lists all the different loops that cannot be smoothly deformed into each other.
For instance, with the Hamiltonian defined by Eq. (2.7) we had G = O(2). The winding
number we have chosen is an element of the homotopy group π1(O(2)) = Z; hence the
quantization of w. If π1(G) is trivial then it is not possible to define a useful topological
invariant for the system in this way. The symmetries of the Hamiltonian define which
group G is relevant.

2.2.2 Topological classification of Hamiltonians of free fermions

Remarkably, a full classification of topological of Hamiltonians of free fermions has been
obtained [Schnyder08, Ryu09, Kitaev09]. It is well beyond the scope of this thesis to
go into the details that allowed this achievement; we direct the interested reader to the
review [Budich13]. Nevertheless, we would like to describe the result of the classification
itself. To this end, we start with a brief explanation of the relevant symmetries that
underpin the topological classification.

Altland-Zirnbauer symmetry classes

First, symmetries with a unitary representation in the Hilbert space are irrelevant to the
classification. The reason is that the Hamiltonian can then be block diagonalized into
sectors of the Hilbert space with no trace of the original symmetry, up to the degeneracy.
Each block can be subsequently separately classified.

On the other hand, time-reversal symmetry (TRS) and particle-hole symmetry (PHS)
are represented by antiunitary operators Θ = TK and Ξ = PK respectively, where T, P are
unitary operators and K denotes complex conjugation; the Hamiltonian satisfies T †H∗T =
H and P †H∗P = −H. These symmetries impose nontrivial reality conditions on the
Hamiltonian. Moreover, the operators can square to either ±1. As a result, we can
already distinguish between nine classes for which T 2 = −1, 0, 1 and P 2 = −1, 0, 1, where
0 denotes the absence of the symmetry.

If there are two time-reversal-like symmetries Θ1,Θ2, we can define a unitary symmetry
operator A = Θ1Θ2. We may therefore again block diagonalize the Hamiltonian and treat
each block separately. It is therefore enough to consider system with one or zero TRS; the
same goes for PHS. In the presence of both TRS and PHS we can again take the product
S = ΘΞ which defines a unitary operator. However, the Hamiltonian anticommutes with
S, S†HS = −H; we cannot simply block diagonalize H in this case. Such a symmetry
is called chiral symmetry (CS) (or sublattice symmetry in connection to bipartite lattice
models). While the existence of a CS is fully determined by TRS and PHS when at
least one of them is realized, a CS may or may not be present when the system has
neither a TRS, nor a PHS. This is the tenth class of the Altland-Zirnbauer classification
scheme [Altland97], see the first four columns of Tab. 2.1.
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Periodic table of topological insulators

For each of the symmetry class in the Altland-Zirnbauer classification and for every spatial
dimension d we can ask how many topologically distinct gapped Hamiltonians are there,
and what kind of topological invariant we can define. With our toy model of Sec. 2.2.1
we have filled one square of the table by associating a winding number w ∈ Z for 1D
systems in the presence of TRS (+1), PHS (+1), and CS, i.e. of class BDI. The 2D IQH
and AQH effect belong to class A (no symmetry) and are characterized by the first Chern
number C1 ∈ Z. The full classification of free fermionic Hamiltonians, shown in Tab. 2.1,
was recently obtained in Ref. [Schnyder08, Ryu09, Kitaev09].

AZ TRS PHS CS d = 0 1 2 3 4 5 6 7

A 0 0 0 Z 0 Z 0 Z 0 Z 0

AIII 0 0 1 0 Z 0 Z 0 Z 0 Z
AI 1 0 0 Z 0 0 0 Z 0 Z2 Z2

BDI 1 1 1 Z2 Z 0 0 0 Z 0 Z2

D 0 1 0 Z2 Z2 Z 0 0 0 Z 0

DIII -1 1 1 0 Z2 Z2 Z 0 0 0 Z
AII -1 0 0 Z 0 Z2 Z2 Z 0 0 0

CII -1 -1 1 0 Z 0 Z2 Z2 Z 0 0

C 0 -1 0 0 0 Z 0 Z2 Z2 Z 0

CI 1 -1 1 0 0 0 Z 0 Z2 Z2 Z

Table 2.1: Periodic table of topological insulators and superconductors [Schnyder08,
Ryu09]. The first two rows have a periodicity of period 2, the eight bottom rows have a
period 8; this is known as Bott periodicity in K-theory [Kitaev09].

2.2.3 2D topological insulators

The QSH effect introduced previously has a true quantized spin Hall conductivity only if
the spin component Sz is conserved. According to our discussion on topological classifica-
tion, such a unitary symmetry is irrelevant and we should characterize each sector Sz = ±1
separately. Each sector belongs to the Altland-Zirnbauer class A and is thus characterized
by an integer topological invariant like the IQH or QAH effects. However, physical pertur-
bations such as a Rashba spin-orbit coupling will break this symmetry an destroy the spin
Hall conductivity quantization. Kane and Mele showed [Kane05a] that the gapless edge
states persist even in that case. Moreover, in a parallel work [Kane05b], they connected
this robustness to a nontrivial Z2 topological invariant (the system is in the symmetry
class AII). This invariant defines 2D topological insulators as a slight generalization of the
QSH effect.

At low energies, the gapless helical states at the edge of 2D topological insulators can
be described by the Hamiltonian

H =

∫
dx
∑
α=±

ψ†α(x)(−iαvF∂x − µ)ψα(x) (2.15)
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where α = ±1 for right and left moving electrons. The existence of these states is pro-
tected by TRS and topology; the Kramers degeneracy forbids backscattering even in the
presence of moderate disorder that does not close the bulk gap. Unlike in the IQH ef-
fect, however, interactions can lead to inelastic backscattering [Kane05a, Schmidt12] and
thereby reduce the conductance at finite temperatures. Moreover, strong interactions even
lead to localization of the edge states [Wu06, Xu06].

2.2.4 3D topological insulators

A generalization of the Z2 topological number of 2D topological insulators to gapped 3D
systems in class AII followed soon afterwards [Fu07, Moore07, Roy09]. The result is that
such systems are characterized by 4 Z2 invariants. Three of them correspond to stacking
2D topological insulators in the 3 axes and are not robust to disorder; the edge states
becomes gapped by a coupling between neighbouring Kramers partners. The fourth one
is nontrivial and defines strong 3D topological insulators.

Similarly to the 2D topological insulators, 3D topological insulators support gapless
electronic states on their boundary. The surface states of 3D topological insulators are
described by the 2D massless Dirac Hamiltonian

H =

∫
d2x ψ†(x) (−ivFσ · ∇ − µ)ψ(x), (2.16)

where the Pauli matrices σ are related to the spin S of electrons. If the surface has a
mirror plane symmetry, then S = ẑ × σ/2. The eigenstates of this Hamiltonian display
spin-momentum locking; the spin is entirely fixed by the direction of propagation and
vice-versa.

Dirac electrons display a weak antilocalization effect: whereas backscattering is en-
hanced due to constructive interferences between time-reversed processes in conventional
systems, direct backscattering is forbidden for Dirac electrons due to destructive inter-
ferences between time-reversed processes. The reason for this is that Dirac electrons
pick up a π phase shift upon a full rotation in k-space. This Berry phase is due to
the spin-momentum locking. As a striking consequence, these surface Dirac electrons
remain gapless even in the presence of disorder [Nomura07]. We direct the reader to
Ref. [Bardarson13] for a recent review of transport properties of these surface states.

Another interesting consequence of the π Berry phase is the modification of the quan-
tization condition of cyclotron orbits in the presence of a perpendicular magnetic field.
This leads to a modified spectrum of Landau levels

EN = ωc

√
N +

(
gµBB

2ωc

)2

, (2.17)

where ωc is the cyclotron frequency. Neglecting the Zeeman splitting, the Landau level
N = 0 has zero energy. This Landau level structure was confirmed experimentally in
Bi2Se3 [Cheng10, Hanaguri10].
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2.3 Majorana fermions

We now turn to the description of the topologically protected gapless edge states of topo-
logical superconductors. We start with some very general considerations on excitations of
superconductors. We describe a superconductor with the Bogoliubov-de Gennes formalism
in which the Hamiltonian reads

HBdG =
1

2

∫
dx Ψ†(x)

(
H0 − µ ∆

∆† µ−ΘH0Θ†

)
Ψ(x) , (2.18)

where H0 is a normal Hamiltonian for electrons, ∆ is the superconducting pairing term, Θ
is the time-reversal operator, and the field operator Ψ = (ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑)
T . The formalism

has a built-in PHS Ξ = τyσyK, which is an artifact of the formalism introduced to reduce
the Hamiltonian to a noninteracting form. The consequence is that all the eigenstates and
eigenenergies are doubled: to a solution χ = (u↑, u↓, v↑, v↓)

T , HBdGχ = Eχ, corresponds
the eigenstate χ′ = Ξγ = (−v∗↓, v∗↑, u∗↓,−u∗↑)T of opposite energy HBdGχ

′ = −Eχ′. This
doubling is unphysical, and in practice we remove eigenstates of negative energy to avoid
double counting. There is an important catch: what happens if an eigenstate has exactly
zero energy? The question is especially relevant in the context of topologically protected
edge states since we expect to find a gapless excitation at the boundary of the system.
The answer is: it depends.

First, we consider an ordinary s-wave pairing term and a Hamiltonian H0 without
spin-orbit coupling. In that case, the Bogoliubov quasiparticles have a definite spin and
have the form χ = (u, 0, v, 0) so that χ′ = Ξχ 6= χ. In that case we can safely disregard
either χ or χ′ to avoid double counting.

Second, we consider either an s-wave pairing term with a spin-orbit coupled H0, or
an unconventional pairing term. The Bogoliubov quasiparticles no longer have a definite
spin. This opens up the possibility of having a solution of the form χ = (u↑, u↓, u

∗
↓,−u∗↑)

such that χ = Ξχ = χ′. We cannot remove one of two states, for there is only one! Note
that such a state necessarily has zero energy. These types of states are the one of interest
in this section; they are the edge states of topological superconductors.

Majorana bound states

The quasiparticle annihilation operator γ associated to a particle-hole invariant state sat-
isfies γ† = γ. This is the key property of the so-called Majorana fermions, named in honor
of Ettore Majorana who first proposed them as potential fundamental particles. We would
now like to consider such Majorana fermions more formally.

A set γi, 1 ≤ i ≤ N , of zero-dimensional Majorana fermions, or Majorana bound states
(MBSs), satisfy the following relations

γ†i = γi , (2.19)

[H, γi] = 0 , (2.20)

{γi, γj} = δij . (2.21)

The first equation states that a Majorana fermion is its own antiparticle. Since we want
the MBSs to be eigenstates of the system the second equation is a consequence of the
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first one. As an important consequence the presence of MBSs is always associated to a
groundstate degeneracy. The third relation reflects the Fermi-Dirac statistics of MBSs.

There are a number of conceptual difficulties arising from the defining relations of
MBSs. The first is the necessity to abandon the notion of an occupation number of a
MBS. In fact the naive attempt fails miserably: the potential occupation number operator
ni = γ†i γi = 1/2 is trivial. Alternatively some people say that MBSs are always half -
occupied; this is not helpful in any way. It is much more fruitful to connect the MBSs
to a groundstate degeneracy and see the operators γi as operators switching between two
states. It is however possible to recover a complex fermion operator c out of a pair of
MBSs by defining

c =
γ1 + iγ2√

2
, (2.22)

that satisfies the usual commutation relations c2 = (c†)2 = 0 and {c, c†} = 1. Therefore
a pair of Majorana fermions is connected to a two-fold groundstate degeneracy. With N
MBSs the groundstate manifold thus has a dimension 2(N/2).

2.3.1 Kitaev chain

Kitaev [Kitaev01] proposed a simple toy-model of a spinless one-dimensional p+ip su-
perconductor (AZ class D) that has Majorana bound states at its ends when it is in
the topologically nontrivial phase. We briefly review the model to explicitly show how
Majorana fermions can arise in condensed matter systems.

Without further ado, the Hamiltonian is

H =
∑
j

−w(a†jaj+1 + a†j+1aj)− µ
(
a†jaj −

1

2

)
+ ∆ajaj+1 + ∆∗a†j+1a

†
j . (2.23)

To diagonalize the Hamiltonian we introduce the equivalent of Nambu spinors (ak a
†
−k)

T .

The doubled spectrum is E(k) = ±
√

(µ+ 2w cos k)2 + 4|∆|2 sin2 k. The gap closes when
|µ| = |2w|. For |2w| < |µ|, the system is in a topologically trivial state because it is
continuously connected to a trivial insulator with ∆ = 0. On the other hand, we can
access the topological features (if they exist) of the |2w| > |µ| phase by considering the
limiting case µ = 0,∆ = w. In that case, we obtain

H = −w
∑
j

(a†j − aj)(aj+1 + a†j+1) . (2.24)

The terms that appear in the sum can be conveniently rewritten by defining two Majorana
operators per site

γ
(1)
j =

a†j + aj√
2

(2.25)

γ
(2)
j = i

a†j − aj√
2

, (2.26)
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which satisfy the reality condition γ
(l)†
j = γ

(l)
j and the commutation relations {γ(l)

i , γ
(m)
j } =

δijδml. In this representation, the Hamiltonian reads

H = 2iw
∑
j

γ
(2)
j γ

(1)
j+1 . (2.27)

The two Majorana operators γ
(1)
1 and γ

(2)
N are left uncoupled and therefore commute with

the Hamiltonian. As such they are true Majorana bound states. They imply a ground
state degeneracy.

The situation is very reminiscent of our toy model of Sec. 2.2.1, see Fig. 2.4. In fact,
the analogy can be made precise by replacing the chiral symmetry operator σx of the toy
model with the operator τx that exchanges a†j ↔ aj in the Kitaev model. However, τx
is only a symmetry for special points of parameter space, such as in Eq. (2.27), but it
is not a symmetry of the whole model (2.23). Specifically, we cannot have a pair MBSs
γa, γb at one edge, like we had on the bottom panel of Fig. 2.4, since they will generically
be coupled by a term iγaγb. As a consequence, the topological state of the Kitaev model
cannot be described by an integer w ∈ Z topological invariant. The relevant quantity is
the parity of the “number of edge states”. To see this, consider a Hamiltonian for M
Majorana modes H = i

∑M
i,j=1 γihijγj . The matrix hij must be antisymmetric to ensure

H = H†. Now, if M is odd deth = 0 and thus hij must have a zero-energy eigenstate.
Because of particle-hole symmetry, a zero-energy eigenstate is a Majorana fermion in the
spinless case. On the other hand, if M is even no such constraint exists and in principle
no MBS remains. This explains intuitively why the topological phase is characterized by
a Z2 invariant in Hamiltonians in the AZ symmetry class D. Kitaev [Kitaev01] gave an
explicit expression for the invariant, the “Majorana number” M, even in the case of a
disordered wire. In the clean case and for small pairing amplitude ∆� t, the invariant is
given by the parity of the number of Fermi points (E(k) = 0) in half of the Brillouin zone
k ∈ [0, π].

2.3.2 Majorana edge states

Gapless excitations of 2D topological superconductors are described by Majorana edge
states rather than MBSs. Therefore, we now consider an one-dimensional massless Majo-
rana mode along the x-axis. By definition, it satisfies the Majorana condition

γ(x)† = γ(x) (2.28)

along with the commutation relations

{γ(x), γ(y)} = δ(x− y) . (2.29)

The Hamiltonian is given by

H = −ivM
∫
dx γ(x)∂xγ(x) (2.30)
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where vM is the propagation velocity. The Fourier modes γk for k 6= 0 obey

γ†k = γ−k , (2.31)

{γk, γk′} = 0 , (2.32){
γ†k, γk′

}
= δk,k′ . (2.33)

Unlike for MBSs it is meaningful to define the occupation-number operators nk = γ†kγk;
the Majorana condition only entails we must disregard the modes with k < 0 to avoid
double counting. The k = 0 mode is special and its properties are much more akin to
those of MBSs.

2.3.3 Engineering Majorana fermions in solid state systems

The ideal way to obtain Majorana quasiparticles in solid state systems would be to use
materials that are intrinsic topological superconductors. Unfortunately, the list of po-
tential candidates is rather short. The two most prominent ones are Sr2RuO4 and the
Moore-Read state of the ν = 5/2 fractional quantum Hall effect [Moore91] but a decisive
experimental confirmation is still lacking.

Recently, many schemes have been put forward to engineer topological superconduc-
tors by inducing an effective p-wave pairing in strongly spin-orbit coupled materials via
the proximity effect of an ordinary s-wave superconductor. A promising way to realize the
1D Kitaev chain uses a nanowire with strong Rashba spin-orbit coupling and large mag-
netic g-factor such as InAs or InSb covered by a superconductor and with a longitudinal
magnetic field to access the topological phase [Lutchyn10, Oreg10]. Another possibility is
to use the 1D helical electronic states at the edge of 2D topological insulators covered by
a superconductor [Fu09a]. An additional insulating ferromagnet is required at the bound-
aries of the superconducting region to open a gap in the helical liquid. There are also
similar proposals to realize effective 2D p-wave superconductors by again the proximity
effect of an ordinary s-wave superconductor in the surface states of 3D topological insu-
lators [Fu08]. This list is far from exhaustive and we direct the interested reader to the
review articles [Beenakker13, Alicea12].



Chapter 3

Point contacts and localization in
generic helical liquids

This chapter is adapted from the publication:

C. P. Orth, G. Strübi, and T. L. Schmidt, Point
contacts and localization in generic helical liquids,
Phys. Rev. B 88, 165315.

As we have seen in the previous chapter, two-dimensional topological insulators support
gapless helical one-dimensional edge states. Due to time-reversal symmetry, the transport
is expected to remain ballistic even in the presence of non-magnetic disorder.

Several physical mechanisms lead to deviations from these simple predictions: it was
realized early on that interactions can cause inelastic two-particle backscattering, which
is allowed by time-reversal invariance, and thus change the conductance at finite tem-
peratures [Kane05a]. Strong interactions can even open a gap in the edge state spectrum
[Xu06, Wu06]. Moreover, magnetic perturbations can lead to backscattering, and can thus
affect the conductance [Maciejko09], or even cause localization [Delplace12].

If we consider a long and narrow two-dimensional topological insulator (length L,
width W � L), backscattering between helical states on opposite edges may become
possible without breaking time-reversal invariance. However, if W is larger than the
decay length of the edge states into the bulk the overlap between states on opposite
edges is still exponentially suppressed. One way to produce backscattering is to couple
the helical states on opposite edges by local tunneling [Ström09, Hou09, Teo09]. On
the one hand, such processes may be realized intentionally at point contacts formed
either by lithographic techniques or by appropriate gating [Liu08], depending on the
topological insulator material, and interesting transport properties have been predicted
[Liu11a, Schmidt11, Dolcini11, Lee12, Dolcetto12, Edge13]. On the other hand, tunneling
between opposite edges may also emerge accidentally in narrow samples if the bulk mate-
rial is sufficiently disordered, so that charge puddles [Skinner12, Väyrynen13] can connect
opposite edges. As long as this transport remains elastic and the puddles are dilute, such a
system can be modeled using local tunnel contacts at random positions and with random
tunnel amplitudes.
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3.1 Generic helical liquids

To investigate these systems, we are going to employ the concept of generic helical liq-
uids proposed in Ref. [Schmidt12]. Such a generic helical liquid provides a rather general
template for time-reversal invariant helical edge states in which the electron spin is not
necessarily a good quantum number. This situation can arise in all proposed topological
insulator materials to date by effects such as bulk inversion asymmetry, structural inver-
sion asymmetry [Qi11], or Rashba spin-orbit coupling [Rothe10]. The most important
consequence of the broken axial spin symmetry is a rotation of the spin quantization axis
of the helical eigenstates as a function of momentum.

It was shown in Ref. [Schmidt12] that in this case, the projections of left-moving and
right-moving eigenmodes on a fixed spin axis are determined by a momentum-dependent
spin rotation matrix B(k). Certain symmetries of the rotation matrix B(k), which we
refer to as the “spin texture” of the edge state, are fixed by unitarity and time-reversal
invariance, but its amplitude can be tuned locally: for instance, in HgTe quantum wells, a
spatially inhomogeneous electric field perpendicular to the plane of the topological insula-
tor will induce Rashba spin-orbit coupling [Rothe10] with different amplitudes on different
sample edges. In such an experiment, the spins of the helical states at the Fermi energy
µ on opposite edges will be tilted relative to each other by an angle θ(µ). In this chapter,
we shall show that a nonzero θ(µ) has a strong effect on the current-voltage characteristic.

Our starting point is two generic helical liquids with different spin rotation matri-
ces BU (k) and BL(k) living on the upper and lower edges, respectively, of a narrow 2D
topological insulator. We shall calculate two-terminal transport properties, where a bias
voltage is applied between the left side and the right side of the sample as shown in Fig. 3.1.
First, we shall investigate the effect of a single tunnel contact between the upper and lower
edges, and show that tunneling can lead to forward scattering as well as backscattering
depending on θ(µ), see Fig. 3.1. Next, we shall add a second tunnel junction and show that
interference effects make it possible to determine θ(µ) from a conductance measurement.
Finally, we shall consider a large number of random tunnel contacts. Even for conventional
helical liquids where spin is conserved, this type of disorder leads to localization and to a
suppression of the conductance G ∝ 2G0e

−L/`, where G0 = e2/h is the conductance quan-
tum, L is the sample length and ` is the localization length. For our model, we shall show
that ` depends strongly on θ(µ). Since θ(µ) depends on the Rashba spin-orbit coupling
strength, we predict that the localization length of a narrow two-dimensional topological
insulator in a two-terminal configuration is strongly sensitive to a spatially inhomogeneous
electric field.

We start by considering a single point contact between two helical edges along the x
direction. After linearizing the spectrum, the kinetic part of the Hamiltonian for the two
edges is given by

Hkin = −ivF
∑
η=U,L

∑
α=±

α

∫ ∞
−∞

dxφ†ηα(x)∂xφηα(x), (3.1)

where η labels the upper (η = U) and lower (η = L) edges, each of which hosts right-movers
(α = +) and left-movers (α = −). In general, the eigenstates ψηα(k) of this Hamiltonian,
where k is the momentum along the x direction, need not be spin eigenstates [Schmidt12]:
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Figure 3.1: For a single point contact, the angle θ(µ), see Eq. (3.24), determines the
branching ratio of right movers on the upper edge into right- and left-movers on the lower
edge. The right panel shows the spectra of the upper and lower edges for V = 0. θ(µ) is
given by the difference in spin axis rotation at the Fermi energy.

effects such as bulk inversion asymmetry, structural inversion asymmetry or Rashba spin-
orbit coupling break the axial spin symmetry. The projections of the helical eigenstates
φηα(k) on states with definite spin along an arbitrary but fixed spin quantization axis,
ψησ(k), can be encoded into a 2× 2 momentum-dependent rotation matrix [Schmidt12](

ψη↑(k)
ψη↓(k)

)
= Bη(k)

(
φη+(k)
φη−(k)

)
, (3.2)

where η = U,L. The two rotation matrices Bη(k) of the upper and lower edge are in
principle independent of each other because the spatially separated edges can be subject
to different gate voltages and Rashba spin-orbit coupling strengths. The resulting band
structure is schematically shown in Fig. 3.1. Concrete expressions for Bη(k) for helical
edge states in HgTe/CdTe quantum wells in the presence of Rashba spin-orbit coupling
where shown in Ref. [Schmidt12]. The matrices Bη(k) are unitary, and as a consequence
of time-reversal invariance, satisfy the condition Bη(k) = Bη(−k).

Bη(k) =

(
cos(θη(k)) − sin(θη(k))
sin(θη(k)) cos(θη(k))

)
, (3.3)

where, according to Eq. (3.2), the angle θη(k), as a function of momentum k and the edge
η, determines the rotation of the spin quantization axis of the eigenstates of H0, with
respect to the fixed spin orientations ↑, ↓.

3.2 Solution to the tunneling problem

In this section we give a formal solution to the problem of helical edge states described
by (3.1) in the presence of electron tunneling between the two edges. We model the
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tunneling by the Hamiltonian

HT =

∫
dxψ†η′σ′(x)Tη′σ′ησ(x)ψησ(x) , (3.4)

where a sum over repeated indices is implied (we use the summing convention throughout,
unless otherwise specified). We assume spin-conserving tunneling, and we write T (x) =
γ(x)τ1, where τ1 is the first Pauli matrix and acts on the edge space, and γ(x) is a position
dependent tunneling amplitude.

Dropping the indices for clarity, the full Hamiltonian in terms of the left and right
moving fields reads

H =

∫
dk

2π
vkφ†(k)σ3φ(k) +

∫
dkdk′

(2π)2
φ†(k)B†(k)T (k − k′)B(k′)φ(k′) , (3.5)

where the σ matrices act on the space of left/right movers.

Quantum point contacts

We now specialize the form of the tunnel amplitude. We consider N quantum point
contacts at positions xi written as

T (x) =
N∑
i=1

δ(x− xi)Ti . (3.6)

The tunneling Hamiltonian takes the form

HT =
∑
i

∫
dk

2π
φ†(k)B†(k)eikxiTi

∫
dk′

2π
e−ik

′xiB(k′)φ(k′) . (3.7)

We want to find the eigenmodes of the form χ =
∫
dk
2πu
†(k)φ(k) which satisfy [χ,H] =

Eχ. This yields the equation for u(k)

(vkσ3 − E)u(k) = −
∑
i

eikxiB†(k)Ti

∫
dk′

2π
e−ik

′xiB(k′)u(k′) . (3.8)

We introduce the k independent spinors

ξi =

∫
dk

2π
e−ikxiB(k)u(k) , (3.9)

which let us solve formally the equation for u

uξ(k) = uh(k)−
∑
i

eikxiG(k)B†(k)Tiξi , (3.10)

where uh(k) is any solution to the homogeneous problem, and G(k) = (vkσ3 − E)−1 is
the Green’s function of the homogeneous problem. We have to regularize G(k) around
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vk = ±E. Considerations on the boundary conditions in real space lead to the choice of
the retarded Green’s function

G(k) =
1

vkσ3 − (E + iδ)
=
σ3

v

1

k − σ3(E + iδ)/v
. (3.11)

Substituting the solution (3.10) in the self-consistency condition (3.9) yields

ξi =

∫
dk

2π
e−ikxiB(k)uh(k)−

∑
j

∫
dk

2π
e−ik(xi−xj)B(k)G(k)B†(k)Tjξj . (3.12)

We introduce the matrix and spinor with QPC indices

Qij =

∫
dk

2π
e−ik(xi−xj)B(k)G(k)B†(k) , (3.13)

ζi =

∫
dk

2π
e−ikxiB(k)uh(k) = B(E/v)e−iσ

3xiE/vu0 , (3.14)

where we wrote the solution to the homogeneous problem as uh(k) = 2πδ(k − σ3E/v)u0.
Using Eqs. (3.13, 3.14) we can solve the self-consistency equation by incorporating QPC
indices in the matrix Tij = Tiδij (no sum):

ξ = (1 +QT )−1ζ . (3.15)

And the formal solution for u reads

u(k) = [2πδ(k − σ3E/v)− SumQPC(eikXG(k)B†(k)T (1 +QT )−1B(E/v)e−iσ
3XE/v)]u0 ,

(3.16)
where we defined the QPC position matrix Xij = xiδij (no sum), and SumQPC denotes
the sum over all matrix elements in QPC space, i.e. SumQPC(A) =

∑
i,j Aij .

Scattering matrix

To determine the scattering matrix, we need to look at the real space dependence of the
solution (3.16). In the Fourier transform, the k integral singles out one pole of G(k)
determined by the sign of x (asymptotically, i.e. for large x). We have

u(x) = eiσ
3xE/v

[
1− i

2v
(1 + σ3sign(x))SumQPC(eiσ

3XE/vB†(
E

v
)T (1 +QT )−1B(

E

v
)e−iσ

3XE/v)

]
u0

(3.17)
For incoming states (1 +σ3sign(x)) = 0, which means that the incoming states are simply
given by u(x) = eiσ

3xE/vu0. This is because we chose retarded boundary conditions for
the Green’s function. For the outgoing states we have (1 + σ3sign(x)) = 2. The relation
between output and input states is given by the scattering matrix

S = 1− i

v
SumQPC(eiσ

3XE/vB†(E/v)T (1 +QT )−1B(E/v)e−iσ
3XE/v) . (3.18)

We now define the tunneling matrix in the rotated basis T̃ = eiσ
3XE/vB†(E/v)TB(E/v)e−iσ

3XE/v

and similarly Q̃ = eiσ
3XE/vB†(E/v)QB(E/v)e−iσ

3XE/v. The scattering matrix now takes
the rather simple form

S = 1− i

v
SumQPC(T̃ (1 + Q̃T̃ )−1) . (3.19)
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This is the main result of this section.

We now compute the diagonal elements of the matrix Q

Qii =

∫
dk

2π
B(k)G(k)B†(k) =

∫
dk

2π
B(k)

σ3

v

1

k − σ3(E + iδ)/v
B†(k) (3.20)

Using the symmetry B(k) = B(−k) we may symmetrize the Green’s function in the
integrand G(k)→ 1

2(G(k) +G(−k)). This allows us to compute

Qii =

∫
dk

2π
B(k)

σ3

2v

(
1

k − σ3(E + iδ)/v
+

1

−k − σ3(E + iδ)/v

)
B†(k)

=

∫
dk

2π
B(k)

σ3

2v

2σ3(E + iδ)

(k − σ3(E + iδ)/v)(k + σ3(E + iδ)/v)
B†(k)

=

∫
dk

2π
B(k)

1

2v

2(E + iδ)

(k − (E + iδ)/v)(k + (E + iδ)/v)
B†(k)

=

∫
dk

2π

1

2v

2(E + iδ)

(k − (E + iδ)/v)(k + (E + iδ)/v)

=
i

2v
(3.21)

This remarkably simple result is largely due to the trivial matrix structure of the k-
symmetrized Green’s function.

The k dependence of the spin rotation matrix B(k) naturally defines a spin-rotation
length 1/k0 in real space. If the separation between the QPCs is bigger than the spin-
rotation length, we can also compute the off-diagonal elements of Q

Qij =

∫
dk

2π
e−ik(xi−xj)B(k)G(k)B†(k)

=
i

2v
B(E/v)(1− σ3sign(xi − xj))e−iσ

3(xi−xj)E/vB†(E/v) . (3.22)

3.3 Mapping the spin rotation of the edge states

As a first step, we are going to consider the effect of a single point contact at the position
x1 with tunnel amplitude γ1 between the two helical edges, see Fig. 3.1. Our first goal
is to determine the total current flowing along the x-direction if the system is coupled to
two reservoirs held at chemical potentials µ− = µ and µ+ = µ + V on the right and left
sides, respectively. These reservoirs thus define the chemical potential of the right-movers
(µ+ V ) and left-movers (µ).

Using Eqs. (3.3,3.19), we find the scattering matrix

S(E) =
√

1− T1 − i
√
T1

[
sin θ(E) iτ1 + cos θ(E)σ2τ2

]
, (3.23)

where we defined the spin-rotation difference

θ(E) = θU (E/v)− θL(E/v) , (3.24)
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and the transmission probability T1 across the QPC

T1 =

(
2(γ1/2v)

1 + (γ1/2v)2

)2

. (3.25)

For the current, we find I(V ) =
∫ V

0 dωG(µ + ω), where G(µ) is the two-terminal
differential conductance for a system held at chemical potential µ,

G(µ) =
2e2

h

[
1− T1 cos2 θ(µ)

]
. (3.26)

According to Eq. (3.26), the angle difference θ(µ) has a strong impact on the conductance,
because it determines the amount of right-movers on the upper edge that become left-
movers or right-movers in the lower edge after tunneling, see Fig. 3.1. In the limit of
strong tunneling (T1 → 1), the conductance from left to right can change from zero at
θ(µ) = 0 to 2e2/h at θ(µ) = π/2.

3.3.1 Fabry-Pérot interferometer

Next, we extend the system by adding a second point contact [Dolcini11, Virtanen11,
Romeo12] at position x2 with the tunnel amplitude γ2. The distance between the two
point contacts is ∆x2 = x2 − x1. From here on, we assume that the rotation angles
θη(k) change very slowly with k, only on a large momentum scale k0 � kF . Furthermore
we assume that the distance between tunnel contacts is large compared to the Fermi
wavelength, i.e., ∆x2 � 1/kF .

The scattering matrix can be computed with our general formula (3.19). The resulting
differential conductance reads

G(µ) = 2G0

[
1− T1 cos2 θ(µ)

] [
1− T2 cos2 θ(µ)

]∣∣1 +
√
T1T2 cos2 θ(µ) e2i∆x2µ/vF

∣∣2 . (3.27)

We find interference patterns between the different paths that depend on the phase φ2 =
∆x2µ/vF acquired by an electron when passing through the loop formed by the two
tunnel junctions. Multiple traversals of this loop yield a geometric series which leads to
the denominator of Eq. (3.27). The conductance as a function of the phase φ2 and the
spin rotation angle θ(µ) is plotted for different tunnel probability combinations in Fig. 3.2.
For equal tunnel strengths T1 = T2, we always find the maximal conductance of 2e2/h at
the resonance condition φ = π, even for very weak tunneling. This can be interpreted as
Fabry-Pérot resonances which remain visible in the current as long as V � vF /∆x2. In
setups where the distance between the two tunnel contacts is tunable, varying ∆x2 makes
it possible to measure θ(µ) as a function of µ.

3.4 Localization in a narrow strip with disorder

Modeling disorder with point contacts

Finally we shall examine a large number N of point contacts between the two edges at
random positions xj and with random tunnel amplitudes γj as depicted in Fig. 3.3. At
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Figure 3.2: Conductance (in units of e2/h) of a 2D topological insulator with two tunnel
junctions as a function of the angle θ(µ) and distance between tunnel junctions ∆x2,
where φ2 = ∆x2µ/vF . For θ = 0, the setup shows Fabry-Pérot resonances: even if
the transparency of the two QPCs is small but equal (upper left) all the electrons are
transmitted across the interferometer at φ2 = π/2. For θ = π/2, there is no backscattering
at the QPCs and all the electrons are transmitted to the right contact.

the end we shall perform a disorder average over the xj and γj . This model captures
the physics of narrow samples where the helical edges are connected by charge puddles
[Skinner12, Väyrynen13, König13] that originate from doping. We effectively describe this
situation by a set of point contacts

Hγ,N =
N∑
j=1

γjψ
†(xj)τ1ψ(xj) , (3.28)

which we add to Hkin. We assume that the positions xj are uniformly distributed in
a region of length L, and that the density n = N/L of point contacts is small, i.e.,
k0 � kF � n.

Transfer matrix

For the disorder average over many point contacts it is most convenient to use transfer
matrices to calculate the current. The transfer matrix Tj (j = 1, . . . N) relates the states
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ψU+ ψU-

ψL-ψL+

T1
T2 T3

μ+V μ

Figure 3.3: Charge puddles between two edges in a narrow 2D topological insulator can
form tunnel paths at random positions xj and with random tunnel amplitudes γj . Tun-
neling leads to localization, with a localization length which depends strongly on the spin
rotation angle θ(µ).

on the left side of the jth point contact to those on its right side,

Tj(µ) =
1

1− Tj cos2 θ

(
A B
−B∗ A∗

)
(3.29)

A =

( √
1− Tj −i

√
Tj sin θ

−i
√
Tj sin θ

√
1− Tj

)
B = cos θ

(
−Tj sin θ i

√
(1− Tj)Tj

−i
√

(1− Tj)Tj Tj sin θ

)
,

in the basis (φU+, φL+, φU−, φL−). The total transfer matrix T̃N for transport through N
point contacts can be determined from the following recursive relation [Delplace12]

T̃1 = T1, T̃j = T̃j−1PjTj , (3.30)

where Pj = diag
(
eiφj , eiφj , e−iφj , e−iφj

)
is a diagonal transfer matrix that describes free

propagation between the contacts at positions xj−1 and xj , and results in dynamical phases
φj = ∆xjµ/vF for right-movers and −φj for left-movers, where ∆xj = xj − xj−1.

Localization

The total transfer matrix has the general structure

T̃j =

(
λj ρj
−ρ∗j λ∗j

)
λj =

(
aj iajbj
iajbj aj

)
, ρj =

(
cj icj/bj

−icj/bj −cj

)
(3.31)

with two complex parameters aj , cj and a real parameter bj . Products of these transfer ma-
trices always reproduce this structure. The lower right component of the transfer matrix is
the inverse of the transmission matrix tj = (λ∗j )

−1 which is connected to the dimensionless
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conductance through j contacts as G̃j(µ) = Tr(t†jtj) [Bruus04]. Equation (3.30) leads to a
recursive relation expressing the conductance through j contacts in terms of the product
of the conductance through j − 1 contacts, the conductance of the jth contact, as well as
a phase dependent term

G̃j = G̃j−1
Gj
2G0

∣∣∣∣1 +
cj−1

aj−1bj−1

√
Tj cos θe−2iφj

∣∣∣∣−2

(3.32)

where Gj = 2G0− 2G0Tj cos2 θ and G̃0 = 2. We take the logarithm of the whole equation
and solve it recursively. Averaging both sides over the phases φj yields for the total
conductance of all N contacts,

〈log(G̃N/2)〉φ = log

(
GN
2G0

)
+ · · ·+ log

(
G1

2G0

)
. (3.33)

Furthermore, taking the average over the tunnel probabilities Tj renders all the logarithms
on the right side equal. Comparing the resulting equation

〈log(G̃N/2)〉 = N
〈
log
[
1− T cos2 θ(µ)

]〉
(3.34)

with 〈log(G̃N/2)〉 = −L/` allows us to define the localization length as [Delplace12,
Anderson80, Pendry94]

`−1 =− lim
N→∞

n

N

〈
log(G̃N/2)

〉
=− n

〈
log
[
1− T cos2 θ(µ)

]〉
. (3.35)

If the tunnel probabilities are small (Tj ≈ 0) we can approximate the logarithm to linear
order and obtain

`−1 = n cos2 θ(µ)〈T 〉. (3.36)

This means a change of θ(µ) can change the localization length in the interval 1/(n〈T 〉) <
` < ∞. In particular, an infinite localization length can be reached even in the presence
of tunneling for θ(µ) = π/2. In the opposite limit of large tunneling (Tj ≈ 1) Eq. (3.35)
becomes

`−1 = −n log
[
sin2 θ(µ)

]
(3.37)

and the localization length can reach all values between zero and infinity for θ(µ) ∈ [0, π/2].
In this derivation, we assumed for simplicity thatBη(k) has the form shown in Eq. (3.3),

which is true if tunneling conserves spin. We would like to point out, however, that the
localization length depends strongly on the spin texture even if spin is not conserved during
tunneling. In that case, ` is determined by the combination B†U (µ/vF )BL(µ/vF ) of spin
rotation matrices.

3.5 Conclusion

To summarize, we have investigated narrow two-dimensional topological insulators where
the helical liquids on the two opposite edges have different spin textures. In this case, the
spin axes of two particles on the upper and lower edges at the Fermi energy µ are tilted by
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an angle θ(µ). This angle can be tuned in experiments, e.g., by applying a perpendicular
electric field gradient. We have considered a system where the edge states are coupled
locally by one or several tunnel contacts. For two tunnel contacts, interference effects in
the two-terminal conductance make it possible to determine θ(µ). Many random contacts
lead to localization of the edge states with a strong dependence of the localization length
on θ(µ). These effects could be used in experiments to map the helical structure of the
edge states.
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Chapter 4

Interferometric and noise
signatures of Majorana fermion
edge states in transport
experiments

This chapter is adapted from the publication:

G. Strübi, W. Belzig, M.-S. Choi, and C. Bruder,
Interferometric and Noise Signatures of Majorana
Fermion Edge States in Transport Experiments,
Phys. Rev. Lett 107, 136403.

Because of their fascinating properties, and potential application to topological quan-
tum computation [Kitaev01, Ivanov01, Nayak07, Alicea10, Stern13], Majorana fermions
catalyzed an immense body of work. However the very nature of Majorana fermions
make them elusive for unambiguous detection in experiments: they are chargeless and
cannot be taken out of the sample for private inspection. Elaborate schemes leading
to indirect but conclusive signatures of their presence are needed. Recently, several
groups [Mourik12, Deng12, Das12, Finck12] have reported the identification of Majo-
rana bound states in nanowires through a measurement of a zero-bias peak in tunneling
spectroscopy experiments. There is, however, no consensus regarding the attribution of
this result to the presence of Majorana fermions and not on another origin [Liu12]. The
situation is similar with the experimental report [Rokhinson12] of a 4π-periodic Josephson
effect [Fu09a], which cannot yet be unambiguously attributed to the presence of MBS in
the Josephson junction [Sau12].

There are also many proposals to detect Majorana fermions based on interferometric
structures in the literature. They can be divided into two classes. The first class intends
to probe the non-Abelian statistics of MBSs trapped in vortices of topological supercon-
ductors. In Ref. [Akhmerov09, Nilsson10] the authors study conductance signatures of
vortex tunneling in a Fabry-Pérot interferometer. Another proposal [Grosfeld10] is based
on a Mach-Zehnder interferometer constructed from a topological Josephson junction. In
that case, Josephson vortices trapping a MBS propagate along the two arms of the in-
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terferometer and give rise to a Josephson-vortex current Iv. The presence of absence of
another MBS at the center of the interferometer, which can be tuned by a magnetic flux,
leads to a striking switching between a vanishing Iv and a nonzero Iv. The roots of this
effect are traced back to the non-Abelian exchange statistics of MBSs.

The goal of the second class of interferometer-based proposals is to find a signature
of Majorana edge states. Ref. [Liu11b] finds a signature of chiral Majorana modes in the
conductance of a Mach-Zehnder interferometer built in a S-QSH-S sandwich. In [Park13]
the absence of an Aharonov-Bohm effect for Majorana edge states is predicted. We
also mention a nice formulation of the scattering matrix approach in terms of Majo-
rana modes [Li12] that highlights their special properties and is readily applied to these
interferometric structures.

In Sec. 4.2, we review in more details early proposals [Fu09b, Akhmerov09] that also
belong to the second class. They propose to use 3D topological insulator heterostructures
to build a Mach-Zehnder interferometer for Majorana edge states contacted by electronic
leads and find conductance signatures. In Sec. 4.3, we extend this setup and propose to
study noise correlations in a Hanbury Brown-Twiss type interferometer. We find three
signatures of the Majorana nature of the channels. First, the average charge current in the
outgoing leads vanishes. Furthermore, we predict an anomalously large shot noise in the
output ports for a vanishing average current signal. Adding a quantum point contact to
the setup, we find a surprising absence of partition noise which can be traced back to the
Majorana nature of the carriers. In Sec. 4.4 we further study the full counting statistics of
transport in these interferometers and find an interesting interpretation of charge transfer
processes in term of two independent half-charge transfers.

4.1 3D Topological insulators in heterostructures

The surface states of topological insulators provide a firm basis to realize nontrivial topo-
logical states. The intuitive way to understand this comes from the description of these
boundary states in terms of a single Dirac cone. As a consequence, if we open a gap
in these boundary states, we expect that the topological contribution coming from the
massive Dirac point is not compensated by an opposite contribution from another Dirac
point.

We can envision two interesting types of gaps of magnetic and superconducting origin.
A natural way to induce a superconducting gap is by the proximity of an ordinary s-
wave superconductor. Likewise, a magnetic gap can be opened by the proximity of an
insulating ferromagnet. In this section, we review the proposed heterostructures [Fu08,
Fu09b, Akhmerov09] that realize these ideas.

4.1.1 Helical Majorana channels in S-TI-S structures

Proximity induced superconductivity for Dirac fermions

One way of realizing a topological superconductor goes through an heterostructure of an
ordinary s-wave superconductor in proximity to the surface of a 3D topological insula-
tor [Fu08]. Tunneling of Cooper pairs from the superconductor to the surface states of the

topological insulator introduces a term ∆ψ†↑ψ
†
↓+h.c. in the Hamiltonian, where ∆ = ∆0e

iφ
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is the proximity-induced pairing potential in the surface state of the topological insula-
tor. In Nambu notation, Ψ = (ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑)
T , the total Dirac-Bogoliubov-de Gennes

Hamiltonian can be written H =
∫
d2k 1

2Ψ†HΨ, with

H = τz (vFσ · k − µ) + ∆0 (τx cosφ+ τy sinφ) , (4.1)

where the τ are Pauli matrices in particle-hole space. For a spatially homogeneous ∆, the
system acquires a gap and the spectrum reads

E(k) =

√
(±vF |k| − µ)2 + ∆2

0 . (4.2)

What makes the system very interesting is the connection between the proximity in-
duced s-wave pairing for Dirac electrons Eq. (4.1) and p-wave superconductivity. Intro-
ducing the operators ck±

ψk↑ =
ck+ + c†−k−

2
e−iθk (4.3)

ψk↓ =
ck+ − c†−k−

2
eiθk (4.4)

k = k

(
cos θk
sin θk

)
, (4.5)

the Hamiltonian becomes

H =
∑

k,s=±
(vFk − sµ)c†kscks + ∆e−isθkc†ksc

†
−ks + ∆∗eisθkc−kscks . (4.6)

This Hamiltonian belongs to the Altland-Zirnbauer symmetry class DIII, characterized by
a Z2 invariant, see Tab. 2.1. It is in the topologically nontrivial phase of two copies of
spinless px + ipy superconductors with opposite chiralities related by TRS. As such, we
expect to find a pair of helical Majorana edge states at the boundary of this state.

Majorana channels at domain walls

Let us now consider domain walls in the induced pairing potential ∆(x, y). We consider a
domain wall parallel to the x axis, see Fig. 4.1. The pairing potential only depends on y
and we retain full translation invariance in the x direction. The Hamiltonian reads

H(y) = τz (−ivFσy∂y + vFσxkx − µ) + ∆0(y) (τx cosφ(y) + τy sinφ(y)) . (4.7)

We treat the term containing the longitudinal momentum kx as a perturbation, and we
denote the remaining part by H0. To solve the Schrödinger equation H0(y)χ(y) = Eχ(y),
we isolate ∂yχ:

∂yχ(y) =
1

vF
[iµσy + ∆0(y)σy(cosφ(y)τy − sinφ(y)τx) + iEσyτz]χ(y) , (4.8)

which we write
∂yχ(y) = V (y)χ(y) . (4.9)
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3D TI

Figure 4.1: Two s-wave superconductors (yellow) in contact with the surface of a 3D
topological insulator. Superconductivity is induced in the surface states of the 3D TI.
Bound states appear at the interface in the surface of the TI (blue region) when the two
superconductors have a nonzero phase difference φ. For φ = π the interface supports
gapless helical Majorana modes.

We are looking for solutions of this equation χ(y) that are localized around y = 0. If V (y)
has the following simple spatial structure

V (y) =

{
V< for y < 0 ,

V> for y > 0 ,
(4.10)

and provided that there is exactly one eigenvalue λ> of V> and one eigenvalue λ< of V<
leading to a bound state (i.e. the real part of λ>,< is negative, resp. positive) then we
know the discontinuity of ∂yχ(y) at y = 0. This allows us to write

(λ> − λ<)χ(0) = (V> − V<)χ(0) , (4.11)

which is in general a simpler problem. In particular µ and E will drop out of the right-
hand side of equation (4.11). We can then find the eigenvalues of (V> − V<) and see if
one of them match (λ> − λ<) (this quantizes the energy E). Finally, the corresponding
eigenvector χ(0) fixes the full bound state χ(y) = eλ>yχ(0) for y > 0, χ(y) = eλ<yχ(0) for
y < 0.

We now consider a sharp domain wall of the superconducting phase

φ(y) =

{
0 y < 0

φ y > 0,
(4.12)

and ∆0(y) ≡ ∆0 constant. Equation (4.8) reads

∂yχ(y) =
1

vF
[iµ+ ∆0(cosφ(y)τy − sinφ(y)τx) + iEτz]σyχ(y). (4.13)

We treat the cases σyχ±(y) = ±χ±(y) separately. For χ+ we have λ>−λ< = −2
√

∆2
0 − E2/vF

and V> − V< = ∆0/vF ((cosφ − 1)τy − sinφτx) with eigenvalues ±2/vF sinφ/2. Solving
Eq. (4.11) we find the Andreev bound states energies

E = ±∆0 cosφ/2 . (4.14)
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Note that our derivation thus far was only for kx = 0. The free bonus that comes with
this is that Eq. (4.13) also describes a 1D domain wall between two 1D topological super-
conductors. This situation is realized in superconductor-QSH insulator-superconductor
heterostructures. In this context, it was shown [Fu09a] that he φ/2 dependence of the
Andreev bound states (4.14) is responsible for a 4π periodicity of the Josephson effect.

For the special case φ = π, we find E = 0 and it is possible to express the bound
states for an arbitrary spatial modulation of the pairing amplitude ∆0(y), because of the
vanishing commutator [V (y), V (y′)] = 0 in the left and right regions. The solutions are

χ±(y) ∝ e−|
∫ y
0 dy

′ ∆0(y′)/vF |e±iµy/vF


1
±i
±i
−1

 . (4.15)

We can then include kx 6= 0 by evaluating the matrix elements 〈χ±|H |χ±〉. We get the
Hamiltonian projected on the bound states

H̃ = vmkxσ̃x (4.16)

where vm = vF 〈χ+|σxτz |χ−〉 and σ̃ acts in the χ± basis. The eigenmodes γ1 = (χ+ +

χ−)/
√

2, γ2 = i(χ+−χ−)/
√

2 are self-adjoint γ†1 = γ1, γ†2 = γ2. They are helical Majorana
fermions that propagate with velocity vm along the domain wall. If the characteristic width
W of the domain wall is large enough, W > vF /∆0, higher energy Andreev bound states
appear in the junction, but the low-energy sector of interest is still described by a single
helical Majorana fermion.

4.1.2 Chiral electron channels in FM-TI-FM structures

We now investigate the effect of a magnetic gap induced by the proximity of an insulating
ferromagnet to the surface states of the 3D topological insulator [Fu09b]. The Hamiltonian
we consider is

H = vFk · σ +M · σ − µ (4.17)

where M is the exchange field induced by the proximity of the ferromagnet. The out-of-
plane component Mz opens a Zeeman gap of magnitude Mz at the Dirac point.

Chiral Dirac electrons at domain walls

We model a simple magnetic domain wall along x, see Fig. 4.2, with Mz = Msgn(y) and
Mx = My = 0. We treat again the term containing kx as a perturbation. The matrices
that describe the propagation along the y-axis in the right and left regions, see Eq. (4.9),
are given by

V>,< =
1

vF
[±Mσx + i(E + µ)σy] . (4.18)

Solving Eq.(4.11) for this case yields E = −µ and the corresponding bound state

χ(y) =
1√
2

(
1

−sgn(M)

)
vF

2|M |
e
−| M

vF
y|

(4.19)
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3D TI

FM FM

Figure 4.2: Insulating ferromagnets (green) induce an exchange field in the surface states
of the 3D topological insulator. If the magnetizations ML and MR have opposite z
components, the magnetic domain wall along x supports a chiral channel of Dirac electrons
denoted by the blue arrow in the figure.

with the proper normalization. The bound state is localized over a scale LM = vF
|M | .

Projecting the original Hamiltonian (4.17) with kx 6= 0 we get the dispersion relation of
the bound state

E(kx) = −sgn(M)vFkx − µ . (4.20)

The domain wall is thus a chiral channel for electrons. Again, a finite “well-width’ W
(Mz(y) = 0, |y| < W/2) will allow for further branch of bound states if W > LM , with an
energy spacing of MLM/W .

Arbitrary directions of M We can now consider the more general case

M(y) =

{
ML for y < 0

MR for y > 0,
(4.21)

Where the magnitudes are the same ML,R = M , but the directions are arbitrary. The
y-component of M only induces phase oscillations of the wavefunction along y and we
neglect it. Parameterizing the two magnetizations with polar angles θL,R

ML,R = M

 cos θL,R
0

sin θL,R

 (4.22)

and defining

θ =
θR + θL

2
(4.23)

α =
θR − θL

2
, (4.24)

we get the dispersion relation

E(kx) = M cosα+M sin θvF px − µ . (4.25)

One possible application is to tune the velocity of the bound states, vF sin θ, by modifying
the orientation of the magnetizations.
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4.1.3 Chiral Majorana channels in S-TI-FM structure

We now consider a combination of the first two structures. On the right, y > 0, we induce
a superconducting gap ∆0 and on the left, y < 0, a magnetization Mz > 0,Mx = My = 0.
Solving the resulting Bogoliubov-de Gennes equation with kx = 0 we find E = 0 (due to
particle-hole symmetry) and the corresponding spinor

χ(y = 0) ∝


√
M + µ√
M − µ

−
√
M − µ√
M + µ

 . (4.26)

χ(y) is then found using equation(4.8), and is exponentially decreasing over scales LS =
vF /∆0 and LM = vF /

√
M2 − µ2 in the superconducting and magnetic regions respec-

tively. It is therefore necessary to tune the Fermi energy to lie within the magnetic gap.
The linearized dispersion relation of this mode is given by

E(kx) = vF
√
M2 − µ2 kx . (4.27)

The spinor is particle-hole symmetric and therefore describes a Majorana fermion. The
domain wall support a chiral Majorana mode.

There is a related proposal [Tiwari12] to obtain a one-dimensional channel of chiral
Majorana fermions. The idea is to replace the magnetic gap due to the ferromagnetic
insulator by a strong perpendicular magnetic field. Relativistic Landau levels are formed
in the surface states of the topological insulator in the normal region. At the boundary
with the superconducting region, the authors show the formation of chiral Andreev edge
channels arising from Landau levels. The edge channel coming from from the N = 0
Landau level can be identified as a Majorana edge channel.

4.2 Mach-Zehnder interferometer

In this section we review the early proposals [Akhmerov09, Fu09b] that use a Mach-
Zehnder interferometer built out of the kind of heterostructures we have described. They
find a signature of chiral Majorana fermions in the conductance of the structure.

4.2.1 Converting Dirac electrons to Majorana fermions

Combining the different types of domain walls, we are able to construct “exotic” circuits
supporting electrons and Majorana fermions. A particularly intersecting building-block
is the “Dirac-to-Majorana converter” [Akhmerov09, Fu09b] shown in Fig. 4.3. In this
structure an incoming chiral Dirac electron is converted into a Majorana fermion split
into two channels. Because of chirality no backscattering can occur at the junction; the
conversion process works with full efficiency.

Symmetry constraints on the scattering matrix

We use the scattering matrix formalism [Büttiker92] to describe transport and noise prop-
erties of all the interferometers in this section. The central quantity we need is the scatter-
ing matrix of the Dirac-to-Majorana converter that relates the outgoing Majorana modes
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1
M

M
a

b

Figure 4.3: Splitting of a chiral electronic channel (1) to a pair of chiral Majorana fermions
channels (a),(b). M↑(↓) represents regions with magnetization pointing up (down) and the
yellow part is superconducting.

to the incoming Dirac modes. Because we do not want to consider a detailed and specific
model for the junction, we shall limit ourselves to a study of the constraints imposed by
symmetry and unitarity. The scattering matrix is defined, at a given energy E, by(

γa
γb

)
= SD→M (E)

(
ψ1,e

ψ1,h

)
. (4.28)

Particle-hole symmetry relates the scattering matrix at energy E to the scattering matrix
at energy −E in the way

SD→M (E) = S∗D→M (−E)

(
0 1
1 0

)
. (4.29)

Together with unitary, particle-hole symmetry determines the entire form of the scattering
matrix at zero energy

SD→M (E = 0) =
1√
2

(
1 1
±i ∓i

)(
eiα 0
0 e−iα

)
, (4.30)

up to an unimportant phase α (gauge choice for the Dirac modes) and a sign convention
for the Majorana modes.

At nonzero energies small deviations can occur, but the corrections are expected to be
small for E � ∆. Moreover if there is an additional mirror symmetry one can show that
the form given by Eq. (4.30) is exact at all energies [Akhmerov09]. For these reasons, we
shall work with the energy independent scattering matrix

SD→M =
1√
2

(
1 1
i −i

)
. (4.31)

We see from the form of the scattering matrix that the charge of the incoming particle
is encoded nonlocally into the phase difference of the Majorana mode in the two arms.
Namely, φa − φb = ±π/2 for an incoming electron, or hole respectively.
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1
M

M
2

Figure 4.4: Mach-Zehnder interferometer. An incoming charged Dirac fermion is con-
verted into a Majorana fermion which propagates along two possible paths around the
superconductor. Depending on the parity of the number of vortices threading the super-
conductor, the Majorana fermion is converted back to either an electron or a hole. The
superconductor is grounded to compensate for the net charge transfer in the interferome-
ter.

Majorana-to-Dirac converter

The scattering matrix for the inverse process, fusing two Majorana arms into one Dirac
arm, can be simply obtained by taking the time reversed version of Eq. (4.31)

SM→D = (SD→M )T =
1√
2

(
1 i
1 −i

)
. (4.32)

Again, the charge of the outgoing Dirac electron is encoded in the relative phase of the
incoming Majorana fermions.

As a side remark, we note that one might be worried by the apparent violation of spin
and charge conservation. Indeed consider an incoming electron on the left lead (with a
charge -e and a definite spin). After going through the junction (it cannot be reflected)
it is converted into a Majorana fermion which is neutral and does not carry the same
spin as the electron. Hence both charge and spin conservation appear to be broken. This
formal artifact is in fact expected, for our mean-field description of the superconductor
and the ferromagnet does not conserve either. In reality those conservation laws are
satisfied by, possibly copropagating, spin excitations in the ferromagnet and Cooper pairs
in the superconductor. Grounding the superconductor ensures that it will not accumulate
charges over the course of conversion processes.

4.2.2 Z2 interferometry

Following [Fu09b, Akhmerov09] we introduce a Mach-Zehnder interferometer for Majorana
fermions. It combines two converters of the last section: an incoming arm supporting
Dirac-like excitations is split into two Majorana arms that interfere and fuse back together
into an outgoing Dirac arm. The two Majorana arms encircle a superconducting region.
A number nv of vortices is threading the superconductor. A sketch of the setup is shown
in Fig. 4.4.

Owing to the chirality of the propagating modes, the total scattering matrix(
ψ2,e

ψ2,h

)
= Stot

(
ψ1,e

ψ1,h

)
(4.33)



42 Chapter 4. Interferometric signatures of Majorana edge states

can be obtained by multiplying the scattering matrices for the two conversion processes
and for the free propagation of Majorana fermions inbetween

Stot =
1

2

(
1 i
1 −i

)(
eiφa 0

0 eiφb

)(
1 1
i −i

)
(4.34)

where φa,b are the phases accumulated by the Majorana fermions along a and b. There are
several contributions to the phase difference φa − φb. The first one is a dynamical phase
due to the length difference δL of the two arms, the second one is a Berry phase of π due
to the rotation of a spin 1/2 (eiσz(2π)/2) and the third is coming from the magnetic flux.
Notice that the latter does not come from the term involving directly the vector potential
in the Hamiltonian since 〈χ|σx |χ〉 = 0 for the bound-state χ given by equation (4.26),
rather it is the modulation of the phase of the superconductor (eiτznvπ) that is responsible
for this. Collecting everything we obtain

φa − φb = EδL/vM + π + nvπ. (4.35)

The total scattering matrix takes the form

Stot =

(
i cos(φ/2) − sin(φ/2)
− sin(φ/2) i cos(φ/2)

)
, (4.36)

where we defined φ = E δL/vM + nvπ.
For a symmetric interferometer, δL = 0, and an even number of vortices the interferom-

eter acts trivially: electron(holes) are transmitted as electrons(holes) with unit probability.
For an odd number of vortices, however, electrons are transmitted as holes and vice-versa.
This interferometer is sometimes called Z2 interferometer due to its sensitivity to the parity
of the number of vortices.

Conductance

We now fix a voltage V > 0 between the terminals 1 and 2. Both the terminal 2 and the
superconductor are grounded. The differential conductance G12(V ) is readily obtained
from the scattering matrix (4.36). At zero temperature we obtain

G12(V ) =
e2

h
cos

(
nvπ +

eV δL

vM

)
. (4.37)

We may instead consider the current that flows through the superconductor due to charge
conversion processes in the interferometer. The differential conductance reads

G1s(V ) =
2e2

h
sin2

(
nvπ

2
+
eV δL

2vM

)
, (4.38)

where s denotes the superconducting terminal. This equation was first derived in [Fu09b,
Akhmerov09]. Notably, the linear response conductance G1s(0) is quantized to 2e2/h for
an odd number of enclosed vortices in the interferometer, while it vanishes if the number
of vortices is even. This is the main transport signature of Majorana fermions in this
Mach-Zehnder interferometer setup.
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4.2.3 Current-current correlations

For completeness, we also derive the current-current correlations obtained in the struc-
ture. For the symmetric interferometer, δL = 0, we can simply express the current op-
erator in lead 2 as I2 = (−1)nvI1. Thus the cross-correlation S12 = h

2 〈{∆I1,∆I2}〉 =

(−1)nv h2 〈{∆I1,∆I1}〉 = (−1)nvS11 is equal to ± the autocorrelation of the current in
lead 1 . In particular, cross-correlations can be switched between positive and negative
values by tuning the magnetic field in the superconductor. Note that if we want to ob-
tain the cross-correlations with the superconducting lead s, we can use such relations as
S11+S12+S1s = 0 that come from the conservation of charge. The current autocorrelation
in the incoming lead is simply the sum over fluctuations in the electron and hole channel

S11 =
e2

h

∫ ∞
0

dE (n1,e(1− n1,e) + n1,h(1− n1,h)) , (4.39)

where n1,e is the occupation of electrons in lead 1, and n1,h is the occupation of holes in
lead 1. At zero temperature all the correlations vanish; the transport is noiseless.

In the nonsymmetric case we find 〈I2〉 = cosφ〈I1〉 and the current autocorrelation has
an additional term

S22 = S11 +
e2

h

∫ ∞
0

dE sin2 φ(n1,e − n1,h)2 (4.40)

The extra noise is attributed to probabilistic partitioning of incoming electrons in lead 1
into electrons or holes in lead 2.

4.3 Hanbury Brown-Twiss interferometer

The form of the conductance of the Mach-Zehnder interferometer shows the same pe-
riodicity as a normal (non-superconducting) interference experiment. Hence, there is a
need for further signatures of Majorana physics beyond the Mach-Zehnder setup. The
structure we have in mind is a Hanbury Brown-Twiss (HBT) type interferometer built
on the surface of a topological insulator. This setup is inspired by recent proposals
[Fu09b, Akhmerov09, Bose11, Chung11] and is related to the two-particle Aharonov-Bohm
effect [Samuelsson04]. We calculate the current cross-correlations in the two outgoing leads
of this interferometer and predict the possibility to switch between negative and positive
current cross-correlations by tuning the magnetic flux threading the superconductor. Pos-
itive cross-correlations are remarkable since non-interacting fermions will always show a
negative sign [Büttiker92]; see, however, [Martin96, Börlin02, Samuelsson02]. The cross-
correlations are predicted to be temperature-independent in a reasonable range of temper-
ature and at low voltages. As in [Chung11] we find that the cross-correlations vanish when
only one source is active as the consequence of the transport through Majorana modes.

We then consider a setup that contains an additional quantum point contact (QPC),
similarly as in [Fu09b]. Strikingly, the partition noise associated to the quantum point
contact is predicted to vanish, which is an evidence of the neutrality, or equivalently, the
Majorana nature, of the charge carriers.
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Figure 4.5: Hanbury Brown-Twiss type interferometer. A grounded superconductor sur-
rounded by four magnetic domains is placed on the surface of a three-dimensional topo-
logical insulator. The terminals 1, 2, 3, and 4 are connected to the outside circuit and
biased at potentials V1, . . . , V4 respectively. The magnetizations are chosen such that Dirac
electron states at leads 1, 2, 3, and 4 exist and propagate in the direction of the double
arrows. Electrons and holes can enter the interferometer at leads 1 and 3, Majorana
fermions propagate along the arms A,B,C, and D in the direction of the single arrows and
electrons and holes leave through leads 2 and 4. A magnetic flux in the form of nv vortices
threading the superconductor will control the phase difference between the arms of the
interferometer.
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Setup

We propose to realize a Hanbury Brown-Twiss type interferometer consisting of a grounded
superconductor surrounded by four magnetic domains, as shown in Fig. 4.5. Incoming
electrons (holes) are associated to the operators ψ1,e(h), ψ3,e(h), outgoing electrons (holes)
to ψ2,e(h), ψ4,e(h) and intermediate Majorana fermions to γa,b,c,d. Combining the previous
result for the scattering matrix of the Dirac-Majorana converter, see Eq. (4.31), the total
scattering matrix is straightforward to compute. The result is


ψ2,e

ψ2,h

ψ4,e

ψ4,h

 =
1

2


1 1 1 1
1 1 −1 −1
1 −1 η −η
1 −1 −η η




ψ1,e

ψ1,h

ψ3,e

ψ3,h

 , (4.41)

where η = ±(−1)nveikδL, δL = La + Ld − Lb − Lc is the arm length asymmetry and
k = E/~vM is the wavenumber at energy E. This scattering matrix is exact at zero
energy but remains valid for E � (vM/vF )∆, where vM is the Majorana fermion velocity
and vF the Fermi velocity at the surface of the bare topological insulator. We also chose
a gauge to concentrate the whole phase shift on the arm D of the interferometer.

For topological reasons, one-particle quantities are not sensitive to the enclosed flux in
this structure: because of the chiral nature of the Majorana states, no one-particle state
will enclose the flux. One incoming electron or hole is scattered with equal probability to
a hole or an electron at lead 2 or 4. The outgoing currents thus vanish on average. This
vanishing conductance is a first hallmark of Majorana fermions: in a standard setup with
Andreev processes this could occur only accidentally, and small perturbations would give
rise to a nonzero conductance. However a vanishing conductance could in principle be due
to an interrupted circuit and has to be complemented by an additional measurement of,
e.g., the current autocorrelation discussed below.

On the other hand, when both sources are active we expect to see a manifestation of
an interesting two-particle Aharonov-Bohm effect [Samuelsson04, Neder07] for Majorana
fermions. As an example consider two incoming electrons in leads 1 and 3

ψ1,eψ3,e =− (ψ2,eψ2,h + η∗ ψ4,eψ4,h)/2

+ (η∗ − 1)(ψ2,eψ4,e − ψ2,hψ4,h)/4

+ (η∗ + 1)(ψ2,hψ4,e − ψ2,eψ4,h)/4 . (4.42)

The current cross-correlations between leads 2 and 4 are thus expected to be sensitive
to the parity of the number nv of enclosed vortices through the phase parameter η. In
particular, as shown later, it is possible to switch between positive and negative cross-
correlations by tuning the magnetic field threading the superconductor. As a side remark,
note that post-selecting events with one fermion per lead for η = ±1 yields maximally
entangled pairs in particle-hole space, and we can equivalently speak of antibunching
[Büttiker92].
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Vanishing conductance

The current operators are given by Ij = e
h

∫
dE (b†j(E)bj(E) − a†j(E)aj(E)). Expressing

I2 and I4 in terms of the incoming modes gives

I2 = − e

2h

∫ ∞
0

dE (a†1(E) + b†1(E))(a3(E) + b3(E)) + h.c. (4.43)

I4 = −η e
2h

∫ ∞
0

dE (a†1(E)− b†1(E))(a3(E)− b3(E)) + h.c. (4.44)

Since the different reservoirs of incoming electrons are uncorrelated, the average current
vanishes 〈I2,4〉 = 0 as was expected.

Switching between positive and negative current-current cross-correlations

The current-current cross-correlation

S24 = h
1

2
〈{I2, I4}〉 = −e

2

h

∫ ∞
0

dE Re (η(E))(n1,e − n1,h)(n3,e − n3,h) (4.45)

is sensitive to the magnetic flux through the real part of η, Re (η) = (−1)nv cos kδL. At
equilibrium S24 = 0; i.e., there is no thermal noise in this quantity (electrons and holes
compensate each other). This temperature independence is expected to hold as long as
kBT � (vM/vF )∆. With a voltage bias configuration V1 = V3 = V , V2 = V4 = 0 (with
respect to the potential of the superconductor), temperatures such that kBT � eV and
an approximately symmetric interferometer, δL� ~vM/eV ,

S24 = (−1)nv+1 e
2

h

∫ ∞
0

dE (ne + nh) = (−1)nv+1 e
2

h
e|V | . (4.46)

Thus, the sign of the cross-correlation is given by the parity of the number of vortices.
The possibility to achieve positive cross-correlations for fermions is attributed here to
electron-hole conversions.

Current-current autocorrelations

The remaining cross-correlations are easily computed, we get S13 = S23 = S14 = S24 =
0 using the above expressions for I3,4 and because the reservoirs 1, 2 are uncorrelated.
Also S12 = 0 for the same reason, and finally the autocorrelations of the incoming leads
S11(22) = e2

h

∫
dE (n1(2)e(1− n1(2)e) + n1(2)h(1− n1(2)h)) present no special properties.

We now look at the current autocorrelations in the outgoing leads. While the outgoing
current is zero on average, it is carried by electrons and (the same number of) holes.
Current fluctuations are thus expected to be relevant. Indeed,

S22 = S44 =
e2

h

∫ ∞
0

dE (n1,e + n1,h + n3,e + n3,h)− (n1,e + n1,h)(n3,e + n3,h) (4.47)

At zero bias, this reduces to the usual Johnson-Nyquist noise S22 = 4e2

h kBT , while for
voltages V2 = V4 = 0, V1 = V3 = V and kBT � eV , we obtain a quantized shot noise
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Figure 4.6: Modified Hanbury Brown-Twiss interferometer. Majorana excitations will
propagate along the boundaries of the two triangular superconducting structures with
phases ϕ1, ϕ2. An additional short gapped channel appears at the domain wall between the
two superconducting regions, forming a quantum point contact characterized by reflection
and transmission amplitudes r, t. The setup is similar to the one proposed in Ref. [Fu09b].

result S22 = e3

h |V |, which is 4 times larger than the maximal expected shot noise due to
a beam splitter of chiral electrons. This remarkable result can be explained by noting
that in each scattering event both outgoing electrons and holes contribute to the charge
fluctuations, while giving a zero average current as a consequence of the perfect electron-
hole symmetry imposed by the Majorana conversion.

4.3.1 Point contact in the Hanbury Brown-Twiss interferometer

We would now like to discuss a second possibility to obtain a signature of Majorana
fermions by adding a QPC to the previous setup; see Fig. 4.6. A novel feature will appear
in the noise properties, which we want to study in the same spirit as in the previous
section.

As explained in [Fu09b], the transmission and reflection amplitudes t, r of the QPC
can be strongly tuned by altering the geometry of the QPC itself, or by changing the
phase difference ϕ between the two superconducting parts. A narrow constriction would be
dominated by direct tunneling and thus hardly sensitive to the phase difference. Therefore,
the geometry we want to consider is closer to a line junction supporting a non-chiral
Majorana channel on its own. By changing ϕ = ϕ1−ϕ2 from ϕ = 0 to ϕ = π, the channel
appearing at the interface of the two superconductors can be tuned from closed (t � 1)
to fully open (t . 1) at zero energy. For intermediate values of the phase, the channel is
gapped and the transmission amplitude strongly depends on energy.

We would first like to look at the limiting cases. For t = 1, r = 0, the upper and
lower channels are not connected by the QPC. As a consequence, the setup effectively
reduces to two independent copies of a Mach-Zehnder interferometer between terminals 1
and 2 (3 and 4) (see Fig. 4.6). The full current-current correlation matrix SMZ+MZ for the
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outgoing leads is easy to obtain in that case: the cross-correlations vanish since they are
not connected in any way, and the auto-correlations are given in Table 4.1. For t = 0, the
setup is equivalent to the HBT interferometer of the previous section, whose correlation
matrix SHBT is given by Eqs. (4.45), (4.47). At intermediate values of t, we use the same
formalism as for the HBT setup, taking the QPC into account in the scattering matrix:

ψ2,e

ψ2,h

ψ4,e

ψ4,h

 =
1

2


η1 − t η1 + t r r
η1 + t η1 − t −r −r
r −r −η2 + t η2 + t
r −r η2 + t −η2 + t




ψ1,e

ψ1,h

ψ3,e

ψ3,h

 . (4.48)

Here, η1(2) is the interferometric phase factor for Majorana fermions around the upper
(lower) superconductor.

In this case, the average currents do not identically vanish. In fact the conductances
G12 = G34 = e2

h |t| are proportional to the transmission amplitude. This allows to experi-
mentally access the QPC properties. The two remaining conductances G14 and G32 still
vanish.

We now focus on the quantities of interest, namely the current-current correlations
S22, S44, and S24. The auto-correlation reads

S22 =

∫ ∞
0

dE
e2

h
R(n1,e + n1,h + n3,e + n3,h − (n1,e + n1,h)(n3,e + n3,h))

+
e2

h
T (n1,e(1− n1,e) + n1,h(1− n1,h) + (n1,e − n1,h)2(Re η1)2) , (4.49)

and has two contributions. The first one, multiplying the reflection probability R = |r|2
at the QPC, is the auto-correlation of the interferometer without the point-contact, see
Eq. 4.47). The second term, multiplying the transmission probability T = |t|2 at the QPC,
is the auto-correlation of the Mach-Zehnder interferometer, see Eq. (4.40). The latter oscil-
lates with twice the phase acquired by a Majorana fermion in the loop. As a consequence,
it is not sensitive to vortices in the superconductor but only to the dynamical phase. The
first term, proportional to R, is not sensitive to any phase. The cross-correlation

S24 = −e
2R

h

∫ ∞
0

dE (n1,e − n1,h)(n3,e − n3,h) Re(η∗1η2) (4.50)

is equal to R times the cross-correlation without the point contact, see Eq.(4.45). It
oscillates with the total phase acquired by a Majorana fermion around the total loop.

Absence of partition noise

In the light of the results 4.49 and 4.50, we readily see that the resulting 2× 2 correlation
matrix, for the two outgoing leads and at a given energy, can be decomposed as

S = R× SHBT + T × SMZ+MZ . (4.51)

The QPC effectively interpolates between the two limiting cases: surprisingly, there are
no mixed terms proportional to RT ; in other words, while there are the (auto and cross-
correlation) noise terms related to the HBT and MZ interferometer present in the structure,
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there is no partition noise. This is one of the main results of this section and is deeply
rooted in the Majorana nature of the excitations transported along the boundaries of the
superconductor.

In the following we give an intuitive explanation of this remarkable feature of Eq. (4.51).
Partition noise in the context of an electronic beam splitter is due to the transport of charge
in discrete units. An incoming electron is coherently split into e.g. two channels, and in
a current measurement the electron will contribute to the current in one, and only one,
outgoing channel. The splitting thereby induces current fluctuations proportional to the
charge of the electron. Majorana fermions, on the other hand, fail to generate electric
current fluctuations since they are neutral. We thus believe that the absence of electronic
partition noise predicted by Eq. (4.51) is a signature of channels supporting Majorana
fermions. Importantly, this absence occurs while the QPC is proven to actually scatter
the fermions because of the dependence on R and T .

4.4 Full Counting Statistics

In the previous section we have studied the average currents and second-order correla-
tions in various interferometers and found signatures of the transport through Majorana
modes. It is natural to ask if other such signatures could hide in higher-order correlations.
Therefore we shall investigate the full counting statistics of the Hanbury Brown-Twiss
interferometer with the additional QPC, see Fig. 4.6, in order to access correlations at all
orders at once.

4.4.1 Formalism

In order to compute the outgoing-current moments to all orders easily, it is useful to define
the characteristic function Λ(χ2, χ4) [Levitov93]

Λ(χ2, χ4) = 〈ei(χ2I2+χ4I4)〉 = 〈eiχ2I2eiχ4I4〉 . (4.52)

It is a function of two new parameters χ2, χ4 called counting variables. The usefulness of
the characteristic function stems from the relations

〈Im2 In4 〉 = (−i∂χ2)m(−i∂χ4)nΛ(χ2, χ4)|χ2=χ4=0 , (4.53)

in other words all the current moments are given by the derivatives of the characteristic
function at the origin, χ2 = χ4 = 0. Moreover, the derivatives of log Λ(χ2, χ4), called the
cumulant generating function, are equal to the current cumulants. For example,

〈(∆I2)2〉〉 = −∂2
χ2

log Λ(χ2, χ4)|χ2=χ4=0 . (4.54)

We now turn to the computation of the characteristic function. In our systems, the
currents contain an electron and a hole contribution: Ij = e(ψ†j,eψj,e−ψ

†
j,hψj,h). Therefore

the exponent χ2I2 + χ4I4 in the expression of Λ takes the form

e (ψ†1,eψ
†
1,hψ

†
3,eψ

†
3,h)S†


χ2 0 0 0
0 −χ2 0 0
0 0 χ4 0
0 0 0 −χ4

S


ψ1,e

ψ1,h

ψ3,e

ψ3,h

 , (4.55)
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where S is the scattering matrix of the Hanbury Brown - Twiss interferometer with a QPC
given by Eq. (4.48). We denote the diagonal central matrix χ. To evaluate the average in
Eq. (4.52), we use the following trick, see [Klich02],

Tr(eΓ(A)eΓ(B)) = det(1 + eAeB) , (4.56)

where A,B are fermionic operators in the single-particle picture and Γ(A),Γ(B) are their
representation on the Fock space (second quantized operators). Using this formula, we
obtain

Λ =
1

Z
Tr(e−βH0ei(χ2I2+χ4I4)) =

1

Z
det(1 + e−βH0eieS

†χS) . (4.57)

We now use Z = det(1 + e−βH0)−1, n = e−βH0

1+e−βH0
the occupation-number operator and

eieS
†χS = S†eieχS to write Λ as

Λ = det
(

1 + n
(
S†eieχS − 1

))
. (4.58)

Or, using the properties of determinants,

Λ = det
(

1 + SnS†
(
eieχ − 1

))
, (4.59)

which is the analogue of the Levitov formula [Levitov93, Klich02].

4.4.2 Full counting statistics of the Hanbury Brown-Twiss interferome-
ter

To analyze the full counting statistics of the Hanbury Brown-Twiss interferometer of Majo-
rana fermions, we plug the expression for the scattering matrix (4.48) into the result (4.59).
The outcome can be cast into the form

Λ = 1 +
∑
s2,s4

Ps2,s4

(
eie(s2χ2+s4χ4) − 1

)
, (4.60)

where s2,4 = −1, 0,+1 and the probabilities Ps2,s4 depend on the occupation of the leads,
the transmission amplitude t of the QPC, and the effective fluxes η1, η2. The probabilities
are related to charge transfer processes of the structure. The probability P0,0 does not
contribute to the sum in Eq. (4.60) because it corresponds to processes where no net
charge is transmitted to either lead 2 or 4. These processes are still important because
they capture the situations where both an electron and a hole are transmitted to the same
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outgoing lead. The probabilities are given by

P±,0 =
1

8
− 2αβγδ ± 1

4
t Re(η1)(α− β)(4γδ + 1) +

1

2
t2 (γδ − αβ) ,

P0,± =
1

8
− 2αβγδ ± 1

4
t Re(η2)(γ − δ)(4αβ + 1) +

1

2
t2 (αβ − γδ) ,

P±,± =
1

16
+ αβγδ − 1

8
(α+ β)(γ + δ) +

1

8
Re(η1η2)(α− β)(γ − δ)

± 1

8
t (Re(η1)(α− β)(1− 4γδ) + Re(η2)(γ − δ)(1− 4αβ))

+
1

8
t2 (Re(η1η

∗
2)(α− β)(γ − δ)− (α− γ)(β − δ)− (α− δ)(β − γ)) ,

P±,∓ =
1

16
+ αβγδ − 1

8
(α+ β)(γ + δ)− 1

8
Re(η1η2)(α− β)(γ − δ)

± 1

8
t (Re(η1)(α− β)(1− 4γδ)− Re(η2)(γ − δ)(1− 4αβ))

− 1

8
t2 (Re(η1η

∗
2)(α− β)(γ − δ) + (α− γ)(β − δ) + (α− δ)(β − γ)) ,

(4.61)

where we introduced the symmetrized occupation numbers

α =
1

2
− n1e , (4.62)

β =
1

2
− n1h , (4.63)

γ =
1

2
− n3e , (4.64)

δ =
1

2
− n3h , (4.65)

to simplify the expressions.
The sum of the probabilities yields∑

s2,s4

Ps2,s4 −P0,0 =
3

4
− 1

2
(α+β)(γ+ δ)− 4αβγδ− 1

2
t2 ((α− γ)(β − δ) + (α− δ)(β − γ)) ,

(4.66)
hence

P0,0 =
1

4
+

1

2
(α+ β)(γ + δ) + 4αβγδ +

1

2
t2 ((α− γ)(β − δ) + (α− δ)(β − γ)) , (4.67)

since
∑

s2,s4
Ps2,s4 = 1.

The probabilities Ps2,s4 take into account all the physical processes that may occur in
the interferometer. Processes with si = +1(−1) correspond to an outgoing electron (hole)
in lead i, while processes with si = 0 correspond to processes with no outgoing particles
in lead i or to processes with an outgoing electron and a hole in lead i.

To understand the features of the probabilities in more details, it is useful to distin-
guish between 5 classes of processes depending on the number of incoming particles they
involve: the trivial 0-particle process that contributes solely to P0,0; 1-particle processes
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that contribute to P0,± and P±,0; 2-particle processes that contribute to P±,±, P±,∓, and
P0,0; 3-particle processes that contribute to P0,± and P±,0; and the trivial 4-particle process
that also only contributes to P0,0.

4.4.3 Factorization of the process probabilities

The limit of the HBT interferometer is readily obtained by setting t = 0 in Eq. (4.61).
In the opposite limit, t = 1, we have two uncorrelated Mach-Zehnder interferometers: we
expect that the characteristic function factorizes, or, equivalently, that

Ps2,s4 = P (2)
s2 P

(4)
s4 . (4.68)

Indeed, it turns out that

P
(2)
± =

(
1

4
− αβ ± 1

2
Re(η1)(α− β)

)
,

P
(2)
0 = 2αβ +

1

2
, (4.69)

and equivalently for P (4) with the substitutions (α, β, η1) → (γ, δ, η2), yields a proper
factorization of the probabilities for the case t = 1.

For the general case, t 6= 1, a complete factorization of the form (4.68) is not expected
to be possible. However the result (4.69) suggests to introduce the following t-dependent
quantities

P
(2)
± (t) =

1

2

(
1

2
− 2αβ ± t Re(η1)(α− β)

)
,

P
(2)
0 =

1

2
+ 2αβ , (4.70)

and similarly for P (4). It is then easily verified that we can write more compactly all the
probabilities in Eq. (4.61) as

P0,0 = P
(2)
0 P

(4)
0 − 1

2
r2 ((α− γ) (β − δ) + (α− δ) (β − γ)) ,

P±,0 = P
(2)
± (t)P

(4)
0 − 1

2
r2 (γδ − αβ) ,

P0,± = P
(2)
0 P

(4)
± (t)− 1

2
r2 (αβ − γδ) ,

P±,± = P
(2)
± (t)P

(4)
± (t) +

1

8
r2 ((α− γ) (β − δ) + (α− δ) (β − γ) + Re (η1η2) (α− β) (γ − δ)) ,

P±,∓ = P
(2)
± (t)P

(4)
∓ (t) +

1

8
r2 ((α− γ) (β − δ) + (α− δ) (β − γ)− Re(η1η2) (α− β) (γ − δ)) .

(4.71)

Remarkably all the probabilities factorize into products of two Mach-Zehnder like pro-
cesses, up to some corrections proportional to the reflection probability r2. In this form,
the structure behind the probabilities is much more apparent. Namely, the probabili-
ties (4.70) capture the processes where particles are coming from one source only. The
corrections, all proportional to r2, describe the additional correlations that arise when
both sources are active.
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4.4.4 Results

In order to get all cumulants of the outgoing currents, we have to consider the function

1

h

∫ ∞
0

dE log Λ =
1

h

∫ ∞
0

dE log

(
1 +

∑
s2,s4

Ps2,s4

(
eie(s2χ2+s4χ4) − 1

))
. (4.72)

The cumulants C(m,n) are given by the derivatives at the origin

C(m,n) =

[
(−i∂χ2)m(−i∂χ4)n

1

h

∫ ∞
0

dE log Λ

]
χ2=χ4=0

. (4.73)

Let us check first if we can rederive the results of Sec. 4.3. For example, the average
current in lead 2 is given by

〈I2〉 =C(1, 0) =
e

h

∫ ∞
0

dE
∑
s2

s2

∑
s4

Ps2,s4

=
e

h

∫ ∞
0

dE (P++ + P+0 + P+− − P−+ − P−0 − P−−)

=
e

h

∫ ∞
0

dE tRe(η1)v1

=
e

h

∫ ∞
0

dE tRe(η1)(n1e − n1h) . (4.74)

making contact to the previously obtained result. Similarly the current-current cross-
correlation

S24 =C(1, 1) =
e2

h

∫ ∞
0

dE
∑
s2,s4

s2s4Ps2,s4 −

(∑
s2,s4

s2Ps2,s4

)(∑
s2,s4

s4Ps2,s4

)

=− e2R

h

∫ ∞
0

dE (n1,e − n1,h)(n3,e − n3,h) Re(η∗1η2) (4.75)

is the same as Eq. (4.50).
In order to go further, let us now specify a set of parameters which capture the most

interesting physics. Temperature and interferometer asymmetry do not bring any new
effects, but only smear out certain quantities. We will thus set δL = 0 (equivalently we
can also study the zero-bias properties even with δL 6= 0), or η1,2 = ±1, and T = 0.
Moreover we will adopt a symmetric voltage configuration where V1 = V3 = V > 0 to
access the nontrivial multiparticle processes. A plot of the resulting cumulants is shown
in Fig. 4.7. Two observations can be drawn from this plot. First, it appears that there is
a relation of the form |C(m,n)| = |C(m + n, 0)|. Second, the cumulants C(n, 0) seem to
be connected to the cumulants of the binomial distribution, albeit the relation is hard to
pinpoint visually. We shall investigate this further in the next section.

The relation |C(m,n)| = |C(m + n, 0)| holds because we treat a special case : first
P0± = P±0 = 0 and second, for η1,2 = ±1, it turns out that either P++ = P−− = 0
or P+− = P−+ = 0. It then follows that S(χ2, χ4) is either a function of χ2 − χ4 or a
function of χ2 + χ4. The cumulants of the k-th order C(m,n), m + n = k, obtained by
taking m derivatives of S with respect to χ2 and n derivatives with respect to χ4, are
thus exactly the same in the latter case (function of χ2 + χ4) and only change sign in the
former (function of χ2 − χ4).
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Figure 4.7: Cumulants C(m,n) as a function of t (transmission amplitude of the QPC) at
zero temperature and for η1 = 1, η2 = −1. The vertical axis is in arbitrary units and we
set V1 = V3 = e = h = 1.

4.4.5 Half-charge transfers

The cumulants C(n, 0) are obtained from the cumulant generating function

log Λ(χ) = log
(
1 + p+

(
eiχ − 1

)
+ p−

(
e−iχ − 1

))
, (4.76)

obtained from the full cumulant generating function (4.59) by summing over the outcomes
in lead 4, and where

p± =

(
1± η1t

2

)2

(4.77)

are the probabilities of transfering an electron or a hole into lead 2. Note that we still
assume T = 0, η1,2 = ±1, V1 = V3 = V > 0.

We are now ready to make the connection with the binomial process. Basically, it
turns out that

log Λ(χ) =2 log

(
1 +

1 + η1t

2
(eiχ/2 − 1) +

1− η1t

2
(e−iχ/2 − 1)

)
. (4.78)

This means that we can interpret unit-charge transfer processes as two independent half-
charge transfer processes (notice the 2 multiplying the log and in χ/2). In other words,
two independent binomial processes occuring with probability p = (1 + η1)/2.

The decomposition of unit-charge transfers into two half-charge tranfers strongly sug-
gests the implication of new half-electron (and/or half-hole) particles that always come
in pairs. Is this a signature of Majorana fermions? Maybe, but we must remain careful.
First, Majorana fermions are neutral, not half charged. However it might still be possible
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to interpret the χ/2 factors as describing half-fermion transfers rather than half-charge
transfers. Moreover, this decomposition is only valid for a symmetric interferometer, or at
zero bias. This could be potentially attributed to a special property of the k = 0 Majorana
mode (which is self-adjoint) that the k 6= 0 modes to not possess.

4.5 Conclusion

The results for the zero-temperature conductance and noise properties of normal elec-
tron and Majorana interferometers in a two-terminal (Mach-Zehnder) and four-terminal
(Hanbury Brown-Twiss) setup are summed up in Table 4.1.

Normal Majorana

GMZ
12 [e2/h] 1

2 [1 + cos(2πφ/φ0)] cos(2πφ/φ0)

SMZ
22 [e3V/h] 1

8 [1− cos(4πφ/φ0)] 1
2 [1− cos(4πφ/φ0)]

GHBT
12 [e2/h] 1/4 0

SHBT
22 [e3V/h] 1/4 1

SHBT
24 [e3V/h] −1

4 [1 + cos(2πφ/φ0)] − cos(2πφ/φ0)

Table 4.1: Summary of conductance and noise properties of normal electron (as in
Ref. [Samuelsson04] for the HBT setup) and Majorana interferometers at zero temper-
ature. In the Mach-Zehnder (MZ) interferometer, 1(2) labels the incoming (outgoing)
lead. In the Hanbury Brown-Twiss (HBT) interferometer, 1 and 3 (2 and 4) refer to the
incoming (outgoing) leads.

To summarize, we have analyzed a Hanbury Brown-Twiss type interferometer for Ma-
jorana fermions. We have calculated its conductance and noise properties. The sign of the
cross-correlations of the outgoing currents of the interferometer is predicted to be positive
if the parity of the number of vortices threading the superconductor is odd. Our main
results are three signatures for the Majorana nature of the transport channels defined by
domain walls between superconducting and magnetic regions placed on the surface of a
three-dimensional topological insulator. On the one hand, the average charge current in
the outgoing leads vanishes since there are symmetric probabilities for outgoing electrons
or holes, see the discussion before Eq. (4.42). This vanishing conductance needs to be
complemented by a check that the structure is functional, which is provided by the finite
current auto-correlation. On the other hand, we find a finite zero-temperature shot noise
at the output port of the interferometer even for a vanishing average current reflecting
the finite fluctuations of the Majorana particle around charge neutrality. Finally, our
calculations predict the absence of electronic partition noise in a quantum point contact,
whereas the parameter dependence of the scattering matrix proves that the point contact
actually scatters the fermions. These signatures will be an important help in verifying the
existence of Majorana excitations in interferometric structures at the surface of topological
insulators.

Finally, by studying the full counting statistics of the interferometers we found that
the charge transfer processes can be described as two independent half-charge transfers.
It is tantalizing to interpret this as a further signature of Majorana-mediated transport,
but further investigations are required to promote this to a definitive statement.
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Chapter 5

Weak-value amplification

Chapters 5 and 6 are adapted from the publication:

G. Strübi and C. Bruder, Measuring Ultrasmall
Time Delays of Light by Joint Weak Measurements,
Phys. Rev. Lett. 110, 083605.

Twenty years after the proposal [Aharonov88] of Aharonov, Albert, and Vaidman, sev-
eral experiments have demonstrated the possibility to measure tiny physical effects using
the so-called weak-value amplification scheme [Hosten08, Dixon09, Hogan11, Pfeifer11,
Gorodetski12, Zhou12, Xu13, Jayaswal14, Salazar-Serrano14]. These ideas have paved the
way for new approaches to precision measurements in general, and have triggered a great
deal of further theoretical and experimental developments.

Recently, Hosten and Kwiat [Hosten08] were able to experimentally confirm the spin
Hall effect of light by measuring a polarization-dependent displacement of a laser beam
to a precision of 1 Å using weak-value amplification. Gorodetski et al. [Gorodetski12]
investigated the plasmonic spin Hall effect. Dixon et al. [Dixon09] determined the angle
of a mirror to a precision of the order of 500 frad by measuring deflection of light off
the mirror. Several experiments were proposed in order to enhance the precision of the
measurement of longitudinal phase shifts of light [Brunner10], or amplify the single-photon
nonlinearity to a measurable effect [Feizpour11]. An application to charge sensing in a
solid-state context has also been put forward [Zilberberg11]. The advantages of weak-value
amplification schemes for suppressing technical noise were investigated in [Feizpour11,
Starling09, Nishizawa12], and [Kedem12] showed how technical noise could even improve
the precision in this scheme. Ways to optimize the initial meter wavefunction were studied
in [Susa12].

There was a number of attempts to go beyond the weak-value formalism. This in-
cludes, for instance, higher-order expansions for nearly orthogonal pre- and post-selected
states [Geszti10, Wu11, Nakamura12, Pang12, Kofman12], or the use of full counting statis-
tics [Di Lorenzo12], and orbital-angular-momentum pointer states [Puentes12]. The effect
of decoherence was investigated in Ref. [Knee13]. The limits of amplification for arbitrary
coupling strength were addressed in [Koike11, Zhu11]. Connections of the weak-value
formalism with the theoretical tools of precision metrology were made in [Hofmann11,
Hofmann12]. Weak values were also related to quasiprobability distributions of incompat-



60 Chapter 5. Weak-value amplification

ible observables [Bednorz10].
The goal of this chapter is to explain what is the weak-value amplification technique,

how it works (Sec. 5.2) and why it is useful (Sec. 5.3). We then proceed to study its
limitations to understand why a generalization is desirable (Sec. 5.4). To get there we
start by reviewing briefly the necessary material that leads to the definition of the weak
value introduced in Ref. [Aharonov88].

5.1 Basics of quantum measurements

According to the basic postulates of quantum mechanics, the result of any measurement
of a system in state |ψ〉 is an eigenvalue a of an observable Â. Moreover, just after the
measurement the state of the system collapses into the respective eigenstate |a〉 of Â. This
implies the intervention of mysterious and nonunitary dynamics outside of the Schrödinger
equation. But we shall not dive deeper into this so-called measurement problem. Instead,
we are content to stay within the realm offered by the projection postulate.

However, it is possible, we dare say necessary, to go beyond the single-step collapse
description of measurement processes. Any real measurement of a system S must involve
a transfer of information from S to another physical system, a meter, M . It is perfectly
valid to describe this process alone using quantum mechanics without invoking any collapse
mechanism. The subsequent transfer of information from the meter to our classical world
can then be described satisfactorily with the projection postulate for our purposes. In
this section, we shall see how the concepts of measurement strength and weak values arise
naturally from this framework.

5.1.1 Von Neumann measurements

We describe here in details how the mean value of an observable Â of a quantum system can
be obtained by coupling the system to an external meter degree of freedom, see Fig. 5.1a.
The coupling is described by the time-dependent interaction Hamiltonian

ĤI(t) = kδ(t)x̂Â . (5.1)

First, the meter is initialized in a zero-mean Gaussian state

ψM (p) =

(
1

2π∆2

)1/4

exp(−p2/4∆2) , (5.2)

and the system is in the (unknown) state |i〉. The second step is to let the meter and the
system interact. We assume that the internal dynamics of the system and the meter are
much slower than the interaction process and can be neglected. The evolution operator
reads

Û = exp

(
−i
∫
dt ĤI(t)

)
= exp(−ikq̂Â) . (5.3)

After the interaction the total state is an entangled superposition of the meter in a Gaus-
sian state peaked at position ka and the system in state |a〉:

|Ψ〉 =
∑
a

|ψM (p− ka)〉 ⊗ 〈a|i〉 |a〉 . (5.4)
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Strong

Weak

S M

a)

b)

c)

Figure 5.1: (a) A quantum system S and meter M interact according to the Hamiltonian
HI(t) = kδ(t)x̂Â, where Â is an observable of S and x̂ is the operator of M conjugate
to p̂. (b) If the interaction constant k is large, the interaction entangles the system and
the meter strongly. Each value of the pointer p is unambiguously associated to a single
eigenstate |ai〉 of Â. (c) For a small interaction constant k, the interaction entangles the
system and the meter weakly. A readout p of the pointer is associated to a coherent
superposition of eigenstates |ai〉.

At the last step, the meter pointer p̂ is measured projectively (we have not gotten rid
of the projection postulate). The probability density P (p) of obtaining the outcome p is
given by

P (p) =
∑
a

| 〈a|i〉ψM (p− ka)|2 (5.5)

Because of the entanglement in Ψ prior to the projection, the system state is also affected
by the projection. The final state is no longer entangled and reads

|Ψ〉′ = |p〉 ⊗
∑
a

〈a|i〉ψM (p− ka)√
P (p)

|a〉 . (5.6)

The collapse of the meter into the eigenstate |p〉 acts back onto the state of the system;
this back-action is unavoidable in quantum mechanics [Wiseman10].

The average value of the meter variable p allows us to extract the average value of the
observable Â in the system state |i〉

〈p̂〉 = k 〈i| Â |i〉 . (5.7)

The averaging process entails a repetition of the measurement procedure.
There are two qualitatively different situations: either the distance between two peaks,

kδa, is larger than their widths ∆, see Fig. 5.1b; or kδa ≤ ∆, see Fig. 5.1c. In the first case
we speak of a strong measurement, in the second case we speak of a weak measurement.
In a strong measurement, each result of the meter p corresponds to a single eigenvalue a
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of Â; the system collapses to the state |a〉. In a weak measurement, a single result p of the
meter is compatible with several system states. Correspondingly, the state of the system
is less disturbed by the measurement procedure; some degree of coherence between the
different eigenstates |a〉 remains.

5.1.2 Kraus operators

It is possible to abstract the meter away in the description of the measurement effect
on the system. The idea is to write the whole measurement process using one family of
operators K(p), called Kraus operators, which act on the system and depend explicitly
on the possible measurement outcomes p and implicitly on the meter initial wavefunction
and the system-meter coupling.

In our previous example, see Eq. (5.6), we can write the final state of the system as

|ψ〉′ = K(p) |i〉
〈i|K†(p)K(p) |i〉

, (5.8)

where the Kraus operators are given by

K(p) =
∑
a

ψM (p− ka) |a〉〈a| . (5.9)

Moreover, the probability of obtaining the result p is given by

P (p) = 〈i|K†(p)K(p) |i〉 . (5.10)

Note that while the Kraus operators act on the system alone, the measurement outcomes
p are really eigenvalues of an observable of the meter.

It is possible to recover the results of the projection postulate by choosing the Kraus
operators K(a) = |a〉〈a|, where a takes all the values in the spectrum of the system
observable Â. Therefore the description of a measurement process using arbitrary Kraus
operators is a strict generalization of projective measurements.

The possible outcomes and the form of the operators K(p) are specified by the mea-
surement model. The only necessary condition to impose upon the operators K(p) is the
completeness relation ∫

dp K†(p)K(p) = 1 (5.11)

to ensure the normalization of the probability distribution of outcomes. The positive
operators E(p) = K†(p)K(p), called effects, form what is sometimes called a probability-
operator-valued measure (POVM) on the space of outcomes p [Wiseman10].

5.1.3 Weak value

The weak value Aw of an observable Â is defined by

Aw =
〈f | Â |i〉
〈f |i〉

; (5.12)

it depends on the choice of an initial state |i〉, and a final state |f〉. The weak value was
first introduced in the seminal work of Aharonov, Albert, and Vaidman [Aharonov88]. In
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1.

Pre-selection

2.

Interaction

3.

Post-selection

Figure 5.2: The three steps of the weak-value measurement protocol. First, the system
and meter are prepared in states |i〉 and |ψM 〉 respectively (pre-selection). Second, they
interact according to the evolution operator exp(−ikq̂Â) and become weakly entangled.
Third, the system and the meter are strongly measured. The result is discarded if S is
not found in state |f〉 (post-selection).

a sense, the weak value is a generalization of the more common average value. If the final
state is equal to the initial state, |f〉 = |i〉, the weak value reduces to an average value
over the state |i〉: Aw = 〈Â〉i.

There are however big differences between weak and average values. Most importantly
the weak value Aw is complex and unbounded, in particular it need not lie within the
spectrum of Â. At first sight, on would think that such a quantity is not of foremost
significance in quantum measurements. After all the result of a measurement is supposed
to be a real eigenvalue of an observable.

The big surprise is that weak values, more precisely the real and imaginary parts
thereof, exactly correspond to what is read out on the meter in a certain class of measure-
ment. Of course, it is also the reason why they were introduced in the first place. Let us
now see how they arise in practice. We consider a weak measurement of a system S by a
meter M with an additional twist: after the interaction between S and M , both M and S
are strongly measured and then the result given by M is kept if, and only if, S is found to
be in a particular final state |f〉. This last process is known as post-selection. A pictorial
representation of the measurement process is shown in Fig. 5.2.

We consider again the model of a Gaussian meter, see Eq. (5.2). The total state after
the interaction between the meter and the system is given by Eq. (5.4). Now we perform
the post-selection, i.e. a projective measurement of the system. This step can be described
by a Kraus operator acting on the meter

K(f) = 〈f | exp(−ikq̂Â) |i〉 . (5.13)

It k is small we can approximate K(f) by

K(f) = 〈f |i〉 exp(−ikAwq̂) , (5.14)

where Aw is defined in Eq. (5.12).

For a purely real weak-value, the Kraus operator (5.14) is nothing but a translation
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operator of the meter variable p. Therefore a post-selected measurement of p yields

〈p̂〉p.s = kReAw . (5.15)

this result is to be compared to the standard von Neumann measurement result given
in Eq. (5.7). As advertised, the weak value has a direct experimental relevance; it is
the direct result of weak measurement with post-selection. The result (5.15) is quite
remarkable because the interaction exp(−ikq̂Â) generates a superposition of translated
meter with shifts given by kai, where ai are eigenvalues of Â. The interferences between
a subset those states are able to generate a shift that can be much larger, since Aw � ai
for a suitable choice of the initial and final states |i〉, |f〉.

The weak-value protocol opens up the possibility of measuring a nontrivial conditioned
average of the conjugate operator q̂

〈q̂〉p.s. = 〈q̂〉0 + 2k∆2
q ImAw , (5.16)

where 〈q̂〉0 is the average in the initial state of M . Note that without post-selection
the average is trivially 〈q̂〉 = 〈q̂〉0. It is therefore possible to measure both the real and
imaginary parts of the weak value.

Validity of the weak-value approximation

Equation (5.14) is exact up to first order in the expansion of the exponential, but higher
orders will deviate. We thus require the higher order to be negligible, i.e. |kAwq̂|2 � 1.
This has formally no meaning as q̂ is not bounded and this condition is never satisfied.
In fact we want |kAwq|2 � 1 for those values of q where ψM (q) is not negligibly small.
Therefore the condition of validity for weak-value measurements reads

|kAw∆q|2 � 1 . (5.17)

As a consequence, the shift 〈q̂〉p.s. − 〈q̂〉0, see Eq. (5.16), cannot exceed ∆q, the initial
spread of q.

5.1.4 How the measurement of a spin component of a spin-1/2 particle
can turn out to be 100?

To give a concrete example, we now review the original proposal [Aharonov88] of Aharonov,
Albert, and Vaidman of a weak-value measurement of the spin of an electron by a Stern-
Gerlach apparatus. In their scheme, a beam of electrons with a definite initial state

|ψ〉 = ∆−3/2(2π)−3/4e−(x2+y2+z2)/4∆2
e−ip0y (cos(α/2) |↑x〉+ sin(α/2) |↓x〉) (5.18)

is sent through two Stern-Gerlach devices. The electrons propagate along the y-axis,
the x and z axes are transverse. The first device performs a weak measurement of the
z-component of the spin. It can be described by the evolution operator

U = exp

(
iµ
∂Bz
∂z

ẑσ̂z

)
, (5.19)
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where (∂Bz/∂z) is a weak magnetic field gradient along z, µ is the magnetic moment of
the electron, and σ̂z is the Pauli matrix in spin space. This interaction imparts a small
spin-dependent momentum kick to the electrons in the z direction. The second Stern-
Gerlach device measures strongly the x component of the spin. Finally, the z component
of the position of the electrons with spin |↑x〉 is measured on a screen.

In our notations, the role of the system S is played by the spin of the electrons. The
meter M degree of freedom is the z component of the position of the electron. So, a single
particle plays the role of both M and S. The initial state of S is |i〉 = cos(α/2) |↑x〉 +
sin(α/2) |↓x〉, and the final state is |f〉 = |↑x〉. The weak-value of σ̂z reads

(σz)w = tan(α/2) . (5.20)

The measured conditional position is thus

〈z〉p.s. = `
〈pz〉p.s.

p0
=

`

p0
µ
∂Bz
∂z

tan(α/2) , (5.21)

where ` is the distance between the first Stern-Gerlach device and the measuring screen.
The weak-value (σz)w can be made very large by taking α → π, say (σz)w = 100. In
that sense, the measured shift corresponds to non-post-selected electrons with a z-spin
component of 100. We want to stress the “as-if” character of the interpretation; the actual
spin component of an electron in the experiment is ±1/2. In particular, the measured value
is not directly a spin value and this led to some controversy early on [Peres89, Leggett89]
about the relevance of this scheme and weak values in general.

Aharonov, Albert, and Vaidman also commented in the same work that we can turn
the scheme around to measure small magnetic field gradients. The idea is that a large weak
value amplifies (∂Bz/∂z) in the measurement of 〈z〉p.s., see Eq. (5.21). This observation
forms the basis of the weak-value amplification scheme, which we develop in Sec. 5.2.

5.1.5 Measuring the wavefunction

One nice application of the concept of weak value is the ability to directly measure the
wavefunction ψ(x) itself (not only its modulus squared) as proposed in Ref. [Lundeen11].
For this, take the operator C = |x〉 〈x| and post-select on the state |p = 0〉 (of the system,
not the meter). Then

Cw =
〈p = 0|x〉 〈x|ψ〉
〈p = 0|ψ〉

=
1

ψ̃(p = 0)
ψ(x) , (5.22)

where ψ̃(p = 0) is the component of the wavefunction at zero momentum. Now by scanning
over each value of x and measuring both components of the weak value, we obtain the full
wavefunction up to a global factor ψ̃(p = 0)−1 which we can remove by a normalization
condition. This is a somewhat amazing result, the wavefunction acquires a physical reality:
it is directly measurable. Granted we have to repeat many actual measurement steps
(this might provide a loophole for epistemologists) but it is still a big step forward from
the view that only |ψ(x)|2 is measurable. This wavefunction measurement was realized
experimentally for the transverse wavefunction of a single photon [Lundeen11]. In the
same spirit, weak measurements were used to “measure the trajectory” of photons in a
double-slit experiment [Kocsis11].
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5.2 Weak-value amplification

A weak-value amplification experiment is in its essence nothing but a weak-value measure-
ment. However the weak value itself is no longer a goal but rather an amplification tool.
Our goal is to measure the coupling constant k that couples a system and a meter through
an evolution operator of the type Û = exp(ikÂq̂), where Â acts on the system, and q̂ acts
on the meter. For convenience we repeat the outcome of weak-value measurement, see
Eqs.(5.15,5.16), here

〈p̂〉p.s = kReAw , (5.23)

〈q̂〉p.s. = 2k∆2
q ImAw . (5.24)

From these equations we easily understand the idea of the weak-value amplification tech-
nique: we can use a tailored large weak value to amplify a (small) “coupling constant” k
of interest. It is also clear that there are two flavours of weak-value amplification; we may
use either the real part of the weak value or its imaginary part.

The shift of interest to the coupling constant may appear strange at first sight. However
it is precisely what is interesting in some cases. For instance, the spin Hall effect of
light [Hosten08] is a minute coupling between the polarisation and transverse position
of photons that occur at the interface of materials with different indices of refraction.
The coupling translates into a polarisation dependent transverse displacement of light
traversing the interface. The displacement is very small, of the order of a few nanometers;
this effect naturally realizes a weak measurement of the light polarization, where the role
of the meter is played by the transverse position of the light. A direct measurement of the
displacement is beyond the resolution of photodetectors for direct measurement. This is
where the weak-value amplification technique enters the game [Hosten08].

We now want to study weak-value amplification from a quantitative standpoint. We
start with a nonamplified technique and compare it to real and imaginary weak-value
amplification. In particular, we are interested to see how the signal-to-noise compares in
the two cases and what are the technical advantages and drawbacks of the methods.

5.2.1 Scheme without amplification

The naive method to measure k, without amplification, is a simple three-step process very
similar to a von Neumann measurement:

1) Prepare the two-level system in a definite, known, state |i〉 and the meter in, say,
the Gaussian state ψM (p) ∝ exp(−p2/4σ2).

2) Let the system and meter interact and evolve according to Û .

3) Readout the meter, i.e. measure strongly p̂.

The process is repeated N times and produces the set of N results {pi}. We now take
the statistical average p̄ =

∑
pi/N to obtain an estimate of the quantum-mechanical

average 〈p̂〉 = k 〈i|A |i〉 from which it is easy to extract the desired value of k. Even in the
absence of technical noise, the results will display Gaussian fluctuations due to the original
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uncertainty σ of p̂ in the initial state of the meter. This leads to the signal-to-noise ratio

SNR =
√
N
k〈Â〉
σ

, (5.25)

that displays the statistical scaling
√
N because the N measurements are independent.

5.2.2 Real-weak-value amplification

The amplification using the real part of the weak value is a four-step process. The first
three-steps are the same as in the nonamplified case, but there is a fourth step consisting
of the post-selection.

4) Measure strongly the system and see if it is found in a chosen state |f〉. If not,
discard the measurement result pi of the meter.

The process is repeated N times but it does not produce N outcomes because of the post-
selection. Instead it yields on average PpsN outcomes pi, where Pps is the post-selection
probability. This whole scheme is essentially a weak-value measurement provided that k
is small enough to satisfy the weak-value condition k|Aw|/σ � 1. In that case we also
have the relation Pps = | 〈f |i〉 |2.

This time, the statistical average p̄ provides an estimate of 〈p̂〉p.s. = kReAw. In a
certain sense, the signal is thus amplified by the amplification factor

F =
ReAw

〈Â〉
=

Re(〈f | Â |i〉)
〈i| Â |i〉

1

Re(〈f |i〉)
, (5.26)

which is a figure of merit for this scheme.

By a clever choice of the initial and final states |i〉 , |f〉 it is thus possible to obtain a
very large amplification factor. This is the core of the weak-value amplification method.
However, the post-selection adds statistical noise: only PpsN trials produce an output.
Therefore, the signal-to-noise ratio

SNR =
√
PpsN

kRe(Aw)

σ
=
√
N
kRe(〈f | Â |i〉)

σ
(5.27)

is essentially of the same order of magnitude as in the nonamplified case; actually, it
can only be lower. This result may sound disappointing, but it is also expected; there
is no black magic there, and it would have been strange indeed that by throwing out
measurement results we obtain a better signal-to-noise ratio! In fact, the converse is true:
it is surprising that the signal-to-noise ratio does not show a dramatic decrease when
Pps � 1 and most of the meter readouts are ignored.

An important question remains: why bother with the weak-value amplification if there
is no increase in the signal-to-noise ratio? The answer is hidden in the advantages of the
method when a finite detector resolution and technical noise are considered. But before
analyzing these in detail we briefly expose the imaginary-weak-value amplification.
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5.2.3 Imaginary-weak-value amplification

The imaginary weak-value amplification is almost the same as its real counterpart. The
only difference lies in the step 3 of the above procedure:

3’) Readout the meter, but this time measure strongly the conjugate operator q̂.

Note that q̂ is also the operator that appears in the evolution operator Û = exp(ikÂq̂).
This means that the conjugate operator of q̂ need not appear in the formalism of imaginary-
weak-value amplification. As a consequence a quantum description of the meter is super-
fluous; a probabilistic, but classical, description is enough. Namely, if we start with a
centered probability density p0(q) for the meter (corresponding to |ψM (q)|2 in a quantum
description) the probability density p(q) for the outcomes qi reads

p(q) = p0(q)(1 + 2k Im(Aw)q) . (5.28)

In particular, no knowledge of the phase of ψM (q) is necessary. The mean-value of q is
given by 〈q〉p.s. = 2∆2

q Im(Aw)k, where ∆2
q =

∫
dq p0(q)q2 is the initial variance of q. By

analogy to Eq. (5.26), we may again define an amplification factor

F̃ = 2∆2
q

ImAw

〈Â〉
, (5.29)

which can be made large by an appropriate choice of post-selection and also by an increase
of ∆2

q . As we shall see later, the amplification factor is not a central quantity in imaginary
weak-value amplification, unlike for its real counterpart.

The signal-to-noise does not have a more favourable dependence on ∆q ∼ 1/2σ (valid
for a meter in a pure state that saturates the Heisenberg uncertainty inequality) as in the
other two cases

SNR =
√
PpsN 2k∆q Im(Aw) ≈

√
N
k Im(〈f | Â |i〉)

σ
. (5.30)

Again, this is a disappointing result. However, note that without post-selection it is simply
not possible to extract a value for k from a q̂ measurement, for without post-selection
〈q̂〉 = 0. Depending on the underlying physical situation it might provide an advantage.
The utility of the method will become clear in the next section.

5.2.4 Comparison

To summarize, weak-value amplification does not provide any advantage in the signal-to-
noise ratio. However, it also does not diminish it even if most of the results are discarded
by post-selection. Moreover, weak-value amplification does increase the values of the
signal read at the detector while decreasing its power. Finally, imaginary-weak-value
amplification does not rely on the quantum coherence of the meter. As we shall now
see, all those properties have interesting consequences for the practical application of
weak-value amplification in real-life scenarios where noise is unavoidable and detectors
imperfect.
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5.3 Benefits of weak-value amplification

5.3.1 Detector resolution

We start with the most obvious, and perhaps most important, technical advantage offered
by the weak-value amplification technique. If the resolution of the detector δp (smallest
measurable shift in p) is the limiting factor for a nonamplified measurement, the real-weak-
value amplification helps by enlarging the signal by the amplification factor F (5.26). This
leads to an effectively better resolution δp/F .

Moreover, the imaginary-weak-value amplification technique allows us to measure q
instead of p. This alternative may already provide an advantage. Moreover, the signal is
also multiplied by Im(Aw) and ∆2

q , but strictly speaking we cannot speak of amplification
without a reference value; imaginary weak-value amplification opens up a new type of
measurements. In practice, the scheme is advantageous if

[
Im(Aw)∆2

q

]−1
δq < δp, where

δq is the resolution of the q detector.

5.3.2 Detector noise

The benefit of weak-value amplification in the presence of detector noise is twofold. First,
in the presence of detection white noise the effective detector resolution is decreased. This
leads to an advantage of amplified techniques for the same reasons as in intrinsic-resolution-
limited measurements. Second, the post-selection makes the signal-to-noise ratio more
robust to noise with long correlation times [Feizpour11], where long means larger than
the typical interval between two meter readouts. To understand this, we now introduce a
simple noise model [Starling09, Feizpour11, Knee14, Kedem12, Jordan14]. The i-th signal
si measured is given by the sum of the previously considered pi plus a technical noise ξi

si = pi + ξi . (5.31)

The technical noise has a correlation time τc

〈ξiξj〉 = J2 exp

(
−|ti − tj |

τc

)
, (5.32)

where ti is the time at which the i-th detection is carried out, and J2 is the noise magnitude.
The signal s̄ = 〈p̂〉 is unchanged, but its fluctuations are enhanced by the additional noise

(∆s)2 =
1

N
σ2 +

1

N2

N∑
i,j=1

〈ξiξj〉 , (5.33)

where σ is again the intrinsic fluctuation of the meter variable p.

We now compute the effect of the noise on the signal-to-noise ratio. In the nonamplified
scenario, for a total measurement time T and a detection rate Γ, we have N = ΓT and we
can replace 〈ξiξj〉 = J2 exp(−|i − j|/Γτc). It is now possible to compute the fluctuations
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of the signal explicitly

(∆s)2 =
1

N
(σ2 + J2) +

2J2

N2

N∑
i=2

exp(−i/Γτc)
i−1∑
j=1

exp(j/Γτc)

=
1

N
(σ2 + J2) +

2J2

N2

N∑
i=1

exp(−i/Γτc)
exp(1/Γτc)− exp(i/Γτc)

1− exp(1/Γτc)

=
1

N
(σ2 + J2) +

2J2

N2(1− exp(1/Γτc))

(
1− exp(−N/Γτc)
1− exp(−1/Γτc)

−N
)
. (5.34)

There are several interesting limits: (1) the white-noise limit Γτc � 1; (2) the long-
correlation-time limit 1� Γτc � N ; (3) the very-long-correlation-time limit N � Γτc. In
those cases we can simplify the fluctuations of the signal to

(∆s1)2 =
1

ΓT
(σ2 + J2) , (5.35)

(∆s2)2 =
1

ΓT
(σ2 + J2) + 2J2 τc

T
, (5.36)

(∆s3)2 =
1

ΓT
σ2 + J2 . (5.37)

As we can see a higher measurement rate Γ is useful to reduce the delta-correlated noise.
However, for time-correlated noise there is a part that is independent of the measurement
rate. This is expected because measuring faster than the noise correlation time does not
help us to average out the noise.

With weak-value amplification, the measurement rate drops by a factor Pps due to post-
selection: Γ → PpsΓ. Therefore the white-noise-induced fluctuations are also increased.
On the other hand, the signal is also increased by a factor of roughly 1/

√
Pps. Therefore,

the signal-to-noise ratio remains unchanged in the presence of white noise, case (1). For
long correlation times, the signal-to-noise ratio is larger with weak-value amplification. In
particular, for case (3), the signal-to-noise ratio is capped (for T −→∞) to

SNR = k〈Â〉/J (5.38)

without amplification, versus the larger bound

SNRreal = kRe(Aw)/J = F × SNR (5.39)

with real weak-value amplification, where the amplification factor F , see Eq. (5.26), is
again a figure of merit. Using the imaginary weak-value scheme the signal-to-noise ratio
is capped to

SNRim = 2k Im(Aw)∆2
q/J̃ , (5.40)

where J̃ characterizes the strength of noise on the measurement of q.
To conclude, the amplification does not apparently increase the signal-to-noise ratio

in the presence of technical noise with a white spectrum. However, these calculations
assume an infinite detector resolution. If white noise leads to an effective lower resolution
weak-value amplification still helps. Moreover, and this is the key point, weak-value
amplification effectively reduces the effect of technical noise with long correlation times.
This is especially desirable to deal with low-frequency noise such as the “1/f” electronic
noise for instance.
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5.3.3 Detector saturation

To explain this technical advantage, we briefly explain how a typical experiment using
weak-value amplification works [Hosten08]. The role of the meter is taken by the trans-
verse position of a photon, while the role of the system is played by its polarization. The
polarization and transverse position are then entangled by some effect we want to measure.
Then the photon traverse a polarizer to post-select a particular polarization (final state
|f〉). Finally, the succesfully post-selected photons, and only those, hit a photodetector to
measure their transverse position. A stringent post-selection thus allows the experimen-
talist to either use a cheaper photodetector with a lower saturation rate, or to increase
the input power, and thereby also increase the signal-to-noise ratio, without saturating
the detector. This is another key technical advantage of the weak-value amplification
scheme [Starling09].

5.3.4 Real versus imaginary weak-value amplification

Despite the superficial similarity, there is a deep conceptual difference between real and
imaginary weak-value amplification. As we have already shown, there is in fact no need
to treat the meter as a quantum system for the imaginary weak-value amplification. Real-
weak-value amplification, on the contrary, requires full quantum coherence of the meter
to work at its full potential. For instance, if the meter is initially in a mixed state it
makes no difference to the imaginary weak-value method. On the other hand, it decreases
dramatically the signal-to-noise ratio of the real weak-value scheme.

As an example we consider the initial meter wavefunction

ψM (p) = (σ
√

2π)−1/2e−(p−p0)/4σ2
, (5.41)

where p0 is a random displacement that varies from run to run according to a Gaussian
distribution of standard deviation ∆0; in practice this corresponds to, e.g., beam jitter.
In this situation the signal-to-noise ratios for the real and imaginary schemes read

SNRreal =
kRe(Aw)√
σ2 + ∆2

0

, (5.42)

SNRim =
2k Im(Aw)

σ
. (5.43)

Comparing to Eqs. (5.27) and (5.30) respectively shows that the signal-to-noise ratio
decreases only for the real weak-value amplification scheme. A similar situation arises
when considering the effect of decoherence [Knee13].

On the other hand, as is already apparent from Eq. (5.30), a classical noise affecting
the variable q prior to the weak interaction is in fact beneficial to the signal-to-noise ratio
of the imaginary weak-value technique [Kedem12, Jordan14].

5.4 Limits to the amplification

The amplification provided by weak-value technique, see Eqs. (5.26, 5.29), is obtained by
cleverly choosing and initial and final state to get a large weak-value Aw = 〈f | Â |i〉 / 〈f |i〉.
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Therefore, it seems that the amplification can be arbitrarily large by picking almost or-
thogonal initial and final states 〈f |i〉 ≈ 0. We give three important limiting factors on the
amplification.

The first, fundamental, reason is tied to the weakness condition: the whole formalism
is only true in the regime of validity of weak-values |kAw∆q|2 � 1, see Eq. (5.17). In
fact, a straightforward calculation shows that the amplification factor goes to zero for
〈f |i〉 −→ 0 when leaving the regime of validity of the weak-value approximation.

The second source of limitation is the dual to the detector saturation advantage of
Sec. 5.3.3. On the one hand, by reducing the post-selection probability Pps the detector
is less prone to saturation issues. On the other hand, having less “good” counts at the
detector makes the experiment more sensitive to “bad” counts such as stray photons
hitting the detector.

The third limitation comes from experimental imperfections: the pre- and post-selection
cannot be perfect and some non-zero overlap 〈f |i〉 remains. In practice, this is often
encountered first [Hosten08, Dixon09, Starling09]. Moreover, technical noise plaguing
the post-selection can be the overall bottleneck to the ultimate precision of the experi-
ment [Brunner10]. Let us study in more details how such a noise affects the measurements.

Pre- and post-selection technical noise

We consider a two-level system with initial and final states written on the Bloch sphere as

|i〉 = cos
θi
2
|1〉+ eiφi sin

θi
2
|2〉 (5.44)

|f〉 = cos
θf
2
|1〉+ eiφf sin

θf
2
|2〉 . (5.45)

We are interested in the weak value of the σz operator

(σz)w =
cos θi + cos θf + i sin θi sin θf sin(φf − φi)
1 + cos θi cos θf + sin θi sin θf cos(φf − φi)

. (5.46)

To obtain a large and purely imaginary (σz)w we choose θi = θf = π/2 and φf−φi = π−φ,
with φ � 1, which yields (σz)w ≈ 2i/φ. A very small φ thus leads to large amplification
factors.

In practice, there is an uncertainty δφ on the value of φ that originates from either
systematic errors or technical noise. The consequent uncertainty δ(σz)w ≈ −2iδφ/φ2

becomes too large to deal with for φ & δφ. The amplification factor due to weak-values is
thus limited to a fraction of 1/δφ.

5.5 Conclusion

Weak-value amplification is a new and successful technique that has found many applica-
tions in precision measurements. In this chapter, we hope to have convinced the reader
that discarding most of the signal, by virtue of the post-selection process, is a good idea
in the context of precision measurements of small effects. If we had to give an intuitive
explanation to this counterintuitive result, we would say that the post-selection process
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concentrates the useful information into fewer actual detections, so that each individual
detection is somehow more robust to the deleterious effect of technical noise.

Unfortunately, a large weak value also amplifies pre- and post-selection technical noise.
Despite all the strengths of the weak-value amplification method, this strikes as a great lim-
itation. This intrinsic flaw cannot be overcome without modifying slightly the weak-value
amplification protocol. It is the main goal of the next chapter to provide an alternative
scheme that combines most of the advantages of weak value amplification without the
drawbacks listed in Sec. 5.4.
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Chapter 6

Joint weak measurements

As advertised in the conclusion of the previous section, the goal of the present chapter is to
provide a generalization of the weak-value amplification scheme. Section 6.1 presents ele-
ments of the underlying statistical concepts to our method. We then apply these concepts
to weak measurements in Sec. 6.2. This will make clear that weak-value amplification is
not always optimal. In Sec. 6.3 we give a solution to the problem of pre- and post-selection
noise that limits the smallest measurable of the weak-value method in a Mach-Zehnder
interferometer setup [Brunner10].

Scale analysis

To understand the logic that leads to our generalization of the weak-value amplification
scheme, we start with a rough analysis of scales involved in the problem. This will shed
light on the exact role played by large weak values in the amplification mechanism. Again,
the situation is the following: some interaction described by U = exp(ikq̂Â) is given and we
want to extract the value of k by measuring the effect of U on a couple system and meter.
We assume that Â is an operator acting on a small system, think of a spin-1/2, while q̂ is a
meter continuous degree of freedom, conjugate to the operator p̂. We distinguish between
two general strategies to measure k.

First, consider a p measurement. The natural p length scale is given by k. Without
weak-value amplification we need a detector resolution δp . k to measure k. With weak-
value amplification we must resolve shifts of the order of kReAw.

Second, we consider a q measurement. The q length scale is less obvious. Uncondi-
tioned measurement of q are trivial: U only induces a phase shift that depends jointly on
the state of the system and on q. To obtain some information, it is crucial to condition
the measurement of q with a measurement on the system. The imaginary weak-value am-
plification scheme extracts some of the correlations between q and the system, and leads
to shifts of the order of k∆2

qImAw. The question is: does the imaginary weak-value ampli-
fication exploit the correlations to their full potential? Can we obtain more information
on k by a more general scheme?
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Exploiting the full correlations

The obvious way to generalize the imaginary weak-value amplification scheme is to replace
the post-selection by a full joint measurement. That is correlating the measurement of q
with a complete basis {|s〉} of the space of the system. After the interaction U , the joint
probability of finding the meter in state |q〉 and the system in state |s〉 is given by

p(q, s|k) =
∣∣∣〈s| e−ikqÂ |i〉∣∣∣2 p0(q) , (6.1)

where p0(q) is the initial meter distribution. We call this procedure joint weak mea-
surement to contrast it to post-selected weak measurements that lead to the weak-value
amplification. If we perform an experiment, we obtain a set of measurement results {qi, si}
distributed according to p(q, s|k). To go further, we need a procedure to estimate k from
the data {qi, si}; this is the topic of the next section.

6.1 Parameter estimation

Although our ultimate goal is to apply parameter estimation to weak measurements, we
take a slightly more general viewpoint in this section. Suppose we are interested in a
quantity λ ∈ Rm that characterizes the state of the quantum system. A practical meaning
of a measurement of λ is given by the following two-step process: first we choose a relevant
observable A of the quantum system and measure as precisely as possible its probability
distribution pA(a); second we estimate the value of λ from the measured pA(a). While
the first step is mainly the experimentalist’s burden, solutions to the theoretical challenges
raised by the second step are the crux of this section. We shall only introduce the necessary
concepts for us. For a much more detailed discussion see [Helstrom76].

6.1.1 Maximum-likelihood estimation

Let us step back for a moment from the physical context of the problem and tackle the
problem from a purely statistical point of view. The goal is the following: estimate the
value of a parameter λ0 ∈ Rm from a sample {x1, x2, . . . , xN} ∈ RN distributed according
to probability distribution p(x|λ0). We assume that we know the exact probability distri-
bution p(x|λ) for all the possible values of λ; our goal is to find a λ that fits best with the
observed sample. Formally we are looking for a function

λ̂ : RN −→ Rm (6.2)

which maps the sample to an estimate λ̂(x1, . . . , xN ) of the true value λ0. The map λ̂ is
called an estimator of λ. Several properties are desirable for estimators in general. First
we would like to have an unbiased estimator, namely

〈λ̂〉 =

∫
dxN λ̂(x1, . . . , xN )p(x1|λ0) · · · p(xN |λ0) = λ0 , (6.3)

where we assumed all sample points to be independent from each other. Eq. (6.3) says that,
while for a given sample the estimator deviates from the value λ0, an unbiased estimator
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will yield λ0 on average. The second property is called efficiency of the estimator and
quantifies the standard deviation of the estimator. We shall consider it again below when
we derive the Cramér-Rao bound which is a lower bound to this standard deviation.

In general it is not easy to find the best estimator for a given purpose. However we
are mostly interested in asymptotic properties of the estimator, i.e. when the sample size
N → ∞. In this case the task is simpler and the so-called maximum-likelihood estimator
is usually both unbiased and efficient. The basic concept underlying this estimator is the
likelihood function of λ for a given sample defined by

L(λ|x1, . . . , xN ) = p(x1|λ) · · · p(xN |λ) . (6.4)

Intuitively it describes the likelihood that the parameter takes the value λ if a given sample
is observed. The hope is that the parameter that maximizes L is also good estimate of
λ0. The maximum-likelihood estimator is thus defined by

λ̂MLE(x1, . . . , xN ) = arg max
λ∈Rm

[L(λ|x1, . . . , xN )] . (6.5)

Note that there is in principle no guarantee that a single maximum exists in general, but
we need not worry about it in the cases studied in this thesis. In practice it is easier to
work with the log-likelihood function

`(λ|x1, . . . , xN ) =

N∑
i=1

log p(xi|λ) , (6.6)

and we can equivalently maximize ` to find the maximum-likelihood estimate of λ.

For N → ∞ we can replace the summation by an average over the probability distri-
bution

`(λ) = N

∫
dx p(x|λ0) log p(x|λ) . (6.7)

We can show that λ = λ0 indeed maximizes `(λ). The first derivatives vanish

∂

∂λi
`(λ0) = N

∫
dx p(x|λ0)

[
∂

∂λi
log p(x|λ)

]
λ=λ0

= N

[
∂

∂λi

∫
dx p(x|λ)

]
λ=λ0

= 0 , (6.8)

and the Hessian

∂

∂λi

∂

∂λj
`(λ0) = −N

∫
dx p(x|λ0)

[
∂

∂λi
log p(x|λ)

] [
∂

∂λj
log p(x|λ)

]
λ=λ0

≡ −NFij (6.9)

is negative, because the thereby defined Fij is an average of positive matrices (projec-
tors). We henceforth assume the Hessian to be even negative definite (as is the case if
all the components of λ are independently relevant). Essentially we have proven that the
maximum-likelihood estimator will yield the correct value λ0 asymptotically provided that
the likelihood function has an unique global maximum.

The distribution of λ̂MLE in the asymptotic limit is obtained by considering the nor-
malized likelihood function pMLE(λ) = L(λ)/C = exp(`(λ))/C, where C =

∫
dλL(λ).
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Using the steepest-descent method we obtain

pMLE(λ) = lim
N→∞

1

C
exp

(
N

∫
dx p(x|λ0) log p(x|λ)

)
=

1√
(2π)mN detF

exp

(
−1

2
(λ− λ0)iF

−1
ij (λ− λ0)j

)
. (6.10)

The maximum-likelihood estimator is thus asymptotically normal, with standard devia-
tions given by

∆λi =

√
(F−1)ii
N

. (6.11)

This result is very useful because it gives the statistical uncertainty on the estimation of a
parameter from a finite-size sample. The scaling 1/

√
N which appears here is ubiquitous

when N repetitions of independent experiments are run.
Remarkably it is possible to prove that the statistical uncertainty (6.11) is mini-

mal [Helstrom76]. In other words no other unbiased estimator of λ can do a better job
than the maximum-likelihood estimator asymptotically. The general result is called the
Cramér-Rao bound and states that any unbiased estimator λ̂ has minimal standard devi-
ation

∆λ̂ ≥
√

(F−1)ii
N

, (6.12)

where Fij is the Fisher information matrix given by

Fij =

∫
dx p(x|λ0)

[
∂

∂λi
log p(x|λ)

] [
∂

∂λj
log p(x|λ)

]
λ=λ0

. (6.13)

The Fisher information already appeared in the Hessian of the log-likelihood function,
see Eq. (6.9). Estimators that saturate the Cramér-Rao bound are called efficient. The
maximum-likelihood estimator is thus asymptotically efficient.

Trivial example

In order to illustrate the maximum-likelihood estimation procedure we consider a simple
example. We consider the estimation of the average height µ of trees in a given forest. We
assume that the height h is Gaussian distributed

p(h|µ) =
1√
2πσ

exp(−(h− µ)2/2σ2)

around the mean height µ. We want to illustrate explicitly how the maximum-likelihood
procedure yields an estimation for µ from a set of observed tree heights {hi}.

The log-likelihood of a sample of N tree heights reads

`(µ) =

N∑
i

log p(hi|µ) =

N∑
i

−(hi − µ)2

2σ2
− log(

√
2πσ) ,

and its maximization yields the simple result µ̂MLE = 1
N

∑
i hi. The Fisher information is

given by F = σ−2 and the Cramér-Rao bound reads ∆µ̂ ≥ σ/
√
N .x
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Through this example we learn two essential things. On the one hand, the maximum-
likelihood estimation works as expected. On the other hand, the whole formalism is
absolutely superfluous in these cases. This explains why these concepts from parameter
estimation, which appear as absolutely fundamental to any interpretation of quantum
measurements, are not part of the basic training of every physicist. Nevertheless a solid
understanding of these concepts becomes mandatory for satisfactory treatments of many
complex measurement scenarios.

Noise

Up to now we took for granted that the probability distribution p(x|λ) was exactly known.
As a consequence the only source of uncertainty in the estimation of parameters was
of statistical nature. By repeating the experiment many times it is possible to reduce
the statistical uncertainty at will, and thus obtain measurements of any quantity to an
arbitrary precision. In real experiments however, unwanted sources of disturbance modify
the observed p(x|λ) in an uncontrolled way. We investigate what are the effects of this
noise on parameter estimation.

Let us take our example again to illustrate the concepts at hand. This time however
the measurement process is plagued by two kind of uncertainties: a systematic error d
due to a miscalibration of the ruler used for measuring trees, and Gaussian fluctuations
of amplitude s due to the finite precision of the measurement process. To formalize these
noises we introduce the noise kernel

ξ(h, h′) =
1√
2πs

e−(h−(h′+d))2/2s2 , (6.14)

which allows us to express the observed height distribution pobs(h) as a convolution of ξ
with the real height distribution preal(h) = 1√

2πσ
exp(−(h− µ)2/2σ2):

pobs(h) =

∫
dh′ ξ(h, h′)preal(h

′) =
1√

2π(σ2 + s2)
exp(−(h− (µ+ d))2

2(σ2 + s2)
) . (6.15)

The problem of estimating µ from pobs rather than preal is formally the same. Indeed we can
perform a maximum-likelihood estimation, and we find unsurprisingly µ̂MLE = 1

N

∑
i hi−d

and ∆µ̂MLE =
√

(σ2 + s2)/N . The problem is, of course, that d and s are unknown. In
practice their values can merely be bound by some more general considerations; say the
reliable manufacturer of the tree rulers provide |d| < 1cm. In that case, we must accept
that the accuracy our final estimation of µ is ultimately limited by ±1cm.

Although this example is somewhat too simple we can still draw some useful observa-
tions. First, different noises have different impacts on the parameter estimation. Here the
systematic error d limits the accuracy of the measurement, while s decreases its precision.
In other words the Gaussian fluctuations s increase the statistical uncertainty and we can
counter it by performing more measurements, while d sets an absolute limit. Second, the
strategy of incorporating the noise sources prior to the parameter estimation process and
dealing with them at the very end is a valid procedure. It allows us to precisely evaluate
the effect of noise sources on the measurement.
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6.2 Parameter estimation in weak measurements

6.2.1 Quantum limit

We are now ready to apply the formalism of parameter estimation to weak measurement
problems. Our goal is to study how much information about the value of a small parameter
k is contained in a joint measurement of a “meter + system” pair due to an interaction
of the form Û(k) = exp(ikÂq̂).

Let us start by computing the quantum Fisher information [Zhang15] Fq contained in
the joint state |Ψ(k)〉 = Û(k) |ψ0〉 |i〉, where |ψ0〉 is the initial state of the meter and |i〉 is
the initial state of the system. We obtain

Fq = 4

(
d 〈Ψ(k)|
dk

d |Ψ(k)〉
dk

−
∣∣∣∣〈Ψ(k)| d |Ψ(k)〉

dk

∣∣∣∣2
)

= 4
[
〈q̂2〉0〈Â2〉i − 〈q̂〉 2

0 〈Â〉 2
i

]
≡ 4[∆(Aq)]2 . (6.16)

It is independent of the choice of any actual measurement performed on the system and
the meter. The quantum Fisher information yields an absolute bound on the estimation
of k in the form of a quantum Cramér-Rao bound

∆kest ≥
1

2∆(Aq)
√
N
, (6.17)

where N is the number of repetitions of the experiment. This bound depends on the initial
states of M and S, but is independent of any actual measurement performed on them.
There is in principle no guarantee that there is a suitable choice of observables allows us
to saturate this bound.

Weak measurements

We now choose observables for the meter and system with eigenstates |m〉 and |s〉 respec-
tively. The result of a weak measurement is described by the joint probability distribution
p(m, s|k). Since the measurement is weak, it is natural to expand p(m, s|k) in powers
of k around p0(m, s), where p0(m, s) = |〈m|ψ0〉|2 |〈s|i〉|2 is the known initial probability
distribution before the interaction. Namely, we write

p(m, s|k) =

[
1 + kf1(m, s) +

1

2
k2f2(m, s)

]
p0(m, s) +O(k3) , (6.18)

where fj(m, s) is the contribution of order j in k, and satisfies
∑

s

∫
dm fj(m, s)p0(m, s) =

0 to ensure proper normalization. The Fisher information is readily obtained

F =
∑
s

∫
dm f1(m, s)2p0(m, s) +O(k) . (6.19)

The maximization of the log-likelihood of a set of outcomes {mj , sj} leads to

0 =
d

dk
`(k) =

N∑
j=1

d

dk
log f(mj , sj , k) =

N∑
j=1

f1(mj , sj)+k(f2(mj , sj)−f1(mj , sj)
2)+O(k2) .

(6.20)
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Solving the equation provides the maximum-likelihood estimate for k. We may further ne-
glect the term containing f2 in the asymptotic limit (N →∞), because then the sum over
outcomes approximates well the average

∑
s

∫
dm f2(m, s)p(m, s|k) = O(k). Therefore we

obtain the simple formula

kest =

∑N
j=1 f1(mj , sj)∑N
j=1 f1(mj , sj)2

. (6.21)

And the mean-square deviation of the estimate is provided by the Fisher information in
the asymptotic limit

∆kest =
1√

N〈f1(m, s)2〉0
. (6.22)

We shall use these results in the next sections to compute the performance of the weak-
value amplification schemes from a parameter estimation point of view.

6.2.2 Imaginary weak-value amplification

The probability distribution that characterizes an imaginary-weak-value measurement is
given by the conditional probability

p(q|k, f) =
p(q, f |k)∫
dq p(q, f |k)

= [1 + 2k(q − 〈q〉0) ImAw] p0(q) , (6.23)

at first order in k, and where we used p(q, f ; k) =
∣∣∣〈f | e−ikqÂ |i〉∣∣∣2 p0(q). We see that

f1(q) = 2(q − 〈q〉0) ImAw, from which we can extract the maximum likelihood estimator
(6.21)

kest =

∑N
j=1(qj − 〈q〉0)

2 ImAw
∑N

j=1(qj − 〈q〉0)2
. (6.24)

The Fisher information for the imaginary-weak-value amplification scheme reads

Fiwva = 4(∆q)2 |〈f |i〉|2 (ImAw)2 , (6.25)

where we multiplied the expression (6.19) by |〈f |i〉|2 to take into account the post-selection
process.

Since the weak-value is unbounded, we might worry that Fiwva can be larger than
Fq (6.16) with a suitable choice of pre- and post-selection. This is not the case, for the
product |〈f |i〉|2 (ImAw)2 is bounded

|〈f |i〉|2 (ImAw)2 ≤
∑
s

|〈s|i〉|2
[

Im

(
〈s| Â |i〉
〈s|i〉

)]2

=
∑
s

|〈s|i〉|2
[

Im

(
〈s| Â− 〈Â〉i |i〉

〈s|i〉

)]2

≤
∑
s

〈i| Â− 〈Â〉i |s〉 〈s| Â− 〈Â〉i |i〉

= 〈i| (Â− 〈Â〉i)2 |i〉 = (∆A)2 , (6.26)

which, together with the trivial inequality ∆A∆q ≤ ∆(Aq), ensures that Fiwva ≤ Fq.
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6.2.3 Joint weak measurements

We now investigate the case of a full joint weak measurement without post-selection. The
main question is whether any information is gained by not restricting the scheme to a
single system outcome f . The full joint probability distribution reads

p(q, s|k) = |〈s|i〉|2
[
1 + 2kq ImAw(i→s)

]
p0(q) , (6.27)

where p0(q) is the initial probability distribution of the meter and s runs over a complete
basis of the system. Using the formula (6.19 we obtain the Fisher information

Fjwm = 4〈q2〉0
∑
s

|〈s|i〉|2
(
ImAw(i→s)

)2
, (6.28)

where Aw(i→s) = 〈s| Â |i〉 / 〈s|i〉. Comparing to Fiwva (6.25) we observe that Fjwm sums
over all system states and thus may hold more information. However, it is often possible to
concentrate almost all of the sum into a single term with s = f [Hofmann11, Hofmann12].

There is a second, more interesting, difference: instead of a prefactor of (∆q)2 in Fiwva,
Fjwm has a potentially much larger 〈q2〉0. As a consequence, a full joint measurement
offers an advantage over post-selection schemes in the signal-to-noise ratio. This is a little
acknowledged fact in the literature [Hofmann11, Hofmann12, Jordan14] which focused on
centered meters for which (∆q)2 = 〈q2〉0. This proves that there can be useful information
in the usually discarded failed post-selection mode. An application of this observation is
made in Sec. 6.2.5.

Because the amplification mechanism does not, in fact, hinge upon a choice of large
weak values, some works [Knee14, Ferrie14, Tanaka13] claimed that weak-value amplifica-
tion is useless on the basis of a Fisher information analysis. However, there are essentially
two cases for which post-selection can still be useful (see also [Jordan14]): first, for detec-
tion noise with long coherence times where the post-selection probability reduces the noise,
see Sec. 5.3.2; second, when detector saturation is the bottleneck, post-selection allows one
to concentrate the useful information in fewer detection events, see Sec. 5.3.3. Otherwise,
the additional information contained in the failed post-selection modes can be fruitfully
used to further reduce detection white noise and improve the statistical signal-to-noise
ratio. We shall also see another use of the additional information to mitigate technical
noise due to post-selection imperfections in Sec. 6.3.

6.2.4 Estimation in the presence of noise

Joint weak measurements also perform better in the presence of certain types of technical
noise. To see this we first give the explicit estimator of k as a function of the experimental
outcomes

kest =
1

NFjwm

N∑
j=1

2qj Im

(
〈sj | Â |i〉
〈sj |i〉

)
. (6.29)

We consider again a simple white detection-noise model qj → qj + ξj with 〈ξi〉 = 0 and
〈ξiξj〉 = ξ2δij and compute the additional expected mean-square deviation δkest due to
the noise terms. We find

δkest, jwm =
ξ

2
√
N〈q2〉0

√∑
s |〈s|i〉|

2 (ImAw(i→s)
)2 . (6.30)
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This is to be compared to the deviation for the imaginary weak-value amplification scheme

δkest, iwva =
ξ

2
√
N(∆q)2 |〈f |i〉| ImAw(i→f)

. (6.31)

The ratio
δkest, jwm

δkest, iwva
.

(∆q)2

〈q2〉0
≤ 1 (6.32)

clearly demonstrate the superiority of the joint weak measurement scheme against the
imaginary weak-value technique in the presence of detection white noise.

6.2.5 Reaching the Heisenberg limit using joint weak measurements

Recently, a proposal [Feizpour11] was made to amplify a single-photon nonlinearity using
a real weak-value amplification scheme. In their idea, a single photon and a probe laser
beam are coupled by the cross Kerr effect by traversing a suitable material; the evolution
is described by the operator U = eiφ0n̂pn̂, where φ0 is the strength of the effect to be
measured, n̂p is the number operator of the single photon, and n̂ is the number operator
of the laser beam. Before interacting, the single-photon is split into two paths, only one of
which interacts with the beam. This controlled splitting corresponds to the pre-selection in
the weak-value amplification scheme. The two arms then recombine and only one output
port of the single-photon interferometer is observed (post-selection).

In their proposal, Feizpour et al. choose a particular pre- and post-selection in order
to obtain a real weak-value. Whenever a single-photon is successfully post-selected they
predict that the phase of the laser light will be altered by the interaction with the single-
photon due to the cross Kerr effect with an amplified strength, “as if the single-photon
behaves like 100 photons”. The hope is that this enhancement is enough to bring this
single-photon nonlinearity to a measurable level.

We now want to investigate what would happen with the same setup if we choose a joint
weak measurement scheme instead. To make contact with our notations, we introduce a
which-path operator σz for the single photon. Then the measurement interaction has the
form

U = eiφ0n̂(1+σz)/2 , (6.33)

where n̂, the number operator of the probe laser beam, acts as the “meter”, and the
which-path information takes the role of the “system”.

The probe laser beam is prepared in a coherent state |α〉. The number of photons n it
contains follows a Poisson distribution

p0(n) =
e−|α|

2

n!
αn , (6.34)

with an average photon number n̄ = |α|2. After interaction with the single-photon the
measured distribution becomes

p(n, s) = p0(n)
[
1 + nφ0 Im (σz)w(i→s)

]
(6.35)

at first order in the coupling, and where we used Im(1 + σz)w(i→s) = Im(σz)w(i→s) .
The Fisher information contained in the full distribution can be maximized by choosing
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final states s to obtain purely imaginary weak values. In that case, we obtain the Fisher
information

F = 4〈n2〉0 = 4n̄2 + 4n̄ . (6.36)

The signal-to-noise ratio thus scales as the Heisenberg limit, i.e. proportionally to the
number of photons n̄, whereas the original proposition [Feizpour11] that uses weak-value
amplification is bound by the SQL and displays a scaling proportional to

√
n̄. This is a

clear example where the information contained in the failed post-selection mode can be
used to significantly enhance the signal-to-noise ratio.

Superficially, it appears that we can beat the SQL using only classical resources: the
incoming laser beam is just a coherent state well described classically. However, this is
not quite the case. The interaction (6.33) entangles the beam with the single photon. In
fact, for purely imaginary weak values the entanglement between the single photon output
states and the beam is “maximal”. This entanglement is the reason why we reach the
Heisenberg limit in that case.

An independent work [Zhang15] also studied this idea and found results consistent
with ours. Theoretically, this joint weak measurement scheme would thus benefit from
photon shot noise, whereas it is detrimental to the phase estimation necessary in the
real-weak-value amplification scheme. Whether this translates into a practical advantage
as well depends on the characteristics of detectors, and would be the subject of further
investigations.

6.3 Measuring ultrasmall time delays of light using joint
weak measurements

In this section, we propose a scheme to measure very small time delays, or longitudinal
phase shifts of light. The idea is to use weak measurements away from the weak-value
amplification regime and to exploit the full information contained in the correlations in-
duced by the time delay between the frequency and the polarization of photons going
through the interferometer. A joint estimation is performed on the time-delay of interest
and on the post-selection parameter. This mitigates strongly the effect of post-selection
noise, and effectively removes it as an ultimate bottleneck of precision; on the contrary to
the imaginary weak-value amplification based scheme proposed in Ref. [Brunner10] that
inspired the present analysis.

6.3.1 Time-delay measurements

Following Ref. [Brunner10], we consider a Mach-Zehnder interferometer for laser light, see
Fig. 6.1a. Encoding the which-path information in a two-level system allows us to write
the effect of the time delay as

U = eiτ σ̂yĤ/2 , (6.37)

where σ̂y acts on the which-path space, and Ĥ is the Hamiltonian of the laser light. In
the weak-value amplification language, the time delay now takes the role of the interac-
tion parameter, and the photon frequencies (which are contained in Ĥ) the role of the
pointer variable x. The incoming light is evenly split into the two arms with opposite
circular polarizations by a polarizing beam splitter. The two arms then recombine at
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PBS (circular) PBS (linear, )

ML

estimation

a)

b)

linear polarizer

Figure 6.1: (a) Mach-Zehnder interferometer for laser light with a time-delay asymmetry
τ . The incoming beam is linearly polarized and then evenly split by a polarizing beam
splitter (PBS) into the two arms with opposite circular polarizations, σy = ±1. The
beams are recombined at a second PBS with linearly polarized outputs. The direction
of the linear polarization is described by the azimuthal angle φ on the Poincaré sphere.
Two spectrometers labeled by q = ±1 measure the spectrum of the outgoing light. (b)
Graphical representation of the estimation process. The values of τ and φ are extracted
from the spectra measured by the two detectors by a maximum-likelihood (ML) estimation
technique as described in the text.

another polarizing beam splitter with linearly polarized outputs. The direction of the
linear polarization is described by the azimuthal angle φ on the Poincaré sphere. The two
output ports q = ±1 are monitored by spectrometers. In the weak-value language, the
pre-selected polarization state is |i〉 = (|−〉+ |+〉)/

√
2 and the two post-selected states at

detector q are |fq〉 = (|−〉+ qeiφ |+〉)/
√

2.
A laser pulse with normalized spectrum p0(ω), which can be interpreted as a probability

density, is sent through the interferometer. The probability density of outcomes is then
given by

pq(ω; τ, φ) =
1

2
p0(ω)[1 + q exp(−ε2/2) cos(φ− ωτ)] , (6.38)

where we have introduced Gaussian fluctuations of amplitude ε of the alignment parameter
φ, i.e., convoluted the bare probability density with a fluctuation kernel

ξ(φ, φ′) =
1√
2πε

exp

(
−(φ− φ′)2

2ε2

)
(6.39)

that describes fluctuations around the average alignment φ. Note that only the fluctua-
tions with a correlation time smaller than the measurement duration are included in ε.
Fluctuations with a longer correlation time will modify the effective value of φ. From
now on we make the realistic assumption ε� 1. It can be shown that fluctuations of the
alignment of the circular polarizing beam splitter and of the linear polarizer can also be
encompassed in ε.
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Joint estimation

Our goal is to find an estimate of the values of the parameters τ, φ from outcomes of
an experiment following the probability distribution (6.38). Although φ is in principle
controlled experimentally, its estimation permits to remove possible systematic errors.
The quantity produced by the experiment is a set of observed frequencies fq(ω), which, in
principle, converge to pq(ω; τ, φ) as the number N of measured photons is increased.

We use the maximum likelihood procedure, see Sec. 6.1, to provide unbiased estimates
of the values of the parameters, see Fig. 6.1b. This is achieved by maximizing the log-
likelihood function l(τ, φ) defined as

l(τ, φ) =
∑
q=±1

∫
dω fq(ω) log pq(ω; τ, φ) . (6.40)

Maximizing the log-likelihood yields two equations which have to be solved numerically
in the general case. However, for the special case of almost equal intensities at the two
detectors, |φ− ωτ − π

2 | � 1, analytical expressions can be derived

φ =
π

2
− exp(ε2/2)

∑
q

qPq , (6.41)

τ =
1

4∆ω
exp(ε2/2)

(
1

∆ω

∑
q

qPq〈ω〉q −
∑
q

qPq

)
, (6.42)

where Pq is the integrated fraction of outcomes in detector q, and 〈·〉q denotes the average
value in detector q. The frequency spread ∆ω of the initial distribution is given by (∆ω)2 =∑

q Pq〈ω2〉q −
(∑

q Pq〈ω〉q
)2

. The estimates (6.41,6.42) depend on measurement results

and on one unknown amplitude ε that characterizes alignment fluctuations. Remarkably,
exp(ε2/2) only appears as an overall multiplicative factor. Thus, the ultimate error ∆τult

on the estimation of τ by assuming ε = 0 (since its value is unknown, yet realistically
ε � 1) scales with τ , i.e. only a relative error occurs that does not limit the smallest τ
that can be measured. Equation (6.42) is one of the main results of this section.

Aside from the errors due to technical noise, statistical uncertainties also contribute to
the estimation error. For a finite number N of detected photons, the statistical errors are
provided by the Cramér-Rao bound: ∆τstat ≥

√
(I−1)ττ/N , and ∆φstat ≥

√
(I−1)φφ/N ,

where I is the Fisher information matrix given by

Iyz =
∑
q=±1

∫
dx pq(x; τ, φ) (∂y log pq) (∂z log pq) . (6.43)

Asymptotically, i.e., for large N , the Cramér-Rao bounds are saturated by the maximum-
likelihood procedure. In the case of almost equal intensities at the two detectors we obtain

∆τstat ≥
exp(ε2/2)

4∆ω
√
N

, (6.44)

which shows that the fluctuations of φ do not increase significantly statistical noise. On
the contrary to single parameter estimation, the denominator contains only ∆ω instead
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of the better 〈ω2〉0. The reason is that estimating φ increases the statistical error on
the estimation on τ from the same data. However, the scaling 1/∆ω is the same as in
imaginary weak-value amplification schemes. Moreover, ∆ω and 〈ω2〉0 is of the same order
of magnitude for ultrashort laser pulses.

The number of detected photons N required to obtain a good estimate of τ is of the
order 10/(∆ωτ)2. Estimating a time delay of the order of 1 attosecond with ultrashort
laser pulses with ∆ω ≈ 1015Hz would require detecting 107 photons. A typical pulse
contains typically 1013 photons which would be enough to measure time delays of the
order of 1 zeptosecond corresponding to a displacement of 100fm.

6.3.2 Split detectors

We would now like to apply this result to an actual detector with a finite resolution. This
will in particular shed light on the roles played by the resolution and readout noise of the
detector. In principle, the results of the previous section could require measuring the full
distribution of ω without any readout noise. To show that this is not the case we consider
“split” detectors which can only discriminate two spectral regions ω > ω0, leading to a
measurement result r = +1, and ω < ω0, leading to r = −1. We also add readout noise
from the outset. we shall see that our conclusion from Eq. (6.42) (viz. that there is no
absolute lower limit on the smallest value of τ that can be measured) survives even in this
extreme case.

To make up for losing the detector resolution some a priori knowledge of the initial
frequency distribution p0(ω) is required. For analytical calculations we shall assume an
initial Gaussian distribution, but the results will depend only quantitatively on the shape.
In practice the distribution should be measured and the calculations done numerically.
We thus assume p0(ω) ≈ e−(ω−ω0)2/2(∆ω)2/

√
2π∆ω. The probabilities of the two possible

outcomes r = ±1 at the two detectors q = ±1 at second order in the small quantity ∆ωτ
read

prq =
1

4
[1 + q exp(−ε2/2)(1− 1

2
(∆ωτ)2) cosφ]

+rq exp(−ε2/2)
∆ωτ

2
√

2π(1 + (Ω/∆ω)2)
sinφ , (6.45)

where we allowed for a frequency detection uncertainty of order Ω modeled as Gaussian
white noise.

Denoting the measured probabilities by frq, the maximum likelihood estimation can be
analytically carried out in the regime | sinφ| � ∆ωτ , and yields cosφ = exp(ε2/2)(P+ −
P−) in terms of the integrated fraction of outcomes Pq =

∑
r frq, and

τ =

√
2π(1 + (Ω/∆ω)2)

8∆ω
√

exp(−ε2)− (P+ − P−)2

∑
r,q

rqfrq
1 + q(P+ − P−)

. (6.46)

The first terms in the expansion of τ in the fluctuations ε and detection noise Ω can now
be calculated, and we finally obtain

τ = τ0

[
1 +

1

2

(
ε

sinφ

)2

+
1

2

(
Ω

∆ω

)2
]
, (6.47)
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where τ0 is the estimated value of τ in the absence of noise, see Eq. (6.46) with ε and Ω set
to zero. Again the noise does not set an absolute limit on the precision of the estimation
of τ but only a relative precision. The frequency spread ∆ω reduces the effect of readout
noise. Moreover we observe that in order to minimize the effect of fluctuations of φ, we
have to work in the regime sinφ ≈ 1 and not in the weak-value amplification regime of
sinφ ≈ 0 where the effect of fluctuations increased.

The statistical uncertainty is given by the Fisher information matrix, which is diagonal
in this case, through the Cramér-Rao bound

∆τstat ≥
√

2π

4∆ω
√
N

[
1 +

1

2

(
ε

sinφ

)2

+
1

2

(
Ω

∆ω

)2
]
. (6.48)

Hence the considered fluctuations do not jeopardize the estimation of τ away from the
weak-value amplification regime. We also note that using split detectors leads to a
modest increase of statistical noise by a factor

√
2π with respect to Eq. (6.44). Equa-

tions (6.47,6.48) demonstrate that even for low-resolution detectors our scheme is robust
against readout noise and alignment errors.

6.3.3 Comparison to existing schemes

Standard interferometry compares two probabilities given by the sine and cosine of the
total phase shift given by the combination φ− ωτ . This leads to two difficulties: first, to
estimate τ precisely, the laser frequency ω has to be highly stabilized. Secondly, the align-
ment φ cannot be separated from the effect of τ , i.e., alignment errors are a limiting factor
to the precision achievable having complete statistical information. This ultimate preci-
sion, which cannot be increased by acquiring more measured data, is given by ∆τult = ε/ω.
In the procedure proposed by Brunner and Simon [Brunner10] that uses the imaginary
part of the weak value, the first issue is solved since a large frequency spread ∆ω is ad-
vantageous for the precise evaluation of τ , which is also true in our scheme. However,
the second issue is only partially addressed in [Brunner10]: alignments errors are still a
limiting factor, ∆τult = Cε, where the proportionality constant C ≈ 10−18 s is three orders
of magnitude smaller than for standard interferometry.

In contrast to that, a major advantage of our scheme is to remove systematic errors as
well as fluctuations of the alignment as a limiting factor to the ultimate precision of the
time-delay measurement. Alignment fluctuations lead to a relative error ∆τult = ε2τ/2 on
the estimation of τ , see the discussion after Eq. (6.42) and the illustration in Fig. 6.2. This
is made possible by working away from the weak-value amplification regime and using all
the information contained in the correlations between frequency and polarization of the
photons to perform a simultaneous estimation of φ and τ .

Finally, we would like to mention that if the detector can only measure events at a small
rate due to detector saturation, small post-selection probabilities as realized in weak-value
amplification schemes permit to effectively increase the rate of measurements [Starling09].
This allows to obtain better statistics, however, if the measurement is limited not by
statistics but for other reasons, our method appears preferable.
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Figure 6.2: Ultimate precision limit ∆τult on the estimation of the physical time delay
τ as a function of τ , in the presence of fluctuations of the alignment φ, see Eq. (6.39).
We assume ε = 0.02 rad for the plot. The dashed line shows the constant (zeroth-order)
contribution of fluctuations to ∆τult = Cε for weak-value amplification, here we assume
C ≈ 0.25× 10−18 s like in [Brunner10]. The solid line is the result of our scheme, ∆τult =
ε2τ/2. For τ < 2C/ε (shaded area), our scheme outperforms weak-value amplification .

6.4 Conclusion

To summarize, we have investigated the potential advantages of a natural extension to the
imaginary weak-value amplification scheme. We have seen that the additional information
provided by the full correlations between the system and meter degree of freedom can be
used to great effects.

First, the signal-to-noise ratio can be dramatically enhanced by measuring the failed
post-selection modes, see Eqs. (6.28.6.32). A potential application of this observation to
reach the Heisenberg limit was investigated in Sec. 6.2.5.

Second, we have proposed a technique that could be useful to determine very small
time delays, or longitudinal phase shifts, due to its robustness with respect to various
noise sources. The time delay induces correlations between frequency and polarization of
photons going through the interferometer, and our scheme exploits the full information
contained in these correlations. The key idea is to perform a joint estimation of the time
delay and of a noise parameter to mitigate its effects.

This procedure is not limited to time-delay measurements and could be used for other
precision measurements. For example, it is readily applicable to measurements of ultra-
small beam deflections by slightly modifying the protocol of Dixon et al. [Dixon09]. In a
broader setting, the idea of carrying out a full joint measurement of two weakly entangled
degrees of freedom could be relevant in many domains such as charge sensing in solid state
physics [Zilberberg11], precision metrology, and gravitational wave detection.
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Chapter 7

Conclusion

We start with a brief summary of the main results obtained in this thesis. In Chapter 3,
we discussed the effect of spin axis symmetry breaking on the helical edge states of the
quantum spin Hall effect. This led to consider generic helical liquids that are characterized
by a spin texture [Schmidt12]. We saw how the spin texture can drastically affect trans-
port properties in the presence of quantum point contacts. We gave a method to measure
the spin texture using the width of Fabry-Pérot resonances. Finally, we saw how the local-
ization length of the edge states in a narrow strip sample with disorder depends strongly
on the spin texture. In Chapter 4, we proposed a Hanbury Brown-Twiss interferometric
scheme that can be used to confirm the Majorana fermion nature of the edge states in
transport experiments. We found three signatures of Majorana fermions. First, an exactly
vanishing conductance together with an enhanced quantized shot noise at zero bias in the
outgoing leads. Second, the robust absence of partition noise in the Hanbury Brown-Twiss
interferometer with a quantum point contact. We argued that this is connected to the
exact charge neutrality of the carriers; in other words, of their Majorana nature. Finally
we saw that the full counting statistics leads to an interpretation of the charge transfer
processes in terms of two half-fermion processes at zero bias. In Chapter 6, we gave a
generalization to the weak-value amplification method that exploits the correlations in-
duces by weak measurements to their full extent. The additional information was shown
to improve the signal-to-noise ratio and could be used to reach the Heisenberg limit. We
proposed another use of this additional information in the context of ultrasmall time-delay
measurement; the idea is to perform a joint estimation of the main noise source and the
parameter of interest. This was shown to outperform the bare weak-value amplification
scheme in realistic scenarios.

We can think of several extensions to our work. First, the spin-texture dependence
of transport in generic helical liquids coupled by point contacts could also find practical
applications. For instance, by applying transverse electric fields it is possible to modify
the local spin texture of the edge states via the induced Rashba spin-orbit coupling. In
principle this could provide a way to tune the conductance of these systems by electrical
means. For Majorana interferometry, the obvious follow-up to our work is to find the
reach of our full counting statistics result. Namely, is the interpretation of electron/hole
transfer processes as two independent half-charge transfers a deep property of Majorana
fermions, or is it just by chance that this decomposition happens in our setup? A first
step to go forward would be to investigate full counting statistics of other setups where
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electrical transport is mediated by Majorana fermions, and see if there is an analogue to
our result.

All of the weak-value amplification experiments thus far were carried out in optics.
However, the applicability of the scheme is not in principle limited to these systems; it
would be interesting to find applications to other fields of physics. One of the major
difficulties to implement weak-value-type schemes using electrons in condensed matter is
the need to couple two measurable degrees of freedom of the particle. For photons, we have
plenty of choices: the polarization, transverse position, frequency, and which-path variable.
For electrons, a theoretical proof of principle was given in Ref. [Zilberberg11], in which
they use the weak-value amplification scheme to make sensitive measurements of charge.
The idea is to use an Aharonov-Bohm ring interferometer for electrons in the presence
of a magnetic field. The presence of a small electric charge q in proximity to one of the
arms changes the effective arm length due to electrostatic effects. The net effect is a weak
coupling between the which-path degree of freedom and spin of the electrons proportional
to q. Finally, the spin of the electrons is pre- and post-selected by means of spin valves.
The scheme is very nice in principle, but it raises two big practical problems: first, the
necessary stringent post-selection for amplification reduces the signal; in optics it is often
an advantage, but reducing an already small current in mesoscopic physics is detrimental
to its measurement. Second, the need for extrinsic spin valves complicates experimental
realizations. A broad direction to address these issues would be to combine the ideas of the
first part and second part of this thesis. Notably, the intrinsic spin-filtering of the edge
states of quantum spin Hall insulators combined with a joint weak-measurement-based
scheme remove the need of extrinsic spin-valves and stringent post-selection issues.

In a very recent report [Salazar-Serrano14], the authors present an experimental real-
ization of the Brunner and Simon [Brunner10] scheme using a Michelson-Morley interfer-
ometer. They demonstrate the measurement of a time-delay of the order of 10 attoseconds
using a femtosecond laser source but with otherwise only linear optical elements. Signif-
icantly, they found a better sensitivity when working away from the high-loss regime,
nearly orthogonal pre- and post-selection, rather than in the large weak-value limit ordi-
nary considered crucial for weak-value amplification. In this context, we think that a our
joint weak measurement scheme is relevant and could lead to further improvements.
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