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Summary

Topological insulators are one of the most thoroughly investigated systems in condensed
matter physics over the last years. In these systems, a prominent role is inevitably taken
by time-reversal symmetry, which leads to Kramers theorem and symmetry protected edge
states. However, Kramers theorem does not imply that the spin-z component is a good
quantum number. This thesis sheds light on several phenomena that appear in topologi-
cal insulators without this spin conservation, for example in the context of generic helical
liquids. A topological insulator strip is examined which allows for forward- and backscat-
tering between the edge states. This results in a measurable effect on the conductance.
Furthermore, interfaces between edge-state regions with induced superconductivity, strong
interactions and broken spin conservation are analyzed. Calculations using Luttinger liq-
uid theory reveal parafermions at these interfaces. Finally, disorder in the Kane-Mele
model in combination with Rashba spin-orbit coupling is studied. It is found that disor-
der can lead to a topological phase, the topological Anderson insulator, even though the
clean system is a trivial insulator.
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Chapter 1

Introduction

Since the appearance of the seminal works of [Kane05a, Kane05b, Bernevig06] ten years
ago, topological insulators have become one of the most fruitful topics in condensed matter
physics [Qi11, Hasan10]. Their most prominent feature is the presence of the conducting
edge states that are protected by time-reversal symmetry (TRS) from various kinds of
perturbations. The topological nature leads to interesting proposals, such as the exis-
tence of Majorana particles [Fu08] in these systems. However, topological insulators are
also recognized as potential materials for future technologies such as topological quantum
computers [Pachos12] or spintronic devices [Pesin12, Žutić04].

One distinguishes between two main categories of topological insulators, viz. two-
dimensional (2D) and three-dimensional (3D) topological insulators. 3D topological insula-
tors, such as bismuth antimonide (BiSb), bismuth selenide and bismuth telluride [Hsieh08]
exhibit gapless surface states for which the spin and momentum degrees of freedom are
locked to each other. In contrast to the 2D case, there are four Z2 topological invariants
that subdivide 3D topological insulators into 16 phases [Fu07]. These phases can be fur-
ther arranged into weak and strong topological insulators. For weak topological insulators,
the surface states comprise four Dirac points, of which an even number is enclosed by the
Fermi surface. In strong topological insulators the Fermi surface encloses an odd number
of Dirac points, which renders the surface states robust to disorder.

In this thesis we focus on 2D topological insulators. Two different classes of ma-
terials are widely accepted to be 2D topological insulators. One class are the mercury
telluride–cadmium telluride semiconductor quantum wells (HgTeQWs), which consist of
a layered structure of HgTe sandwiched between layers of HgCdTe [König07]. As a result
of the heavy Hg atom, bulk HgTe shows a strong spin-orbit coupling and the s-type Γ6

band lies below the p-type Γ8 band. This situation represents an inverted band gap. CdTe
features a trivial band gap, the lower lying band is of p-type and the upper lying band of
s-type. Both materials exhibit a direct band gap which is at the Γ point. If both materi-
als are brought together, the s-type bands and the p-type bands merge. From symmetry
considerations, an effective 2D Hamiltonian, the so called Bernevig Hughes Zhang (BHZ)
model, for the quantum well can be derived [Bernevig06]. It shows that in the case of a
HgTe layer that is of a critical width of about 6.3nm, gapless, counter-propagating spin-
up and spin-down states will form at the circumference of the HgTe layer [Roth09]. The
dispersion relation of these states has a linear, Dirac cone like shape. Direct backscatter-
ing between the counter propagating states is forbidden as it would require an additional
spin flip, a term that would contradict the TRS. This renders the edge states robust
with respect to non-magnetic impurities and even geometrical distortions cannot localize
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Chapter 1. Introduction

them. They are symmetry protected. A Z2 topological invariant is usually assigned to dis-
tinguish non-interacting ordinary insulators from topological insulators [Moore07]. While
the edge states are conducting with a quantized conductance of the conductance quantum,
G0 = 2e2/h, for each mode, the bulk material is still insulating. Similar systems for which
a topological phase is found are indium arsenic/gallium antimony (InAs) quantum wells
[Liu08, Knez11].

The second class of systems are graphene-like materials with a 2D honeycomb lattice,
such as silicene, germanene and stanene. These systems can show an inverted, negative
bulk bandgap in the case of strong intrinsic spin-orbit coupling and corresponding helical
edge states at the circumference. Unfortunately, this is not the case for graphene itself, for
which the spin-orbit coupling is basically vanishing [Min06, Yao07]. The essential features,
such as the one-dimensional (1D) edge states, are theoretically captured in the Kane-Mele
model, which is a further developed Haldane model [Haldane88] with spin.

Recently, research has focused on various enhancements, new materials and new fea-
tures of topological insulators. Some of the most recent examples include Majorana modes
in antiferromagnetic topological superconductors [Ezawa15], in which a Majorana mode
can be generated and moved in a 2D plane by controlling a local electric field. An-
other experiment using silicon impurity doping to suppress residual bulk conductivity in
inverted InAs quantum wells and observing robust helical edge states and distinct con-
ductance plateaus has been reported [Du15]. Topological insulators can also be designed
in photonic systems, built from an honeycomb array of microcavities [Nalitov15]. Other
possible realizations include transition-metal dichalcogenides under strain [Cazalilla14] or
organic lattices [Wang13]. Strong correlations in the context of topological insulators are
investigated, for example in topological Kondo insulators [Lobos15].

The basic theories for both classes of 2D topological insulators assume a well-preserved
spin quantum number. This inevitably leads to right- and left-moving edge states which
are helical, meaning for example right-movers, which are purely spin-up and left-movers,
which are purely spin-down. Even though time-reversal symmetry is usually present in
experimental setups, this does not guarantee that the spin projection on a fixed axis
is a good quantum number [Schmidt12]. This effect is present in most setups, caused
for example by Rashba spin-orbit coupling, and can evoke interesting effects [Michetti11,
Kainaris14, Rod15]. In an effective 1D model of only the edge states, the concept of
a generic helical liquid correctly integrates these additional terms. In a generic helical
liquid, the spin eigenstates are associated to generic left- and right-moving states through
a momentum dependent rotation matrix Bk. Unitarity and TRS inflict physical constraints
on Bk, which can be approximated as a real rotation matrix about some angle θ.

We present in this thesis three systems that deal with different phenomena in topolog-
ical insulators that are partly caused by a broken spin axis symmetry. In Chapter 2 and
Chapter 3, the concept of generic helical liquids plays an important role. In Chapter 4,
broken spin symmetry due to Rashba spin-orbit coupling is a key ingredient.

1.1 Summary Chapter 2

Chapter 2 is based on the published manuscript [Orth13]. We consider two generic helical
liquids on opposite edges of a narrow 2D topological insulator. Due to an inhomogeneity,
for example in an external perpendicular electric field, the two corresponding Bk matrices
are dissimilar. The narrow sample allows for several tunnel junctions between the two
edges. These tunnel junctions can lead to forward- and backscattering of the edge states,

2



1.2. Summary Chapter 3

depending on the external field. In this chapter, we demonstrate the strong impact on
electron transport due to the inhomogeneity. Measurement of this effect will allow to draw
conclusions on the spin textures of the edge states.

1.2 Summary Chapter 3

Chapter 3 is based on the publication [Orth15b]. We show, using an renormalization group
(RG) calculation in Luttinger liquid theory, that the combination of electron-electron
interactions with a generic helical liquid generates an umklapp scattering term. This
can gap out the edge states of a 2D topological insulator and lead to a Mott insulating
phase. If additionally some parts of the edges are covered by superconducting gates, which
induce a superconducting order parameter and create a gap as well, exotic non-abelian
particles can emerge at the interfaces between these regions. Further investigations show
that these bound states pin charges in multiples of half the electron charge and account
for a Josephson current with 8π periodicity. The bound states are protected by TRS and
are fourfold degenerate. Furthermore, we determine their braiding statistics and present
a possible implementation of a braiding scheme.

1.3 Summary Chapter 4

The results of Chapter 4 are currently being published, an e-print version is available
[Orth15a]. Bulk disorder plays a prominent role for 2D topological insulators. It can lead
to a transition from a trivial phase to a topological phase, known as topological Anderson
insulator (TAI). Chapter 4 shows that a TAI exists not only in the BHZ model, but also
in the Kane-Mele model. The combination of intrinsic spin-orbit coupling λSO, staggered
sublattice potential λν and Rashba spin-orbit coupling λR determine whether the system
is a topological insulator, a trivial insulator or a TAI. Interestingly, TAIs are found only
at the transition between topological insulators and ordinary insulators for λν ∼ λSO and
small λR and not at the transition to a metallic phase for λR ∼ λSO and small λν . Using
an analytical approach we find that the disorder leads to a renormalization of λν and
the generation of a new, anisotropic Rashba spin-orbit term λR3. This term by itself can
induce a topological transition in materials which otherwise would be trivial insulators.
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Chapter 2

Point Contacts and Localization in
Generic Helical Liquids

This chapter is based on the published manuscript:
C. P. Orth, G. Strübi and T.L. Schmidt,
Point contacts and localization in generic helical liquids,
Phys. Rev. B 88, 165315.

2.1 Introduction

A characteristic feature of a 2D topological insulator is the occurrence of two conducting
electronic states at its circumference, separating the insulating bulk material from an ad-
jacent ordinary insulator or the vacuum. The states are helical, meaning their spin and
momentum degree of freedom are coupled. In an illustrative picture, one can speak of
a spin-up electron running clockwise and a spin-down electron counterclockwise around
the sample. In an ideal setup, which is subject to a bias voltage, these one-dimensional,
counter-propagating edge states lead to a quantized conductance of two times the conduc-
tance quantum (G0) through the sample, as long as the Fermi energy is kept in the bulk
bandgap. In the presence of time-reversal symmetry (TRS), the two states show opposite
spin-projection quantum numbers (sz) and form a Kramers pair. Backscattering within
these states is suppressed due to the helical nature of the states. In other words: Simple
backscattering terms in the Hamiltonian must allow electrons to flip their spin, usually
a contradiction to the requirement of TRS. This principle prevents the states to localize
and two ballistic modes form along the whole borderline between the topological insulator
and its non-conducting surroundings.

There are several mechanisms that can lead to deviations from this ideal behavior.
In the simplest case, a magnetic impurity can absorb the surplus of spin in a backscat-
tering event [Maciejko09, Tanaka11], which is necessarily combined with a spin-flipping
of an electron. This leads to a finite localization length of the electronic states that
depends on the density of magnetic impurities in the sample. Another possibility are
inelastic two-particle backscattering processes induced by electron-electron interactions
[Kane05a]. Contributions to the Hamiltonian of the form of the umklapp scattering
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Chapter 2. Point Contacts and Localization in Generic Helical Liquids

term 1Uψ†U↑∂xψ
†
U↑ψU↓∂xψU↓ are time-reversal invariant and exist for interacting systems.

It was shown that these terms are irrelevant under the renormalization group for weak
interactions and that the helical edge states are stable with respect to these effects
[Xu06, Wu06]. Weak interactions together with impurity scattering and finite tempera-
tures can lead to a decrease in conductance that scales with the temperature as δG ∝ T 6,
leading away from the universal value of 2G0. Umklapp scattering in the same context can
lead to δG ∝ T 5. Furthermore, a breaking of the axial spin symmetry, for example due to
spin-orbit coupling terms, combined with weak interactions and impurity scattering can
lead to corrections of the order of δG ∝ T 4 [Schmidt12].

The special case of a rather long and narrow two-dimensional topological insulator
(length L, width W � L) may feature new backscattering effects and a non-universal
conductance. Especially setups, in which electrons can occasionally tunnel from one edge
to the other, allow new ways of backscattering without breaking time-reversal invariance.
As long as W is larger than the decay length of the edge states into the bulk, these tunnel
processes are exponentially suppressed [Zhou08]. Nevertheless, in the intermediate regime
of moderate W with respect to the decay length, stable edge states exist that, at certain
positions, are coupled stronger and a finite tunneling amplitude manifests. Such processes
may be realized intentionally, for example by suitable gating or by applying lithographic
techniques for the sample design [Liu08]. Alternatively, also an accidental realization could
be possible by tunneling through charge puddles [Skinner12, Väyrynen13]. Charge puddles
exist due to doping or disorder in the bulk topological insulator. Edge state electrons can
tunnel to these puddles and a consecutive array of puddles connecting the two edges can
allow for transfer processes between the edges. For a dilute dispersal of the puddles and as
long as such a process remains elastic, it can be described by a point contact at a certain
position. Point contact sample setups for 2D topological insulators have been the subject
of several recent publications [Liu11c, Schmidt11, Dolcini11, Lee12, Edge13, Huang13,
Romeo14, Klinovaja15, Teo09]. Furthermore, extended junctions have been investigated
lately [Dolcetto12, Sternativo14].

The scope of this chapter is to investigate narrow 2D topological insulators whose
edge states feature both a broken axial symmetry and several, randomly distributed point
contacts. It is based on the published manuscript [Orth13]. One usually uses the term
of a broken axial symmetry (or just broken spin symmetry) for Hamiltonians with con-
served TRS, but which contain spin-flip processes, so that spin is not a good quantum
number anymore. This can be the case for example in topological insulator materials with
broken bulk inversion asymmetry, structural inversion asymmetry[Qi11] and Rashba spin-
orbit coupling [Rothe10]. An effective framework to describe such systems is the concept
of a generic helical liquid [Schmidt12]. A generic helical liquid features two counter-
propagating edge states at each edge that still form Kramers doublets. However, a spin
quantum number can no longer be associated to the edge states. Instead, one labels them
for example by quantum numbers −,+ for left- and right-moving particles. In these sys-
tems, the spin quantization axis rotates as a function of momentum. The projection of
+,− states onto states with a fixed spin axis is specified by a unitary, momentum (k)
dependent rotation matrix Bk.

We focus in this chapter on the combination of broken axial symmetry that additionally
shows a spatial inhomogeneity, meaning that the edge states of a 2D topological insulator
exhibit two different Bk matrices. This, in conjunction with several point contacts between

1The notation will be clarified later on. We will come back to this kind of terms in the following chapter
about parafermions.
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2.2. Hamiltonian description of tunnel contacts between generic helical liquids

the edges, can lead to spin non-conserving back- and forward scattering between the edge
states. Thus we find that the conductance shows a deviation from the universal value
of 2G0 that is expected for ideal 2D topological insulators. For instance, a mercury
telluride–cadmium telluride semiconductor quantum well (HgTeQW) that is exposed to
a spatial inhomogeneous, external electric field that is perpendicular to the 2D plane of
the topological insulator, can be an experimental realization of such a system. Another
mechanism that could lead to two different Bk matrices at the sample edges is a difference
in chemical potential between the latter.

The chapter will start by introducing the formalism on the example of two generic
helical liquids that are coupled by a single point contact and under the influence of a
finite voltage bias V . If only Rashba spin-orbit coupling is taken into account, transport
properties depend on a single angle θ(µ) which describes the tilt between the spin axis
of the two generic helical liquids. Depending on θ(µ), the tunneling will lead to forward
scattering or backscattering.

If a second tunnel contact is added, interference phenomena will occur. The conduc-
tance will now depend also on the microscopic details of both tunnel junctions. Finally, in
the last part of this chapter we deal with a quasi infinite chain of random tunnel contacts in
a narrow sample. We shall show that the microscopic details of the single contacts average
out up to a statistical angle, which can be encoded using θ(µ). A conductance deviation of
G ∝ 2G0e

−L/` is found, even for systems with spin conservation. The localization length
` strongly depends on θ(µ) and therefore the Rashba spin-orbit coupling strength. This
leads to the conclusion that the conductance through a narrow 2D topological insulator
can be tuned by an inhomogeneous electric field.

2.2 Hamiltonian description of tunnel contacts between generic
helical liquids

The model employed in this chapter is an effective theory of two coupled 1D generic helical
liquids [Schmidt12]. It can be deduced from, for example, the Bernevig-Hughes-Zhang
model [Bernevig06] for HgTeQWs or the Kane-Mele model [Kane05a] for the honeycomb
lattice with strong spin-orbit coupling. The description is valid as long as only low energy
degrees of freedom are excited, while the Fermi energy µ is kept in the bulk band gap ∆ of
the topological insulator. For the HgTeQWs the temperature T used in recent experiments
is 2.7K =̂ 0.23meV while the band gap varies strongly with the quantum well width and
is about 13meV. A difference of a single monolayer of the quantum well can alter the
bulk gap by several meV [König13]. This renders the system susceptible to the random
occurrence of charge puddles or a local shift of the Fermi energy to the bulk bands.

The bulk gap traversing edge states exhibit a Dirac cone like dispersion relation, which
allows to linearize the kinetic part of the Hamiltonian as

Hkin = −ivF
∑
η=U,L

∑
α=±

α

∫ ∞
−∞

dxψ†ηα(x)∂xψηα(x), (2.1)

where vF denotes the Fermi velocity and η labels the upper (η = U) and lower (η = L)
edges. The index α labels right-movers (α = +) and left-movers (α = −). We set
~ = e = 1. The fields ψ are free, second-quantized fields in position representation. Due
to the special properties of a generic helical liquid, the states cannot be labeled by the
spin quantum number anymore. Therefore, we resort to the direction of movement +,−
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ψU+
ψU-

ψL-
ψL+

μ+V μT1cos2θ T1sin2θ 

x1

k

E(k)

k

E(k)

μ

μ

Figure 2.1: (left) Setup of a single point contact between generic helical liquids. The
horizontal axis (x) is parallel to the extension of the narrow 2D topological insulator
and the figure shows a point-like constriction at x = x1. (right) Spectrum and spin
quantization axis for the upper and lower edge states. For a generic helical liquid, the
spin quantization axis rotates as a function of momentum. An external field gradient along
the y-direction (perpendicular to x, but in the plane of the 2D topological insulator) leads
to different quantization axes at the same energy for the upper and lower edge state.

as a well-defined method to label the degrees of freedom. Figure 2.1 shows a layout of
the system under consideration. There are two right-moving modes incident from the
left, ψU+, ψL+, with chemical potential µ and subject to the external voltage V . The
counter-propagating states ψU−, ψL− are occupied up to the chemical potential µ only.
The energies µ and µ+ V are both well inside the bulk gap.

So far, there is no mechanism of backscattering. The transport is ballistic and the
Landauer-Büttiker formalism can be applied to calculate the conductance through the
sample. In brief, it states that the current through a 1D ballistic conductor is given by
the difference in chemical potential times the conductance quantum times the number
of channels that contribute to the current. There are two channels2 in the setup above,
leading to the expected result of I = 2G0V from left to right3.

2.2.1 Generic helical liquids and time-reversal symmetry

The Hamiltonian (2.1) is expressed in terms of fermionic fields ψηα(x), which we rewrite
as a linear combination of the fields in spin-basis ↑, ↓ as follows(

ψ̃k,η↑
ψ̃k,η↓

)
= Bk,η

(
ψk,η+

ψk,η−

)
, (2.2)

where Bk,η is a momentum-dependent 2 × 2 rotation matrix. The index η denotes the
upper (η = U) and lower (η = L) edge of a sample that extends horizontally along the
x-axis. In the case of a spatial inhomogeneous field gradient along the y-direction, it

2A channel usually consists of a forward and a backward moving part. Here, these parts are labeled
separately but still counted as only one channel on the upper and one channel on the lower edge of the
sample.

3Using SI-units, G0 = e2/h with the electron charge e and Planck constant h. Using e = ~ = 1 yields
G0 = 1/2π.
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is also different for the upper and lower edge. Note that Eq. (2.2) is written using the
momentum representation of the fields and becomes non-local if it is written down in the
spatial representation. The two representations are connected by a Fourier transform, see
Eq. (A.1). The requirement of conserved time-reversal symmetry imposes constraints on

the matrix Bk. Additional constraints are given by the unitarity condition B†kBk = 1.
From this it follows that Bk,η = B−k,η, see [Schmidt12] for a derivation and an introduction
to generic helical liquids and examples of concrete expressions for Bk,η for helical edge
states in HgTe/CdTe quantum wells in the presence of Rashba spin-orbit coupling.

The time-reversal operator Θ can be chosen such that Θψk,ηαΘ−1 = αψ−k,ηᾱ, where
ᾱ = −α. Using this definition, the effect of Θ on the Hamiltonian (2.1) is

ΘHkinΘ−1 = ivF
∑
η=U,L

∑
α=±

α

∫ ∞
−∞

dxΘψ†ηα(x)Θ−1∂xΘψηα(x)Θ−1 (2.3)

= −ivF
∑
η=U,L

∑
α=±

ᾱ

∫ ∞
−∞

dxψ†ηᾱ(x)∂xψηᾱ(x) (2.4)

= Hkin, (2.5)

i.e. time-reversal symmetry is indeed preserved for the model. The most general form of
the matrices Bk,η is

Bk,η =

(
cos(θk,η)e

iδ1 − sin(θk,η)e
iδ2

sin(θk,η)e
−iδ2 cos(θk,η)e

−iδ1

)
, (2.6)

where the angle θk,η and the phases δ1, δ2 are functions of momentum and edge index η.
One physical realization to which the theory of a generic helical liquid can be ap-

plied are HgTe/CdTe quantum wells with finite Rashba spin-orbit coupling strength and
preserved time-reversal symmetry. For this special case, it can be shown that Bk,η is
essentially given by the simpler form

Bk,η =

(
cos(θk,η) − sin(θk,η)
sin(θk,η) cos(θk,η)

)
. (2.7)

Here, Bk,η can be parametrized by the angle θk,η only. The right part of Fig. 2.1 shows one
possible realization of this spin quantization axis rotation. Based on the Landauer-Büttiker
formalism, it was argued at the beginning of Section 2.2 that the conductance does not
depend on any of these parameters if no extra terms to the Hamiltonian are added. In the
next subsection, we shall show that a single point contact between the upper and lower
edges leads to a deviation of the conductance that depends on the difference between the
angles θk,U − θk,L only and that the phases δ1, δ2 do not play any role.

In the following, it is assumed at several points that the momentum dependence of
Bk,η is rather weak and that Bk,η varies only on a large momentum scale k0 � kF . This
should be true as, for example, Rashba spin-orbit coupling is small in most materials.

2.2.2 Tunneling between the edge states

The generic helical liquids introduced so far have no means of backscattering and the
conductance expected from theory for this system is 2G0. Experimentally measurable
deviations from this universal conductance value are possible for example if electrons are
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Chapter 2. Point Contacts and Localization in Generic Helical Liquids

allowed to backscatter into states at the opposite edge of the setup. We illustrate such
a process in the left part of Fig. 2.1. At the constriction, two scattering processes are
possible: an incoming particle can be back-scattered into the state at the opposite edge,
or forward scattered. Forward scattering is only possible if the two matrices Bk,U and
Bk,L are distinct for the momentum of the incoming particle. If that is not the case, the
two states are orthogonal.

A model to describe such a scattering event is that of a point contact between the two
generic helical liquids. In this work, we use the Hamiltonian

Hj(x) =γj cos(ϑj)
∑
σ=↑,↓

[
ψ̃†Uσ(x)ψ̃Lσ(x) + H.c.

]
+ γj sin(ϑj)

∑
σ=↑,↓

[
ψ̃†Uσ(x)ψ̃L−σ(x) + H.c.

]
, (2.8)

with the tunneling coefficient γj and the angle ϑj that describes the relation between
forward- and backscattering. In this form, it is expressed in terms of spin 1/2 electrons
ψ̃U/Lσ with quantum numbers σ =↑, ↓. The parametrization γj cos(ϑj), γj sin(ϑj) will
become useful in Section 2.3.3. The index j gets a meaning once that several point contacts
at different positions xj are introduced. For a single point contact, the total Hamiltonian
reads H = Hkin+H1(x1). Hkin and H1(x1) are expressed in two different basis, ψk,ηα and
ψ̃k,ησ. This makes a diagonalization of the Hamiltonian non-trivial. A non-equilibrium
Keldysh Green’s function approach can be applied, which is not part of this thesis. This
method gets tedious when extended to several contacts at different positions and will be
more useful if electron-electron interactions are taken into account as well4. Instead, this
chapter relies on a transmission matrix approach, which leads to results even in the limit of
arbitrarily many tunnel contacts. However, we use the Keldysh Green’s function approach
to check the results of the one-contact and two-contact conductances.

It is important to clarify in which limit the approximation of a point contact can be
justified. The microscopic extension of the point contact at x = x1 is given by δx1. If the
length δx1 is small compared to the wavelength of an incident particle wave 1/kF � δx1,
the microscopic details of the contact cannot be resolved and a point-like model with
an effective forward- and backscattering amplitude can be justified. For HgTeQWs the
Dirac cone that describes the low energy spectrum is located at the Γ-point. Usually this
means that kF ≈ 0. Using EF = vFkF~, vF ≈ 105m/s and a bandgap of 13meV the
variation of kF inside the gap is about 13meV/vF~ ≈ 2 ∗ 108 m−1. This indicates that the
approximation of a point-like tunnel contact is valid for contacts which do not extend over
distances δx1 > 5nm. For temperatures well below the bandgap energy scale and chemical
potentials close to the Dirac point larger values of δx1 are also still possible.

2.3 Scattering matrix theory

2.3.1 Derivation of the full scattering matrix

This subsection is used to derive a general expression of the scattering matrix S for a setup
which hosts N point contacts between two generic helical liquids. The scattering matrix
can be used for example to calculate observables such as the conductivity. The basic idea

4This was done in a so far unpublished work by the author.
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ψU+ ψU-

ψL-ψL+

T1
T2 T3

μ+V μ

Figure 2.2: A narrow 2D topological insulator in which the two edges are coupled by
randomly placed point contacts, realized by several charge puddles at positions xj .

behind the scattering matrix theory is to find a matrix that connects incoming states to
a scattering area to outgoing states5. The Hamiltonian of interest is

H = Hkin +

N∑
j=1

Hj(xj), (2.9)

where the point contacts are at random positions xj along the narrow sample. An illustra-
tion of this setup is shown in Fig. 2.2. The incoming states in this setup are ψU+(x), ψL+(x)
for x < x1 and ψU−(x), ψL−(x) for x > xN . The outgoing states are ψU+(x), ψL+(x) for
x > xN and ψU−(x), ψL−(x) for x < x1.

As a first step, we replace the fields ψ̃ by ψ using the Bk,η matrices. Using two
additional Fourier transforms from spatial to momentum representation for the tunneling
Hamiltonian part yields

H = Hkin +
N∑
j=1

∑
σ,σ′=↑↓

∑
η=U,L

Vj,σσ′
1

L2

∑
k,k′

e−ixj(k−k
′)
∑
α,β

ψ†k,ηα

(
B†kη

)ασ
Bσ′β
k′η̄ ψk′,η̄β, (2.10)

where Vj,σσ′ is kept as a shorthand notation. For the Hamiltonian written in Eq. (2.8),
Vj,σσ′ = γj cos(ϑj) for spin-conserved tunneling and Vj,σσ′ = γj sin(ϑj) for spin-flip tun-
neling. A vector notation can be introduced to simplify this expression. The state vector
is defined as ψ†(x) = (ψ†U+(x), ψ†L+(x), ψ†U−(x), ψ†L−(x)) and a further Fourier transform
of the kinetic part leads to

H = vF
1

L

∑
k

kψ†(k) (σ3 ⊗ 1)ψ(k) +
1

L2

∑
k,k′

ψ†kB
†
kΘ(k − k′)Bk′ψk′ (2.11)

5An introduction to scattering matrix theory is given for example in [Bruus04].
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with

Θ(k − k′) =
N∑
j

Vje
−ixj(k−k′) (2.12)

Bk =


B1,1
k,U 0 B1,2

k,U 0

0 B1,1
k,L 0 B1,2

k,L

B2,1
k,U 0 B2,2

k,U 0

0 B2,1
k,L 0 B2,2

k,L

 . (2.13)

To understand the form of Θ and Bk it is helpful at this point to look at the case of a
vanishing spin axis rotation. It requires that left-movers (and right-movers) in the upper
and lower edge have opposite spin, meaning ψ̃U↑ = ψU+, ψ̃U↓ = ψU− but also ψ̃L↑ = ψL−,
ψ̃L↓ = ψL+. From this the following limiting case is found for the Bk matrices at zero spin
rotation Bk,U = 1 and Bk,L = σ1 and the Θ(k−k′) as written above. The tunneling matrix
Vj is restricted by time-reversal symmetry and a hermiticity condition on the Hamiltonian.
Time-reversal symmetry acts on the fields like Θψ̃η,σ(x)Θ−1 = σψ̃η,σ̄ which, together with

the hermiticity condition V †j = Vj leads to the form of Vj as

Vj = γj


0 cos(ϑj) 0 sin(ϑj)

cos(ϑj) 0 − sin(ϑj)
0 − sin(ϑj) 0 cos(ϑj)

sin(ϑj) 0 cos(ϑj) 0

 . (2.14)

The operators obey the Heisenberg equation of motion

∂tψk(t) =i
[
H,ψk(t)

]
=ivF

1

L

∑
k′

k′
[
ψ†k′(t) (σ3 ⊗ 1)ψk′(t), ψk(t)

]
+ i

1

L2

∑
k′,k′′

[
ψ†k′(t)B

†
k′Θ(k′ − k′′)Bk′′ψk′′(t), ψk(t)

]
=− ivFk(σ3 ⊗ 1)ψk(t)− i

1

L

∑
k′

B†kΘ(k − k′)Bk′ψk′(t) (2.15)

where the last line is found writing out the sums of the matrix multiplications. To solve
the time dependency we apply the Ansatz ψk(t) =

∫
dω
2π e
−iωtψk(ω) to find

ωψk(ω) = vFk(σ3 ⊗ 1)ψk(ω) +
1

L

∑
k′

B†kΘ(k − k′)Bk′ψk′(ω). (2.16)

Inserting Θ(k − k′) allows to separate a k independent part ξjω from the equation in the
following way

[
ω − vFk(σ3 ⊗ 1)

]
ψk(ω) =

N∑
j

B†ke
−ixjk 1

L

∑
k′

eixjk
′
VjBk′ψk′(ω)︸ ︷︷ ︸

=ξjω

. (2.17)
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The expression on the left side is the Schrödinger equation of the problem without tunnel-
ing, which can be written as G−1(k, ω)ψk(ω) = 0 with the Green’s function Gηα(k, ω) =
[ω−αvFk+ iδ]−1 where a regularization had to be introduced. This equation can now be
solved

ψk(ω) = ψk,0(ω) +
N∑
j

G(k, ω)B†ke
−ixjkξjω (2.18)

where ψk,0(ω) is a general solution of the non-tunneling problem with the constraint
G−1(k, ω)ψk,0(ω) = 0. The constraint leads to ψk,0,ηα(ω) = δ(ω − αvFk)ψ0,ηα(ω) which

will become important later on. To finally solve the model, an equation for the ξjω is
derived by inserting ψk(ω) into the definition

ξjω =
1

L

∑
k′

eixjk
′
VjBk′

ψk′,0(ω) +
N∑
l

G(k′, ω)B†k′e
−ixlk′ξlω

 . (2.19)

We can now define 4N × 4N and 4N × 4 matrices

Qjl =
1

L

∑
k′

ei(xj−xl)k
′
VjBk′G(k′, ω)B†k′

ζj =
1

L

∑
k′

eixjk
′
VjBk′ψk′,0(ω) =

1

vF
VjBω/vF e

i(σ3⊗1)xjω/vFψ0(ω)

and solve the equation for ξjω
ξω = (1−Q)−1ζ. (2.20)

This finally leads to the total result

ψk(ω) = ψk,0(ω) +
1

vF

N∑
j,l

e−ixjkG(k, ω)B†k(1−Q)−1
jl VlBω/vF e

i(σ3⊗1)xlω/vFψ0(ω) (2.21)

and its Fourier transform

ψ(x, ω) =
1

vF
eix(σ3⊗1)ω/vFψ0(ω)− i

2v2
F

eix(σ3⊗1)ω/vF

N∑
j,l

[(
1 + (σ3 ⊗ 1)sign(x− xj)

)
× e−i(σ3⊗1)xjω/vFB†ω/vF (1−Q)−1

jl VlBω/vF e
i(σ3⊗1)xlω/vFψ0(ω)

]
where the k integration was done for small spin rotation lengths 1/k0, a limit described
in Subsection 2.2.1.

For the scattering matrix, it is important to distinguish between incoming and outgoing
states. Incoming states are those that come from the far left or right side of the sample
and have not had the chance to scatter yet, to be more specific they are either right-movers
where x� xi or left movers with x� xi (for i = 1, . . . , N). The states are written as

ψ<U+

ψ<L+

ψ>U−
ψ>L−

 . (2.22)
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The outgoing states are either left-movers with x � xi (denoted by <) or right-movers
with x� xi (denoted by >) and written as

ψ>U+

ψ>L+

ψ<U−
ψ<L−

 = S


ψ<U+

ψ<L+

ψ>U−
ψ>L−

 (2.23)

where S is the scattering matrix and is defined as the relation between in- and outgoing
states. The factor

(
1 + (σ3 ⊗ 1)sign(x− xj)

)
becomes 0 for incoming states and 2 for

outgoing states. This yields the following scattering matrix

S = 1− i

vF

N∑
j,l

e−i(σ3⊗1)xjω/vFB†ω/vF (1−Q)−1
jl VlBω/vF e

i(σ3⊗1)xlω/vF (2.24)

Further evaluation Further simplifications are possible in the limit of a small spin
rotation length 1/k0 = ξ. Qij can be calculated for i = j using the symmetry condition of
Bk = B−k

Vj
L

∑
k′

Bk′G(k′)B†k′ =
Vj
L

∑
k′

1

2

[
Bk′G(k′)B†k′ + Bk′G(−k′)B†k′

]
= − i

2vF
Vj . (2.25)

We calculate the off-diagonal elements in the same limit if the tunnel contacts xi, xj are
separated compared to ξ. This yields

Vj
L

∑
k′

e−ik
′(xi−xj)Bk′G(k′)B†k′

= − i

vF
VjBω/vF

(
1

2
− (σ3 ⊗ 1)sign(xi − xj)

)
B†ω/vF e

i ω
vF
|xi−xj |. (2.26)

In summary, we derived the scattering matrix for an arbitrary amount of tunneling contacts
between two generic helical liquids in Eq. (2.24). In the following sections, this result will
be used to deduce transport properties for a single contact, two contacts, and a chain of
N contacts.

2.3.2 Properties of the scattering matrix

This subsection collects general information on the scattering matrix. It derives some
very general properties of scattering matrices which can be used as a consistency check
of Eq. (2.24). Besides the fact that the scattering matrix has to be unitary, S−1 = S†,
see for example [Bruus04], it has to suffice some conditions that arise from time reversal
invariance. As this symmetry is present in the model, application of the time reversal
operator Θ leads to

Θψk,ηαΘ−1 = αψ−k,ηᾱ (2.27)

Θψ†k,ηαΘ−1 = αψ†−k,ηᾱ (2.28)
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for each Kramers pair. Furthermore, time reversal exchanges in- and outgoing states and
acts as a complex conjugation on complex numbers. Taking the time reversed version of
Eq. (2.23) yields

θ


ψ>U+

ψ>L+

ψ<U−
ψ<L−

 θ−1 =


ψ>U−
ψ>L−
−ψ<U+

−ψ<L+

 = θSθ−1θ


ψ<U+

ψ<L+

ψ>U−
ψ>L−

 θ−1 = S∗


ψ<U−
ψ<L−
−ψ>U+

−ψ>L+

 . (2.29)

A further multiplication by matrices −iσ2 ⊗ 1 to return to the former state vectors then
leads to

(iσ2 ⊗ 1)


ψ<U+

ψ<L+

ψ>U−
ψ>L−

 = S∗(iσ2 ⊗ 1)


ψ>U+

ψ>L+

ψ<U−
ψ<L−

 (2.30)

which finally results in the condition

S = (iσ2 ⊗ 1)−1S∗(iσ2 ⊗ 1) = (σ2 ⊗ 1)
(
S∗
)−1

(σ2 ⊗ 1). (2.31)

We furthermore use the unitarity of S to write it as a block-matrix

S =

(
t r′

r t′

)
, t = t′T , r′ = −r′T , r = −rT . (2.32)

This is useful as a sanity check of Eq. (2.24).

2.3.3 A single point contact

In this subsection we apply the result of Eq. (2.24) to the case of a single point contact
at x1 = 0 only. For this special case, Q is a 4 × 4 matrix and given by Eq. (2.25),
Q11 = −i/(2vF )V1. The scattering matrix can be simplified as follows

S = 1− i

vF
B†ω/vF (1−Q11)−1V1Bω/vF , (2.33)

with

(1−Q11)−1V1 =


−1

2 iγ1

√
T1

√
T1vF cos(ϑ1) 0

√
T1vF sin(ϑ1)√

T1vF cos(ϑ1) −1
2 iγ1

√
T1 −

√
T1vF sin(ϑ1) 0

0 −
√
T1vF sin(ϑ1) −1

2 iγ1

√
T1

√
T1vF cos(ϑ1)√

T1vF sin(ϑ1) 0
√
T1vF cos(ϑ1) −1

2 iγ1

√
T1

 ,

(2.34)
where

√
T1 = 4γ1vF /(4v

2
F +γ2

1) was used. To calculate the scattering matrix, the assump-
tion that Bk,η is only given by two angles, one rotating the states in the upper edge and
one for the lower edge as in Eq. (2.7), is made again. As mentioned before, one has to
be careful with the lower edge as it has to flip the fields for zero rotation. Therefore a
constant angle of π/2 to its Bk matrix has to be added in the following sense

Bk =


cos(θU ) 0 − sin(θU ) 0

0 cos(θL + π/2) 0 − sin(θL + π/2)
sin(θU ) 0 cos(θU ) 0

0 sin(θL + π/2) 0 cos(θL + π/2)

 . (2.35)
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At this point, some comments about this special form of Bkη are expedient. The Bkη
matrices could also be written in exponential form as

Bkη = e−iθη(k)~n(k)·~τ/2 (2.36)

where ~τ is the vector of Pauli matrices, θη(k) is some angle and ~n(k) is a unit vector. This
exponential describes a rotation of the 2-component spin 1/2 wave-function by an angle
θη(k) about the axis ~n(k), see for example Ref. [Peskin95] on page 38. The assumption
is made that the unit vector ~n(k) is k independent and along the y-axis, this means both
perpendicular on the direction of motion (x-axis) and the growth axis of the sample (z-
axis). Then one finds the form of the Bk matrix as above (with a factor of two rescaling
of the angle). It was shown in Ref. [Schmidt12] that Rashba spin-orbit coupling in the
Bernevig-Hughes-Zhang Hamiltonian has this form.

The final result of the scattering matrix using the angle difference θ = θU − θL reads

S =

(
t r′

r t′

)

=


√

1− T1 −i
√
T1 sin(θ + ϑ1) 0 i

√
T1 cos(θ + ϑ1)

−i
√
T1 sin(θ + ϑ1)

√
1− T1 −i

√
T1 cos(θ + ϑ1) 0

0 −i
√
T1 cos(θ + ϑ1)

√
1− T1 −i

√
T1 sin(θ + ϑ1)

i
√
T1 cos(θ + ϑ1) 0 −i

√
T1 sin(θ + ϑ1)

√
1− T1

 ,

(2.37)

and meets the general condition of Eq. (2.32). As a first observable, we calculate the

conductance G = G0Tr
[
t†t
]

= G0Tr
[
t′†t′
]
. This yields

G = 2G0

(
1− T1 cos2(θ + ϑ1)

)
(2.38)

with G0 the conductance quantum G0 = 1/2π. The angle θ depends on the chemical
potential, so that the total current is given by

I =

∫ µ+V

µ
G(ω) dω (2.39)

where V is a voltage difference applied between the left and right side of the contact. The
result shows that the conductance depends only on the total angle θU − θL + ϑ1. This
angle determines the fraction of forward to backscattering at the contact. If it is π/2, all
incident particles that cross the point contact are forward scattered and the conductance
is 2G0. If the angle is 0, all particles are back-scattered, and the conductance is reduced
by 2G0T1. As the angle can be tuned by changing for example the chemical potentials, the
cos2(θ) behavior could in principle be seen experimentally. This result was to be expected,
however, things get more complicated if several contacts are involved.

2.3.4 From the scattering matrix to the transfer matrix

While the scattering matrix S connects incident and out-going states of a scattering region,
the transfer matrix connects states left of the region to those right of it. For the setup
of Fig. 2.1 it means that it connects ψU+(x), ψL+(x), ψU−(x) and ψL−(x) for x < x1 to
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2.4. Interferences in the two point contact setup

ψU+(x), ψL+(x), ψU−(x) and ψL−(x) for x > x1. The states ψ≷ are useful again to define
the transfer matrix T by 

ψ>U+

ψ>L+

ψ>U−
ψ>L−

 = T


ψ<U+

ψ<L+

ψ<U−
ψ<L−

 . (2.40)

It can be straightforwardly obtained by solving a system of linear equations (SLE) from
the scattering matrix equation in the right way. It turns out to be very important for the
general properties of the transfer matrix that will be used later that a well chosen basis
ordering is used in this equation. The transfer matrix for the single contact, obtained from
Eq. (2.37), reads (with j = 1):

Tj(µ) =
1

1− Tj cos2(θ + ϑj)

(
A B
−B∗ A∗

)
(2.41)

A =

( √
1− Tj −i

√
Tj sin(θ + ϑj)

−i
√
Tj sin(θ + ϑj)

√
1− Tj

)

B = cos(θ + ϑj)

(
−Tj sin(θ + ϑj) i

√
(1− Tj)Tj

−i
√

(1− Tj)Tj Tj sin(θ + ϑj)

)
,

for the transfer matrix through a single contact which we assume with tunnel amplitude
γ1, ϑ1 and tunnel probability T1. The index j is used for an easier generalization to many
contacts.

As for the scattering matrix, we obtain the conductance from the diagonal submatrices
of the transfer matrix. If λj labels the upper left 2× 2 submatrix of Tj , the conductance
is given by

Gj(µ) = G0Tr

{[(
λ∗j

)−1
]† (

λ∗j

)−1
}
. (2.42)

We derived this relation from the scattering matrix and its connection to the conductance.
Evaluating this leads back to Eq. (2.38) in a straight forward way. The advantage of
transfer matrices is that the transfer matrix of two scattering regions can be written
as a product of the transfer matrices of the individual regions times a transfer matrix
accounting for any phase gains that occur between the scattering regions. This will be
exploited in the next section to obtain results for the two point contact case.

2.4 Interferences in the two point contact setup

In the last section, we derived an expression for the transfer matrix for a single contact
setup. This result will be extended here to two contacts and richer phenomena due to
interference effects will be investigated [Dolcini11, Chu09, Virtanen11, Romeo12]. If more
than one contact is considered, the distance between the contacts is a crucial length scale.
Let the distance between the contacts at x1 and x2 be ∆x2 = x2 − x1, and analogous
definitions for the N − 2 remaining distances. It is assumed that ∆xj � 1/kF . This
condition, together with 1/kF � δxj , means that the system is supposed to host well
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Figure 2.3: Conductance through two point contacts between generic helical liquids
as a function of the angle θ between the different spin-quantization axis and the phase
φ2 = ∆x2µ/vF . The plots are for spin-conserving tunneling only, meaning ϑ1 = ϑ2 = 0.
The unit of conductance is G0.

defined helical edge states for the most part along the edges. If this limit is not valid,
the whole assumption of having helical edge states does not hold anymore and a fully 2D
treatment of the system would be necessary.

2.4.1 Transfer matrix for two point contacts

The total transfer matrix through two contacts can be constructed as

T̃2 = T1P2T2, (2.43)

where P2 is a transfer matrix that accounts for the phase that any particle gathers while
moving along the edge states between scattering region 1 and 2. For simplicity we assume
that it is the same phase for all edge states, P2 = diag(eiφ2 , eiφ2 , e−iφ2 , e−iφ2). If the phase
φj is only due to the distance between the contacts 1, 2, it is given by φ2 = ∆x2µ/vF . This
equation can be evaluated and simplified and finally, the conductance can be extracted
from the upper left 2× 2 submatrix as written in Eq. (2.42). It yields

G(µ) = 2G0

{
1− T1 cos2[θ(µ) + ϑ1]

}{
1− T2 cos2[θ(µ) + ϑ2]

}∣∣∣1 +
√
T1T2 cos

[
θ(µ) + ϑ1

]
cos
[
θ(µ) + ϑ2

]
e2i∆x2µ/vF

∣∣∣2 . (2.44)

2.4.2 Interference phenomena for two point contacts

G(µ) is plotted in units of G0 as a function of the different angles θ, φ2 = ∆x2µ/vF in
Fig. 2.3. Eq. (2.44) can be read as the product of the conductance through contact 1 times
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2.4. Interferences in the two point contact setup

the conductance through the second contact times an interference term. This expression
was also derived by the author using the Green’s function formalism based on a Dyson
equation, which is so far unpublished and not part of this thesis. Due to the dependence
of the angle θ(µ) and the phase φ2 = ∆x2µ/vF on the chemical potential µ, it is possible
to tune the conductance and to scan the parameter space illustrated in Fig. 2.3 to some
extent.

If the tunneling amplitudes T1, T2 are similar, it is always possible to find some length
∆x2 so that φ2 = π/2 and G(µ) ≈ 2G0 for all angles θ, even if ϑ1 = ϑ2 = 0 as in the
figure. This is especially the case for strong tunneling, T1 = T2 = 0.9, which seems to
be a contradiction, as backscattering is strong in this limit. This is because at the phase
φ2 = π/2 the total phase for a particle going from the first contact to the second contact
and back is 2 × φ2 = π. Thus there is destructive interference for all back-scattered
particles. The denominator of Eq. (2.44) reaches its minimum and the conductance is
maximized at 2G0. This effect is independent of the angle θ(µ). This can be interpreted
as Fabry-Pérot resonances. However, in the case of a large difference in the tunneling
strengths T1, T2, one contact is suppressed and the system gets similar to the single contact
case. Interference plays no important role anymore. This is only true if the difference is
significant, as for example T1 = 0.1, T2 = 0.9. In any case, if the phase φ2 does not lead
to destructive interference, θ(µ) can be used to tune the system from an insulating to a
conducting state.

The conductance depends on the chemical potential in two ways: via θ(µ) and through
the phases φ2 = ∆x2µ/vF . As mentioned before, we work in the limit k0 � kF . This
leads to an expansion of the angle θ(µ) ∼ k/k0 ∼ µ/vFk0. On the other hand, the phase
enters with a coefficient ∆x2/vF . Due to the condition ∆x2 � 1/kF � 1/k0, the phase
φ2 is supposed to vary much faster with µ than the angle θ(µ). The phase varies with the
period of vF /∆x2. Translated back to Si-units, this is ~vF /∆x2 = 2meV for vF = 105m/s
and ∆x2 = 200nm. The period is therefore within the energy scale of the allowed voltages
and chemical potentials and smaller than the bulk bandgap of 13meV. A sweep of the
chemical potential through the bandgap will traverse the plots in Fig. 2.3 several times
along the y-axis while slowly going to larger θ as well. This results in a periodically varying
function for which the amplitude minimum rises slowly with every period for growing µ
while the maximum will stay at 2G0, see Fig. 2.4 for an illustration. If this behavior can
be measured, information about θ can be extracted from the amplitude of the minima.

Another way of tuning the system is to change the Rashba spin-orbit coupling strength.
This can be done, for example, by altering an electric field that is perpendicular to the
sample. This will result in a different spin rotation length k0. As k0 is contained only
in θ(µ) ∼ k/k0, with k = µ/vF , this change appears exclusively in the cosine terms of
Eq. (2.44). The dependence of the conductance minima on 1/k0 is shown for small values
below ~k0vF = 20meV in Fig. 2.5 by a solid, red line. A fit to a quadratic function is
shown in black. As 1/k0 ∼ λR with the Rashba spin-orbit coupling strength λR, it is found
that the interference minima change with λ2

R for small λR. This behavior was investigated
also numerically on a tight-binding lattice in a yet unpublished work which is not part of
this thesis.
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Figure 2.4: Interference pattern in the conductance through two point contacts as a
function of the chemical potential µ. The parameters are ϑ1 = 0.4, ϑ2 = 0.6, ~vF /∆x2 =
2meV/2π and ~vF k0 = 100meV/2π.
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Figure 2.5: Position of the minima at µ ≈ 2meV in the interference pattern of Fig. 2.4
as a function of the inverse spin rotation length 1/k0 (red solid line). The parameters
are ϑ1 = 0.4, ϑ2 = 0.6 and ~vF /∆x2 = 2meV/2π. The black dashed line is a fit to 1/k20,
which is in good agreement with the model for ~vF k0 > 100meV.
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2.5. Generalization of the conductance to a chain of N contacts

2.5 Generalization of the conductance to a chain of N con-
tacts

The scope of this section is to generalize the results of the last section to a narrow 2D topo-
logical insulator with N randomly placed tunnel contacts at xj , j = 1, . . . , N . Figure 2.2
shows the setup relevant for this section, while the Hamiltonian was already written down
in Eq. (2.9) and solved by giving an expression for the exact scattering matrix in Eq. (2.24).
The key assumptions are still supposed to be valid, such as ∆xj � 1/kF � δxj , k0 � kF
and that Bkη are 2 × 2 rotation matrices. As a first step, we present a recursive transfer
matrix scheme to reduce the solution to the single contact scattering matrix. In the second
part, averaged quantities are calculated and finally relevant conclusions are drawn.

2.5.1 Constructing the N contact transfer matrix

As it was done already for the two contact setup, the total transfer matrix for N contacts
is a product of single contact transfer matrices and transfer matrices that take account
of phases gathered in-between. The total transfer matrix for the first j contacts labeled
by T̃j , while Tj is just the transfer matrix for the jth contact. Using these definitions, we
write down a recursive expression for T̃j as

T̃1 = T1, T̃j = T̃j−1PjTj , (2.45)

where again Pj = diag
(
eiφj , eiφj , e−iφj , e−iφj

)
is the diagonal transfer matrix responsible

for the paths in-between. The transfer matrix for N contacts is thus given by

T̃N = T1P2T2P3 . . . PNTN . (2.46)

It is assumed again that for the phases φj = ∆xjµ/vF holds. The full transfer matrix is a
complicated function of all individual contact parameters, γj , ϑj ,∆xj . It is not meaningful
to try to evaluate it exactly for large N . Instead, some information can be obtained using
an averaging method described in the next subsection. In order to do this, first some
general properties of the transfer matrix have to be derived. The transfer matrix for
a single contact was already written down in Eq. (2.41). A close look and a trial and
error procedure lead to the following, not straight forward parametrization of the transfer
matrix of a single contact,

Tj =

(
λj ρj
−ρ∗j λ∗j

)
(2.47)

λj =

(
aj iajbj
iajbj aj

)
, ρj =

(
cj icj/bj

−icj/bj −cj

)
,

where the transfer matrix was expressed by only two complex parameters aj , cj and one
real parameter bj . That this reduction is possible is crucial for the calculation in the
following subsection. For this, we show that the multiplication of two transfer matrices
of the kind of Eq. (2.47) leads to a transfer matrix which has again this form. In more
detail, we find (

λ1 ρ1

−ρ∗1 λ∗1

)(
λ2 ρ2

−ρ∗2 λ∗2

)
=

(
λ3 ρ3

−ρ∗3 λ∗3

)
(2.48)
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with

a3 =
(1− b1b2)

(
a1a2b1b2 + c1c

∗
2

)
b1b2

b3 =
b1 + b2
1− b1b2

c3 =
(b1 + b2)

(
a1b1c2 + b2c1a

∗
2

)
b1b2

.

As b1 and b2 are real, also b3 has to be real. The matrices Pj cannot be written in this
form though, as this would require that bj = cj = 0 which is ill-defined. However, the
product PjT , where T is of the form of Eq. (2.47), is again of the form of Eq. (2.47). With
these arguments, we have proven recursively that T̃j for all j = 1, . . . , N has the form of
Eq. (2.47).

From any transfer matrix of the form of Eq. (2.47), the dimensionless conductance,
which is the conductance divided by G0, through the first j contacts can be calculated
as G̃j = Tr(t†jtj) with tj = (λ∗j )

−1. Due to the parametrization aj , bj , cj it is possible to

calculate the conductance for j contacts with the help of T̃j−1, Tj and Pj . We simplify the
result and express it by G̃j−1, Gj and a phase dependent term. This equation reads

G̃j = G̃j−1
Gj
2G0

∣∣∣∣∣1 +
cj−1

aj−1bj−1

√
Tj cos(θ + ϑj)e

−2iφj

∣∣∣∣∣
−2

(2.49)

where Gj = 2G0−2G0Tj cos2(θ+ϑj) and G̃0 = 2. It will become clear in the next step why
G̃j is defined in a dimensionless form. The coefficients aj−1, bj−1, cj−1 are not properties
of the j − 1th contact only, but complex functions of the parameters of all j − 1 contacts.
It will become important later on that the modulus vj =

∣∣cj/(ajbj)∣∣ is always smaller than
1. This we shall show in appendix B.1.

2.5.2 Disorder average

The expression of Eq. (2.49) still depends on the microscopic parameters Tj , ϑj , φj of all
the contacts. The goal is to simplify this equation for the case of large N . Taking the
logarithm of this expression yields for the conductance of all N contacts

log
(
G̃N

)
= log(2) +

N∑
k=1

[
log

(
Gk
2G0

)
− 2 log

∣∣∣∣1 +
ck−1

ak−1bk−1

√
Tk cos(θ + ϑk)e

−2iφk

∣∣∣∣
]
.

(2.50)

The next step is to average over all the contacts N . There are two ways of doing the
disorder average, resulting in slightly different interpretations.

• The first possibility is that there are M samples, each of equal length and with N
tunnel contacts. Especially, without any restriction on the number N , in principle
it can also be small. The average is over the samples. The average logarithm of the
conductance reads 〈

log
(
G̃N

)〉
sample

=
1

M

M∑
m=1

log
(
G̃mN

)
(2.51)
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where G̃mN is the dimensionless conductance of the mth sample with N tunnel con-
tacts. With an index m for all the quantities it is found〈

log
(
G̃N

)〉
sample

= log(2)

+
1

M

M∑
m=1

N∑
k=1

[
log

(
Gmk
2G0

)
− 2 log

∣∣∣∣∣1 +
cmk−1

amk−1b
m
k−1

√
Tmk cos(θ + ϑmk )e−2iφmk

∣∣∣∣∣
]
.

(2.52)

The sum over m can be substituted by an integral over φk and the constants rk =∣∣ck−1/(ak−1bk−1)
√
Tk cos(θ + ϑk)

∣∣. The absolute value part of the expression reads
with these definitions∑

k

∫ 1

0
dr

∫ 2π

0
dφ
[
−2 log

∣∣∣1 + rke
−2iφk

∣∣∣] fk(r)gk(φ), (2.53)

where the phases φk were redefined. The functions fk(r), gk(φ) are not further spec-
ified distribution functions. Importantly, gk(φ) is assumed to be constant. Because
of this, it can be shown numerically that for r < 1 this part vanishes while doing the
φk integral. This yields〈

log
(
G̃N

)〉
sample

= log(2) +
1

M

M∑
m=1

N∑
k=1

log

(
Gmk
2G0

)
(2.54)

= log(2) +N

〈
log
(

1− T cos2(θ + ϑ)
)〉

T,ϑ

, (2.55)

where 〈〉T,ϑ is an average over T and ϑ for all contacts and all samples.

• The second possibility is to take a single sample with a large number of point contacts
N . This gives the exact logarithm of the conductance

log
(
G̃N

)
= log(2)+

N∑
k=1

[
log

(
Gk
2G0

)
− 2 log

∣∣∣∣1 +
ck−1

ak−1bk−1

√
Tk cos(θ + ϑ)

∣∣∣∣ e−2iφk

]
.

(2.56)
Due to the large number N, the sum of the second part can be written as an integral
over an arbitrary distribution f(r) and a constant distribution g(φ) as above. This
yields ∫ 1

0
dr

∫ 2π

0
dφ
[
−2 log

∣∣∣1 + re−2iφ
∣∣∣] f(r)g(φ) (2.57)

which still vanishes. This leads to

log
(
G̃N

)
= log(2) +N

〈
log
(

1− T cos2(θ + ϑ)
)〉

T,ϑ

. (2.58)

The difference between the two cases is that in the first case no statement can be made
about the total conductance through a single sample. It can strongly vary from sample to
sample and only the average over many samples is a meaningful quantity. In the second
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case, for large N , the conductance of a single sample will approach a certain value given
by

G0e
log(2)+N〈log(1−T cos2(θ+ϑ))〉T,ϑ = 2G0e

−L/` (2.59)

with ` = −L/(N〈log(1 − T cos2(θ + ϑ))〉T,ϑ). It only depends on the distribution of the
tunnel probabilities and angles ϑ. Because in most experiments there are always several
samples produced, a combination of both cases might be necessary.

2.5.3 Discussion and interpretation of the results

We identify the parameter ` with the localization length[Delplace12, Anderson80, Pendry94]
in the limit of large N ,

` = − lim
N→∞

L

N

〈
log
(

1− T cos2(θ + ϑ)
)〉−1

T,ϑ

= − 1

n

〈
log
(

1− T cos2(θ + ϑ)
)〉−1

T,ϑ

, (2.60)

where n = N/L is the contact density. This result shows that the conductance is largest
in the case Tj = 0 for all j. If this is the case, the logarithm yields 0− and ` = ∞. The
conductance is 2G0. In this ideal case, all the transport happens through the two ballistic,
helical channels at the sample edges.

In the physical meaningful limit of small Tj ≈ 0, suppressed spin-flip tunneling ϑj ≈ 0
and statistically independent variables T and ϑ, the localization length is given by

` =
1

n〈T 〉 cos2
[
θ(µ)

] . (2.61)

Tuning the angle θ(µ) allows to vary the localization length in the interval 1/n〈T 〉 <
` < ∞. The limit of θ = π/2 is that of two ballistic channels again, with conductance
2G0. For these settings, tunneling does take place, but due to the angle between the
spin quantization axis in the upper and lower edge only forward scattering at each tunnel
contact is possible. In the limit of large N the microscopic quantities of a single tunnel
contact Tj and ϑj do not play a significant role for the total conductance anymore. Only
the averaged quantities are important and the conductance depends on their statistics.
On the other hand, the origin of θ is global and present all over the sample. It therefore
alters the conductance in a relevant way.

2.6 Conclusions

In this chapter we have dealt with narrow 2D topological insulators in which the edge states
were coupled through several tunnel contacts. Effects such as Rashba spin-orbit coupling
were taken into account by modeling the edge states as generic helical liquids. The model
was solved using the equation of motion for the operators and the scattering matrix was
derived. Expressions for the conductance through a single contact, two contacts and N
contacts were calculated.

While the conductance in a clean sample, without tunnel contacts, is given by the
Landauer-Büttiker formalism as 2G0, the tunneling allows for backscattering and leads
to a reduction of the conductance. In the two contact setup, interference phenomena

24



2.6. Conclusions

become visible in the conductance by changing the chemical potential µ. We found that an
inhomogeneity along the plane of the 2D topological insulator can lead to different Rashba
spin-orbit coupling strengths (two different momentum-dependent spin quantization axis)
at the edges and can have an experimentally tunable effect on the conductance. It was
possible to derive a compact expression for the conductance in the case of N contacts. In
this case, only statistically relevant quantities determine the conductance. Especially, we
obtained that it is tunable by changing the angle between the two different edge state spin
quantization axis, θ(µ).

The assumptions necessary for the calculation to be valid are that all relevant energies
are inside the bulk bandgap and that the helical edge states form a good set of basis states
for the calculation. An open question is whether a large enough electric field gradient
can be applied to have a measurable effect on the conductance without breaking these
assumptions. Furthermore, is it possible in a real setup of a narrow 2D topological insulator
to host tunnel contacts as described in this work, possibly due to charge puddles in the
bulk? And are there other, possibly competing effects due to a field gradient on the
conductance? In principle, the dependence 1/ cos2(θ) of the conductance on θ could lead
to a good signature to identify this effect. However, current experiments seem to still lack
the precision to measure the conductance in a topological insulator with sufficient quality,
see for example [Wiedmann15] where only conductances of half the expected value were
measured. This deviation from the theoretical value is usually explained by the large size
of the sample, which promotes inelastic backscattering. Similar disturbing influences have
to be expected for narrow 2D topological insulator samples as well. However, most effects
that reduce the conductance should not depend on an external electric field gradient in a
significant way.
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Chapter 3

Non-Abelian Parafermions in
Time-Reversal Invariant
Interacting Helical Systems

This chapter is based on the published manuscript:
C. P. Orth, R.P. Tiwari, T. Meng and T.L. Schmidt,
Non-Abelian parafermions in time-reversal-invariant inter-
acting helical systems,
Phys. Rev. B 91, 081406.

3.1 Introduction

As the previous chapter of this thesis, this chapter deals with 2D topological insulators
as HgTeQWs, and their distinguishing features, first and foremost the 1D helical edge
states at their circumference. The time-reversal invariance always plays a crucial role in
these systems, especially since it is the main mechanism that protects the edge states
from elastic backscattering. The helical nature in combination with the stability of the
edge states and the depletion of the bulk material at the Fermi energy leads to a line
of interesting phenomena. In general the combination of a 1D helical liquid and a su-
perconductor was predicted to host exotic zero energy bound states such as Majorana
fermions [Braunecker12, Schmidt13, Fu08, Fu09, Oreg10, Lutchyn10] and parafermions
[Clarke13, Lindner12, Klinovaja15]. These states show characteristic features as for ex-
ample non-Abelian exchange statistics, which could play an important role for topological
quantum computation [Das Sarma06, Nayak08]. First signs of these excitations have al-
ready been found in 1D nanowires, coupled to superconductors [Mourik12, Deng12, Das12].

While ideas for experimental setups that host Majorana fermions at the edges of 2D
topological insulators can be found in the literature of the last years, concepts about
parafermions are still lacking. The two works about parafermions cited above are for frac-
tional quantum hall edge states in proximity to ferromagnets and superconductors. One
point for criticism on these setups is the requirement of magnetic fields and superconduc-
tivity, two effects that exclude each other to some extent. In these works, the edges of a
fractional quantum hall (FQH) insulator with filling factor ν = 1/m, where m is an inte-
ger, are arranged in proximity to superconductors and consecutive ferromagnets. Each of
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these materials will induce a gap in the FQH edge states. The authors then show that the
interface between each two gapped regions on the 1D fractional edge state hosts a bound
state which is a non-Abelian anyon, named parafermion. The reason is that the two in-
duced gaps are of different sign, which will become very clear in the language of Luttinger
liquids, as will be shown later on. Using an analogy to topological insulators, one can
say that the gap induced by the superconductor is topologically nontrivial, while the gap
induced by the ferromagnet is topologically trivial. We will discuss another possibility for
a system that hosts parafermions in this chapter. The setup consists of a 2D topological
insulator such as HgTeQW or InAs heterostructures in proximity to a superconductor.
This will induce a nontrivial gap in the edge states that depends on the induced pair
potential ∆.

Another part of the edge state shows a strong umklapp scattering, a term that will lead
to a trivial gap. This region is hereafter termed Mott insulating region [Ueda13, Sela11].
Umklapp scattering is a Coulomb interaction process that scatters two right-movers into
two left-movers and vice versa. Such a process is in general allowed if the chemical po-
tential is at the Dirac point of the 2D topological insulator edge states. In contrast to
the FQH setups, time-reversal symmetry is fully preserved in this model but still we find
bound states that go beyond Majorana fermions. A similar setup was discussed recently
by [Zhang14]. Other proposals about time-reversal invariant parafermions have been made
for fractional topological insulators, [Levin09, Klinovaja14], which lack experimental real-
ization so far.

This chapter is structured as follows. In the first section we will discuss the system
and related terms of the Hamiltonian in general. Special focus is put on the umklapp
scattering term and a RG procedure is derived in the framework of Luttinger liquids that
shows how this term can be created from single-particle backscattering and generic helical
liquids, which have been explained in section 2.2. The RG-flow equations are derived
which show that the generated term is relevant in the RG sense for strong electron-electron
interactions. If relevant, the created umklapp scattering term will open up a gap in the 2D
topological insulator edge states that depends on the umklapp scattering strength gum.

In section 3.3, it will be shown that two adjacent gapped regions of the topological
insulator edge states, one by ∆, one by gum, lead to a zero-energy bound state at their
interface. This state is interpreted as a parafermion. These findings will then be used as
arguments to introduce spin and charge operators Si and Qi that act within the ground
state manifold, spanned by the parafermions. Finally, a protocol will be presented that
allows to braid two neighboring bound states.

3.2 Induced gaps in the edge state spectra of 2D topological
insulators

The goal of this section is to put the derivations and arguments of the following sections
about parafermions on a solid theoretical basis. The system is introduced and the Hamil-
tonian is discussed. The necessary framework to understand most of the calculations
presented here is that of Luttinger liquids and bosonization. The theory is understood
to be known by the reader and only those steps are performed explicitly that are novel
to the best knowledge of the author. Introductions to Luttinger liquids can be found in
[Giamarchi03, vonDelft98].
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3.2.1 Density-density interaction and helical edge states

The 1D edge states of a 2D topological insulator are usually described by a linearized
[Bernevig06, Kane05a] Hamiltonian

H0 = −ivF
∑
σ=↑↓

σ

∫
dxψ†σ(x)∂xψσ(x), (3.1)

with the Fermi velocity vF and the right-moving spin-up particles ψ↑ and left-moving
spin-down particles ψ↓. In contrast to the previous chapter, here, we will discuss only a
single edge and it is assumed that the other edges of the sample are sufficiently far away
to prevent any interactions or tunneling between them.

However, in general density-density kind of interactions between the particles is always
present within a single edge. While it was shown that this does not influence the conduc-
tance [Maslov95, Ponomarenko95, Safi95] it can have an influence on the single-particle
spectral function for example, which was found to show a power law behavior in carbon
nanotubes [Ishii03]. The Hamiltonian reads

Hint =
1

2

∫
dx dyρ(x)U(x− y)ρ(y), (3.2)

with the interaction strength U(x) and the density operator ρ = ρ↑ + ρ↓ =
∑

σ ψ
†
σψσ.

Following standard bosonization, the Hamiltonian H0 +Hint can be diagonalized as

HLL =
v

2π

∫
dx

[
K (∂xθ)

2 +
1

K
(∂xφ)2

]
, (3.3)

with the Luttinger liquid parameter K = (1 + 2U0/πvF )−1 and the sound velocity v =
vF /K. It actually turns out that the derivation of Eq. (3.3) is not straight forward.
Especially the bosonization of the kinetic energy part of the Hamiltonian can be tricky.
The methods to do this transformation correctly are also needed for later calculations
in this chapter, so we decided to do the derivation in detail in the appendix B.2. As
commonly done, even though not strictly required within the Luttinger liquid theory, the
interaction is of short range only, U(x) = U0δ(x). The canonically conjugate bosonic fields
φ(x), θ(x) follow the commutation relation [φ(x), θ(y)] = −iπΘ(x− y) and are connected
to the fermionic fields through the bosonization identity ψσ(x) = Uσe

−iσφ(x)+iθ(x)/
√

2πa.
The parameter a is the short distance cutoff. The Klein factors are defined to be of
Majorana-kind, meaning that U↑ = U †↑ and U↓ = U †↓ . Klein factors account for the right
anti-commutation relations between fermions of different species and allow a transition
between different N -particle Hilbert spaces [vonDelft98]. The bosonic operators φ, θ alone
cannot take this into account.

The edge states in 2D topologically insulators are protected from the effects of weak
electron interactions. In this limit, a fermionic theory might yield qualitative correct
results. For sufficiently strong electron interactions however, Luttinger liquid theory al-
lows to take the interaction into account exactly. The price one has to pay for this is
that the spectrum has to be linear, while non-linear deviations would lead to dispersion
[Imambekov12] and a finite lifetime of the bosonic excitations.

Time-reversal symmetry plays an important role in this thesis, so in this part we shall
define the time-reversal operator and show its effect on the Hamiltonian. For fermions,
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one possibility to define the time-reversal operator Θ, which has to be an anti-unitary
operator, is

Θψσ(x)Θ−1 = σψ−σ(x)

Θψk,σΘ−1 = σψ−k,−σ. (3.4)

There are several ways how to deduce the time-reversal operator for the bosonic fields φ, θ
from this. One possibility is to let Θ act on the Klein factors in the way ΘUσΘ−1 = σU−σ.
This way, the Klein factors take account of the required negative sign of Θ2 = −1. A second
option is to define ΘUσΘ−1 = U−σ, Θφ(x)Θ−1 = φ(x)+π/2 and Θθ(x)Θ−1 = −θ(x)+π/2.
In this chapter, we choose the second option to keep the Klein factors as simple as possible
so that they can be omitted for certain steps.

The Hamiltonian of Eq. (3.3) transforms under time-reversal as

ΘHLLΘ−1 =
v

2π

∫
dx

[
K
(
∂xΘθΘ−1

)2
+

1

K

(
∂xΘφΘ−1

)2
]

= HLL, (3.5)

and is therefore time-reversal symmetric.

3.2.2 Helical edge states in proximity to a superconductor

It was proposed that a 2D topological insulator, which is in close proximity to an s-wave
superconductor, hosts edge states that may be described by an effective 1D model with an
induced superconducting pairing potential ∆ [Fu09]. The mechanism would be that the
edge states extend to some degree into the superconductor and inherit its pairing potential
∆0. The relation between ∆ and ∆0 depends on the coupling between the two materials.
This will open up a gap in the edge states. The work by Fu and Kane furthermore assumes
that by breaking time-reversal symmetry, a mass term can be induced in the edge states
at the remaining part of the topological insulator circumference as well. This could be due
to a Zeeman field or proximity to a magnetic material. They show that this would lead to
two Majorana fermions as bound states at the interfaces between the two gapped regions.
The strength of ∆ was also estimated numerically for a tight-binding model, which yields
that ∆ ≈ 0.5∆0 [Black-Schaffer11, Khaymovich11].

Experimental evidence about an induced superconducting gap was found in [Hart14,
Pribiag15]. In the first work, a HgTeQW was put between two superconducting electrodes
forming a Josephson junction. The carrier density of the quantum well can be tuned
with a top gate VG from the TI (bulk insulating) regime to the normal conducting regime
(chemical potential inside the bulk band). A current I is driven from one gate to the
other. The measurements suggest that Cooper pairs are induced into the quantum well
edge states and are stable over distances of 800nm. This indicates that a proximity
induced superconducting gap is indeed possible. Further details about a proximity effect
of a superconductor into an ordinary Fermi gas can be found for example in [Volkov95].

In the Bardeen Cooper Schrieffer (BCS) theory of superconductivity [Bardeen57] the

pairing potential is given by operators of the kind ψσψ−σ and ψ†σψ
†
−σ. We therefore write

the induced pairing in the edge states as

H∆ =

∫
dx
[
∆ψ†↑(x)ψ†↓(x) + H.c.

]
(3.6)
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for the fermionic fields. It can be easily seen that this Hamiltonian together with the
kinetic part has off-diagonal terms in the Nambu spinor basis (ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑) and that

its spectrum will be gapped. This term can be transformed to the bosonic basis in a
straight-forward way, which yields

|∆|
∫

dx
[
eiδU †↑U

†
↓e
iφ(x)−iθ(x)e−iφ(x)−iθ(x) + H.c.

]
=∆̃U↓U↑

∫
dx sin

[
2θ(x)− δ

]
(3.7)

with ∆̃ = |∆| /πa, the superconducting phase δ and a definition that the Klein factors are

of Majorana kind, U↑ = U †↑ and U↓ = U †↓ . It was used that emerging commutators will
cancel in this expression. The gap in the bosonic picture is hidden in the several minima
of the sine function. For large enough ∆̃, θ gets locked to one of the minima for all x. It is
more or less just a constant. The Hamiltonian is again time-reversal symmetric for δ = 0,
because sin[2(−θ + π/2)] = sin(2θ).

A ferromagnet in proximity to 2D topological insulator edge states has a similar effect
as a superconductor, in the sense that it will also create a gap in their spectrum. The
defining part of the Hamiltonian of such a magnetic insulator reads

HM =

∫
dx
[
M(x)ψ†↑(x)ψ↓(x) + H.c.

]
. (3.8)

The appendix B.3 shows a derivation for topological insulator edge states gapped by a
magnetic insulator and a superconductor. At the interface, the wave function in the two
regions is matched and an analytical expression for a bound state, which is a Majorana
mode, is found. This calculation is done in the fermionic basis as interaction effects do
not play a role. The goal of this chapter is to investigate a similar system, in which the
ferromagnet is replaced by a strongly correlated region, which also creates a gap in the
edge state spectrum.

3.2.3 Helical edge states with strong umklapp scattering

Another Hamiltonian that is time-reversal symmetric and sometimes present in interacting
systems is that of umklapp scattering. It is interesting for this thesis because, as it will
be shown later on, it can open up a gap in the edge states as well. It is given by

Hum ∝
∫

dxe−4ikF xψ†↑(∂xψ
†
↑)(∂xψ↓)ψ↓ + H.c.. (3.9)

Umklapp scattering is the process of two left-moving states that are scattered into two
right-moving ones with opposite spins and vice versa. This interaction process is allowed
by time-reversal symmetry, as one can see as follows if the H.c. is written out

ΘHumΘ−1 ∝
∫

dxe+4ikF xψ†↓(∂xψ
†
↓)(∂xψ↑)ψ↑ + H.c. = Hum. (3.10)

Unlike the terms H0, Hint however, umklapp scattering breaks a symmetry called axial spin
symmetry. Axial spin symmetry is related to the operator Nσ =

∫
dxρσ, which is basically

the total number of spin-σ fermions. One finds that [Hint, Nσ] and [H0, Nσ] vanish, but
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[Hum, Nσ] 6= 0. Umklapp scattering does not conserve the total number of spin-up and
spin-down. Consequently, an open question that we try to solve in this subsection is if
and how Hum can be generated in realistic systems.

This question inevitably leads back to a true 2D treatment of the system. A
HgTeQW for example can be described by the BHZ model. The latter is block diagonal
in spin-space and therefore conserves also Nσ. It can host 1D edge states only that show
axial spin symmetry. Off-diagonal blocks arise for example due to structural inversion
asymmetry, generated by an external electric field perpendicular to the sample. This
causes Rashba spin-orbit coupling that conserves time-reversal symmetry but breaks the
axial spin symmetry [Rothe10]. Other systems of 2D topological insulators can show the
same effect, such as InAs heterostructures, [Liu08] and silicene, [Liu11a, Liu11b].

The broken axial spin symmetry in the 2D model is linked directly to a broken axial
spin symmetry in the effective 1D edge state models used in this work. It can be described
using the concept of generic helical liquids, as discussed in Chapter 2.2. For the effective
1D model, the strength of the axial spin symmetry breaking term is given by k0. It can
be calculated numerically for HgTeQWs, InAs heterostructures or topological insulators
on the honeycomb lattice, [Schmidt12]. As was shown in Chapter 2, to lowest orders in
1/k0 the matrix Bk that contains the symmetry breaking terms can be expressed as

Bk ≈

(
1 −k2/k2

0

k2/k2
0 1

)
(3.11)

The matrix Bk can be used to diagonalize the effective Hamiltonian Eq. (3.1) by using
the basis ψα with α = +,− instead of ψσ with σ =↑, ↓. It connects the states through
ψα,k =

∑
σ B

ασ
k ψσ,k. Physically, ψ+ (ψ−) are right-movers (left-movers).

If Eq. (3.2) is expressed using the ψ± basis, additionally to density-density interaction
terms also single-particle backscattering terms and umklapp scattering terms are created.
These terms are discussed in some detail in the following. The transformed interaction
Hamiltonian reads

Hint =
1

L3

∑
kk′q

∑
αβα′β′

Uαα
′

ββ′ (q, k, k
′)ψ†α(k)ψβ(k − q)ψ†α′(k

′)ψβ′(k
′ + q), (3.12)

with

Uαα
′

ββ′ (q, k, k
′) =

1

2
U(q)

[
B†kBk−q

]αβ [
B†k′Bk′+q

]α′β′
. (3.13)

Density-density interaction

Density-density interaction terms are of the form ραρβ and appear in all kind of α, β
combinations. In detail, they read

Hρ
int =

1

L3

∑
kk′q

∑
αα′

Uαα
′

αα′ (q, k, k
′)ψ†α(k)ψα(k − q)ψ†α′(k

′)ψα′(k
′ + q)

+
1

L3

∑
kk′q

∑
α

Uαᾱᾱα (q, k, k′)ψ†α(k)ψᾱ(k − q)ψ†ᾱ(k′)ψα(k′ + q) (3.14)
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where ᾱ = −α. Assuming that k/k0 � 1, so that we can use the approximation of
Eq. (3.11) and that U(q) = U0, i.e., the interaction is local, leads to

Hρ
int =

U0

L3

∑
kk′q

∑
αα′

ψ†α(k)ψα(k − q)ψ†α′(k
′)ψα′(k

′ + q)

+
U0

L3

∑
kk′q

∑
α

1

k4
0

α(2kq − q2)ᾱ(−2k′q − q2)ψ†α(k)ψᾱ(k − q)ψ†ᾱ(k′)ψα(k′ + q). (3.15)

The last line is fourth order in momenta, so it can only give a minor momentum-dependent
correction to the first line. It corresponds to interaction terms which conserve the numbers
of right- and left-movers but which are less RG-relevant than density-density interactions.
Therefore, it can be ignored and one obtains approximately

Hρ
int =

U0

L

∑
q

∑
αα′

ρα(−q)ρα′(q). (3.16)

In real space, this means

Hρ
int = U0

∫
dx
∑
αα′

ρα(x)ρα′(x), (3.17)

or in bosonized form, using the total density ρ = ρ+ + ρ− = −(1/π)∂xφ

Hρ
int =

U0

π2

∫
dx(∂xφ)2. (3.18)

Therefore, the sum of kinetic terms and density-density interaction terms can be written
as

Hkin +Hρ
int =

vF
2π

∫
dx

[
(∂xθ)

2 +

(
1 +

2U0

πvF

)
(∂xφ)2

]

=
v

2π

∫
dx

[
K(∂xθ)

2 +
1

K
(∂xφ)2

]
, (3.19)

with the definitions of the renormalized sound velocity and the Luttinger parameter as

K =

(
1 +

2U0

πvF

)−1/2

v =
vF
K
. (3.20)

For repulsive interactions (U0 > 0), one has 0 < K < 1 and v > vF as expected. As usual,
the Luttinger Hamiltonian can be diagonalized by rescaling the fields to φ̃ = φ/

√
K and

θ̃ =
√
Kθ,

Hkin +Hρ
int =

v

2π

∫
dx
[
(∂xθ̃)

2 + (∂xφ̃)2
]
. (3.21)

This Hamiltonian is mentioned here, because all normal ordering operations below will
be with respect to the eigenmodes θ̃(x) and φ̃(x) of the Luttinger Hamiltonian of the
interacting system. As it could be guessed already, the density-density correction due to
the Bk matrices is captured in the Luttinger liquid framework already.
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Umklapp terms

Next is to proceed with the umklapp terms. There are only two which are related by
hermitian conjugation, so

Hum
int =

1

L3

∑
kk′q

U++
−− (q, k, k′)ψ†+(k)ψ−(k − q)ψ†+(k′)ψ−(k′ + q) + H.c.

=
U0

L3

∑
kk′q

[B†kBk−q]
+−[B†k′Bk′+q]

+−ψ†+(k)ψ−(k − q)ψ†+(k′)ψ−(k′ + q) + H.c.

≈ −U0

L3

1

k4
0

∑
kk′q

q2(2k − q)(2k′ + q)ψ†+(k)ψ−(k − q)ψ†+(k′)ψ−(k′ + q) + H.c.. (3.22)

As expected, the amplitude of this process vanishes for q = 0, as well as for q = 2k and
q = −2k′, because these cases would involve scattering between Kramers partners, and
these have no overlap. Therefore, it can be seen already that these processes are quartic
in the momenta, and will always create four derivatives when Fourier transformed to real
space. In contrast, if there was a finite Fermi momentum kF 6= 0, a term in real space
could be generated which contains k2

F and two derivatives. However, for kF = 0, a Fourier
transformation inevitably leads to a term containing four spatial derivatives.

The conclusion is that the pure Hamiltonian Hum
int for kF = 0 does not contain a term

∝ ψ†+(∂xψ
†
+)(∂xψ−)ψ−. Nevertheless, such a term may still be generated from RG if one

starts with single-particle backscattering.

Single-particle backscattering

The last category of terms that appears are single-particle backscattering terms of the
form ψ†αψᾱρα. We show in this paragraph which of the terms are important and how to
bosonize the related Hamiltonian. The single-particle backscattering terms are

Hspb
int =

2

L3

∑
kk′q

∑
αα′

U(q)[B†kBk−q]
αα[B†k′Bk′+q]

α′ᾱ′ψ†α(k)ψα(k − q)ψ†α′(k
′)ψᾱ′(k

′ + q),

(3.23)

where some symmetries of Uαα
′

ββ′ and relabeling were exploited1. For local interactions and
small 1/k0 one finds

Hspb
int = − 2U0

k2
0L

2

∑
q

∑
α

ρα(−q)
∑
α′k′

α′q(2k′ + q)ψ†α′(k
′)ψᾱ′(k

′ + q). (3.24)

The factor q(2k′ + q) shows that the term vanishes for q = 0 and k′ = −q/2. This means
that the processes (k+, k

′
+)→ (k+, k

′
−) as well as (k+, k

′
+)→ (k++2k′,−k′−) are forbidden,

which is expected because both involve scattering between Kramers partners which is

1During this procedure it becomes necessary to commute a single-particle backscattering term ψ†αψᾱ
past a density term ψ†α′ψα′ , which leads to a nontrivial commutator that gives an additional chemical
potential term (a term containing only two fermion operators). However, this term is spurious and is an
artifact of starting with a fermionic Hamiltonian which is not normal-ordered. Therefore, in the following
such terms will be discarded.
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forbidden by time-reversal symmetry. The last line suggests shifting one momentum sum
to k̃ = k′ + q/2. Then, using the Fourier transforms from Eq. (A.1) one finds

Hspb
int = − 2U0

k2
0L

2

∫
dxdx1dx2

∑
αα′

α′ρα(x)ψ†α′(x1)ψᾱ′(x2)
∑
qk̃

2qk̃eiq(x−x1/2−x2/2)eik̃(x1−x2).

(3.25)

This suggests using center-of-mass and relative coordinates, y1 = (x1 + x2)/2 and y2 =
x1 − x2,

Hspb
int = − 4U0

k2
0L

2

∫
dxdy1dy2

∑
αα′

α′ρα(x)ψ†α′(y1 + y2/2)ψᾱ′(y1 − y2/2)
∑
qk̃

qk̃eiq(x−y1)eik̃y2

=
4U0

k2
0

∫
dxdy1dy2

∑
αα′

α′ρα(x)ψ†α′(y1 + y2/2)ψᾱ′(y1 − y2/2)∂x∂y2δ(x− y1)δ(y2)

=
4U0

k2
0

∫
dxdy1dy2

∑
αα′

α′[∂xρα(x)]∂y2

[
ψ†α′(y1 + y2/2)ψᾱ′(y1 − y2/2)

]
δ(x− y1)δ(y2)

=
2U0

k2
0

∫
dx
∑
αα′

α′ρ′α(x)
[
ψ†
′

α′(x)ψᾱ′(x)− ψ†α′(x)ψ′ᾱ′(x)
]
. (3.26)

This leads to

Hspb
int =

2U0

k2
0

∫
dx[∂xρ(x)]

(
ψ†
′

+ψ− − ψ
†
+ψ
′
− − ψ

†′
−ψ+ + ψ†−ψ

′
+

)
, (3.27)

where ρ = ρ+ + ρ−. “Naive” bosonization, i.e., without taking care of proper normal-
ordering, would lead to

Hspb
int ∝

∫
dx[∂2

xφ(x)]
{

(i∂xϕ+ + i∂xϕ−) e2iφ − (i∂xϕ− + i∂xϕ+) e−2iφ
}

∝
∫
dx[∂2

xφ(x)][∂xθ(x)] sin[2φ(x)], (3.28)

with ϕσ(x) = σφ(x) − θ(x). This term has the same symmetries as the linear Rashba
Hamiltonian (∝ ∂xθ cos(2φ)), but it contains in addition the operator ∂2

xφ(x) which reduces
its scaling dimension.

To correctly bosonize this term, it is convenient to use a point-split expression, as was
done already in the Appendix B.2 for the kinetic part of the Hamiltonian. The point-
splitting process essentially removes any divergences from the operators and gathers them
in a prefactor. In this way, it is possible to derive the correct cutoff dependency of the
prefactor, which will become important in the RG-procedure to follow. We drop the Klein
factors because they are not supposed to make any physical difference in the following.
The point-splitted Hamiltonian is written as

Hspb
int =

2U0

k2
0

∫
dx lim

x1,2,3,4→x
∂x1

∑
α

[
ψ†α(x1)ψα(x2) + ψ†α(x2)ψα(x1)

]
×∂x3

∑
β

β
[
ψ†β(x3)ψβ̄(x4)− ψ†β(x4)ψβ̄(x3)

]
. (3.29)
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The calculation is quite lengthy and technical, so it will be done in Appendix B.3.4. The
bosonized version of the single-particle backscattering Hamiltonian reads

Hspb
int = −λvFa

(
2πa

L

)K ∫
dx ∗∗ (∂2

xφ)(∂xθ) sin[2φ(x)] ∗∗ , (3.30)

it reveals a cutoff dependency of aK−1, which cannot be obtained from the “naive”
bosonization approach. As required, this term still respects time-reversal symmetry, as
one can show using Θ∂2

xφΘ−1 = ∂2
xφ, Θ∂xθΘ

−1 = −∂xθ and sin[2ΘφΘ−1] = sin[2φ+ π] =
− sin[2φ]. We introduced the parameter λ during the bosonization process. It is dimen-
sionless and given by λ = 12U0/(π

2vFk
2
0a

2). In the following part, it will be used as the

small parameter for the RG-procedure. In the non-interacting limit, K → 1 and Hspb
int is

independent of a (λ ∝ a−2), which is a good indication that the bosonization was done
correctly. For small spin-axis rotation, 1/k0 → 0 and the single-particle backscattering
disappears, as it should do. The same holds for U0 → 0. These remarks close the discus-
sion about emergent terms due to generic helical liquids and interactions. What follows is
an RG-analysis of the single-particle backscattering, which finally leads to the generation
of a relevant umklapp scattering term.

How umklapp scattering is generated

In subsection 3.2.3 some umklapp terms were generated already. However, it was argued
that these terms always contain four derivatives. They have a reduced scaling dimension
compared to the term of Eq. (3.9) and will always remain renormalization group irrelevant.
The first order RG equation of these terms would simply be dgum/d` ∝ −4K.

We will argue in this subsection how a relevant umklapp scattering term of the form
of Eq. (3.9) is generated, which contains only two derivatives. A first look at the umklapp
scattering Hamiltonian Eq. (3.9) and at the single-particle backscattering Eq. (3.27) reveals

already a major analogy. The umklapp term is essentially two times the ψ†βψβ̄ part of the
single-particle backscattering. Here, we shall show that the first one is generated in second
order RG from the the last one. The derivation is quite technical again, and a major part
is banished to the appendix. Basic ideas about the RG theory can be found for example
in [Cardy96]. As a start, the following operator equation is written down

∗
∗ (∂2

x1
φ)(∂x1θ) sin[2φ(x1, t1)] ∗∗

∗
∗ (∂2

x2
φ)(∂x2θ) sin[2φ(x2, t2)] ∗∗

≈−
∑
α,β=±

1

4

(
a+ i(x−2 − x

−
1 )
)αβK (

a− i(x+
2 − x

+
1 )
)αβK (2π

L

)2αβK

[
−16K2

(
∂2
x1
g++

)2 (
∂x1g−+

)2
+ 4αβK

(
∂2
x1
g++

)3
+ 4αβK

(
∂x1g−+

)2 (
∂4
x1
g++

)
+ 8αβK

(
∂x1g−+

) (
∂2
x1
g++

)(
∂3
x1
g−+

)
−
(
∂4
x1
g++

)(
∂2
x1
g++

)
−
(
∂3
x1
g−+

)2
]

× ∗∗ eiα2φ(x1,t1)+iβ2φ(x2,t2) ∗
∗ =: g(a), (3.31)

with the definitions

gαβ = −α
4

log
[
1− e−(a+i(x2−vt2−x1+vt1)) 2π

L

]
− β

4
log
[
1− e−(a−i(x2+vt2−x1−vt1)) 2π

L

]
x±i = xi ± vti. (3.32)
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3.2. Induced gaps in the edge state spectra of 2D topological insulators

The equation contains already an essential part of the results: two single-particle backscat-
tering terms normal ordered yield the expression ∗

∗ e
iα2φ(x1,t1)+iβ2φ(x2,t2) ∗

∗ , which is some-
thing like an umklapp scattering term, times a complicated, cutoff dependent prefactor.
The equation is derived in Appendix B.4.

To summarize, the system under consideration consists of the Luttinger liquid Hamilto-
nian of Eq. (3.3) for fermions of a generic, interacting helical liquid. The combined effect of
a generic helical liquid together with the interaction furthermore leads to a single-particle
backscattering term, which is not part of the Hamiltonian of Eq. (3.3) so far. In the
following, this term will be treated as a perturbation and the second order RG-equations
will be derived. For the RG treatment, we use the expectation value

Z = 〈Te−i
∫∞
−∞ dt1V (t1)〉0. (3.33)

Z denotes the usual real-time partition function and 〈A〉0 is the expectation value 〈A〉0 =
〈Ae−itH0〉 of the operator A in the unperturbed system (index 0) and the vacuum. V (t)
is the perturbation, in this case the bosonized single-particle backscattering Hamiltonian,
while H0 is the Luttinger liquid Hamiltonian. The partition function is expanded for small
perturbations

Z ≈ Z0 − i
∫ ∞
−∞

dt〈V (t)〉0 −
1

2

∫ ∞
−∞

dt

∫ ∞
−∞

dt′〈V (t)V (t′)〉0

=Z0 + iλvFa

(
2πa

L

)K ∫ ∞
−∞

dt

∫
dx〈 ∗∗ (∂2

xφ)(∂xθ) sin[2φ(x)] ∗∗ 〉0

− 1

2
λ2v2

Fa
2

(
2πa

L

)2K ∫ ∞
−∞

dt1 dt2 dx1 dx2

× 〈 ∗∗ (∂2
x1
φ1)(∂x1θ1) sin[2φ1] ∗∗

∗
∗ (∂2

x2
φ2)(∂x2θ2) sin[2φ2] ∗∗ 〉0, (3.34)

with the shorthand notation φi = φ(xi, ti), θi = θ(xi, ti), so the operators are now time and
space dependent and the interaction picture is used. The small, dimensionless parameter
that was expanded for is λ. The second order term contains just the operator expression
that was treated in Eq. (3.31).

The basic idea of the RG calculation is that any expectation value must be independent
of the exact value of the cutoff, in this case the short distance cutoff a. One therefore
rescales the cutoff, as for example in an exponential form a(`) = ae`, and demands that
Z stays independent of that change. Usually, this will only be the case if one additionally
rescales the coupling parameters as well, here λ. For the expanded Z in perturbation
theory, this even implies that every order in λ of Z has to stay constant with respect to a
shift of a. The procedure is best illustrated using only the first order of Eq. (3.34). With
the rescaling a→ a(1 + d`) and λ→ λ+ dλ one obtains the equation

iλvFa

(
2πa

L

)K ∫ ∞
−∞

dt

∫
dx〈 ∗∗ (∂2

xφ)(∂xθ) sin[2φ(x)] ∗∗ 〉0

=i(λ+ dλ)vFa(1 + d`)

(
2πa(1 + d`)

L

)K ∫ ∞
−∞

dt

∫
dx〈 ∗∗ (∂2

xφ)(∂xθ) sin[2φ(x)] ∗∗ 〉0. (3.35)

It is now straight forward to extract the condition

λaK+1 = (λ+ dλ)aK+1(1 + d`)K+1 ≈ λaK+1 + dλaK+1 + λaK+1(K + 1)d`, (3.36)
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where the equation was linearized for infinitesimal dλ, d` in the last step. From this, the
first order RG flow equation for the coupling λ follows

dλ

d`
= −(K + 1)λ. (3.37)

At this point, several comments should be made. The first is the interpretation of the
result Eq. (3.37). As 0 < K ≤ 1, the term K + 1 is always positive and the right hand
side prefactor of the flow equation is always negative. Integrating the flow equation, this
means that for growing `, λ has to shrink. In other words, if the short distance cutoff
a gets increased, so only lower energies are taken into account, the coupling strength λ
gets reduced. This is the characteristic of an irrelevant coupling2. However, it will be
shown that the single-particle backscattering is a dangerously irrelevant coupling as it
will generate other terms that turn out to be relevant. Second is that for a correct RG
treatment, the coupling constant λ has to be dimensionless. This ensures that physical
units stay independent during the procedure. Without this requirement, there would be
more flexibility to choose λ, especially there would not be the need to put an additional
a−2 dependence into its definition and this factor would appear in the RG flow equation
and the prefactor would read −(K − 1) and could thus become positive.

For the second order in λ RG equations, one starts with the Eq. (3.31), which appears
below a x1, x2, t1, t2 integral. It comes together with a prefactor λ2a2a2K . Both parts
depend on the cutoff a. To formalize this, the function g(a) is defined by the right hand
side of Eq. (3.31). So far, the exact dependency on a of g(a) does not matter, g(a) however
is independent of λ. The RG step can be done already in this simple form and will read

λ2a2K+2g(a) = (λ+ dλ)2a2K+2(1 + d`)2K+2g
(
a(1 + `)

)
, (3.38)

where only the a dependence from the integrand was taken into account. Any dependence
of the integral boundaries will be covered later. The linearization of this equation leads to

λ2g(a) = λ2g(a) + λ2(2K + 2)d`g(a) + λ2g′(a)ad`+ 2λdλg(a), (3.39)

which is equivalent to

0 = λ(2K + 2)g(a) + λg′(a)a+ 2
dλ

d`
g(a). (3.40)

This expression contains the first order RG equation again, which makes two terms vanish.
What remains is

0 = g′(a). (3.41)

This is a condition that cannot be made true using only λ or `3. That this term was
generated means that the RG was not complete and an essential part is still missing. This
term can only be canceled if a new term is generated in the Hamiltonian, which is zero in
the beginning of the RG flow, but grows with growing `. First, we examine the generated
term a bit closer. The integration of Eq. (3.31) over x2, t2 can be approximated. As the
operator product is normal ordered, it will not diverge anymore for x2 → x1 and t2 → t1.
On the other hand, it is expected to drop exponentially for large x2 − x1 respectively

2The negative factor −(K + 1) is what defines that a coupling is irrelevant in the RG sense.
3Only for λ = 0, when this term would not exist. But this is the trivial limit.
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3.2. Induced gaps in the edge state spectra of 2D topological insulators

t2− t1. This suggests that it is a reasonable approximation to evaluate the second integral
for x2 = x1 and t2 = t1 with the width ia2/vF . The factor i can be obtained from similar
calculations where this integral can be done exactly. That it has to appear can be guessed
because xi and a always appear in the combination a+ i(x2− vt2) in Eq. (3.31). The rest
is determined by demanding the correct dimensions. With x2 = x1, t2 = t1, which implies
that α = β to keep the operator expression, one obtains

g(a) ≈
∑
α

8π6

L6

(
2aπ

L

)2K

e2aπ/L
(
e2aπ/L − 1

)−6 ∗
∗ e

iα4φ(x1,t1) ∗
∗

×
[
−e6aπ/L + e4aπ/L(4K − 3) +K − e2aπ/L(1− 6K + 2K2)

]
=

16π6

L6

(
2aπ

L

)2K

e2aπ/L
(
e2aπ/L − 1

)−6 ∗
∗ cos

(
4φ(x1, t1)

) ∗
∗

×
[
−e6aπ/L + e4aπ/L(4K − 3) +K − e2aπ/L(1− 6K + 2K2)

]
. (3.42)

Linearization for a→ a(1 + d`) and keeping only the lowest order terms in a/L yields

g(a) ≈− 1

8a6

(
2aπ

L

)2K [
1 + 2d`(K − 3)

] (
5− 11K + 2K2

)
∗
∗ cos

(
4φ(x1, t1)

) ∗
∗ . (3.43)

TheK-dependent factor can still be written in a nicer way, (5−11K+2K2) = (2K− 1)(K− 5).
With this, the extra term that is generated in second order reads

Zc =
iλ2vF
4a2

(
2πa

L

)4K ∫
dx1

∫ ∞
−∞

dt1d`(K − 3)(2K − 1)(K − 5)〈 ∗∗ cos
(
4φ(x1, t1)

) ∗
∗ 〉0.

(3.44)

This equation contains an operator which can be used for an educated guess on the term
that is generated. In first order expansion, it should contain the operator ∗∗ cos

(
4φ(x1, t1)

) ∗
∗ .

Furthermore, there is a factor of a4K−2. To cancel this term, an umklapp term (sine-
Gordon term) is added to the Hamiltonian of the form

Hum =
vF
L2

Ṽum

vFa2︸ ︷︷ ︸
gum

(
2πa

L

)4K−2 ∫
dx ∗∗ cos[4φ(x)− 4kFx] ∗∗ (3.45)

where gum is dimensionless and kF = 0. This term in first order RG should cancel the
generated term. To see this we treat this term in first order RG. Expanding the partition
function

Zum = Z0,um − i
∫ ∞
−∞

dt〈Hum(t)〉0

= Z0,um − i
vF
L2
gum

(
2πa

L

)4K−2 ∫
dx

∫ ∞
−∞

dt〈 ∗∗ cos[4φ(x)] ∗∗ 〉0 (3.46)

and changing the cutoff and coupling constant gum → gum + dgum, a → a(1 + d`). This
must not only fulfill this first order RG equation, but also cancel the additional term Zc
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that was generated above. For clarity, the whole thing written down explicitly reads

− ivF
L2
gum

(
2πa

L

)4K−2 ∫
dx

∫ ∞
−∞

dt〈 ∗∗ cos[4φ(x)− 4kFx] ∗∗ 〉0

=− ivF
L2

(gum + dgum)

(
2πa

L

)4K−2 (
1 + (4K − 2)d`

) ∫
dx

∫ ∞
−∞

dt〈 ∗∗ cos[4φ(x)] ∗∗ 〉0

+
iλ2vF
4a2

(
2πa

L

)4K ∫
dx1

∫ ∞
−∞

dt1d`(K − 3)(K − 5)(2K − 1)〈 ∗∗ cos
(
4φ(x1, t1)

) ∗
∗ 〉0.

(3.47)

From this the following equation can be extracted

1

L2

(
dgum + gum(4K − 2)d`

)(2πa

L

)4K−2

=
λ2

4a2

(
2πa

L

)4K

(K − 3)(K − 5)(2K − 1)d`. (3.48)

Which is rewritten as

dgum

d`
= −2gum(2K − 1) + λ2π2(K − 3) (2K − 1) (K − 5) . (3.49)

Please note that this expression does not depend on a (this is not trivial). This indicates
that the right dimensionless coupling constants have been chosen before. If a dependency
on a remained in the RG flow equation, it would mean that the differential equation for gum

depends on the initial condition a, the cutoff which the RG flow starts from. At the first
glance, it may be a bit strange that Eq. (3.49) does not vanish in the non-interacting limit
for K = 1. However, a closer look reveals that in that limit λ = 0 and, by construction,
gum(` = 0) = 0. So gum(`) = 0 in the K = 1 case. The two special points K = 3, 5 for
which the inhomogeneous part of the equation vanishes are not of interest here, as they
require attractive interactions, K > 1. The point K = 1/2 though, is worth discussing.
At this point, gum(`) = 0 and umklapp scattering is a marginal perturbation. For larger
1/2 < K < 1, the left-hand side of Eq. (3.49) is always negative and umklapp scattering
stays irrelevant. For strong repulsive interactions K < 1/2, umklapp scattering turns out
to be a relevant perturbation. This is the interesting limit that this chapter will build on
in the following.

As furthermore λ(`) will flow with `, the RG flow of gum is not trivial. It is plotted for
some values of K in Fig. 3.1 In the regime 1/2 < K < 1 it first increases, due to the finite
initial condition of λ, and then drops to 0 as it gets suppressed by the −2gum(2K − 1)
term. For K < 1/2, the λ contribution dies out fast, but then an exponential increase is
activated, caused by the gum proportional term. For that regime, umklapp scattering was
created as a relevant perturbation, caused by the dangerously irrelevant single-particle
backscattering terms. The coupling gum will flow towards the strong coupling fixed point.
The field φ will be pinned to one of the minima of the cos(4φ) term in Eq. (3.45).

In the following, we will argue that the generated umklapp scattering furthermore
leads to a gap in the edge state spectrum. Using the initial conditions λ(` = 0) = λ0 and
gum(` = 0) = 0 the RG flow equations can be solved. The solution reads

λ(`) = λ0e
−(K+1)`

gum(`) = −(2K − 1)γλ2
0

8− 4K
e(2−4K)`

(
e2(K−2)` − 1

)
≈ −(1− 2K)γλ2

0

8− 4K
e(2−4K)` (3.50)
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Figure 3.1: Solution of the RG flow equation for gum. The initial condition for λ was
chosen as λ(` = 0) = 1. The solution is shown for K = 1 (red), K = 0.53 (blue) and
K = 0.47 (green). While the solutions for K > 1/2 approach 0 for large `, the one for
K < 1/2 escapes to −∞ and the perturbation is therefore relevant.

with the shorthand notation γ := 2π2(5−K)(3−K) and in the last line the approximation
`� 1 was taken to show the asymptotic behavior for K < 2. The bare coupling constant
was defined by

λ0 =
12U0

π2vFk2
0a

2
, (3.51)

where the cutoff a should be given by the inverse of the bulk band gap. For a system with
large size L and at zero temperature, the RG flow can be continued until

∣∣gum(`∗)
∣∣ ≈ 1 as

there is no other scale that would stop the flow. This leads to

e`
∗

=

(
8− 4K

(1− 2K)γλ2
0

)1/(2−4K)

. (3.52)

The next step is to estimate the energy gap created in the spectrum by the umklapp term.
The Hamiltonian with umklapp term is approximated as follows,

H =

∫
dx

{
vK

2π
[∂xθ(x)]2 +

v

2πK
[∂xφ(x)]2 +

vgum

a2
cos[4φ(x)]

}
≈
∫
dx

{
vK

2π
[∂xθ(x)]2 +

v

2πK
[∂xφ(x)]2 − 8vgum

a2
φ2(x)

}
. (3.53)

In order to estimate the gap, one can proceed as in Ref. [Giamarchi03], see the Eq. (2.153).
The idea is to write down the action in Fourier space and identify the energy cost on an
excitation with momentum zero. The gap is found to be of the order

M =
4v

a

√
πK|gum|. (3.54)

Therefore, at the end of the RG flow when |gum(`∗)| = 1 one has M(`∗) ≈ 4
√
πKv/a. The

true gap of the system is then of the order

M(` = 0) ≈ e−`∗ v
a

=
v

a

(
(1− 2K)γλ2

0

8− 4K

)1/(2−4K)

. (3.55)
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To obtain numerical values for this, one first has to estimate the bare λ0. Using Eq. (3.20)
to express U0/vF in terms of K (although strictly speaking Eq. (3.20) is only correct for
weak interactions),

2U0

πvF
=

1

K2
− 1 (3.56)

which leads to

λ0 =
6

πk2
0a

2

(
1

K2
− 1

)
. (3.57)

The single-particle backscattering strength is thus determined by the dimensionless pa-
rameters K and k0a. It seems reasonable to use 1/a ≈ 0.01/Å [Qi11] and K = 0.4. The
parameter k0a is harder to estimate. Assuming that the spin axis rotation is very weak,
e.g., k0a ≈ 10. This leads to

λ0 =
6

π(10)2

(
1

0.42
− 1

)
≈ 1× 10−3. (3.58)

This result yields for v ≈ 5.5× 105m/s and a ≈ 100Å,

M(` = 0) ≈ v

a

(
2π2(5−K)(3−K)(1− 2K)λ2

0

8− 4K

)1/(2−4K)

≈ 3.9 Kelvin = 0.24 meV.

(3.59)

The equation however suggests that this value scales strongly with λ0 and K, which are
both quantities for which no good numerical values are accessible. Yet the necessary
parameters seem to be close to those that are achievable in modern experiments.

3.3 Interface bound states

In the last section, we established the basics to investigate a more complicated setup.
Figure 3.2 shows the edge of a 2D topological insulator with alternating superconducting
(blue) and Mott insulating (green) regions. These regions can be formed for example by
gates or adjacent superconducting materials. The superconductors induce a superconduct-
ing pairing which gaps the corresponding topological insulator edge states. In the same
way, the strong interaction that is present in the green regions leads to a gap, which forms
the Mott insulating areas. At the interfaces bound states emerge. In this section, a single
interface between two such regions is examined analytically.

The full Hamiltonian in the bosonized form of a single interface is given by an interact-
ing Luttinger liquid Hamiltonian over the whole system length and a strongly interacting
part for x > 0 and a part with induced superconductivity for x < 0. The interaction
strength K and sound velocity v are spatially dependent, but assumed to be constant at
least within each region x ≷ 0. They are defined as K(x) = KMΘ(x) + KSΘ(−x) and
v(x) = vMΘ(x) + vSΘ(−x) with the step-function Θ(x). For simplicity, the regions are
assumed to extend to ±∞. The Hamiltonian reads

H =
1

2π

∫ ∞
−∞

dx

{
v(x)K(x) ∗∗ [∂xθ(x)]2 ∗∗ +

v(x)

K(x)
∗
∗ [∂xφ(x)]2 ∗∗

}
+ ∆̃

∫ 0

−∞
dx sin[2θ(x)] + g̃um

∫ ∞
0

dx cos[4φ(x)], (3.60)
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Figure 3.2: Alternating Mott insulating and superconducting regions (green and blue
sections) with periodic boundary conditions. The fields φ and θ are pinned in the super-
conducting (θi) and Mott insulating (φi) sections. There are four emergent bound states,
labeled by χi. The two helical edge states are indicated by the thin red and blue line.

where the induced superconducting pairing (∆̃ = ∆/(πa)) and umklapp scattering (g̃um =
vF gum/a

2) were discussed in the last section. All possible constant phases inside the cosine
and sine functions were dropped as they can be compensated by a redefinition of the fields.
It was shown already that the cos(4φ) term is relevant for KM < 1/2. In an alike way,
it can be shown that the sin(2θ) term is relevant as well within its region for KS > 1/2
only [Gangadharaiah11]. For large enough ∆̃ and g̃um, both terms pin the fields θ and φ
within each region to the minima of the sin and cos potentials.

Despite this evident contradiction, KS > 1/2, KM < 1/2 inside the same topological
insulator, an experimental realization can be possible. Assuming a topological insulator
with a natural K < 1/2. Then, the proximity to a superconductor can lead to a strong
screening of interactions, effectively increasing K inside the region with induced supercon-
ductivity to a value KS > 1/2. For example an interacting helical liquid that interacts with
a nearby superconductor with interaction strength Usc(x) = Uscδ(x) will increase K from
KM to KS = KM [1−K2

MU
2
sc/(πvM )2]−1/2 > KM (supplemental material of [Orth15b]).

The pinning of the fields to the minima of the cosine and sine functions allows to use
a mean-field approximation. In this, the term cos(4φ(x)) is expanded around one of the
minima φm = 〈φ(x)〉 = (2m + 1)π/4 for x > 0. In the same sense, θ is expanded as
θn = (n + 1/2)π around the minima of the sine term for x < 0. In principle, tunneling
between the different minima is possible, but it is suppressed by the order of the system
length L and temperature T . This effect is therefore neglected henceforth. The fields are
redefined to minimize the potentials by

θ(x)→ θ(x) + θn

φ(x)→ φ(x) + φm, (3.61)

which leaves the kinetic part of the Hamiltonian invariant and the commutator [φ(x), ∂yθ(y)] =
iπδ(x− y) still holds. Expansion around θ ≈ 0 and φ ≈ 0 leads to the quadratic Hamilto-
nian

H =
1

2π

∫
dx

{
v(x)K(x)[∂xθ(x)]2 +

v(x)

K(x)
[∂xφ(x)]2

}
+ 2∆̃

∫
x<0

dx[θ(x)]2 + 8g̃um

∫
x>0

dx[φ(x)]2, (3.62)

where constant terms have been dropped.

3.3.1 A differential equation for Green’s functions

The following steps transform this Hamiltonian to a form that allows extraction of a
differential equation for the Green’s functions. Using the canonical momentum Π(x) =
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∂xθ(x)/π the real-time action can be derived as

S[θ, φ] =

∫
dtdx

[
(∂tφ)Π−H

]
. (3.63)

The corresponding action in imaginary time is given by using the analytic continuation.
Defining S = −iS|t→−iτ , we find

S[θ, φ] = (−i)2

∫
dτdx

[
i(∂τφ)Π−H

]
=

∫
dτdx

[
−i(∂τφ)Π +H

]
, (3.64)

where H is the Hamiltonian density. Note that this is the Hamiltonian action, so it
depends on both φ and θ [Altland10]. Usually, it is possible to perform the path integral
over θ(x), and thus obtain the Lagrangian action, which depends only on φ(x). However,
here the action depends explicitly on θ(x), so this is not so easy. It is therefore expedient
to stick to the Hamiltonian representation.

Introducing x-dependent pairing amplitudes ∆̃(x) (interaction strength g̃um(x)) which
vanish in the interaction region (superconducting region), we write the action as

S[θ, φ] =

∫
dτdx

{
− i(∂τφ)(∂xθ)

π
+
v(x)K(x)

2π
[∂xθ(x)]2 +

v(x)

2πK(x)
[∂xφ(x)]2

+ 2∆̃(x)θ2(x) + 8g̃um(x)φ2(x)

}
. (3.65)

Furthermore, integration by parts yields,

S[θ, φ] =
1

2π

∫
dτdx

{
2iφ∂τ∂xθ − θ(x)∂x[v(x)K(x)∂x]θ(x)− φ(x)

[
∂x

v(x)

K(x)
∂x

]
φ(x)

+ 4π∆̃(x)θ2(x) + 16πg̃um(x)φ2(x)

}
. (3.66)

Under the integral, the first term can be written as 2φ∂τ∂xθ = φ∂τ∂xθ + θ∂τ∂xφ. With
the vector notation

Φ =

(
φ(x)
θ(x)

)
(3.67)

the action finally becomes

S[Φ] =
1

2π

∫
dτdxΦTDΦ (3.68)

where

D =

(
−∂x v(x)

K(x)∂x + 16πg̃umΘ(x) i∂τ∂x

i∂τ∂x −∂xv(x)K(x)∂x + 4π∆̃Θ(−x)

)
. (3.69)

Therefore, the differential equation for the imaginary-time Green’s function

G(x, x′, τ, τ ′) = −〈TτΦ(x, τ)Φ(x′, τ ′)〉 (3.70)
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which should be interpreted as a 2× 2 matrix in (φ, θ) space, is given by

DG(x, x′, τ, τ ′) = δ(x− x′)δ(τ − τ ′). (3.71)

The procedure in the following will be as this: first, we shall derive a solution to this dif-
ferential equation separately for the Mott insulating and the superconducting region. The
solutions are finally matched to find the Green’s function for the interface. A subsequent
refermionization allows to gain information on the bound states at the interface.

3.3.2 Green’s functions in the strongly interacting region

In this subsection, we will derive the solution to the differential equation

(
− vM
KM

∂2
x + 16πg̃um i∂τ∂x
i∂τ∂x −vMKM∂

2
x

)
G(x, x′, τ, τ ′) = δ(x− x′)δ(τ − τ ′). (3.72)

The starting point is an Ansatz for the homogeneous part, meaning a solution for x 6= x′.
For simplicity, set x′ = τ ′ = 0. To find an ansatz, the following Fourier transform is useful

GL/R(x, τ) =
1

Lβ

∑
k

∑
ωn

e−iωnτeikxGL/R(k, iωn), (3.73)

where L (R) means x < 0 (x > 0). This yields

(
vM
KM

k2 + 16πg̃um iωnk

iωnk vMKMk
2

)
GL/R(k, iωn) = 0. (3.74)

These four equations can be solved in a non-trivial way only for some values of k. One
possibility is k = 0, which leads to

16πg̃umG
L/R
φφ (0, iωn) = 0

16πg̃umG
L/R
φθ (0, iωn) = 0

but does not give any restriction on the components G
L/R
θφ (0, iωn), G

L/R
θθ (0, iωn). Another

solution is for k 6= 0, which yields the conditions

k± = ± 1

vM

√
−16πg̃umKMvM − w2

n

G
L/R
θφ (k±, iωn) = −i ωn

vMKMk±
G
L/R
φφ (k±, iωn)

G
L/R
θθ (k±, iωn) = −i ωn

vMKMk±
G
L/R
φθ (k±, iωn). (3.75)
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These are the only values of k with a non-trivial solution. Inserting these three solutions
into Eq. (3.73) we find the Ansatz (staying in the ωn picture)

G
L/R
φφ (x, iωn) =

1

L
eik+xG

L/R
φφ (k+, iωn) +

1

L
eik−xG

L/R
φφ (k−, iωn)

G
L/R
θφ (x, iωn) =− i ωn

LvMKMk+
eik+xG

L/R
φφ (k+, iωn)− i ωn

LvMKMk−
eik−xG

L/R
φφ (k−, iωn)

+
1

L
G
L/R
θφ (0, iωn)

G
L/R
φθ (x, iωn) =

1

L
eik+xG

L/R
φθ (k+, iωn) +

1

L
eik−xG

L/R
φθ (k−, iωn)

G
L/R
θθ (x, iωn) =− i ωn

LvMKMk+
eik+xG

L/R
φθ (k+, iωn)− i ωn

LvMKMk−
eik−xG

L/R
φθ (k−, iωn)

+
1

L
G
L/R
θθ (0, iωn). (3.76)

It turns out to be essential at this point to take also the k = 0 solutions into account. This
can be verified as well by comparing the solution to a method that uses a direct inversion
of the matrix D to obtain the Green’s function. The first condition one has to demand
is that the solution does not diverge for x → ±∞. For small iωn, meaning inside the
bandgap, k− is negative imaginary. This means that eik−(∞) diverges. To circumvent this,
one has to set GLφφ(k+, iωn) = 0, GRφφ(k−, iωn) = 0, GLφθ(k+, iωn) = 0, GRφθ(k−, iωn) = 0.
This results in six unknown coefficients.

We derive four more equations from the full inhomogeneous differential equation by
integrating it in a small interval around x′ = 0. This yields∫ ε

−ε
dx

(
− vM
KM

∂2
x + 16πg̃um ωn∂x
ωn∂x −vMKM∂

2
x

)
G(x, iωn) = 1. (3.77)

If G is bounded in this interval, the equation can be integrated to obtain the following
relations

− vM
KM

∂x

[
GRφφ(x, iωn)−GLφφ(x, iωn)

]
x=0

+ ωn

[
GRθφ(x = 0, iωn)−GLθφ(x = 0, iωn)

]
= 1

wn

[
GRφφ(x = 0, iωn)−GLφφ(x = 0, iωn)

]
− vMKM∂x

[
GRθφ(x, iωn)−GLθφ(x, iωn)

]
x=0

= 0

− vM
KM

∂x

[
GRφθ(x, iωn)−GLφθ(x, iωn)

]
x=0

+ ωn

[
GRθθ(x = 0, iωn)−GLθθ(x = 0, iωn)

]
= 0

wn

[
GRφθ(x = 0, iωn)−GLφθ(x = 0, iωn)

]
− vMKM∂x

[
GRθθ(x, iωn)−GLθθ(x, iωn)

]
x=0

= 1.

(3.78)

These are essentially two decoupled systems of equations, for the φφ, θφ components and
for the φθ,θθ components. For simplicity one can focus on the first one only. Inserting the
ansatz and demanding continuity of the Green’s functions lead to the remaining unknowns.
The continuity can be motivated because a jump in θ or φ would result in an unphysical
accumulation of charge or current at x = 0. Putting everything together leads finally to
the Green’s functions, which read

Gφφ(x, iωn) =
KM

2vMk+
eik+|x| (3.79)

G
L/R
θφ (x, iωn) = −i sign(x)

ωn
2v2
Mk

2
+

eik+|x| +
1

L
G
L/R
θφ (0, iωn). (3.80)
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Here, G
L/R
θφ (0, iωn) are two x-independent integration constants which are coupled by the

equation

GRθφ(0, iωn)−GLθφ(0, iωn) = i
ωnL

v2
Mk

2
+

. (3.81)

As k+ is positive imaginary for energies iωn <
√

16πg̃umKMvM the solution decays expo-
nentially for x 6= x′ = 0. In the limit of large energies, it is a plane wave. Also the θφ
components are non-zero.

3.3.3 Green’s functions in the region with induced superconductivity

The methodology to calculate the Green’s functions for a region with induced supercon-
ductivity is the same as was used in the last subsection for the Mott insulating regions.
The differential equation reads(

− vS
KS
∂2
x i∂τ∂x

i∂τ∂x −vSKS∂
2
x + 4π∆̃

)
GS(x, x′, τ, τ ′) = δ(x− x′)δ(τ − τ ′), (3.82)

where the index S indicates the restriction to the superconducting region. Possible wave

vectors are kS = 0 and kS,± = ± 1
vS

√
−∆̃ vS

KS
− ω2

n. The ansatz for the Green’s function

reads

GSφφ(x, iωn) =
1

L
eikS−xGSφφ(kS−, iωn) +

1

L
GSφφ(0, iωn)

GSθφ(x, iωn) = i
vS
KS

kS−
ωn

1

L
eikS−xGSφφ(kS−, iωn), (3.83)

where it was used already that the system of equations is decoupled, as in the last sub-
section. The calculation will stop at this point, as this is all that will be needed for the
following and a purely superconducting system is of no interest here. What remains to do
is use the proper boundary conditions and demand continuity of the Green’s function and
matching of the left/right solutions.

3.3.4 Green’s functions of a Mott insulating/superconducting interface

The results of the two last subsections will be combined here to calculate the Green’s
function at the interface between a Mott insulating region and one with induced super-
conductivity. The interface is located at x = 0 and the ansatz for the left and right
regions will be matched at the interface. Proper boundary conditions then lead to the cor-
rect Green’s function. Again, for simplicity x′ = 0. GM denotes the Green’s function in
the Mott insulating area and GS in the region with induced superconductivity. Eq. (3.71)
is then integrated for small ε around x = 0 as follows(
− vM
KM

∂x ωn
ωn −vMKM∂x

)
GM (x, iωn)|x=0 −

(
− vS
KS
∂x ωn

ωn −vSKS∂x

)
GS(x, iωn)|x=0 = 1.

(3.84)

We insert the two different ansatz from the last subsection in this equation. Further-
more, divergencies at ±∞ have to be avoided. This will lead to a linear system of four
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equations for the eight unknown components GMφφ(kM+, iωn), GMφθ(kM+, iωn), GMθφ(0, iωn),

GMθθ (0, iωn), GSφφ(kS−, iωn), GSφφ(0, iωn), GSφθ(kS−, iωn) and GSφθ(0, iωn). The remaining
four equations are obtained from demanding continuity of the Green’s functions. The
system of equations can be solved using a computer algebra system. The result reads
(this is for x = 0 where the Mott Green’s function is by construction the same as the
superconducting Green’s function)

Gφφ(x = 0, iωn) =
i√

−16πvMKM g̃um−ω2
n

KM
− ω2

n√
−4πvSKS∆̃−K2

Sω
2
n

(3.85)

Gφθ(x = 0, iωn) = Gθφ(x = 0, iωn)

=
KMωn

KMω2
n −

√
−16πvMKM g̃um − ω2

n

√
−4πvSKS∆̃−K2

Sω
2
n

(3.86)

Gθθ(x = 0, iωn) =
i

− KMω2
n√

−16πvMKM g̃um−ω2
n

+
√
−4πvSKS∆̃−K2

Sω
2
n

. (3.87)

In principle, a solution is also possible for finite x, x′, it will just be far more complex
and exponentially suppressed for energies below the gap. The functions are continuous
around ωn = 0. A physical interpretation of the Green’s functions in the bosonic picture
is not intuitive and does not reveal much about the bound states. Only that there is a
non-vanishing solution at ωn = 0 for the diagonal parts φφ and θθ.

3.3.5 Fermionic Green’s function at the interface

The Green’s function of Fermionic particles is in general distinct from the bosonic Green’s
function and ideally offers greater physical insight into the nature of the bound state at
the interface. The same holds for the fermionic and bosonic density of states, which can be
obtained from the Green’s function. Both functions are connected through the bosoniza-
tion identity. The bosonic Green’s functions were calculated for the non-interacting fields
φ and θ, so refermionization is straight forward. The imaginary time fermionic GF for
right-movers is defined as

GRR(x, x′, τ, τ ′) = −〈TτψR(x, τ)ψ†R(x′, τ ′)〉. (3.88)

The first step is to use the bosonization identity and the important relation 〈eA〉 =

exp
[

1
2〈A

2〉
]

which is valid because the system is still bilinear in the bosonized fields.

This yields for τ > τ ′ at at the interface with x = x′ = 0

GRR(x, x′, τ, τ ′) =− 1

2πa
〈URU †Re

−iϕR(τ,x)eiϕR(τ ′,x′)〉

=− 1

2πa
〈e−iϕR(τ,x)+iϕR(τ ′,x′)〉e[ϕR(τ,x),ϕR(τ ′,x′)]/2

=− 1

2πa
e−

1
2
〈[−ϕR(τ,x)+ϕR(τ ′,x′)]

2〉e[ϕR(τ,x),ϕR(τ ′,x′)]/2

=− 1

2πa
e−

1
2
〈ϕR(τ,x)2〉− 1

2
〈ϕR(τ ′,x′)2〉+〈ϕR(τ,x)ϕR(τ ′,x′)〉. (3.89)
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3.3. Interface bound states

This holds because we can write ϕR(τ, x) = ϕR(x + ivτ), ϕL(τ, x) = ϕL(x − ivτ), which
allows to calculate the commutator. For τ < τ ′ we find

GRR(x, x′, τ, τ ′) =
1

2πa
e−

1
2
〈ϕR(τ,x)2〉− 1

2
〈ϕR(τ ′,x′)2〉+〈ϕR(τ ′,x′)ϕR(τ,x)〉. (3.90)

These two results can be combined into one for any τ, τ ′

GRR(x, x′, τ, τ ′) = − 1

2πa
sign(τ − τ ′)e−

1
2
〈ϕR(τ,x)2〉− 1

2
〈ϕR(τ ′,x′)2〉+sign(τ−τ ′)〈TτϕR(τ,x)ϕR(τ ′,x′)〉.

(3.91)

To translate this into the bosonic Green’s function one has to transform to the fields θ, φ.
This is done by

〈TτϕR(τ, x)ϕR(τ ′, x′)〉 = 〈Tτ
[
φ(x, τ)− θ(x, τ)

] [
φ(x′, τ ′)− θ(x′, τ ′)

]
〉

= −Gφφ(x, x′, τ, τ ′)−Gθθ(x, x′, τ, τ ′) +Gφθ(x, x
′, τ, τ ′) +Gθφ(x, x′, τ, τ ′). (3.92)

From now on, we will use the simplified notation τ ′ = 0. Care has to be taken with respect
to the Fourier transforms as the Green’s functions are not ordinary diagonal Green’s
functions. Assuming the τ integration was restricted to the range

∫ β
−β dτ one has the

following Fourier transform

f(τ) =
1

β

∞∑
n=−∞

e−iπnτ/βf(iωn)

f(iωn) =
1

2

∫ β

−β
dτf(τ)einπτ/β

ωn = nπ/β (3.93)

for the bosonic Green’s function. This definitions are more general than the restriction to
fermionic or bosonic Matsubara frequencies ((2n+ 1)π/β or 2nπ/β) only and should give
the correct result in both ways. With these transforms of the bosonic Green’s function
and the ordinary fermion Matsubara transformation for GRR we obtain

GRR(iωn) =

∫ β

0
dτeiωnτGRR(τ)

= − 1

2πa

∫ β

0
dτeiωnτe−

1
2
〈ϕR(τ)2〉− 1

2
〈ϕR(0)2〉+〈TτϕR(τ)ϕR(0)〉

= − 1

2πa
e−〈ϕR(0)2〉

∫ β

0
dτeiωnτe−Gφφ(τ)−Gθθ(τ)+Gφθ(τ)+Gθφ(τ)

= − 1

2πa
e−〈ϕR(0)2〉

∫ β

0
dτeiωnτe

1
β

∑∞
m=−∞ e−iπmτ/β[−Gφφ(iωm)−Gθθ(iωm)+Gφθ(iωm)+Gθφ(iωm)].

(3.94)

During the calculation it was used that 〈ϕR(τ)2〉 is a τ independent constant because the
system is time translation invariant.

Now, all of the ingredients are there needed to calculate the fermionic Green’s function
in principle. However, analytic evaluation of the integrals is hard to impossible. Before
some numerical approximations are done that allow to evaluate the integrations to some

49



Chapter 3. Non-Abelian Parafermions in TR Invariant Interacting Helical Systems

extent, a brief look on the other Green’s function, GLL, is useful. It will become clear
immediately that all that has to be done to obtain GLL is to change the sign of φ during
the calculation. This leads instantly to

GLL(iωn)

= − 1

2πa
e−〈ϕL(0)2〉

∫ β

0
dτeiωnτe

1
β

∑∞
m=−∞ e−iπmτ/β[−Gφφ(iωm)−Gθθ(iωm)−Gφθ(iωm)−Gθφ(iωm)].

(3.95)

The sum of bosonic Green’s functions can be calculated using Eq. (3.85). One finds

Gφφ(iωm) +Gθθ(iωm)−Gφθ(iωm)−Gθφ(iωm)

= −
2KMωm +

√
16πg̃umvMKM + ω2

m +KMKS

√
4π∆̃vS/KS + ω2

m

KMω2
m −KS

√
16πg̃umvMKM + ω2

m

√
4π∆̃vS/KS + ω2

m

. (3.96)

This behaves to some part asymptotically as 1/m or as 1/|m| for large m. Separating
these two cases and using that the sum runs from −∞ to ∞ together with the fact that∫∞
m0

cos(x)/x dx and
∫∞
m0

sin(x)/xdx converge for m0 > 0 one can show that the sum
converges. For τ = 0, we find

∑
m 1/|m| → ∞. This appears with a negative sign in

the integral expression, which yields e−∞/β → 0, the integrand vanishes. The function of
Eq. (3.96) varies slowly with m for realistic parameters. For finite τ , it is instructive to
numerically evaluate the function

∑∞
m=1 cos(πτx)/x ≈ const = 0 for τ > 0.2. A similar

behaviour can also be found if the complete expression is evaluated numerically for realistic
parameters. This suggests to approximate the integrand as

∫ β
0 dτeiωnτ (1 − e−τ/β). This

finally leads to

GRR(iωn) ∝
∫ β

0
dτeiωnτ

(
1− e−τ/β

)
=

1

iωn

(
eiωnβ − 1

)
− 1

iωn − 1/β

(
eiωnβ−1 − 1

)
= − 2

iωn
δn,odd −

1

iωn − 1/β

(
einπ−1 − 1

)
(3.97)

and with analytical continuation

GRR(ω) ∝ − 2

ω + i0+
− 1

ω + i0+ − 1/β

(
±e−1 − 1

)
. (3.98)

Where 0+ is infinitesimal positive and δn,odd is 1 only if n is odd. The second contribution
diverges for ω = 1/β. It can be understood in some way as a reminiscent of the states at
the edges of the band gap even though it is related here only to the inverse temperature
β. The first term appears only for n = odd, which is true only for fermionic Matsubara
frequencies. It has a pole at ω = 0 which is well inside the band gap of the gapped edge
states. This single pole can be interpreted as the zero-energy bound state searched for in
this chapter.

3.4 Ground states and bound state operators

In the last sections we showed how an umklapp scattering term is generated, how this
umklapp scattering as well as induced superconductivity can lead to gaps in the edge
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state spectrum of 2D topological insulators and finally, how zero-energy bound states are
formed at the interfaces of such regions. In this and the following sections, we shall built
on these results by introducing effective operators that act on the bound states and that
will be used to implement a protocol to braid the states. It is found that the bound states
fulfill parafermionic exchange statistics.

The system under consideration in this section consists of 2N4 alternating regions with
an induced superconducting gap and a Mott insulating gap, illustrated in Fig. 3.2. The
boundary conditions of this system are assumed to be periodic. An analog formalism was
used in [Lindner12], which serves as a guideline for some parts of this section, even though
it was derived for a rather different system based on fractional quantum hall edge states.

3.4.1 Ground state degeneracy

As a first step, the ground state and its degeneracy have to be discussed. This will be
the space the bound states live in. Taken from Fig. 3.2, the system starts with a induced
superconducting region between x = 0 and x = x1 where the first interface is located,
pinning the field θ(x) = θ1 to the sine function of the Hamiltonian, which is of the form
of Eq. (3.62). This is followed by a Mott insulating region between x = x1 and x = x2

which pins φ(x) = φ1 and so on. The system ends again at length x = L with the
last superconducting region, which pins θ(x) = θN+1. In every Mott insulating region, the
fields φ can be pinned to one out of four different minima. All of these lead to a ground state
with the same energy. Straight forward counting would lead to 4N different degenerate
ground states. However, more care has to be taken. First, all transitions between the
different minima due to a finite temperature or a finite length of the several regions are
suppressed. These transitions would otherwise reduce the ground state degeneracy. The
question remaining is to what extend the ground states are still coupled, keeping in mind
that the fields do not commute, [φ(x), θ(y)] = −iπΘ(x− y).

To determine the ground state degeneracy from a more solid mathematical base, we
construct the following operators

πSi = θi+1 − θi, πQi = φi+1 − φi,
πStot = θ(L−)− θ(0+), πQtot = φ(L−)− φ(0+), (3.99)

for i = 1, . . . , N − 1. The positions 0+ and L− are to be understood to be infinitesimal
larger than 0 and infinitesimal smaller than L. From bosonization theory, it is known
that the derivative of φ(x) is related to the charge density operator. Therefore, Qi can be
associated with the charge in the i-th Mott insulating region. In the same way, Si can be
associated with the spin in the i-th superconducting region. These values are fixed together
with the pinning of θi, φi as the Hamiltonian ψ†↑(x)ψ†↓(x) of the induced superconductivity

preserves the spin quantum number and umklapp scattering ψ†↑(∂xψ
†
↑)(∂xψ↓)ψ↓ preserves

the charge quantum number. Stot and Qtot are the total spin and charge of the system
(spins are measured in units of the electron spin ~/2 and charges in units of the electron
charge e). While in each superconducting region the spin is preserved, the charge is
conserved only by modulo 2. The same holds for the Mott insulating regions, in which
the spin is conserved modulo 4. Moreover, the charge in the Mott insulating regions is
quantized in half integers. This, at the first glance physically puzzling, statement can
be made plausible already by also taking into account a second Mott insulating region

4So there are 2N interfaces.
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which could host the second half of an electron. The only physical requirement is that
Qtot is quantized in integers. The half integer quantization originates in the fact that
the umklapp term can be refermionized, which means expressed by fermionic operators
again using the refermionization formula ψ̃†± ∝ e±2iφ−θ/2. The refermionization leads to

cos(4φ) ∝ ψ̃†+ψ̃− + H.c.. Since [N, ψ̃†±(x)] = ψ̃†±(x)/2, with the particle number operator
N , the new fermions carry the charge e/2 only.

With the help of the operators Si, Qi the following sets of operators are constructed

{eiπS1/2, . . . , eiπSN−1/2, eiπStot/2, eiπQtot},
{eiπQ1 , . . . , eiπQN−1 , eiπStot/2, eiπQtot}. (3.100)

The Appendix B.5 shows that within one set all these operators commute with the Hamil-
tonian and with each other. Looking at the pinned fields θi and φi, one finds that all
operators eiπSi/2, eiπQi have the four eigenvalues 1, i,−1,−i. These correspond to the
spins si ∈ 0, 1, 2, 3 and charges qi ∈ 0, 1

2 , 1,
3
2 . The same holds for Qtot and Stot. Due to

the vanishing commutation relations of the fields within the sets, all eigenvalues within
one set are good quantum numbers. This essentially means that the ground state would be
4N−1×4×4 = 4N+1 times degenerate. This degeneracy can be understood as the internal
degeneracy of the bosonized Hamiltonian. However, as mentioned already there are some
physical constraints as well. Demanding a total integer charge, the degeneracy is reduced
by a factor of 2. The same will restrict also the allowed total spin quantum numbers by
an additional factor of 2. This way, the total ground state degeneracy would be 4N . The
same value is obtained, independent which set of operators was used. The states can be
labeled for example by |q1, . . . , qN−1, stot, qtot〉 or |s1, . . . , sN−1, stot, qtot〉 where si (qi) is
the eigenvalue of eiπSi/2 (eiπQi). In the special case of a single junction, the degeneracy is
therefore fourfold.

3.4.2 Construction of bound state operators

In this subsection, we construct bound state operators that allow moving within the space
spanned by the degenerate ground states. It will be shown that these operators follow Z4

parafermionic exchange statistics.

A closer examination reveals that the operators Qj transfer spins between the adjacent
sections, assuming one is working in the spin basis with quantum numbers si. This can
be seen, because

eiπSj/2eiπQj = e−iπ/2eiπQjeiπSj/2

eiπSj+1/2eiπQj = eiπ/2eiπQjeiπSj+1/2 (3.101)

therefore

eiπSj/2eiπQj |sj , sj+1〉 =e−iπ/2eiπQjeiπSj/2|sj , sj+1〉
=e−iπ/2eiπQjeiπsj/2|sj , sj+1〉
=eiπ(sj−1)/2eiπQj |sj , sj+1〉. (3.102)

In words, this equation means that the eigenvalue of Sj for the state eiπQj |sj , sj+1〉 is given
by sj − 1. On the other hand, the eigenvalue of Sj+1 on the same state will be sj+1 + 1.
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Using this, one can additionally construct raising and lowering operators in the same way
as

Ŝj =
N−1∏
k=j

e−iπQk , Q̂j =

j∏
k=1

eiπSk/2. (3.103)

These operators consecutively move a spin (charge) from the right (left) end of the sample
to a certain segment j. A spin (charge) is therefore effectively created in that section. To
create excitations with electronic quantum numbers, one has to combine these operators
in the following way

χ2j−1 = ŜjQ̂j−1TQTS , χ2j = eiπ/4ŜjQ̂jTQTS , (3.104)

where TQ and TS increase the total charge and the total spin, respectively. They act on the

states as TQ|qtot〉 = |(qtot + 1) mod 2〉 and TS |stot〉 = |(stot + 1) mod 4〉. Q̂j is similar to
a Jordan-Wigner string. It ensures the right anticommutation relations. To determine the
properties of these operators, one needs the following commutation relation (for n ∈ Z4)

Ŝnj e
iπSj/2 = e−inπ/2eiπSj/2Ŝnj

[Ŝj , Ŝk] = 0 (3.105)

which follows from letting both sides act on the ground state basis. All other commutators
are trivial, [Ŝj , e

iπSk/2] = 0 for j 6= k, and [eiπSj/2, TQ] = 0 as well as [Ŝj , TQ] = 0. From
this, we determine the properties of the operators. For example, the n-th power yields

χn2j = eiπn/4
[
ŜjTQQ̂j

]n
= eiπn/4TnQQ̂

n
j−1

[
Ŝje

iπSj/2
]n

= eiπn/4TnQQ̂
n
j−1e

−iπ/2eiπSj/2Ŝ2
j e
iπSj/2 (. . .)n−2

= eiπn/4TnQQ̂
n
j−1e

−iπ/2e−2iπ/2
[
eiπSj/2

]2
Ŝ3
j e
iπSj/2 (. . .)n−3

= eiπn/4TnQQ̂
n
j−1e

−iπ/2
∑n
k=1 k

[
eiπSj/2

]n
Ŝnj

= eiπn/4e−iπn(n+1)/4TnQQ̂
n
j Ŝ

n
j

= e−iπn
2/4TnQQ̂

n
j Ŝ

n
j . (3.106)

A similar result holds also for the odd positions

χn2j−1 = TnQQ̂
n
j−1Ŝ

n
j . (3.107)

The special case n = 4 therefore yields

χ4
2j = χ4

2j−1 = 1. (3.108)

This result reveals the special character of the constructed states and the operators that
create them. Unlike Majorana Fermions, which are their own anti-particles and the
squared of their creation operator gives unity, [Kitaev01], the χ operators yield unity
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if taken to the power of 4. Furthermore, calculating the squared of these operators

χ2
2j = −

 j∏
k=1

eiπSk

 Ŝ2
j

χ2
2j−1 =

j−1∏
k=1

eiπSk

 Ŝ2
j

[
χ2

2j

]†
= −[Ŝ2

j ]†

 j∏
k=1

e−iπSk

 = −Ŝ2
j

 j∏
k=1

eiπSk

 = −e−4iπ/2

 j∏
k=1

eiπSk

 Ŝ2
j

= χ2
2j[

χ2
2j−1

]†
= [Ŝ2

j ]†

j−1∏
k=1

e−iπSk

 = Ŝ2
j

j−1∏
k=1

eiπSk

 =

j−1∏
k=1

eiπSk

 Ŝ2
j

= χ2
2j−1, (3.109)

it is found that these are hermitian. To better understand these operators, it makes sense
to have a look at the commutation relations between different operators as well. Assuming
j < k without loss of generality one calculates

χn2jχ
m
2k = e−iπn

2/4TnQ

 j∏
x=1

einπSx/2

 Ŝnj e
−iπm2/4TmQ

 k∏
x=1

eimπSx/2

 Ŝmk . (3.110)

The important part of this expression (assuming j < k) is the following (all other operators
commute with the following line),

einπSj/2 Ŝnj e
imπSj/2︸ ︷︷ ︸

e−iπnm/2eimπSj/2Ŝnj

eimπSk/2Ŝmk = e−iπnm/2eimπSj/2eimπSk/2Ŝmk e
inπSj/2Ŝnj . (3.111)

This leads to

χn2jχ
m
2k = e−iπnm/2χm2kχ

n
2j (3.112)

and similarly χn2j−1χ
m
2k−1 = e−iπnm/2χm2k−1χ

n
2j−1. For the mixed commutators, one obtains

the same result. Therefore, for j < k, one finds in general χnj χ
m
k = e−iπnm/2χmk χ

n
j for

j, k = 1, . . . , 2N−2. In particular, this means that these operators satisfy Z4 parafermionic
exchange statistics,

χjχk = e−iπ/2χkχj (for j < k). (3.113)

The main conclusions of this section can be summarized as follows. We found that a setup
with periodic boundary conditions of 2N alternating regions with induced superconduc-
tivity or strong interactions has a ground state which is 4N fold degenerate. Creation
operators χk can be defined that create a particle with electronic quantum numbers at
the interface k while the total energy is not altered. Instead, the operators χk allow tran-
sitions within the ground state manifold. Application of an operator χk is cyclic, in the
sense that an application of 4 times the same operator leads back to the original ground
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state, χ4
k = 1. Non-trivial processes appear when several positions j, k are considered.

In this case, the operators χj , χk follow parafermionic exchange statistics with a phase
±iπ/2. The created particles are always fixed to the interfaces, as an electronic particle
isolated in a superconducting or Mott insulating region would increase the total energy.
The following section will deepen the discussion on the bound states and show that they
follow non-Abelian braiding relations.

3.5 Braiding operators

With regards to new technological applications of quantum physics and especially topo-
logical insulators, such as quantum computation, braiding operations on the states of a
physical system become vital [Nayak08]. For example, particles that follow non-Abelian
braiding statistics, referred to as non-Abelian anyons hereafter, can lead to quantum com-
putation that can be protected from a certain kind of errors. Especially of interest are
systems that support universal topological quantum computation [Freedman02].

In contrast to 3D, in 2D more complex symmetries of a many-body wavefunction
with respect to interchange of two indistinguishable particles than just ± for bosons and
fermions can exist. In both cases, an interchange can be understood as an adiabatic
transformation of the system such that two particles exchange and the system ends up in
exactly the same configuration as it was in before the exchange. During this exchange,
which takes a certain time, the wavefunction acquires a phase. In 3D, this phase can only
be π/2 or π, because two consecutive exchanges have to yield the same wavefunction again.
There is no meaning of moving one particle around another, or rather, any such procedure
can be mapped on the case where the particles do not move at all. This is different in
2D, the process of two particles exchanging twice can have non-trivial consequences for
the wavefunction. This section should not introduce the notation, formalism and physical
relevance of braiding any further but instead apply the general theory to the system
discussed during this chapter and introduce a braiding scheme for the Hamiltonian of
interest.

The system discussed so far was an effective 1D model. In 1D, braiding is not possible
as two particles cannot be moved around each other or exchanged at all without touching
each other. This issue can be solved by realizing that the 1D edge states live on a 2D
plane. One can introduce artificial couplings to the Hamiltonian that extend the 1D model
to a higher dimension. An example is a tunneling operator of the kind

Hij = −tijχiχ†j + H.c., (3.114)

which transfers a particle from the interface i to the interface j. Usually, these processes
are exponentially suppressed, due to the large distances between the interfaces. However,
one can imagine an advanced system geometry that employs gates to bring two interfaces
closer together. Figure 3.3 illustrates such a setup. A 2D topological insulator (green),
with movable edge states in the vertical direction, is put on top of several gates (blue). The
topological insulator can be extended or shrunken in the vertical direction. The eight gates
are used to locally switch the superconducting proximity effect on (dark blue) and off (light
blue). If switched off, the edge states are supposed to be in the Mott insulating phase.
Each interface between a region with induced superconductivity and a Mott insulating one
hosts a bound state (yellow stars). By switching the gates on and off, the bound states
can be moved along the edges of the topological insulator. For the initial setup, as in
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χ1 χ2

χ4 χ3

a) b)

c)

Figure 3.3: A 2D topological insulator which width can be tuned vertically (green)
and eight gates for locally switching the proximity effect on (dark blue) and off (light
blue). This allows the implementation of the braiding protocol for the bound states χi.
In (a), the bound states χ1 and χ2 are coupled by a local tunneling Hamiltonian. It is
furthermore possible to couple χ2 and χ3 or χ2 and χ4 by deforming the edge states, as
shown in (b) and (c), respectively.

part a) of Fig. 3.3, the two states χ1 and χ2 are close together and coupled by a tunneling
Hamiltonian

H12 = −t12χ1χ
†
2 + H.c.. (3.115)

It is now possible to define a braiding scheme as follows

H1 = (1− λ1)H12 + λ1H23,

H2 = (1− λ2)H23 + λ2H24,

H3 = (1− λ3)H24 + λ3H12. (3.116)

Here, the tunnel Hamiltonians are defined as in Eq. (3.114). This scheme is used to braid
the bound states χ3 and χ4. The variables λ1/2/3 are varied in an adiabatic way to encode
the transformation of the system Hamiltonian. Initially, H2 = H3 = 0 and λ1 = 0. This
way, only coupling between χ1 and χ2 is possible, as in Fig. 3.3 a). With an adiabatic
increase of λ1 from 0→ 1 tunneling between χ2 and χ3 is now possible, Fig. 3.3 b). The
Hamiltonian is equivalent to H2 for λ2 = 0. Setting H1 = 0 and letting λ2 → 1 finally
couples χ2 and χ4. And as a last step, χ1 and χ2 are coupled again to return the system
to the original setup, as it is important that the Hamiltonian in the first and last steps
are identical.

To show that this protocol indeed is a prescription for non-Abelian braiding, one has
to show that operators that implement the braiding operation satisfy the Yang-Baxter
equations. This is a necessary and sufficient condition. This consideration was done in
details in [Lindner12] for the edge states of a fractional quantum hall insulator and an

56



3.6. Josephson effect

analogous calculation can be done for the setup considered in this chapter. It is again
possible to define time evolution operators Un that connect the initial and final states of
all three steps, governed by H1, H2 and H3. One finds that the initial and final states are
connected through three phases γn(s3)

Un|Ψn
i (s3)〉 = eiγn(s3)|Ψn

f (s3)〉, (3.117)

for n = 1, 2, 3. Here, s3 is the eigenvalue of the operator eiπS3/2. It is a good quantum
number as this operator commutes with all tunneling Hamiltonians. A recursive equation
for the phases can be derived and finally, one obtains the following expression for the
evolution operator of a full braiding process

U34|Ψ1
i 〉 = exp

[
iπ

4
(s3 − s)2

]
|Ψ1

i 〉, (3.118)

where s = s1 + s2 + s3. This shows that the braiding scheme changes the state only by
a phase. A similar result is well known from exchanging Majorana bound states: for the
four states γ1,2,3,4 grouped into two fermions as c1 = γ1 + iγ2 and c2 = γ3 + iγ4, braiding

γ1 and γ2 changes the wave function when expressed in the basis of eigenstates of c†1c1 and

c†2c2, only by a phase. In contrast, braiding γ2 and γ3 would generate a nontrivial rotation
in the four-dimensional ground state subspace.

This suggests that the operator U34 acts in a nontrivial way in a different basis, and
indeed one finds

U34 =
eiπ/4

2

3∑
p=0

exp

[
− iπp

2

4

](
Q̂†1Q̂2

)p
(3.119)

for the charge basis. The same method can be generalized to arbitrary interfaces, resulting
in Uk,k′ . With the help of commutation relations one arrives at

U2k−1,2kU2k,2k+1U2k−1,2k = U2k,2k+1U2k−1,2kU2k,2k+1, (3.120)

whereas the operators commute if they do not involve nearest neighbors, [Uj,j+1, Uk,k+1] =
0 for |j − k| > 1. This completes the proof that the Yang-Baxter equations are satisfied.
The equations basically state that the consecutive braiding of three states in the order
1↔ 2, 2↔ 3, 1↔ 2 is the same as braiding in the order 2↔ 3, 1↔ 2, 2↔ 3. That the
braid group is non-Abelian is obvious because of U2k−1,2kU2k,2k+1 6= U2k,2k+1U2k−1,2k. Us-
ing combinations of nearest neighbor braiding operations, braiding for arbitrary interface
bound states becomes possible.

The section is closed with a remark on the universality of the considerations above.
The derivations require only that the adiabatic path that the Hamiltonian follows to
accomplish a braid operation follows certain symmetries. It does not depend on the exact
microscopic details of the Hamiltonian, and the results should therefore be applicable to a
wide range of experimental realizations. The only important aspects are which interfaces
couple at each stage of the process.

3.6 Josephson effect

The fact that charge is quantized in units of e/2 has an interesting effect on the Josephson
effect. Considering a setup of two regions with induced superconductivity and a Mott
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insulating region with length L in-between. The induced pairing amplitudes for the left
and right superconductors are ∆0 and ∆0e

iδφSC . Here, 2∆0 represents the superconducting
gap induced in both superconducting regions at the chemical potential. Additionally, δSC
labels the phase difference between the superconducting regions. Taking the limit L→∞
will prevent any tunneling and the fields are fixed to the four degenerate minima of the
cos(4φ) terms of the Mott insulator, see Eq. (3.60). The Josephson current vanishes. If
the length L is finite, tunneling of quasiparticles with charge e/2 is possible. Section 3.4.1
contains an argument why the Mott regions show a half-integer quantization.

Tunneling of e/2 charges corresponds to tunneling between the four neighboring min-
imas of the cos(4φ) potential. Assuming that the tunneling amplitude between all of the
minimas is the same, t, and the superconducting phase difference can furthermore be ab-
sorbed into the tunneling amplitude by a gauge transformation, the tunneling Hamiltonian
can be expressed as

HJJ = −


0 teiδφSC/4 0 te−iδφSC/4

te−iδφSC/4 0 teiδφSC/4 0

0 te−iδφSC/4 0 teiδφSC/4

teiδφSC/4 0 te−iδφSC/4 0

 . (3.121)

This is to be understood in the basis φ =
{
π/4, 3π/4, 5π/4, 7π/4

}
. Diagonalization of this

Hamiltonian is straight forward and yields the eigenvalues±2t cos(δφSC/4),±2t sin(δφSC/4).
The Josephson current can then be calculated as IJJ(δφSC) ∝ d〈HJJ〉/dδφSC . This shows
that the Josephson current has a periodicity of 8π, as was found also in [Zhang14]. This is
in contrast to the results of a periodicity of 4π as was found in [Fu09] for the simpler struc-
ture of an superconductor/quantum-spin-Hall-insulator/superconductor junction. Other
related results were found also in [Clarke13] for fractional quantum Hall states with a 4mπ
periodicity, where 1/m is the filling factor.

3.7 Conclusions

In this chapter a novel physical setup was investigated which realizes non-Abelian parafermions.
The system consists of a 2D topological insulator edge which is gapped out by alternating
regions of strong interactions or superconductivity.

Effects such as structural inversion asymmetry or external electric fields lead to Rashba
spin-orbit coupling in the topological insulator edge states. We showed that in combination
with electron-electron interactions these effects generally lead to umklapp scattering. An
RG treatment in the bosonized language was used to derive second order RG equations for
the umklapp scattering Hamiltonian. Interestingly, it turns out that umklapp scattering
becomes relevant for strong repulsive interactions, with Luttinger liquid parameter K <
1/2, even though the generating term stays irrelevant for all K. A gap is opened in the
edge state spectrum.

On the other hand, if the edge states are in close proximity to a superconductor, a
superconducting gap is induced in the edge state spectrum [Fu08, Hart14]. By refermion-
izing the bosonic Green’s functions we could show that the interface between an edge state
region gapped out by induced superconductivity and one gapped out by strong interac-
tions host a zero energy bound state. This is encoded in a simple pole G(ω) ∝ 1/(ω + iδ)
in the fermionic interface Green’s function.
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Furthermore, we introduced a model that contains 2N of such alternating regions. The
ground state degeneracy of this system was determined and we found it to be 4N . The
states can be labeled either by a set of spin quantum numbers or charge quantum numbers.
In the latter case, however, it turns out that the charge is not quantized as integers, but
in units of e/2. This has consequences also for a Josephson current through only one Mott
insulating region. For this we found that the current will be 8π-periodic. Moreover, the
bound states that were found follow non-Abelian braiding statistics.

In comparison to other proposed setups that host non-Abelian parafermions, such as
fractional quantum Hall edge states with induced superconductivity, the setup introduced
in this chapter does not require external magnetic fields. This can be positive for possible
experimental realizations as magnetic fields and superconductivity prohibit each other to
a great extent. For the same reason, we propose a new layout of a braiding scheme that
allows braiding using only a small amount of gates. In general, for braiding gates are
necessary to tune the outline of the topological insulator and to switch on and off the
superconducting proximity effect. The system might therefore become useful for future
realizations of quantum computation.
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Chapter 4

Topological Anderson Insulator in
the Kane-Mele Model

This chapter is based on the published manuscript:
C. P. Orth, T. Sekera, C. Bruder and T.L. Schmidt,
The topological Anderson insulator phase in the Kane-Mele
model,
ArXiv e-prints: 1512.03233

4.1 Introduction

2D topological insulators [Hasan10, Qi11] comprise manifold interesting effects and new
phenomena. Their most characteristic features, such as edge states protected by time-
reversal symmetry, promise possible applications in quantum computation. However, the
experimental realization of 2D topological insulators has so far been difficult and only a
few materials, such as HgTeQW [König07], are known to show the effect. Of particular
importance for topological insulators is a large spin-orbit coupling strength. Only if this
is the case in a certain material, it may feature an inverted bandgap and a non-trivial
topological invariant is found.

All the more surprising, it was discovered for the BHZ model that even if the clean
system has parameters such that it is in a topologically trivial state, adding disorder
can tune the system to a topologically non-trivial state [Li09]. This disorder induced
topological phase was named TAI. TAIs exhibit the same robust conductance quantization
of 2G0 = 2e2/h as ordinary 2D topological insulators [Prodan11]. This purely numerical
discovery on a tight-binding version of the BHZ model was later confirmed independently
[Jiang09]. An analytical description was derived by [Groth09] using an effective medium
theory and the self-consistent Born approximation (SCBA).

In this analytical approach, the effect can be understood as a renormalization of both
the topological mass m and the chemical potential µS in the sample with disorder strength
W . For certain values of the model parameters, the renormalized topological mass m̄ can
change sign with increasing W . The nature of the disorder potential plays a crucial role
as well. While random, uniformly distributed on-site energies (Anderson disorder) can
renormalize a positive m to become negative, it was shown that this is not possible for
certain kinds of bond disorder [Song12, Lv13], as it leads only to positive corrections to
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m.

If the disorder strength is increased even further, the TAI phase vanishes again and the
system becomes insulating. The reason could be due to tunneling events across the bulk
[Chen12], which become possible by emergent percolating states in the bulk [Girschik15].

Moreover, similar phenomena were found also for 3D topological insulators [Guo10]
or can be generated by periodically varying potentials [Fu14] or phonons [Garate13]. In
the same line, different models that show topological effects, such as the Haldane model,
were analyzed and a TAI phase was found [Xing11]. For another well known model for
topological insulators on a honeycomb lattice, the Kane-Mele model [Kane05a, Kane05b],
a TAI phase was not discovered so far. In this chapter we solve this open question by
showing numerically that the Kane-Mele model supports the TAI phase. Even though
both a finite Rashba spin-orbit strength λR and a staggered sublattice potential λν can
render the system topologically trivial, only for finite λν a TAI phase can be observed.
With an analytical derivation we shall shed light on the fact why this is the case. We
furthermore find that the spin-orbit coupling strength λSO does not renormalize with an
increasing disorder potential.

As the effect of TAI requires rather strong disorder strengths, an experimental real-
ization of this topological phase is going to be challenging. Proposals exist to realize the
effect using optical [Titum15] or acoustical systems [Yang15]. Furthermore, it was con-
sidered lately that disorder in the Kane-Mele model can arise due to random adatoms
[Weeks11, Jiang12]. One of the main sources for disorder, for example in graphene,
originates from the surface that the graphene flake is deposited on [Ando06, Ishigami07,
Fratini08, Varlet15].

This chapter is structured as follows. In the first section, we discuss the underly-
ing tight-binding model. This is succeeded by the presentation of numerical results of
the TAI phase and finally, a theoretical understanding is given on the basis of the Born
approximation.

4.2 Tight-binding formulation of the Kane-Mele model

For the following numerical evaluations and analytical derivations, this chapter is restricted
to the Kane-Mele model as a convenient tool that shows a topologically non-trivial phase.
It is used for example to describe graphene. Initially, graphene was treated as a possi-
ble topological insulator for low enough temperatures [Kane05a]. This was, however, a
too optimistic prediction as it was later realized that the spin-orbit coupling strength in
graphene is by some orders of magnitude smaller than what was assumed in these first
works. Even though this led to a small dent in the popularity of the Kane-Mele model
compared to the BHZ model, which describes topological insulators made of HgTeQWs,
the Kane-Mele model is still an interesting framework to investigate topological phases
in general. Furthermore, it is expedient to describe not only graphene, but also silicene
[Aufray10, Kara12], germanene [Dávila14] and stanene [Zhu15], which are candidates for
topological insulators as well. Compared to graphene, the latter materials all exhibit a
buckled structure which is contained in the Kane-Mele model as a staggered sublattice
potential. This is of special interest for this chapter, as this term turns out to be important
for the observability of the TAI phase in the Kane-Mele model.

The Kane-Mele model describes a hexagonal honeycomb lattice of identical atoms,
usually group-IV elements of the periodic table. In a tight-binding formulation it can be
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A

â2

â1

B

Figure 4.1: Honeycomb lattice of the Kane-Mele model. Primitive lattice vectors are
â1 and â2. The basis atoms are A and B for the two sublattices. The lattice constant is
a, the nearest neighbor distance a/

√
3.

written as

H = t
∑
〈ij〉

c†icj + iλSO
∑
〈〈ij〉〉

νijc
†
is
zcj + iλR

∑
〈ij〉

c†i

(
s× d̂ij

)
z
cj +

∑
i

(µS + λνξi) c
†
ici,

(4.1)

for vanishing chemical potential µS . We label the lattice as illustrated in Fig. 4.1. A and
B are the two basis atoms of the primitive cell and â1, â2 the primitive lattice vectors.
The operators c†i (ci) create (annihilate) an electron at the i-th site. Nearest neighbor
hopping is encoded by the tunneling amplitude t, which is used as the unit of energy in
the following, if not mentioned explicitly otherwise. The sum

∑
〈ij〉 denotes a sum over

nearest neighbors and
∑
〈〈ij〉〉 over second nearest neighbors. The vector s = (sx, sy, sz)

contains the Pauli matrices and the vectors d̂i, d̂j are unit vectors along the bonds that
the electron traverses from site i to j. The coefficient νij = (2/

√
3)(d̂i × d̂j)z = ±1 is

either 1 for second nearest neighbor hopping that does a left turn or −1 for right turns.
Additionally, Rashba spin-orbit coupling is included, with coupling strength λR and d̂ij
is the unit vector parallel to the bond that connects site i and j. The aforementioned
staggered sublattice potential strength is λν with ξi = 1 for sublattice A atoms and
ξi = −1 for sublattice B. A finite chemical potential µS can be applied as well. The
lattice constant is given by a.

4.2.1 Band structure

The band structure of the Kane-Mele model is well known [Kane05b] and will not be dis-
cussed much further at this point. One of the main features of the model is a topologically
non-trivial gap for suitable system parameters. While λν will force the system to an or-
dinary insulating phase, λR rather pushes the system to a metallic phase. The spin-orbit
coupling λSO however, leads to an inverted bandgap and a topological insulator. The
three parameters are in competition. For λR = 0, 3

√
3λSO > λν or alternatively λν = 0

and 2
√

3λSO > λR the system is a topological insulator. What will be of interest later
on is the intermediate region with finite λν and small λR. In this case, the phase bound-
ary between the trivial and topological insulators is a bit more subtle. Fig. 4.2 shows a
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Figure 4.2: Configurations of the Kane-Mele band structure for different parameters λR
and λν . Above the light-blue, solid line (for λSO = 0.3t) the band structure is that of an
ordinary insulator. The purple, solid line describes the same boundary for λSO = 0.03t.
Below the light-blue, solid line the valence band and the conduction band touch at some
point in k-space (for λSO = 0.3t) and the system is either a topological insulator or a metal
or semimetal. The band structure was calculated for a strip with infinite length, zigzag
edges and a width of w = 30a. The red dots mark parameters for which a topological
insulator phase was found numerically. In the same way, the blue dots mark parameters
for which a topological Anderson insulator was found.

diagram containing the different phases. The light-blue, solid line denotes the boundary
above which a true insulator is expected for λSO = 0.3t. It was obtained by reading of the
band structure, which means the data is afflicted by errors, which are not estimated. The
criterion for the band structure to be in the class of a true insulator was that there is a
bandgap around zero energy in which there are no states, independent of the momentum
k. The purple, solid line shows the same data for λSO = 0.03t but rescaled by a factor of
10. This is plotted to show that the data for different λSO is of the same scale, if both
axes are rescaled by λSO.

Below the light-blue line the system is either a topological insulator or a metal. For
small λν and large λR (upper-left side in the figure) the band structure is that of a metal
or semimetal. In this region, the conductance is not quantized anymore and larger than
2G0, even though still not at the same level as in the valence or conduction bands. Fig. 4.3
shows the essential part of the band structure for parameters in this region.

The band structure and all other numerical data was calculated using the Kwant
software package [Groth14]. For the band structure, an infinite strip with width w =
30a and zigzag edges was used. A larger width would not alter the diagram of Fig. 4.2
significantly. For each red dot, a topological insulator was also found from conductance
calculations. In the same way, for each blue dot, a TAI was found. The method for this
is explained in Section 4.3.

4.2.2 Typical energy scales

In this subsection, we shall list some numbers of the model parameters for the different
materials. Graphene, silicene, germanene and stanene have lattice constants of aC =
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Figure 4.3: Band structure of a strip with zigzag edges, width w = 30a, λSO = 0.3t,
λR = 0.8t, λν = 0.03t. The band structure is not that of a topological insulator anymore,
but it can still be transformed continuously into that of a topological insulator. The
conductance is larger than 2G0 for all relevant chemical potentials.

2.5Å1, aSi = 3.8Å, aGe = 4.1Å and aSn = 4.7Å. In contrast to graphene, the structures of
silicene, germanene and stanene have a finite buckling, which originates from the relatively
weak π-π bonding. They are not fully flat 2D planes, but the sublattices A and B are
offset by a buckling distance of 0.5Å, 0.7Å and 1Å [Bishnoi13, Zhu15]. By applying an
electric field perpendicular to the 2D plane, this finite buckling distance can be used to
tune the potential of the A and B sublattices individually and thus change the coupling
constant λν in Eq. (4.1).

The bandgap in graphene was found to be of the order of only 10−3meV[Yao07], orig-
inating from a spin-orbit coupling strength of the order of 10−3meV [Min06]. While the
spin-orbit coupling originates only from a second order expansion in the atomic carbon
spin-orbit coupling strength ζ0, Rashba spin-orbit interaction was found to be of first order
in ζ0 instead [Min06]. As an approximate value, λR ≈ 0.01meV is given. This suggests
that graphene will most likely not be in the topological phase.

Due to the buckled structure of silicene, it supports both an intrinsic Rashba spin-orbit
coupling as well as a first order in ζ0 spin-orbit coupling [Liu11b]. Values of λR = 0.7meV
and λSO = 4meV are obtained, as well as a gap of 8meV. The same work also states values
for germanene: λR = 11meV, λSO = 46meV and a gap of 93meV. Values for stanene are
calculated as well and yield λSO = 64meV, λR = 10meV and a gap of 129meV. Numerical
calculations found 2D stanene to be a topological insulator with a bandgap of about 0.1eV.
Decorated stanene can even have bandgaps of 0.3eV [Xu13]. The Fermi velocity of the
edge states was furthermore found to be about 4.4× 105m/s.

1The nearest-neighbor distance for graphene is about 1.4Å.
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4.2.3 Anderson disorder

As most other works on topological Anderson insulators, this chapter will be about An-
derson disorder for most parts. Anderson disorder is one of the simplest possible disorder
realizations. It is characterized by a uniformly distributed random potential for each site
of the tight-binding model, expressed by the Hamiltonian

HAd = W
∑
i

εic
†
ici (4.2)

with the disorder amplitude W and the uniformly distributed numbers εi ∈ [−1, 1]. The
random numbers for different sites are fully uncorrelated and follow the statistics (for large
sample sizes)

〈εi〉 = 0, 〈εiεj〉 =
δij
3
, (4.3)

where δij is the Kronecker delta and 〈〉 an average over all sites. The second moment
of the distribution function is a characteristic quantity of the distribution and given by
〈ε2i 〉 = 1/3 for Anderson disorder. Anderson disorder was initially used to describe an
effect about the absence of diffusive transport in certain doped semiconductors and led to
a new view on metal-insulator transitions [Anderson58]. The main idea is that an electron
that moves along a trajectory within a disordered material has a slightly higher probability
to return to its origin, due to constructive interference. This leads to localization. While
the same kind of disorder as in this original work is used here, the effect of a topological
Anderson insulator is not connected to this idea in any obvious way.

The question about the physical origin of such a disorder term in the Kane-Mele model
cannot be answered to full satisfaction so far. One possible realization could be a topolog-
ical insulator, realized in an optical lattice [Béri11]. This setup would allow to induce a
disorder potential with the help of an optical laser speckle potential [Billy08, Girschik13].
For graphene, one of the main sources for disorder are random strain fluctuations caused
by the material that a graphene flake is usually deposited on [Couto14]. These fluctuations
are of long range. Moreover, graphene was doped recently for example by boron [Kawai15].
This doping reached a level of 4.8 atom%, which corresponds to disorder with correlation
lengths of roughly 5a. For a better theoretical description of this kind of disorder, this
chapter will cover spatially correlated random disorder potentials as well [Wagner15]. In
this case, the variables εi will be modeled by

εi =
∑
j

a(ξ)e
− r2

2ξ2 ϕj , (4.4)

where ξ is the correlation length, ϕj ∈ [−1, 1] are random variables uniformly distributed
within the interval [−1, 1] and the factor a(ξ) is a correlation length dependent rescaling
variable. The exponential accounts for a finite correlation between sites at position i and j
if they are close to each other (r is the distance between site i and j). It can be shown that
this definition of εi leads to a finite spatial gaussian correlation 〈εiεj〉 ∝ exp(−r2/4ξ2) up
to an error (∝ exp(−r)) which is only a small deviation from an ideal gaussian behavior.
The rescaling coefficient a(ξ) is necessary to keep the property 〈ε2i 〉 = 1/3 true. This can
be done by a simple rescaling after calculation of the εi for a(ξ) = 1. In the limit of ξ → 0
the disorder potential approaches the uncorrelated Anderson disorder again.
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Figure 4.4: A typical setup for the numerical calculations. The sample has a size of
length l ≈ 11a and width w ≈ 8a. Second nearest neighbor hopping and nearest neighbor
hopping are indicated. In red are the leads, which extend up to ±∞ and exhibit only
ordinary nearest neighbor hopping. The shading of the sites shows the random potential
of the atoms and ranges from −W (white) to W (blue) on a linear scale.

4.3 Numerical realization

In this section we will present the numerical results that show that a TAI phase exists in
the Kane-Mele model. It will start by giving some technical details about the numerical
implementation using the Kwant code.

While the band structure can be calculated for an infinite strip of a certain width,
disorder destroys the translational symmetry and can be simulated only for a finite sample
region. Without translational symmetry, it is furthermore not possible to determine the
band structure and a measure to determine if the system is in the topological regime or
not is needed. Calculation of the conductance is the most widely applied method to do
so. The way that is followed here is to attach two leads of width w and zigzag edges to
a finite length, finite width (again w) sample with zigzag edges as well. The leads extend
up to ±∞. Transport between the leads is then evaluated for varying Fermi energies
EF . It is convenient to model the leads as honeycomb lattices as well. For this chapter,
the leads are assumed to be in the metallic regime, so we use the Kane-Mele model to
describe the leads, but with parameters λR = λSO = λν = 0. Additionally, the chemical
potential µ in the leads is pushed to be well inside the most conducting band by setting
µ = 1.2t inside the leads. The chemical potential of the sample in-between is kept at
µS = 0, so the conduction through the disordered sample can be probed by tuning the
Fermi energy roughly between the values −µ . EF . µ. Conduction values of two times
the conductance quantum G = 2G0 indicate that the system is in a topological phase.
Fermi energy values outside of the given regime can lead to misleading results as the leads
might no longer be well-behaving conductors and alter the calculated conductance as well.
In other words, there might not be enough overlap between the states in the leads and the
energy levels of the sample.

Figure 4.4 shows an example setup for a rather small system with length l ≈ 11a
and width w ≈ 8a for the purpose of illustration. The disorder potential is shown by a
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blue shading of the sites. The small lattice size of this figure is chosen for a nice visual
presentation of the lattice. In fact it turned out that a size of l = 11a, w = 8a is too small
for the system to be a TAI. The reason, as will be explained in the following sections,
is that such a size is not enough to lead to a renormalization of the system parameters,
which is the requirement to find a TAI.

In the following, we perform every evaluation of the conductance on a unique disorder
realization. This is reasonable if quantities such as W are changed, because a different
W necessarily corresponds to a new experimental realization which has its own disorder
configuration. On the other hand, the Fermi energy can be tuned through a whole range of
values within the same sample, featuring the same disorder realization. However, this could
lead to undesirable effects. It might happen that by coincidence a disorder configuration
has some special properties that render the sample non-characteristic. There is the unlikely
case, for example, that the disorder forms something like a potential barrier in the middle
of the strip, leading to a fully insulating setup. To exclude such a case, one usually does
some averaging over many samples. The procedure in this chapter to use a new disorder
realization for every value of the Fermi energy can be understood as a de-facto averaging
procedure over several samples. This is why we preferred a higher resolution of the plots
to an averaging procedure. With the higher resolution, the eye of the viewer can do a
kind of averaging process by not looking at each individual point. This way, a region in
parameter space with quantized conductance becomes even more impressive, as it is clear
that the quantized conductance exists for the majority of disorder realizations, and is not
an averaged quantity.

4.3.1 Dependence of the conductance on λR

The first quantity that we shall investigate is λR. Fig. 4.5 shows the conductance for
a range of disorder strengths W , Fermi energy EF and six different values of λR. The
staggered sublattice potential is kept at a small value, λν = 0.1t. For all values of λR,
the top and bottom parts for Fermi energies |EF | & t show the conduction and valence
bands with conductances G > 2G0. With growing disorder strength W , the conductance
vanishes as the bulk states localize. For disorder strengths of about W ≈ 2t there is some
finite chance for the conductance of a certain disorder realization to be by accident 2G0,
which is visible as a red dot. This happens both for topological insulators and for trivial
insulators. Around EF ≈ 0, the system has a true conductance quantization of 2G0 for
λR < 0.84t only. That this region of solid red color exists means that the system is a
topological insulator for the given parameters λR, λSO, λν and W . We keep λSO = 0.3t
at a rather large value because in this case this effect is more pronounced. At EF = 1.2t
an artifact of the leads can be seen. The reason is that the leads have a conductance
minimum at the chemical potential µ = 1.2t, which is visible also in the conductance of
the whole setup as a small gap.

The effect of λR is twofold. On the one hand, it will push the system to a metal-
lic/semimetallic phase. This can be seen, as the red region gets thinner and thinner with
growing λR. With λR = 0.84t ≈ 2

√
3λSO the threshold to a semimetal is reached. The

plot for λR = 0.84t therefore shows a conductance minimum at W = 0 and EF ≈ 0.6t.
The second effect of λR is that the red region starts to bend stronger with growing λR and
the conductance shows furthermore a particle-hole asymmetry. The breaking of particle-
hole symmetry is also visible from the Hamiltonian. In the tight-binding model, we define
particle-hole symmetry as the replacement of creation by annihilation operators and vice
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Figure 4.5: Heatmap of the conductance for varied disorder strength W and Fermi
energy EF . Quantized conductance of G = 2G0 is highlighted in red. λR is tuned to
six different values, showing a topological insulator to semimetal transition. The other
parameters are λν = 0.1t, λSO = 0.3t, µ = 1.2t and l = 150a, w = 93a for the system
size.

versa. The particle-hole symmetry operator will then act as ΥciΥ
−1 = c†i . The effect

of this symmetry operation on the Hamiltonian is that the energy spectrum should be
reversed: ΥHΥ−1 = −H, if the system is particle-hole symmetric and the energy scale is
shifted so that zero-energy is at half-filling. Certainly, this is not the only way to define a
meaningful particle-hole symmetry operation. The transformed Hamiltonian reads

ΥHΥ† =t
∑
〈ij〉

cic
†
j + iλSO

∑
〈〈ij〉〉

νijcis
zc†j + iλR

∑
〈ij〉

ci

(
s× d̂ij

)
z
c†j +

∑
i

λνξicic
†
i

=− t
∑
〈ij〉

c†icj + iλSO
∑
〈〈ij〉〉

νijc
†
is
zcj + iλR

∑
〈ij〉

c†i

(
s× d̂ij

)
z
cj −

∑
i

λνξic
†
ici. (4.5)

The second line was obtained by using the fermionic anti-commutator and neglecting
constant terms. One can see that the λSO and λR terms break the ΥHΥ−1 = −H
condition at the first glance.

However, it is possible to combine the particle-hole transformation with a mirror trans-
formation about one of the symmetry axes of the hexagon lattice. If the axis is chosen in
the right way, the transformation will map νij → −νij while keeping ξi constant. This is
the case for example for the axis connecting A and B in Fig. 4.1. Mirroring about this axis
will map atoms of sublattice A to the same sublattice A and B to atoms of the sublattice
B. Moreover, second nearest neighbor hopping which was performing a right-turn will be
mapped on hopping that is performing a left-turn, effectively changing the sign of νij .
This additional mirror symmetry can be used to restore the wrong sign of the spin-orbit
term. Unfortunately, this is not compatible with the λR term, because d̂ij = (dxij , d

y
ij) is

mapped on either d̂ij or (−dxij , d
y
ij), depending on its original orientation. For λR = 0 and
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a sufficiently symmetric sample, particle-hole symmetry can be restored, though. This
explains why Fig. 4.5 shows a particle-hole symmetry for small λR. This argument works
because any chemical potential term was neglected. For a finite chemical potential, one
can argue the same way, just that the particle hole operation needs to be combined with
a finite shift in energy as well.

On the other hand, there is an inversion symmetry that allows to flip the sign of the λR
term. This is for an inversion center at the center of a honeycomb hexagon. The inversion
will lead to d̂ij → −d̂ij . If λν = 0 and λSO, the particle-hole symmetry can therefore be
restored if it is combined with this inversion symmetry. These symmetry considerations
are valid for an infinite size 2D sample. Any finite boundary might break the symmetries
as well.

4.3.2 The effect of λν

In this subsection, we examine the effect of a finite λν , but a vanishing or small λR. As
derived in the last subsection, it can be expected that the system is particle-hole symmetric
in this case. The transition between a topological insulator and a trivial insulator is
expected to happen at λν ≈ 3

√
3λSO. For λSO = 0.3t, Fig. 4.6 shows the conductance

as a function of the Fermi energy, disorder strength W and several values of λν . It can
be seen that for a large range of values of λν at the threshold between a topological
insulator and a trivial insulator, the system shows a topological Anderson insulator phase.
Interestingly, and in contrast to topological Anderson insulators found in the literature so
far, the system is still perfectly particle-hole symmetric and the region with conductance
quantization 2G0 broadens to both larger and smaller energies for larger W . A theoretical
explanation of this will be given in Section 4.4.

At this point, we should write down a formal definition of a TAI. While in the clean
limit, the system is a trivial gap insulator, disorder induces a gap closing and reopening
of a topologically non-trivial gap. This behavior has to be the case for the majority of all
possible disorder configurations, if the random distribution leading to the disorder has the
same statistics. That this is the case is illustrated in Fig. 4.7

Figure 4.6 shows that a topological Anderson insulator is found between 0.96×3
√

3λSO /
λν / 1.18× 3

√
3λSO. This means that through disorder the regime in which a 2G0 quan-

tized conductance is found can be extended by 20% beyond the usual parameter regime.
This result was obtained for a value of λSO = 0.3t. For smaller λSO the effect still exists,
but in a less pronounced form. Figure 4.8 shows a TAI found for λSO = 0.03t. The effect
is much weaker but still visible.

Spatially correlated disorder does influence the TAI phase as well [Girschik13]. For
a disorder potential as in Eq. (4.4) one finds that the TAI effect vanishes with larger
correlation length ξ. A critical threshold is reached at ξ = 0.5a [Wagner15]. For larger
values, the TAI phase is not seen. The critical correlation length is of about the order of
the nearest neighbor distance. Fig. 4.8 illustrates the effect of spatially correlated disorder
for a correlation length of ξ = 0.3a and a finite λR (more on this in the next subsection).

The strong effect of the correlation length on the TAI phase sheds some light on
the origin of the phenomenon. A trivial gap is generated by λν because it acts as a
natural potential barrier that blocks transport between two neighboring sites. If a random
potential is added to these sites, it may happen that the potentials of two neighboring
sites by accident become equal and transport is favored. This is however only possible
if the correlation length is sufficiently small. For random disorder with a large ξ, two

70



4.3. Numerical realization

1

0.2
0

-1

λν =1.45t λν =1.65t λν =1.85t

0 1 2
0

2

0 1 2 0 1 2 3

EF =0.2t

EF =0

2 10 20 30

W/t

G/G0

E
F
/t

G
/G

0

Figure 4.6: Top row: Heatmap of the conductance for varied disorder strength W
and Fermi energy EF . Quantized conductance of G = 2G0 is highlighted in red. λν is
tuned through three different values, showing a topological insulator to trivial insulator
transition. The other parameters are λR = 0t, λSO = 0.3t and l = 150a, w = 93a for
the system size. The chemical potential of the leads is µ = 1.2t. The black lines are
calculated using an analytical approach, described in detail in Section 4.4. Bottom row:
The plots show the conductance for two fixed energies EF = 0 (blue), EF = 0.2t (red).
This data was obtained as an average over 100 different disorder configurations. The
errors are statistical errors of this averaging and vanish in the regions with conductance
quantization at 2G0. The parameters are the same as in the top row.
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Figure 4.7: The conductance in units of G0 as a function of disorder strength W . The
red, blue and black data is for three different sample sizes, of 150a × 93a, 600a × 100a
and 300a × 200a (length × width). Each conductance was calculated for 100 different
disorder configurations and averaged, which leads to the error bars. The parameters are
λR = 0.65t, λν = 0.95t, λSO = 0.3t, EF = 0.55t and µ = 1.2t.
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Figure 4.8: Left: A TAI phase found for small λSO = 0.03t and Anderson disorder
at the edge to a trivial insulating phase. Right: TAI in the case of spatial correlated
disorder with correlation length ξ = 0.4a and λSO = 0.3t. For reasons of implementation,
the sample setup for this calculation is of trapezoidal and not rectangular shape. Both
figures are for a sample size of l = 150a, w = 93a and µ = 1.2t.
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Figure 4.9: Conductance plots (2G0 in red) showing the TAI phase for {λν , λR} ={
{0.75t, 0.65t} , {0.8t, 0.7t} , {0.85t, 0.7t} , {0.95t, 0.65t}

}
. The remaining parameters are

λSO = 0.3t, w = 93a, l = 150a, µ = 1.2t.

neighboring sites share almost the same random potential and are forced to have quite
different total potentials due to λν . It therefore seems plausible that the gap opened by
λν is reduced due to the disorder and a topological insulator phase appears again.

4.3.3 Finite λR and λν

The last two subsections showed that a topological Anderson insulator is found if a trivial
gap is opened by λν , while it is not present if the topological gap is closed by λR. This
subsection illuminates the intermediate regime of finite λν and λR. In a first try, we
assume that the boundary between the topological phase and the trivial phase is given by
an elliptic equation (

λR

2
√

3

)2

+

(
λν

3
√

3

)2

≈ λ2
SO. (4.6)

This way, we find the first set of parameters which shows a TAI phase as λR = 0.7t,
λν = 0.8t, λSO = 0.3t. A parameter scan close to these values reveals a couple of other
possible parameter combinations, with TAI phases as shown in Fig. 4.9. This plot allows
the following conclusions. The TAI phase exhibits a strong particle-hole asymmetry. This

73



Chapter 4. Topological Anderson Insulator in the Kane-Mele Model

can be explained by the presence of λR, as shown already. The 2G0 quantized region is
not only bending with growing W , also the topological insulator phase and the trivial gap
are shifted to larger values of EF , as can be seen at the W = 0 limit. Furthermore, the
TAI phase seems to shrink for smaller λν and larger λR. This is in accordance with the
fact that the limit λν = 0 does not show any TAI while in the limit λR = 0 a rather
pronounced TAI phase is found.

To get a clear picture of the region for finite λR and λν , we go back to Fig. 4.2. Every
evaluated parameter set is marked by a red or blue dot. The red dots mark parameters
for which a topological insulator was found. This is the case for parameters close to
or below the light-blue line, marking the existence of two Dirac cones in the gap of the
band structure without disorder. The blue dots show that a TAI was found between the
topological insulator and the trivial insulator phases. White space means that a trivial
insulator or a metal was found. The TAI is mostly found for values of large λν and small
λR and is not found at all for small λν . It is no longer found in the region where the direct
bandgap vanishes, where the solid light-blue line starts to escape to large λR values. This
shows moreover that the initial assumption of an ellipsoid boundary, Eq. (4.6), was not a
useful condition to find a TAI phase. Instead, the TAI phase exists only at the boundary
between topological insulators and trivial insulators, but not at the boundary towards
metallic behavior for small λν .

4.4 Born approximation for the Kane-Mele model

In this section, we shall explain several features of the numerical data shown in the last
section on the basis of an analytical model. The broken particle-hole symmetry was already
explained in Subsection 4.3.1 by the presence of Rashba spin-orbit coupling.

The main idea of an analytical model for the TAI phase found in the BHZ model
[Li09, Jiang09] was given by [Groth09]. In this theory, the finite disorder strength leads
to a renormalization of the topological mass parameter m. It is shown that a positive m,
describing a trivial insulator, is renormalized and can become negative. The disorder is
taken into account by the self-consistent Born approximation. This approximation is valid
for small impurity densities nimp compared to the electron density ne and small scattering
potentials compared to a characteristic level spacing. With impurity densities of about
1/a2 and a scattering potential of W � ∆, where ∆ is the bandgap, these conditions are
not fulfilled for Anderson disorder. Nevertheless, the theory can correctly reproduce some
of the features found numerically. We try at this point to give some ideas about how this
can be possible. Assuming that a TAI phase exists, which will lead to protected edge states
at the sample circumference, backscattering is strongly reduced for these edge states. The
effective density of impurities that can lead to backscattering for these edge states is much
reduced as well. Therefore, the mechanism that leads to the protected edge states of
a topological insulator might also explain why the application of the self-consistent Born
approximation to describe topological Anderson insulators can be successful. However, the
approximation would be valid only within the regime of the 2G0 quantized conductance.
Additionally, a strong scattering potential W does not mean that the self-consistent Born
approximation does not work. This requirement mainly originates from the mathematical
necessity that the summed diagrammatic expressions for the self-energy converge. This
can still be the case for large W as well.
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4.4.1 Diagonalization of the Kane-Mele model

The tight-binding model of Eq. (4.1) was written in momentum representation in [Kane05b].
It reads

H(k) =

5∑
a=1

da(k)Γa +

5∑
a<b=1

dab(k)Γab, (4.7)

were the Dirac matrices are defined as Γ(1,2,3,4,5) = (σx⊗1, σz⊗1, σy⊗sx, σy⊗sy, σy⊗sz)
and Γab = [Γa,Γb]/(2i). The Pauli matrices σk represent the sublattice indices and sk spin
indices. The k dependent factors are given by

d1(k) = t(1 + 2 cosx cos y) d12(k) = −2t cosx sin y

d2(k) = λν d15(k) = λSO(2 sin 2x− 4 sinx cos y)

d3(k) = λR(1− cosx cos y) d23(k) = −λR cosx sin y

d4(k) = −
√

3λR sinx sin y d24(k) =
√

3λR sinx cos y. (4.8)

with x = kxa/2 and y =
√

3kya/2.
The work of [Groth09] for the BHZ model relied on an effective low-energy model to

describe the TAI effect. In this chapter, we choose a different approach instead. Indeed, the
low-energy expansion leads to several open questions such as: which K-valley to choose for
the expansion, what happens with the other K valley and why is the expansion justified.
Instead, working with the exact Hamiltonian does not increase the complexity of the
problem too much.

4.4.2 Lowest order Born approximation

In the self-consistent Born approximation, the self-energy is given by an integral equation
[Bruus04]

Σ =
1

3
W 2

(
a

2π

)2 ∫
BZ

dk
1

EF −H(k)− Σ
, (4.9)

where the prefactor W 2/3 = W 2〈ε2i 〉 results from the second moment of the disorder
potential for εi ∈ [−1, 1]. The self-energy Σ is assumed to be energy and momentum
independent. The integration is over the first Brillouin zone, which has hexagonal shape
and has a circumference with size 6× 4π/3a. The first K-valley is at (kx, ky) = (4π/3a, 0)
and at the right corner of the first Brillouin zone. This way, the integral can be calculated
as ∫

BZ
dk = 4

∫ 2π/3a

0
dkx

∫ 2π/
√

3a

0
dky + 4

∫ 4π/3a

2π/3a
dkx

∫ −√3kx+4π/
√

3a

0
dky. (4.10)

At this point, some general features of the self-energy can be derived. Even though
Σ is a 4 × 4 matrix with up to 16 unknowns, it might be expressed by a smaller set of
variables due to the special structure of the Hamiltonian H. A promising ansatz for Σ is
the following

Σ =
5∑

a=1

gaΓ
a +

5∑
a<b=1

gabΓ
ab. (4.11)
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Chapter 4. Topological Anderson Insulator in the Kane-Mele Model

We use this ansatz where only those coefficients g are finite that were also non-vanishing
in Eq. (4.7) and perform the matrix inversion of Eq. (4.9). This shows that a new matrix
structure is generated and that at least g34 has to be finite. These additional terms have to
be understood as new couplings that are generated in the Hamiltonian due to the disorder.
The full solution of Eq. (4.9) is a tedious task, if possible at all. However, as it turns out,
solving this equation is not necessary for a good quantitative description of the TAI, as
we will show.

Instead, for the current purposes, it is sufficient to work with the lowest order in W
approximation. This corresponds to setting Σ = 0 on the right hand side of Eq. (4.9). One
complication arises still. After the matrix inversion and the integration, the components
of the resulting matrix have to be sorted to extract the renormalized quantities. We
accomplish this by adding the matrix elements in the right way. This leads to the equations

ΣEF =
Σ11 + Σ22 + Σ33 + Σ44

4

Σλν =
Σ11 + Σ22 − Σ33 − Σ44

4
= g2

ΣλSO =
Σ11 − Σ22 − Σ33 + Σ44

4
= g15 = 0. (4.12)

The Σij are the ij components of the matrix Σ. While the determination of the λν and
EF related self energies Σλν and ΣEF is more or less straightforward, it is not that trivial
for λR. The reason is that λR appears in the Hamiltonian as the prefactor of a σy ⊗ sx,
σy ⊗ sy, −σx ⊗ sx and −σx ⊗ sy term. The self-energy in the lowest order however has
only a σy ⊗ sx term. We find

Σ41 + Σ32 + Σ23 + Σ14 = 4g23 = 0

−Σ41 + Σ32 + Σ23 − Σ14 = 4g4 = 0

−Σ41 + Σ32 − Σ23 + Σ14 = 4g24 = 0[
ΣΓ3

]
11

=
[
ΣΓ3

]
22

=
[
ΣΓ3

]
33

=
[
ΣΓ3

]
44

= g3 = ΣλR3
, (4.13)

where it was used that [Γ3]−1 = Γ3. The effect of the disorder on λR can thus not be
described only by a renormalization of λR by a self-energy. Instead, just the part of the
Rashba spin-orbit coupling that is proportional to σy ⊗ sx renormalizes. To take this
into account, one has to introduce a new coupling, labeled λR3, that exists only for finite
disorder strength. The equations for the renormalized quantities λ̄ν , ĒF , λ̄SO, λ̄R and
λ̄R3 finally read

λ̄ν = λν + Σλν

ĒF = EF − ΣEF

λ̄SO = λSO

λ̄R = λR

λ̄R3 = ΣλR3
, (4.14)

were the negative sign in front of ΣEF originates from the denominator in Eq. (4.9) in
which EF and Σ enter with opposite signs. Unfortunately, the explicit expressions of
ΣEF ,Σλν ,ΣλR3

are to lengthy to be written down at this point. To understand the renor-
malization of λR, it is instructive to translate the model for the renormalized quantities
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4.4. Born approximation for the Kane-Mele model

back to a tight-binding formulation. By doing this, the λR3 term will become a nearest-
neighbor hopping amplitude that exists only for one out of the three possible kind of
hoppings, the hopping perpendicular to â1. Both the Rashba spin-orbit coupling and the
λR3 contribution are still rotation symmetric with respect to rotations about an angle
of 120◦. This rotation symmetry is microscopically broken by the disorder, but globally
it exists still for the averaged quantities that are used to construct the effective medium
theory. This can be seen by rotating both the real space lattice and the vector of Pauli
matrices around the same angle (which has to be a multiple of 120◦).

4.4.3 Comparison of the Born approximation and the tight-binding re-
sults

Equations (4.12), (4.13) and (4.14) as well as Eq. (4.9) can be used to calculate boundaries
between which a quantized 2G0 conductance for a TAI can be expected. For λR = 0, it
follows that λ̄R3 = 0 and the condition for a system to be a topological insulator is given
by 3
√

3λSO > λν . The equation 3
√

3λSO = λν can be extrapolated to the case of finite
disorder, 3

√
3λ̄SO = λ̄ν . The self-energy Σλν is usually negative, therefore the system can

become a topological insulator, even if the original λν > 3
√

3λSO. For larger initial λν
this happens at a larger disorder strength W . This is why the crossing of the two black
lines in Fig. 4.6 move further to the right with growing λν . For λν = 1.95t the transition
happens only at a disorder strength where the conductance is already suppressed, possibly
due to emergent percolating states in the bulk. The system is not a TAI anymore. It is
important to stress that the black lines are a result of the Born approximation while the
underlying red and blue heatmap was obtained by numerically solving the tight-binding
model for a given disorder realization. For this calculation, no adjustable parameter or
fitting variable is used.

For the full two-dimensional Kane-Mele model with λR = 0 the size of the gap is given
by |2λν − 6

√
3λSO|. As particle-hole symmetry is still given, the upper and lower edges of

the gap are described by ±|λν−3
√

3λSO|. This can be extended again to the finite W case,
±|λ̄ν − 3

√
3λ̄SO|, which is exactly what is plotted as the black lines (in fact joined dots

that represent each an individual evaluation of the integral in Eq. 4.9) in Fig. 4.6. The
gap first closes and reopens as a negative gap for λν = 1.65t, 1.85t. The agreements of the
lowest order Born approximation with the tight-binding solution is evident. Deviations
exist only for large W > 2t.

For finite λR the situation is more difficult. To the best knowledge of the author, an
analytical expression for the gap in a model with finite λR and λν and especially λR3

does not exist. An analytical expression can be derived if the Dirac cones are located at
the K-points. It can be proven that this is the case if time-reversal, C3 and an inversion
symmetry are present [Bernevig13]. In this case, we evaluate the Hamiltonian at the K-
points and diagonalize it. The four eigenvalues allow to determine an analytical solution
for the gap of the 2D model. As it is not clear that this works in our case this can only be
used as an approximative method here. To nevertheless obtain a meaningful condition in
the finite λR case, we calculate the band structure of a strip of the clean system with finite
λR, λν and an artificial λR3 and read off the gap and the positions of the bands manually.
The values are then used to calculate two interpolating functions, hu(λν , λR, λR3) and
hl(λν , λR, λR3), which describe the closing and re-opening of the gap. These functions are
finally applied to the renormalized values λ̄ν and λ̄R3. hu describes the lower edge of the
upper band and hl the upper edge of the lower band. The two functions are shown for
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Figure 4.10: The upper edge of the lower band and the lower edge of the upper band
as a function of λν for the Kane-Mele model. The extra term λR3 is added to the model
and the band structure is evaluated for four different values of λR3. The band structure
was calculated for a strip with width w = 93a and λSO = 0.3t. The gap-closing is seen
at approximately λν = t. Rashba spin-orbit coupling is kept at λR = 0.65t.

λR = 0.65t and four values of λR3 in Fig. 4.10. With growing W , λR3 gets renormalized
to negative values; between λR3 = 0 and λR3 = −0.5t for values of 0 ≤W ≤ 3t.

Interestingly, an increasingly negative λR3 not only shifts the gap to smaller energies,
it furthermore leads to a closing of the gap for larger λν only. This means that solely the
existence of a finite λR3 can lead to a topological transition to a non-trivial phase. This
can be seen in Fig. 4.10. The topologically non-trivial gap is on the left-hand side of the
gap-closing. This region further expands to larger λν with the decrease of λR3 from 0 to
−0.5t.

The two conditions hu(λ̄ν , λR, λ̄R3) = ĒF and hl(λ̄ν , λR, λ̄R3) = ĒF can be used to
describe the boundaries of the region with 2G0 conductance for finite λR. The solutions of
these equations are plotted in Fig. 4.11 as the two black lines. Some significant deviations
from the numerical data and the lowest order expansion of the Born approximation are
visible. First of all, the solution of the Born approximation is much more demanding, as
the Hamiltonian is a true 4 × 4 matrix that does not decompose into two 2 × 2 blocks
as for λR = 0. This makes the numerical evaluation of the corresponding integrals more
complex.

While the lower edge of the 2G0 conductance region is described quite well, the upper
edge and especially the left part are not correctly reflected. This seems to be connected
to a general deficit of the SCBA, as the left part is for small W only and thus likely to
be described by the lowest order SCBA expansion. Furthermore, evaluation of the band
structure reveals that for λν = 0.95t and λR = 0.65t the system is exactly at the transition
between a trivial insulator and a topological insulator. The gap is just closed. While this
can be seen in the lowest order Born approximation solution, the 2G0 conducting region
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Figure 4.11: Comparison of the Born approximation to numerical data. The two dotted
lines are solutions to the equations hu(λ̄ν , λR, λ̄R3) = ĒF and hl(λ̄ν , λR, λ̄R3) = ĒF . The
parameters for the plot are λSO = 0.3t, λν = 0.95t, w = 93a, l = 150a and a chemical
potential of µ = 1.2t in the leads.

starts only at larger disorder strength W ≈ 0.6t. This is about the same energy scale at
which the conduction and valence bands start to disappear as well. With this in mind,
going back to Fig. 4.6 reveals that the same can be seen in the λR = 0 case as well: in the
λν = 1.55t data, the 2G0 conductance region starts only for W ≈ 0.6t.

To understand this qualitatively, Fig. 4.12 shows the same data as in Fig. 4.11 with
the only difference that we set all site potentials that are within the interval (−0.6t, 0.6t)
to zero. Therefore, for W < 0.6t there is no disorder at all. This procedure increases
the average impurity strength and at the same time reduces the impurity density. It has
an effect on the TAI, which now exists only for larger W . The dashed, green line in the
figure illustrates the beginning of the 2G0 conducting area as it was in the setup with an
Anderson kind of disorder, see Fig. 4.11. That the left edge of that area moved indicates
that the impurity density plays an important role. That it did not move up to W ≈ 2×0.6t
shows that also the absolute impurity strength is a decisive quantity. A closer look leads
to a critical value of W ≈ 0.67t for Fig. 4.11 and W ≈ 0.82t for Fig. 4.12. Calculating 〈ε2〉
for these two cases leads to

〈ε2〉 =
1

2W

∫ W

−W
dεε2 = W 2/3 = 0.15 forW = 0.67

〈ε2〉 =
1

2W

[∫ −0.6

−W
dεε2 +

∫ W

0.6
dεε2

]
= 0.14 forW = 0.82, (4.15)

which indicates that the second moment of the disorder potential 〈ε2〉 has to be above a
critical threshold of 0.14 to find a TAI. To investigate this hypothesis in more detail has
to be the subject of future work. In the same way, the understanding why the lowest order
Born approximation is not sufficient to describe the upper boundary of the TAI region in
Fig. 4.11 has to be done at a later point.
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Figure 4.12: The conductance heatmap for a modified Anderson disorder. For this plot,
Anderson disorder was used but all disorder potentials within the interval (−0.6t, 0.6t)
were set to zero. The remaining parameters are as in Fig. 4.11, the dashed, green line
marks the beginning of the 2G0 conducting area as in Fig. 4.11.

Low energy expansion of the Kane-Mele model

We can obtain a simple, completely analytical explanation of the TAI effect for λR = 0.
For this, we perform a low energy expansion of the terms in Eq. (4.8) up to second order
in qx, qy. Here, the expansion is about k = K+ +q with K+ = 2π

a (2
3 , 0). Only the highest

order terms are kept, as follows

d1 = −t
√

3a

2
qx, d2 = λν ,

d12 = t

√
3a

2
qy, d15 = −3

√
3λSO

(
1 + q2a2/4

)
, (4.16)

with all other components vanishing. In this limit, the system is equivalent to the BHZ
model, the Hamiltonian decomposes into 2× 2 blocks which read

H =

λν −
(

1 + q2a2

4

)
3
√

3λSO −
√

3ta
2

(
qx − iqy

)
−
√

3ta
2

(
qx + iqy

)
−λν +

(
1 + q2a2

4

)
3
√

3λSO

 . (4.17)

This model can be mapped on the BHZ Hamiltonian as it is stated in [Groth09]. The

parameters then read α = −
√

3ta
2 , m = λν − 3

√
3λSO, β = −3

√
3λSOa

2

4 and γ = 0.
The integral in Eq. (4.9) to lowest order in W can be done analytically using certain
approximations as in [Groth09]. This yields the renormalization of the parameter λν as

λ̄ν = λν +
W 2

9π
√

3λSO
log

∣∣∣∣∣ 27λ2
SO

E2
F − (λν − 3

√
3λSO)2

(
π

2

)4
∣∣∣∣∣ , (4.18)

while λSO does not renormalize because it entered with a factor q2 in the Hamiltonian
as well, and Σ is supposed to be momentum independent. For the right parameters, the
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logarithm in this equation can get negative, leading to a negative renormalization of λν
with growing W . In this case, it is possible that even though initially λν > 3

√
3λSO, one

finds that λ̄ν < 3
√

3λSO. Therefore, the system undergoes a topological transition with
increasing W .

4.5 Conclusions

Within this chapter, we investigated the effect of a topological Anderson insulator (TAI) in
the Kane-Mele model for the first time. TAIs are topological insulators that are generated
by a finite disorder potential (with strength W ) in systems that would be trivially insu-
lating in the clean limit. First, we showed that the effect exists not only in the Bernevig
Hughes Zhang model but as well in the Kane-Mele model on a 2D honeycomb lattice. Dif-
ferent parameter regimes of the model have been explored and the critical energy scales
approximated and compared to experimentally feasible values. This indicates that a TAI
can most likely not be realized in graphene, but possibly in silicene, germanene or stanene.

We found that the system needs to be of a certain size to show the effect, which is
of the order of 100 × 100 lattice sites. Besides the second nearest neighbor spin-orbit
coupling (λSO), Rashba spin-orbit coupling (λR) and the staggered sublattice potential
(λν) are important ingredients for the effect. The numerical data shows that a TAI is
found in the parameter region with λR < 2

√
3λSO and λν & 3

√
3λSO. A phase diagram

was generated numerically for λSO = 0.3t (t as the hopping amplitude) that illustrates for
which λR, λν combination a topological insulator, an ordinary insulator, a metal or a TAI
can develop due to the disorder. Interestingly, the TAI does not exist for small λν and
λR ≈ 2

√
3λSO, for which a continuous transformation of the topological insulator into a

metal exists. Besides Anderson disorder, also spatially correlated disorder is investigated.
Up to a small correlation length of about the lattice constant, the TAI is visible also for
spatially correlated disorder.

An analytical model sheds light on the physics behind the TAI effect. Within the self-
consistent Born approximation (SCBA), many features can be explained quantitatively.
A lowest order expansion in the disorder potential W is enough to describe the boundaries
of the inverted gap of the TAI for λR = 0. We observed a good agreement between the
Born approximation and the direct numerical solution of the tight-binding model with
disorder. For this, no adjustable parameter has to be used if the disorder potential in
the Born approximation is chosen to be WSCBA =

√
W 2/3. This however is plausible, as

W 2/3 is the second moment of the disorder potential for Anderson disorder. A general
understanding is that the disorder results in a renormalization of the system parameters
and can lead to an effectively decreased λν . This can lead to the closing of the trivial gap
and re-opening of a topological gap.

In the case of finite λR, the Born approximation approach does not work as well
anymore. General considerations can be made, however. It is found that λR does not
renormalize with W . Instead, a new coupling λR3 has to be introduced. Interestingly, λR3

strengthens the topological phase and by itself can induce a topological transition as it
can shift the closing of the topological gap to larger values of λν .

An interesting open question that remains for the future is to better understand the
effect of non-Anderson-like disorder. First calculations hint to the possibility that one
characteristic feature that a disorder realization has to suffice so that the TAI effect is
visible is that the second moment of the disorder potential has to be large enough. This can
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be achieved either by dense, but weak disorder potentials or by dilute, strong potentials.
The latter case is probably more relevant for experiments and should be investigated.
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Chapter 5

Conclusions

This thesis consists of three independent chapters, which deal with different phenomena
in topological insulators that are generated by a broken spin axis symmetry. This exists
while time-reversal symmetry (TRS) is conserved. The symmetry breaking terms arise for
example due to Rashba spin-orbit coupling, as in Chapter 4, and can be mathematically
included using the concept of generic helical liquids, as in Chapter 2 and Chapter 3.

In Chapter 2, we investigated a narrow two-dimensional (2D) topological insulator.
Under the influence of an inhomogeneous, perpendicular external electric field Rashba
spin-orbit coupling is induced in the edge states on the sides of a sample. This is taken into
account by utilizing the concept of generic helical liquids in two effective one-dimensional
models. Therefore, we introduced two momentum dependent rotation matrices Bk,U and
Bk,L. The inhomogeneity ensures that the two matrices, and the Hamiltonian eigenstates
of the two edges are distinct. As the sample is assumed to be rather narrow, the bulk
supports several tunnel contacts that connect the two edges, and in conjunction with the
different eigenstates allow for forward scattering and backscattering of the edge states. We
found that in this setup, a change of the external field has a strong impact on the conduc-
tance of the sample. In the case that only two tunnel contacts are present, interference
phenomena can be seen. For an elongated and narrow sample hosting several tunnel con-
tacts, the full conductance is calculated and evaluated on average. This yields a inverted
localization length of `−1 = n〈T 〉 cos2

[
θ(µ)

]
, were n is the tunnel contact density, 〈T 〉 the

averaged tunnel amplitude and θ(µ) characterizes the field inhomogeneity as a function of
the chemical potential µ. This allows a measurement of the spin structure of the helical
edge states. However, the application of this theory requires that the sample geometry
and several other physical quantities are in a suitable parameter range.

In Chapter 3 we investigated the edge states of 2D topological insulators that are
gapped out by either strong interactions or induced superconductivity. At the interface of
two such regions, we found exotic bound states, so called non-Abelian parafermions. The
electron-electron interactions are taken into account in Luttinger liquid theory and the edge
states are described using generic helical liquids. In this chapter, we first showed that the
combination of interactions and generic helical liquids generates a new interaction term,
called umklapp scattering. Using a second order RG treatment, the flow equations of this
term are derived. They read dgum/d` = −2gum(2K − 1) + λ2π2(K − 3) (2K − 1) (K − 5),
were gum(`) is the umklapp scattering strength and dλ/d` = −(K+1)λ is the flow equation
for the dimensionless parameter λ, which is related to the Bk matrix of the generic helical
liquid. This result reveals that the considered kind of umklapp scattering gets relevant
for strong interactions K < 1/2 (K being the Luttinger liquid parameter). The umklapp
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scattering leads to a gap in the edge state spectrum. This is succeeded by a calculation
based on bosonic Green’s functions of a single interface between an edge state region
that is gapped out by gum and one which is gapped out by induced superconductivity.
Refermionization discloses a pole in the fermionic Green’s function, G(ω) ∝ 2/(ω + i0+),
at zero energy. This pole represents a zero energy bound state at the interface. With these
results in mind, we extended the system to a circular setup, hosting 2N such interfaces.
We found that this system has a N4-fold ground state degeneracy. Effective operators are
constructed that allow to cycle through the ground state manifold by creating/annihilating
non-local electronic particles. It is shown that these operators satisfy χ4

2j = χ4
2j−1 = 1.

Furthermore, a braiding scheme is proposed that allows for non-Abelian braiding of these
particles. Finally, we examine the Josephson effect in this setup, it shows a periodicity of
8π in the current. The system considered here is TRS conserving, which is a distinguishing
feature as compared to other works realizing parafermions. For example, in contrast to
proposals based on the fractional quantum hall (FQH) effect, it does not require the
coexistence of a strong magnetic field and superconductivity. This can be an advantage
for potential experiments.

Chapter 4 deals with disorder in the Kane-Mele model. In analogy to works based
on the Bernevig Hughes Zhang (BHZ) model, we have shown that disorder can induce
a topological phase, even though the clean sample model parameters belong to a trivial
insulating phase. Besides the numerical solution of the tight-binding model, this chapter
presents an analytical approach, based on the lowest-order Born approximation. This ap-
proach reveals that the model parameters get renormalized due to the disorder. We found
that the renormalized staggered sublattice potential, λν , gets decreased with growing dis-
order strength W . On the other hand, the spin-orbit coupling, λSO, does not renormalize.
Therefore, a topological transition can take place as the condition for a topological phase
is given by λν < 3

√
3λSO, if there is no Rashba spin-orbit coupling. Interestingly, the

Rashba spin-orbit coupling λR is not renormalized to lowest order in W , instead a new,
anisotropic Rashba coupling is generated, λR3. This coupling breaks the discrete C3 rota-
tion symmetry (rotation through an angle of 120◦). Furthermore, we investigated the effect
of spatially correlated disorder. While these results might not be relevant for graphene,
the most prominent material for which the Kane-Mele model applies, they might be rele-
vant for silicene, germanene or stanene. In these setups, disorder can be used to tune the
system artificially between a trivial insulating and a topological insulating phase. This
could possibly be utilized for new electronic applications.

Topological insulators are the foundation of an incredibly rich ensemble of phenomena
and effects, three of which have been the subject of this thesis. With the knowledge
that was gained during its writing, our understanding of these materials has substantially
widened. The narrow 2D topological insulator setup that has been investigated allows
a measurement and resolution of the spin-structure of the edge states. The non-Abelian
parafermions that were found are new, possible candidates for the implementation of
quantum computation. Finally, the TAI that was discovered in the Kane-Mele model
broadens the range of possible materials that can be used as topological insulators or
allow tuning of a material between a trivial and topological phase through doping with
impurities. Together with the manifold of other works about topological insulators that
have been published in the last years, this gives hope that topological insulators will find
many applications and will let us understand nature at an even more profound level.
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Appendix A

General Formulas

Fourier Transforms

ψ(x) =
1

L

∑
k

eikxψk ψk =

∫
dxe−ikxψ(x). (A.1)

Normal ordering
∗
∗ABC . . .

∗
∗ = ABC · · · − 〈ABC . . . 〉. (A.2)

Logarithm expressed as a sum

log(1− y) = −
∞∑
n=1

yn/n. (A.3)

Bosonization identity (Eq. 2.22 of [Giamarchi03])

ψσ(x) = Uσ lim
a→0

1√
2πa

eiσ(kF−π/L)xe−i(σφ(x)−θ(x)), (A.4)

with the Klein factors defined as Majorana particles: U↑ = U †↑ and U↓ = U †↓ .
Unit-step function

θ(x) =

{
0 if x < 0

1 if x ≥ 0
(A.5)

Sign function

sign(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

(A.6)
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Appendix B

Detailed calculations

B.1 Proof that the modulus |vj| is indeed always less than
one

This appendix is used to show that the modulus vj =
∣∣cj/(ajbj)∣∣ is always smaller than

1. As a first step, a transfer matrix with aj−1, bj−1, cj−1 and the form of Eq. (2.47) is
multiplied by Pj . This yields for the resulting elements a′j−1, b

′
j−1, c

′
j−1

a′j−1 = aj−1e
iφj

b′j−1 = bj−1

c′j−1 = cj−1e
−iφj

and especially v′j−1 = vj−1. Now a transfer matrix with coefficients a′j−1, b
′
j−1, c

′
j−1 is

multiplied by a single point contact transfer matrix with tunneling probability Tj which
will result in (not writing the angle ϑj and the indices of Tj , a

′
j−1, b

′
j−1, c

′
j−1 to keep it

short)

aj =

(
1 + b sin(θ)Γ

) (
ab
√
T + cT cos(θ)

)
b(1− T cos2(θ))Γ

bj =
b− sin(θ)Γ

1 + b sin(θ)Γ

cj =

(
b− sin(θ)Γ

) (
abT cos(θ) + c

√
T
)

b(1− T cos2(θ))Γ

Γ =

√
T

1− T
,

as the parameters of the new transfer matrix. This gives for the modulus

vj =

∣∣∣∣∣∣∣
(
b− sin(θ)Γ

) (
abT cos(θ) + c

√
T
)
b(1− T cos2(θ))Γ

(
1 + b sin(θ)Γ

)
b(1− T cos2(θ))Γ

(
1 + b sin(θ)Γ

) (
ab
√
T + cT cos(θ)

) (
b− sin(θ)Γ

)
∣∣∣∣∣∣∣

=

∣∣∣∣∣
√
T cos(θ) + c/ab

1 +
√
T cos(θ)c/ab

∣∣∣∣∣ .
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With an arbitrary phase ϕ it can be written as

vj =

∣∣∣∣∣
√
T cos(θ) + vj−1e

iϕ

1 + vj−1eiϕ
√
T cos(θ)

∣∣∣∣∣ =

√√√√√√
(√

T cos(θ) + vj−1 cos(ϕ)
)2

+ v2
j−1 sin2(ϕ)(

1 + vj−1 cos(ϕ)
√
T cos(θ)

)2
+ v2

j−1 sin2(ϕ)T cos2(θ)

expanding the powers shows that 1+v2
j−1T cos2(θ) > v2

j−1+T cos2(θ) is needed for vj < 1 if

cos(θ) cos(φ) > 0. This however is true as −
(
1− T cos2(θ)

) (
1− v2

j−1

)
< 0. We therefore

showed that if all the point contacts have
∣∣vj∣∣ < 0 this is also true for the total transfer

matrix. The proof is not complete yet, as the case cos(θ) cos(φ) < 0 is not covered.
However, it can be seen easily by plotting that vj < 1 even in this case, and an exact
mathematical proof has to be done elsewhere.

B.2 Bosonization of kinetic energy Hamiltonian

As an introduction to the methodology the linear dispersion Hamiltonian is bosonized
(which turns out to be really tricky to get it right) in this appendix. This part is closely
related to [vonDelft98] and starts with the Hamiltonian for free fermions

H0 = −ivF
∑
σ=R,L

σ

∫ L/2

−L/2
dx ∗∗ ψ

†
σ(x)∂xψσ(x) ∗∗ + H.c. (B.1)

with Fermi velocity vF and the right/left moving fields ψR, ψL (R,L = ±). The expression
( ∗∗ . . .

∗
∗ ) denotes the fermionic normal ordering, which is to prevent singularities originat-

ing from a linearized spectrum with an infinite number of occupied states below the Fermi
energy. It is defined as usual by

∗
∗ABC . . .

∗
∗ = ABC · · · − 〈ABC . . . 〉 (B.2)

where 〈|, |〉 is the (N -particle) ground state without any particle hole excitations. In this
appendix the bosonization identity (A.4) is used, which is a Hamiltonian independent and
exact operator identity. Furthermore, the definition ϕσ(x) = σφ(x) − θ(x) will turn out
to be handy. Uσ is the Klein factor and kF the Fermi momentum. The system has a finite
length L and an infinitesimal regularization parameter a. φ(x), θ(x) are the bosonized
fields. The fields ϕσ(x) are defined by, after [Giamarchi03],

ϕσ(x) =− (σNR +NR − σNL −NL)
πx

L

− iπ

L

∑
p

(
L|p|
2π

)1/2

e−a|p|/2−ipx

(
σb†p + σb−p

p
+
b†p − b−p
|p|

)
. (B.3)

It is furthermore necessary to split the fields into creation and annihilation parts, ϕσ(x) =
ϕ+
σ (x) + ϕ−σ (x), using only the creation part and annihilation part of the b-operators,

which commute with themselves. With this the following important commutators can be
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calculated[
ϕR(x), ϕL(x)

]
= 0 (B.4)[

ϕ+
σ (x), ϕ−σ′(x

′)
]

= − π

2L

∑
p,p′

√
|p||p′|e−a|p|/2−a|p′|/2−ipx−ip′x′

[
σb†p
p

+
b†p
|p|
,
σ′b−p′

p′
+
−b−p′
|p′|

]
︸ ︷︷ ︸
δp,−p′

1
p2

(σσ′+(σ+σ′)sign(p)+1)

= − π

2L

∑
p

e−a|p|−ip(x−x
′) 1

|p|
(
σσ′ + (σ + σ′)sign(p) + 1

)
= −2π

L
δσ,σ′

∑
p

e−a|p|−ip(x−x
′) θ(σp)

|p|
(B.5)

where it was used that the Nσ commute with each other and with the b-operators. In the
following the identity of Eq. (A.3) and the momentum quantization k = 2π

L nk is used to
calculate [

ϕ+
σ (x), ϕ−σ′(x

′)
]

= −2π

L
δσσ′

∞∑
np=1

e−(a+iσ(x−x′)) 2π
L
np L

2πnp

= δσσ′ log
[
1− e−(a+iσ(x−x′)) 2π

L

]
. (B.6)

It is furthermore found that for both η = ± the following commutator holds as well[
ϕησ(x′), ∂xϕ

η
σ′(x)

]
= 0. (B.7)

To bosonize the kinetic energy, the derivative has to be written as the limit

∗
∗ ψ
†
σ(x)i∂xψσ(x) ∗∗ + H.c. = i lim

ε→0

1

ε
∗
∗ ψ
†
σ(x)ψσ(x+ ε)− ψ†σ(x)ψσ(x) ∗∗ + H.c.. (B.8)

Here, it is already crucial to take the H.c. into account in the right way. For this reason
it makes sense to also keep writing the i. Writing out the H.c. yields

∗
∗ ψ
†
σ(x)i∂xψσ(x) ∗∗ + H.c.

= i lim
ε→0

1

ε
∗
∗ ψ
†
σ(x)ψσ(x+ ε)− ψ†σ(x)ψσ(x)− ψ†σ(x+ ε)ψσ(x) + ψ†σ(x)ψσ(x) ∗∗

= i lim
ε→0

1

ε
∗
∗ ψ
†
σ(x)ψσ(x+ ε)− ψ†σ(x+ ε)ψσ(x) ∗∗ . (B.9)

Here, products of two operators at the same point x are allowed and well defined because
they are inside the normal ordering operation, which prevents any singularities. With the
bosonization identity the normal ordered operator products can be calculated as

∗
∗ ψ
†
σ(x)ψσ(x+ ε) ∗∗ = lim

a→0

1

2πa
eiσ(kF−π/L)ε ∗

∗ e
iϕσ(x)e−iϕσ(x+ε) ∗

∗

∗
∗ ψ
†
σ(x+ ε)ψσ(x) ∗∗ = lim

a→0

1

2πa
e−iσ(kF−π/L)ε ∗

∗ e
iϕσ(x+ε)e−iϕσ(x) ∗

∗ (B.10)

where it was used that the Klein factors are unitary. Before taking the limit ε → 0 the
limit a→ 0 has to be taken as a is supposed to be even smaller than ε. This is because a
is a measure for the length scale beyond which dynamics are cut-off. At distances smaller
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than a, the fields are not supposed to vary anymore, and taking the derivative would make
no sense. To do this, the fields have to be rearranged in a final way that does not require
the use of commutators after taking the limit a → 0, because commutators contain a.
With the fields ϕ±σ and the commutator Eq. (B.6) one finds

∗
∗ ψ
†
σ(x)ψσ(x+ ε) ∗∗ = lim

a→0

1

2πa
eiσ(kF−π/L)ε ∗

∗ e
iϕ+
σ (x)+iϕ−σ (x)e−iϕ

+
σ (x+ε)−iϕ−σ (x+ε) ∗

∗

= lim
a→0

1

2πa
eiσ(kF−π/L)ε ∗

∗ e
iϕ+
σ (x)e+iϕ−σ (x)e−iϕ

+
σ (x+ε)e−iϕ

−
σ (x+ε)

× e[ϕ
+
σ (x),ϕ−σ (x)]/2e[ϕ

+
σ (x+ε),ϕ−σ (x+ε)]/2 ∗

∗

= lim
a→0

1

2πa
eiσ(kF−π/L)ε ∗

∗ e
iϕ+
σ (x)e−iϕ

+
σ (x+ε)e+iϕ−σ (x)e−iϕ

−
σ (x+ε)

× e[ϕ
−
σ (x),ϕ+

σ (x+ε)]e[ϕ
+
σ (x),ϕ−σ (x)] ∗

∗ . (B.11)

Finally, one can take the limit a→ 0 of the whole expression, including the prefactor 1/a
and the two commutators. This yields

lim
a→0

1

2πa
e[ϕ
−
σ (x),ϕ+

σ (x+ε)]e[ϕ
+
σ (x),ϕ−σ (x)] = lim

a→0

1

2πa

1− e−a
2π
L

1− e−(a+iσε) 2π
L

=
1

L

1

1− e−2iσεπ/L
. (B.12)

This can be expanded for small ε. Taylor expansion works the usual way because ∂xϕσ(x)
commutes with ϕσ(x). First, all the terms are expanded up to second order in ε to read

∗
∗ ψ
†
σ(x)ψσ(x+ ε) ∗∗ ≈

∗
∗

[
1− i∂xϕ+

σ (x)ε− i∂2
xϕ

+
σ (x)ε2/2−

(
∂xϕ

+
σ (x)

)2
ε2/2

]
×
[
1− i∂xϕ−σ (x)ε− i∂2

xϕ
−
σ (x)ε2/2−

(
∂xϕ

−
σ (x)

)2
ε2/2

]
×
[
1 + iσ(kF − π/L)ε− 1

2
(kF − π/L)2ε2

] [
− iσ

2πε
+

1

2L
+
iπεσ

6L2

]
∗
∗ . (B.13)

Keeping in mind that there is still a 1/ε prefactor before taking the limit, all terms going as
ε2 can be neglected. Furthermore, all terms not containing any operators can be dropped
due to the normal ordering. This yields

∗
∗ ψ
†
σ(x)ψσ(x+ ε) ∗∗ ≈

(
− iσ

2πε
+

1

2L

)
∗
∗ − i∂xϕσ(x)ε ∗∗

− iσ

2πε
∗
∗ − i∂2

xϕσ(x)ε2/2−
(
∂xϕ

+
σ (x)

)2
ε2/2−

(
∂xϕ

−
σ (x)

)2
ε2/2 ∗∗

− iσ

2πε
∗
∗ − ∂xϕ+

σ (x)∂xϕ
−
σ (x)ε2 + ∂xϕσ(x)σ(kF − π/L)ε2 ∗∗ . (B.14)
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An analogous calculation for the hermitian conjugate yields (the limit a→ 0 now leads to
a term 1

L
1

1−e2iεσπ/L )

∗
∗ ψ
†
σ(x+ ε)ψσ(x) ∗∗ ≈

(
iσ

2πε
+

1

2L

)
∗
∗ i∂xϕσ(x)ε ∗∗

+
iσ

2πε
∗
∗ i∂

2
xϕσ(x)ε2/2−

(
∂xϕ

+
σ (x)

)2
ε2/2−

(
∂xϕ

−
σ (x)

)2
ε2/2 ∗∗

+
iσ

2πε
∗
∗ − ∂xϕ+

σ (x)∂xϕ
−
σ (x)ε2 + ∂xϕσ(x)σ(kF − π/L)ε2 ∗∗ . (B.15)

Insertion of these expressions into the Hamiltonian of Eq. (B.1) and the limit ε→ 0 yields

H0 =− ivF
∑
σ

σ

∫ L/2

−L/2
dx ∗∗ −

1

2L
i∂xϕσ(x) ∗∗

− ivF
∑
σ

∫ L/2

−L/2
dx ∗∗

i

2π

(
∂xϕσ(x)

)2 − i

π
∂xϕσ(x)(kF − π/L) ∗∗ (B.16)

where it was used that
[
∂xϕ

+
σ (x), ∂xϕ

−
σ (x)

]
is a number and vanishes in the fermion normal

ordered expression. In the limit of large L one can neglect most of the terms and obtain
the well known bosonic Hamiltonian

H0 =
vF
2π

∑
σ

∫
dx ∗∗

(
∂xϕσ(x)

)2 ∗
∗ . (B.17)

B.3 Majorana modes at the edges of 2D topological insula-
tors with induced gaps

Consider the Hamiltonian H = H0 + H∆ + HM . It consists of a kinetic part with linear
spectrum as in Eq. (3.1), a part with induced superconducting pairing Eq. (3.6) and one
with induced magnetic pairing Eq. (3.8),

H0 = −ivF
∑
σ

σ

∫
dxΨ†σ(x)∂xΨσ(x)

H∆ =

∫
dx
[
∆(x)Ψ†↑(x)Ψ†↓(x) + H.c.

]
HM =

∫
dx
[
M(x)Ψ†↑(x)Ψ↓(x) + H.c.

]
(B.18)

where ∆(x) = ∆θ(−x) and M(x) = Mθ(x). Introducing the Nambu spinor,

Ψ = [Ψ↑(x),Ψ↓(x),Ψ†↓(x),−Ψ†↑(x)]T (B.19)

it can be written as

H =
1

2

∫
dxΨ†(x)


−ivF∂x M ∆ 0
M∗ ivF∂x 0 ∆
∆∗ 0 ivF∂x M
0 ∆∗ M∗ −ivF∂x

Ψ(x). (B.20)
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B.3.1 Solution in the superconducting region

As a first step, the solution in the superconducting region (x < 0) is considered. Here, the
Schrodinger equation reads

−ivF∂x 0 ∆ 0
0 ivF∂x 0 ∆

∆∗ 0 ivF∂x 0
0 ∆∗ 0 −ivF∂x

Ψ<(x) = EΨ<(x) (B.21)

This first order differential equation can be solved with the ansatz,

Ψ<(x) =


eik↑xc↑
eik↓xc↓
eik↑xd↓
eik↓xd↑.

 (B.22)

Using this gives the equations
vFk↑ − E ∆ 0 0

∆∗ −vFk↑ − E 0 0
0 0 −vFk↓ − E ∆
0 0 ∆∗ vFk↓ − E



c↑
d↓
c↓
d↑

 = 0. (B.23)

This matrix is block diagonal, and its eigenenergies are given by

Eσ± = ±
√

(vFkσ)2 + |∆|2. (B.24)

This allows to determine the eigenvectors. For instance, it is found

(vFk↑ − E↑±)c↑ + ∆d↓ = 0 =⇒ d↓,± =
c↑
∆

[
±
√

(vFk↑)2 + |∆|2 − vFk↑
]

(B.25)

Therefore, defining

ασ± =
1

∆

[
±
√

(vFkσ)2 + |∆|2 − vFσkσ
]

(B.26)

the (unnormalized) eigenvectors corresponding to the four eigenvalues Eσ± are given by

eik↑x


1
0
α↑+

0

 , eik↑x


1
0
α↑−

0

 , eik↓x


0
1
0
α↓+

 , eik↓x


0
1
0
α↓−

 . (B.27)

Since normalization was not imposed so far, kσ can be either real or imaginary (it cannot
have nonzero real and imaginary parts, because the energy must be real). Real kσ corre-
sponds to states with energy above |∆|, whereas imaginary kσ = iκσ can generate subgap
states, provided that v2

Fκ
2
σ < |∆|2.

In the following, the focus is put on possible zero energy eigenstates. Since the wave
function must be convergent for x → −∞, κσ < 0 has to hold. There is thus a unique
wave vector κσ = −|∆|/vF which can yield a zero energy solution. In that case

ασ±
∣∣
kσ=−i|∆|/vF

=
1

∆
(σi|∆|) = iσe−iφ (B.28)
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with ∆ = |∆|eiφ. The most general wave function corresponding to that solution reads

Ψ
(0)
< (x) = ex|∆|/vF

a↑


1
0

ie−iφ

0

+ a↓


0
1
0

−ie−iφ


 (B.29)

For arbitrary a↑ and a↓, this state is a zero energy eigenstate and it is normalizable in the
interval (−∞, 0].

B.3.2 Solution in the magnetic region

In the magnetic region (x > 0), the Schrodinger equation reads
−ivF∂x M 0 0
M∗ ivF∂x 0 0
0 0 ivF∂x M
0 0 M∗ −ivF∂x

Ψ>(x) = EΨ>(x). (B.30)

This first order differential equation can be solved with the ansatz,

Ψ>(x) =


eik1xc′↑
eik1xc′↓
eik−1xd′↓
eik−1xd′↑

 (B.31)

Using this yields the equations
vFk1 − E M 0 0
M∗ −vFk1 − E 0 0
0 0 −vFk−1 − E M
0 0 M∗ vFk−1 − E



c′↑
c′↓
d′↓
d′↑

 = 0. (B.32)

The eigenenergies are this time given by (for j = ±1),

Fj,± = ±
√

(vFki)2 + |M |2. (B.33)

And the eigenvectors read

(vFk1 − F1,±)c↑ +Mc↓ = 0 =⇒ c↓,± =
c↑
M

[
±
√

(vFk1)2 + |M |2 − vFk1

]
. (B.34)

Therefore, defining

βj,± =
1

M

[
±
√

(vFkj)2 + |M |2 − vF jkj
]

(B.35)

the (unnormalized) eigenvectors corresponding to the four eigenvalues are given by

eik1x


1
β1+

0
0

 , eik1x


1
β1−
0
0

 , eik−1x


0
0
1

β−1,+

 , eik−1x


0
0
1

β−1,−

 . (B.36)
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It is again look at zero energy eigenstates. These must correspond to imaginary kj = iκj ,
and normalizability means that κj > 0. This means that κj = |M |/vF is the only allowed
wave vector. For that case, it is found

βj,± =
1

M
(−ij|M |) = −ije−iθ (B.37)

where M = |M |eiθ was used. Therefore, the most general zero energy eigenstate reads

Ψ
(0)
> (x) = e−x|M |/vF

b↑


1
−ie−iθ

0
0

+ b↓


0
0
1

ie−iθ


 (B.38)

B.3.3 Matching the solutions

Finally, the possible zero energy solution at x = 0 have to be matched. Using

Ψ
(0)
< (0) = Ψ

(0)
> (0) (B.39)

yields 
1 0 −1 0
0 1 ie−iθ 0

ie−iφ 0 0 −1
0 −ie−iφ 0 −ie−iθ



a↑
a↓
b↑
b↓

 = 0. (B.40)

Nontrivial solutions exist if the determinant of this matrix is zero. This is indeed the case
for arbitrary θ and φ. The rank of the matrix is three, so is has three linearly independent
rows or columns. This means that one parameter can be chosen, say a↑, and used to
determine the remaining three. For fixed a↑, the unique solution reads

a↓ = −ie−iθa↑
b↑ = a↑

b↓ = ie−iφa↑. (B.41)

The remaining parameter a↑ can in principle be fixed by the normalization. Therefore,
the Majorana mode reads

ΨMBS(x) ∝
[
θ(−x)ex|∆|/vF + θ(x)e−x|M |/vF

]
1

−ie−iθ
ie−iφ

−e−i(φ+θ)



=
[
θ(−x)ex|∆|/vF + θ(x)e−x|M |/vF

]
e−iθ/2e−iφ/2


eiθ/2eiφ/2

−ie−iθ/2eiφ/2
ieiθ/2e−iφ/2

−e−iθ/2e−iφ/2

 (B.42)

An overall phase was pulled out in the last line. The remaining spinor has the structure
(a, b, b∗,−a∗) which, when comparing it with the definition of the Nambu spinor, shows
that this is indeed a self-adjoint fermionic mode.
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B.3.4 Bosonization of the single-particle backscattering Hamiltonian

In order to bosonize the single-particle backscattering term properly, it is most convenient
to express it in terms of fermions and use a point-split expression,

Hspb
int =

2U0

k2
0

∫
dx lim

x1,2,3,4→x
∂x1

∑
α

[
ψ†α(x1)ψα(x2) + ψ†α(x2)ψα(x1)

]
×∂x3

∑
β

β
[
ψ†β(x3)ψβ̄(x4)− ψ†β(x4)ψβ̄(x3)

]
. (B.43)

As a first step the two terms in the product can be bosonized individually,

(∗) = ∂x
∑
β

β
[
ψ†β(x)ψβ̄(y)− (x↔ y)

]
=

1

2πa
∂x
∑
β

β
[
eiϕβ(x)e−iϕβ̄(y) − (x↔ y)

]
=

1

2πa
∂x
∑
β

β
[
eiK+ϕ̃β(x)eiK−ϕ̃β̄(x)e−iK+ϕ̃β̄(y)e−iK−ϕ̃β(y) − (x↔ y)

]
=

1

2πa
∂x
∑
β

β
[
eiK+ϕ̃β(x)e−iK−ϕ̃β(y)eiK−ϕ̃β̄(x)e−iK+ϕ̃β̄(y) − (x↔ y)

]
(B.44)

where the following was used

ϕσ = σφ− θ = σ
√
Kφ̃− 1√

K
θ̃

=
σ
√
K

2
(ϕ̃+ − ϕ̃−) +

1

2
√
K

(ϕ̃+ + ϕ̃−)

=

(
σ
√
K

2
+

1

2
√
K

)
ϕ̃+ +

(
−σ
√
K

2
+

1

2
√
K

)
ϕ̃−

=

(√
K

2
+

1

2
√
K

)
ϕ̃σ +

(
−
√
K

2
+

1

2
√
K

)
ϕ̃σ̄

= K+ϕ̃σ +K−ϕ̃σ̄ (B.45)

to express the operator in terms of ϕ̃±. Normal ordering for pairs produces,

eiK+ϕ̃β(x)e−iK−ϕ̃β(y) =

(
L

2πa

)−(K2
++K2

−)/2(2πiβ(y − x)

L

)−K+K−
∗
∗ e

iK+ϕ̃β(x)e−iK−ϕ̃β(y) ∗
∗

(B.46)

where the cutoff a was dropped inside the second parenthesis since the distance x − y
is kept finite in this point-splitting scheme. The normal ordering is with respect to the
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interacting bosonic fields. Since the two pairs of operators commute one obtains

(∗) =
1

2πa

(
L

2πa

)−K2
+−K2

−∑
β

β∂x

[
∗
∗ e

iK+ϕ̃β(x)e−iK−ϕ̃β(y)eiK−ϕ̃β̄(x)e−iK+ϕ̃β̄(y) ∗
∗

(
2πiβ(y − x)

L

)−K+K− (−2πiβ(y − x)

L

)−K+K−

− (x↔ y)

]

=
1

2πa

(
L

2πa

)−K2
+−K2

−∑
β

β∂x

[
∗
∗ e

iK+ϕ̃β(x)e−iK−ϕ̃β(y)eiK−ϕ̃β̄(x)e−iK+ϕ̃β̄(y) ∗
∗[(

2π(y − x)

L

)2
]−K+K−

− (x↔ y)

]
(B.47)

Using K2
+ +K2

− = 1/(2K) +K/2 and K+K− = 1/(4K)−K/4 yields

(∗) =
1

2πa

(
L

2πa

)−1/(2K)−K/2(2πa

L

)−1/(2K)+K/2∑
β

β∂x

[
∗
∗ e

iK+ϕ̃β(x)e−iK−ϕ̃β(y)eiK−ϕ̃β̄(x)e−iK+ϕ̃β̄(y) ∗
∗

[
(y − x)2

a2

]−K+K−

− (x↔ y)

]

=
1

2πa

(
2πa

L

)K∑
β

β∂x

[[
(y − x)2

a2

]−K+K−

∗
∗ e

i[ϕβ(x)−ϕβ̄(y)] − ei[ϕβ(y)−ϕβ̄(x)] ∗
∗

]

=
1

πa

(
2πa

L

)K∑
β

β∂x

[[
(y − x)2

a2

]−K+K−

∗
∗ cos[ϕβ(x)− ϕβ̄(y)] ∗∗

]
(B.48)

For the final step, the relabeling β → β̄ was done in the last term of the previous line.
Next, the derivative leads to two terms,

(∗) =
1

πa

(
2πa

L

)K∑
β

β

[[
(y − x)2

a2

]−K+K−−1
−2(y − x)

a2
∗
∗ cos[ϕβ(x)− ϕβ̄(y)] ∗∗

−

[
(y − x)2

a2

]−K+K−

∗
∗ [∂xϕβ(x)] sin[ϕβ(x)− ϕβ̄(y)] ∗∗

]
(B.49)

Next, using y = x+ a yields

(∗) = − 1

πa

(
2πa

L

)K∑
β

∗
∗

2β

a
cos[ϕβ(x)− ϕβ̄(x+ a)] + β[∂xϕβ(x)] sin[ϕβ(x)− ϕβ̄(x+ a)] ∗∗

(B.50)
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In the normal-ordered terms, one can take the limit a→ 0 but should keep the first order
term in the expansion of the cosine,

(∗) =
1

πa

(
2πa

L

)K∑
β

β

{
− 2

a

[
∗
∗ cos[ϕβ(x)− ϕβ̄(x)] + a[∂xϕβ̄(x)] sin[ϕβ(x)− ϕβ̄(x)] ∗∗

]

− ∗∗ [∂xϕβ(x)] sin[ϕβ(x)− ϕβ̄(x)] ∗∗

}

=
1

πa

(
2πa

L

)K∑
β

β

{
− 2

a

[
∗
∗ cos[2βφ(x)] + a[∂xϕβ̄(x)] sin[2βφ(x)] ∗∗

]

− ∗∗ [∂xϕβ(x)] sin[2βφ(x)] ∗∗

}
(B.51)

The cosine term vanishes in the summation over β, but the sine terms survive,

(∗) =
1

πa

(
2πa

L

)K {
− 2

∑
β

∗
∗ [∂xϕβ̄(x)] sin[2φ(x)] ∗∗ −

∑
β

∗
∗ [∂xϕβ(x)] sin[2φ(x)] ∗∗

}

= − 3

πa

(
2πa

L

)K∑
β

∗
∗ [∂xϕβ̄(x)] sin[2φ(x)] ∗∗

=
6

πa

(
2πa

L

)K
∗
∗ [∂xθ(x)] sin[2φ(x)] ∗∗ . (B.52)

This completes the bosonization of the first part of the product. The density-term can be
bosonized straightforwardly, ∑

α

∂xρα(x) = − 1

π
∂2
xφ(x) (B.53)

Therefore, the bosonized single-particle backscattering Hamiltonian reads

Hspb
int =

2U0

k2
0

(
− 1

π

)[
6

πa

(
2πa

L

)K]∫
dx[∂2

xφ(x)] ∗∗ [∂xθ(x)] sin[2φ(x)] ∗∗

= − 12U0

π2k2
0a

(
2πa

L

)K ∫
dx[∂2

xφ(x)] ∗∗ [∂xθ(x)] sin[2φ(x)] ∗∗ (B.54)

As expected, the cutoff dependence drops out for K = 1. Now, one has to find a di-
mensionless coupling constant as the basis for RG. Since U0/(k

2
0a) has units energy times

length squared (U0 has energy times length), the choice is pretty much unique. Defining

λ =
12U0

π2vFk2
0a

2
(B.55)

yields

Hspb
int = −λvFa

(
2πa

L

)K ∫
dx[∂2

xφ(x)] ∗∗ [∂xθ(x)] sin[2φ(x)] ∗∗ (B.56)
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However, this operator is not normal-ordered yet. Since it should be normal ordered with
respect to the bosonic fields of the interacting system, it makes sense to first rewrite it as

Hspb
int =− λvFa

(
2πa

L

)K ∫
dx[∂2

xφ̃(x)] ∗∗ [∂xθ̃(x)] sin[2
√
Kφ̃(x)] ∗∗

=− λvFa

2i

(
2πa

L

)K ∫
dx
∑
α=±

α[∂2
xφ̃(x)] ∗∗ [∂xθ̃(x)]e2iα

√
Kφ̃(x) ∗

∗

=− λvFa

2i

(
2πa

L

)K ∫
dx
∑
α=±

α∂2
x(φ̃+ + φ̃−)

[
∂xθ̃

+e2iα
√
Kφ̃+(x)e2iα

√
Kφ̃−(x)

+ e2iα
√
Kφ̃+(x)e2iα

√
Kφ̃−(x)∂xθ̃

−
]

(B.57)

with the creator and annihilator parts θ̃± and φ̃± and an explicit writing out of the normal
ordering. The term containing ∂2

xφ̃
+ is already normal ordered, but in the other term one

still has to commute ∂2
xφ̃
− past θ̃+ and φ̃+. In terms of bosonic modes, [Giamarchi03]

φ̃+(x) = − iπ
L

∑
p

√
L|p|
2π

1

p
e−a|p|/2e−ipxb†p (B.58)

φ̃−(x) = − iπ
L

∑
p

√
L|p|
2π

1

p
e−a|p|/2e−ipxb−p (B.59)

θ̃+(x) =
iπ

L

∑
p

√
L|p|
2π

1

|p|
e−a|p|/2e−ipxb†p (B.60)

θ̃−(x) = − iπ
L

∑
p

√
L|p|
2π

1

|p|
e−a|p|/2e−ipxb−p. (B.61)

Some commutators become inevitable,

[φ̃−(x), φ̃+(y)] = −π
2

L2

L

2π

∑
p

|p| 1

−p2
e−a|p|e−ip(x−y) =

π

2L

∑
p

1

|p|
e−a|p|e−ip(x−y)

=
1

4

∑
n

1

|n|
e−2πa|n|/Le−2πin(x−y)/L

=
1

4

∑
n>0

1

n
e−2π(a+i(x−y))n/L +

1

4

∑
n>0

1

n
e−2π(a−i(x−y))n/L

= −1

4
ln
[
1− e−2π(a+i(x−y))/L

]
− 1

4
ln
[
1− e−2π(a−i(x−y))/L

]
[φ̃−(x), θ̃+(y)] =

π2

L2

L

2π

∑
p

|p| 1

p|p|
e−a|p|e−ip(x−y) =

π

2L

∑
p

1

p
e−a|p|e−ip(x−y)

=
1

4

∑
n>0

1

n
e−2π(a+i(x−y))n/L − 1

4

∑
n>0

1

n
e−2π(a−i(x−y))n/L

= −1

4
ln
[
1− e−2π(a+i(x−y))/L

]
+

1

4
ln
[
1− e−2π(a−i(x−y))/L

]
. (B.62)
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Taking the limit L → ∞ at fixed a, x, y first, the differentiating twice with respect to x,
and finally letting y → x, yields,

[∂2
xφ̃
−(x), φ̃+(x)] = − 1

2a2

[∂2
xφ̃
−(x), θ̃+(x)] = 0. (B.63)

Therefore, using the formula [A, eB] = [A,B]eB for [A,B] ∈ C, one finds

Hspb
int =− λvFa

2i

(
2πa

L

)K ∫
dx
∑
α=±

α

{
∂2
xφ̃

+
[
∂xθ̃

+e2iα
√
Kφ̃+(x)e2iα

√
Kφ̃−(x) + e2iα

√
Kφ̃+(x)e2iα

√
Kφ̃−(x)∂xθ̃

−
]

+
[
∂xθ̃

+∂2
xφ̃
−e2iα

√
Kφ̃+(x)e2iα

√
Kφ̃−(x) + ∂2

xφ̃
−e2iα

√
Kφ̃+(x)e2iα

√
Kφ̃−(x)∂xθ̃

−
]}

=− λvFa

2i

(
2πa

L

)K ∫
dx
∑
α=±

α

{
∂2
xφ̃

+
[
∂xθ̃

+e2iα
√
Kφ̃+(x)e2iα

√
Kφ̃−(x) + e2iα

√
Kφ̃+(x)e2iα

√
Kφ̃−(x)∂xθ̃

−
]

+ ∂xθ̃
+e2iα

√
Kφ̃+(x)

(
∂2
xφ̃
− − iα

√
K

a2

)
e2iα

√
Kφ̃−(x)

+ e2iα
√
Kφ̃+(x)

(
∂2
xφ̃
− − iα

√
K

a2

)
e2iα

√
Kφ̃−(x)∂xθ̃

−
}

(B.64)

Finally, one obtains the expected normal-ordered term plus two additional terms which
arise from the commutators,

Hspb
int =− λvFa

(
2πa

L

)K ∫
dx ∗∗ (∂2

xφ̃)(∂xθ̃) sin[2
√
Kφ̃(x)] ∗∗

+
λvF
√
K

a

(
2πa

L

)K ∫
dx ∗∗ (∂xθ̃) cos[2

√
Kφ̃(x)] ∗∗

=− λvFa
(

2πa

L

)K ∫
dx ∗∗ (∂2

xφ)(∂xθ) sin[2φ(x)] ∗∗

+
λvFK

a

(
2πa

L

)K ∫
dx ∗∗ (∂xθ) cos[2φ(x)] ∗∗ . (B.65)

The first term was expected. In the second term, it is a bit surprising to recover the old
friend, the linear Rashba Hamiltonian again. It is also slightly disturbing because that
terms appears to have a stronger scaling dimension than the fermionic Hamiltonian (3.27)
that was started out with. Then again, one starts out from a non-normal-ordered fermionic
Hamiltonian (3.27), and if this was normal-ordered then one would also encounter a non-
vanishing commutator which would then produce a Rashba-like term. The correct way
would be to start from a normal-ordered fermionic Hamiltonian. When using bosonization,
this will give the same result apart from the spurious Rashba term. Therefore, one should
simply use,

Hspb
int = −λvFa

(
2πa

L

)K ∫
dx ∗∗ (∂2

xφ)(∂xθ) sin[2φ(x)] ∗∗ (B.66)

as the bosonized single-particle backscattering term.
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B.4 Derivation of the RG operator product expansion

The goal of this appendix is to derive an operator product expansion for two single-
particle backscattering terms. The first step is to derive some commutators that will
become necessary later on. One can split the bosonic fields into a creator and annihilator
part as follows

φ(x1, t1) =
√
Kφ̃(x1, t1)

=

√
K

2

(
ϕ̃R(x1, t1)− ϕ̃L(x1, t1)

)
=

√
K

2

(
ϕ̃R(x1 − vt1)− ϕ̃L(x1 + vt1)

)
=

√
K

2

(
ϕ̃+
R(x1 − vt1)− ϕ̃+

L (x1 + vt1) + ϕ̃−R(x1 − vt1)− ϕ̃−L (x1 + vt1)
)

(B.67)

θ(x1, t1) =
1

2
√
K

(
−ϕ̃+

R(x1 − vt1)− ϕ̃+
L (x1 + vt1)− ϕ̃−R(x1 − vt1)− ϕ̃−L (x1 + vt1)

)
.

(B.68)

The commutator of these fields can not be fully determined by the commutator of φ, θ.
So it can be chosen in such a way that

[
φ(x), θ(y)

]
= −iπΘ(x− y) holds. A first try is

[
ϕ̃+
α (x), ϕ̃−α′(y)

]
= δαα′ log

[
1− e−(a+iα(x−y)) 2π

L

]
. (B.69)

From this one can back-check

[
φ̃(x), θ̃(y)

]
=

1

2

[
log
(

1− e−(a−i(x−y)) 2π
L

)
− log

(
1− e−(a+i(x−y)) 2π

L

)]
= − iπ

2
sign(x− y). (B.70)

This is indeed the right commutator, but not in the convention used before. To get the
Θ(x − y) function one would have to use a more complicated commutator as a starting
point for the ϕ̃± fields, but this would make the following calculation longer, so it is better
to stick to the sign commutator convention for this part. Next, some useful abbreviations

A+
i = ∂x

−ϕ̃+
R(x−i )− ϕ̃+

L (x+
i )

2
(B.71)

A−i = ∂x
−ϕ̃−R(x−i )− ϕ̃−L (x+

i )

2
(B.72)

C+
i =

ϕ̃+
R(x−i )− ϕ̃+

L (x+
i )

2
(B.73)

C−i =
ϕ̃−R(x−i )− ϕ̃−L (x+

i )

2
(B.74)

x±i = xi ± vti, (B.75)
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are defined. The following step is needed for the second order RG equations. It is necessary
to normal order a product of two single particle backscattering terms

∗
∗ (∂2

x1
φ)(∂x1θ) sin[2φ(x1, t1)] ∗∗

∗
∗ (∂2

x2
φ)(∂x2θ) sin[2φ(x2, t2)] ∗∗

=−
∑
α,β=±

1

4
∗
∗ (∂2

x1
φ)(∂x1θ)e

iα2φ(x1,t1) ∗
∗
∗
∗ (∂2

x2
φ)(∂x2θ)e

iβ2φ(x2,t2) ∗
∗

≈−
∑
α,β=±

1

4
eiα2

√
KC+

1 eiα2
√
KC−1 (∂2

x1
C−1 )A−1 (∂2

x2
C+

2 )A+
2 e

iβ2
√
KC+

2 eiβ2
√
KC−2 . (B.76)

The last transformation did already something quite complex. All terms that can be
identified right now that would lead to a final expression in the end containing derivatives
were neglected. This can be done because these are less divergent. One can identify
these terms because they contain a derivative term which is already in the right normal
ordered position. This expression needs to be normal ordered now. The first and the
last exponential are already in the right place, so one takes the operators in between only
and rearranges them as follows, using the relation aeb = eb(a + [a, b]) which holds if the
commutator is a number

eiα2
√
KC−1 (∂2

x1
C−1 )A−1 (∂2

x2
C+

2 )A+
2 e

iβ2
√
KC+

2

=eiα2
√
KC−1 (∂2

x1
C−1 )eiβ2

√
KC+

2

(
A−1 +

[
A−1 , iβ2

√
KC+

2

])
(∂2
x2
C+

2 )A+
2

=eiα2
√
KC−1 eiβ2

√
KC+

2

(
(∂2
x1
C−1 ) +

[
(∂2
x1
C−1 ), iβ2

√
KC+

2

])
×
(
A−1 +

[
A−1 , iβ2

√
KC+

2

])
(∂2
x2
C+

2 )A+
2

=e

[
iα2
√
KC−1 ,iβ2

√
KC+

2

]
eiβ2

√
KC+

2

(
(∂2
x1
C−1 ) +

[
∂2
x1
C−1 , iβ2

√
KC+

2

])
×
(
A−1 +

[
A−1 , iβ2

√
KC+

2

])(
∂2
x2
C+

2 +
[
iα2
√
KC−1 , ∂

2
x2
C+

2

])
×
(
A+

2 +
[
iα2
√
KC−1 , A

+
2

])
eiα2

√
KC−1 . (B.77)
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The exponentials are now normal ordered. We again proceed by taking the expression in
parenthesis only and normal order it

(
∂2
x1
C−1 + iβ2

√
K
[
∂2
x1
C−1 , C

+
2

])(
A−1 + iβ2

√
K
[
A−1 , C

+
2

])
×
(
∂2
x2
C+

2 + iα2
√
K
[
C−1 , ∂

2
x2
C+

2

])(
A+

2 + iα2
√
K
[
C−1 , A

+
2

])
≈16K2

[
∂2
x1
C−1 , C

+
2

] [
A−1 , C

+
2

] [
C−1 , ∂

2
x2
C+

2

] [
C−1 , A

+
2

]
+

[(
∂2
x1
C−1

)
A−1 ,

(
∂2
x2
C+

2

)
A+

2

]
− 4αβK

{[
A−1 , C

+
2

] [
∂2
x1
C−1 , ∂

2
x2
C+

2

] [
C−1 , A

+
2

]
+
[
A−1 , C

+
2

] [
C−1 , ∂

2
x2
C+

2

] [
∂2
x1
C−1 , A

+
2

]
+
[
A−1 , ∂

2
x2
C+

2

] [
C−1 , A

+
2

] [
∂2
x1
C−1 , C

+
2

]
+
[
∂2
x1
C−1 , C

+
2

] [
C−1 , ∂

2
x2
C+

2

] [
A−1 , A

+
2

]}
≈16K2

[
∂2
x1
C−1 , C

+
2

] [
A−1 , C

+
2

] [
C−1 , ∂

2
x2
C+

2

] [
C−1 , A

+
2

]
+
[
∂2
x1
C−1 , ∂

2
x2
C+

2

] [
A−1 , A

+
2

]
− 4αβK

{[
A−1 , C

+
2

] [
∂2
x1
C−1 , ∂

2
x2
C+

2

] [
C−1 , A

+
2

]
+
[
A−1 , C

+
2

] [
C−1 , ∂

2
x2
C+

2

] [
∂2
x1
C−1 , A

+
2

]
+
[
A−1 , ∂

2
x2
C+

2

] [
C−1 , A

+
2

] [
∂2
x1
C−1 , C

+
2

]
+
[
∂2
x1
C−1 , C

+
2

] [
C−1 , ∂

2
x2
C+

2

] [
A−1 , A

+
2

]}
+
[
∂2
x1
C−1 , A

+
2

] [
A−1 , ∂

2
x2
C+

2

]
(B.78)

The whole expression contains the following commutators only

[
C−1 , C

+
2

]
=

1

4

[
ϕ̃−R(x−1 ), ϕ̃+

R(x−2 )
]

+
1

4

[
ϕ̃−L (x+

1 ), ϕ̃+
L (x+

2 )
]

= g++[
A−1 , A

+
2

]
=

1

4
∂x1∂x2

([
−ϕ̃−R(x−1 ),−ϕ̃+

R(x−2 )
]

+
[
−ϕ̃−L (x+

1 ),−ϕ̃+
L (x+

2 )
])

= ∂x1∂x2g++[
C−1 , A

+
2

]
= −1

4
∂x2

[
ϕ̃−R(x−1 ), ϕ̃+

R(x−2 )
]

+
1

4
∂x2

[
ϕ̃−L (x+

1 ), ϕ̃+
L (x+

2 )
]

= ∂x2g−+[
A−1 , C

+
2

]
= ∂x1g−+ (B.79)

with the properties ∂x2 = −∂x1 , so it can be written as

− 16K2
(
∂2
x1
g++

)2 (
∂x1g−+

)2
+ 4αβK

(
∂2
x1
g++

)3
+ 4αβK

(
∂x1g−+

)2 (
∂4
x1
g++

)
+ 8αβK

(
∂x1g−+

) (
∂2
x1
g++

)(
∂3
x1
g−+

)
−
(
∂4
x1
g++

)(
∂2
x1
g++

)
−
(
∂3
x1
g−+

)2
, (B.80)

while

gαβ = −α
4

log
[
1− e−(a+i(x2−vt2−x1+vt1)) 2π

L

]
− β

4
log
[
1− e−(a−i(x2+vt2−x1−vt1)) 2π

L

]
.

(B.81)
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B.5. Commutation relations of bound state operators

What remains is to calculate the prefactor with the exponentiated commutator as

e

[
iα2
√
KC−1 ,iβ2

√
KC+

2

]
= e−4αβKg++

= e−αβK[ϕ̃−R(x−1 ),ϕ̃+
R(x−2 )]−αβK[ϕ̃−L (x+

1 ),ϕ̃+
L (x+

2 )]

=
(

1− e−(a+i(x−2 −x
−
1 )) 2π

L

)αβK (
1− e−(a−i(x+

2 −x
+
1 )) 2π

L

)αβK
≈
(
a+ i(x−2 − x

−
1 )
)αβK (

a− i(x+
2 − x

+
1 )
)αβK (2π

L

)2αβK

(B.82)

All of this finally leads to the result

∗
∗ (∂2

x1
φ)(∂x1θ) sin[2φ(x1, t1)] ∗∗

∗
∗ (∂2

x2
φ)(∂x2θ) sin[2φ(x2, t2)] ∗∗

≈−
∑
α,β=±

1

4

(
a+ i(x−2 − x

−
1 )
)αβK (

a− i(x+
2 − x

+
1 )
)αβK (2π

L

)2αβK
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)2 (
∂x1g−+

)2
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∂2
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)2 (
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x1
g++

)
+ 8αβK

(
∂x1g−+

) (
∂2
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g++

)(
∂3
x1
g−+

)
−
(
∂4
x1
g++

)(
∂2
x1
g++

)
−
(
∂3
x1
g−+

)2
]

× ∗∗ eiα2φ(x1,t1)+iβ2φ(x2,t2) ∗
∗ , (B.83)

here, for x1 = x2 and t1 = t2 the operator expression vanishes for α = −β, therefore one
has α = β.

B.5 Commutation relations of bound state operators

In this appendix, important commutators for the bound state operators are derived. Ba-
sically all commutators can be derived from [φ(x), θ(y)] = −iπΘ(x− y). It starts with[

Si, Qj
]

=
1

π2

[
θi+1 − θi, φj+1 − φj

]
= − 1

π2

[
φj+1 − φj , θi+1 − θi

]
=
i

π

[
Θ(j − i)−Θ(j + 1− i)−Θ(j − i− 1) + Θ(j − i)

]
=
i

π

(
δij − δi,j+1

)
, (B.84)

with i, j ∈ {1, . . . , N − 1}. Especially, the commutator is just a number. From now on,
for this section, i, j = 1, . . . , N − 1 is always implied. Using this, one can show that

eiπSieiπQj = eiπQjeiπSie[iπSi,iπQj] = eiπQjeiπSie−iπ(δij−δi,j+1). (B.85)

In particular, the following results hold

eiπSj/2eiπQj =e−iπ/2eiπQjeiπSj/2

eiπSj+1/2eiπQj =eiπ/2eiπQjeiπSj+1/2 (B.86)

and also for the total charge and spin operators

[Qtot, Stot] =
[
φ(L−), θ(L−)

]
−
[
φ(L−), θ(0+)

]
+
[
φ(0+), θ(0+)

]
= 0 (B.87)
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Appendix B. Detailed calculations

if we define Θ(0) = 1/2 for the continuous Θ-function. In the same way one finds

eiπQtoteiπSi/2 = eiπSi/2eiπQtot (B.88)

for the mixed commutators. It is assumed here that θ1 is defined somewhere within the
open interval (0+, χ1).
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