
Spinor Condensates in Optical
Superlattices

Inauguraldissertation

zur Erlangung der Würde eines Doktors der Philosophie
vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Andreas Wagner,

aus Konstanz, Deutschland

Basel, 2012



Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von

Prof. Dr. Christoph Bruder

Prof. Dr. Dieter Jaksch

Basel, den 16. Oktober 2012, Prof. Dr. Jörg Schibler, Dekan



Summary

In this thesis we study various aspects of spinor Bose-Einstein condensates in optical
superlattices using a Bose-Hubbard Hamiltonian that takes spin effects into account.
We decouple the unit cells of the superlattice via a mean-field approach and take
into account the dynamics within the unit cell exactly. In this way we derive the
ground-state phase diagram of spinor bosons in superlattices. The system supports
Mott-insulating as well as superfluid phases. The transitions between these phases
are second-order for spinless bosons and second- or first-order for spin-1 bosons.
Antiferromagnetic interactions energetically penalize high-spin configurations and
elongate all Mott lobes, especially the ones corresponding to an even atom number
on each lattice site. We find that the quadratic Zeeman effect lifts the degeneracy
between different polar superfluid phases leading to additional metastable phases
and first-order phase transitions. A change of magnetic fields can drive quantum
phase transitions in the same way as a change in the tunneling amplitude does.

Furthermore we study the physics of spin-1 atoms in superlattices deep in the
Mott insulating phase when the superlattice decomposes into isolated double-well
potentials. Assuming that a small number of spin-1 bosons is loaded in an optical
double-well potential, we study single-particle tunneling that occurs when one lattice
site is ramped up relative to a neighboring site. Spin-dependent effects modify the
tunneling events in a qualitative and quantitative way. Depending on the asymmetry
of the double well different types of magnetic order occur, making the system of
spin-1 bosons in an optical superlattice a model for mesoscopic magnetism with
an unprecedented control of the parameters. Homogeneous and inhomogeneous
magnetic fields are applied and the effects of the linear and the quadratic Zeeman
shifts are examined. We generalize the concept of bosonic staircases to connected
double-well potentials. We show that an energy offset between the two sites of the
unit cell in an extended superlattice induces a staircase of single-atom resonances in
the same way as in isolated double well. We also examine single-atom resonances in
the superfluid regime and find clear fingerprints of them in the superfluid density.

We also investigate the bipartite entanglement between the sites and construct
states of maximal entanglement. The entanglement in our system is due to both
orbital and spin degrees of freedom. We calculate the contribution of orbital and
spin entanglement and show that the sum of these two terms gives a lower bound
for the total entanglement.
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Kurzfassung

In der vorliegenden Dissertation werden verschiedene Aspekte von Bose-Einstein-
Kondensaten aus Spin-1-Atomen in optischen Supergittern studiert. Dazu wird
ein Bose-Hubbard-Modell verwendet, das spinabhängige Wechselwirkungen berück-
sichtigt. Zunächst werden die Einheitszellen des Supergitters duch eine Molekular-
feld-Näherung entkoppelt, wobei die Dynamik innerhalb der Einheitszelle exakt be-
handelt wird. Mit Hilfe dieser Näherung wird das Phasendiagramm von spinlosen,
bosonischen Atomen und Spin-1-Atomen in Supergittern berechnet. Das System un-
terstützt Mott-isolierende sowie superfluide Phasen. Die Übergänge zwischen diesen
Phasen sind zweiter Ordnung für spinlose Bosonen und zweiter oder erster Ordnung
für Spin-1-Bosonen.

AntiferromagnetischeWechselwirkungen verursachen eine Verlängerung der Mott-
Inseln hin zu grösseren Tunnelamplituden und bevorzugen allgemein niedrige Spin-
Konfigurationen. Die Mott-Inseln, die einer geraden Anzahl von Atomen pro Gitter-
platz entsprechen, werden besonders vergrössert, da eine gerade Anzahl von Spin-
1-Atomen immer Spin-Singletts bilden können. Es werden verschiedene superfluide
Phasen beschrieben und herausgestellt, dass durch schwache magnetische Felder die
Entartung der verschiedenen polaren superfluiden Phasen aufgehoben wird, was
zu zusätzlichen metastabilen Phasen führt. Phasenübergange lassen sich durch
Veränderung des Magnetfeldes ebenso wie durch eine Veränderung der Wechsel-
wirkungsstärke verursachen.

Weiterhin wird die Physik von Spin-1-Atomen in Supergittern tief in der Mott-
Phase studiert, wenn das Supergitter in isolierte Doppelmuldenpotentiale zerfällt.
Es folgt eine Untersuchung der Besetzungwahrscheinlichkeit in asymmetrischen Dop-
pelmulden für eine geringe Anzahl von Atomen. Für diese Systeme können Einteil-
chen-Resonanzen festgestellt werden. Diese Einteilchen-Resonanzen werden durch
spinabhängige Wechselwirkungen qualitativ und quantitativ verändert. Abhängig
von der Asymmetrie der Doppelmulde treten verschiedene magnetische Ordnun-
gen auf; dadurch wird das System von Spin-1-Atomen in optischen Supergittern zu
einem Modell für mesoskopischen Magnetismus, wobei in diesem Modell alle Param-
eter mit einem sehr hohen Grad der Kontrolle verändert werden können. Es wird
die Wirkung von homogenen und inhomogenen Magnetfeldern untersucht, wobei
der lineare und quadratische Zeeman Effekt berücksichtigt wird. Weiter wird das
Konzept der Einteilchen-Resonanzen auf Supergitter verallgemeinert und gezeigt,
dass eine Asymmetrie in den Einheitszellen des Supergitters ebenso Einteilchen-
Resonanzen verursacht. Im Anschluss werden Einteilchen-Resonanzen in dem su-
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perfluiden Regime untersucht und festgestellt, dass diese auch in der superfluiden
Dichte sichtbar sind.

Im letzten Kapitel dieser Dissertation werden Verschränkungseigenschaften zwi-
schen Gitterplätzen untersucht und maximal verschränkte Zustände konstruiert. Die
Verschränkung in dem System von Spin-1-Atomen resultiert aus orbitalen und Spin-
Freiheitsgraden. Es werden die Beiträge beider untersucht und argumentiert, dass
die Summe beider eine untere Grenze für die gesamte Verschränkung ist.
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Chapter 1

Introduction

In 1995, atomic gases were cooled down to such low temperatures that a large
number of atoms occupied a single quantum state and formed a Bose-Einstein con-
densate.1 That was the first experimental realization of this novel state of matter
predicted by Albert Einstein2 following the quantum statistics of bosons suggested
by Satyendranath Bose.3 A Bose-Einstein condensate in an atomic cloud is formed
when the de Broglie wavelength of the (bosonic) atoms is of the order of the mean
inter-atomic distance; at such low temperatures the atoms are called ultracold. Ul-
tracold atomic gases are quantum liquids in which macroscopic characteristics of the
liquid derive directly from quantum coherences. Thus, ultracold atomic gases offer
the possibility to observe quantum effects on a macroscopic scale. In this thesis we
will discuss ultracold spinless and spin-1 atoms in optical superlattices.

For atoms trapped in a magneto-optical trap the spin degree of freedom is frozen
and the atoms become effectively spinless. If, however, the quantum gas is trapped
by purely optical means, the atoms keep their spin degree of freedom and the order
parameter describing the superfluid phase becomes a spinor. The spinor degree of
freedom in optically trapped alkaline gases corresponds to the manifold of degener-
ate Zeeman hyperfine levels. Spinor Bose-Einstein condensates possess an internal
degree of freedom, similar to quantum liquids such as d-wave and p-wave supercon-
ductors or superfluid 3He. It is therefore tempting to use spinor condensates as a
quantum simulator for these quantum liquids which still lack a thorough theoretical
understanding. This idea dates back to a proposal of R. Feynman to create quantum
simulators which are controllable quantum systems that can model the behavior of
more complicated systems.4

Nevertheless, spinor condensates are also interesting in their own right. The
interaction between the external and internal degrees of freedom leads to a number
of phenomena unfamiliar from studies of scalar quantum liquids. The experimental
examination of spinor condensates started in 1998 with experiments on ultra-cold

1 [Anderson et al.(1995),Bradley et al.(1995),Davis et al.(1995)], see also [Ketterle(2002)]
2 [Einstein(1925)]
3 [Bose(1924)]
4 [Feynman(1982),Buluta and Nori(2009)]
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CHAPTER 1. INTRODUCTION

sodium1 and rubidium.2 Seminal theoretical work on the ground-state properties of
spinor Bose-Einstein condensates in single traps has been done soon afterwards by
T. Ho and Ohmi et al..3 Experimentally, long-lived alkali spinor gases have been
explored in the F = 1 manifold both of 23Na (by D. Stamper-Kurn et al.(1998)4)
and 87Rb (by M. Barrett et al.(2001)5) and the higher energy F = 2 manifold of
87Rb.6 Further experiments on spinor condensates in harmonic traps highlighting
spin dynamics, spin textures and properties of the superfluid order parameter have
been performed in the following.7

Atoms can be trapped via the ac-Stark effect in optical lattices, which are cre-
ated by counter-propagating laser-beams; in case there are only a few atoms per
site, they build up so-called “optical crystals” or “artificial solids”. In a typical nat-
ural solid, electrons are moving in a lattice generated by the periodic array of atom
cores. This can be simulated with ultracold neutral atoms moving in an optical
lattice.8 Ultracold atoms in optical latices offer the unique opportunity to study
quantum many-body effects in an extremely clean and well-controlled environment.
In contrast to most condensed matter systems they are characterized by the ab-
sence of disorder and other imperfections. Ultracold atoms in optical lattices offer
robust quantum coherence, a unique controllability and powerful read-out tools like
time-of-flight measurements9 or in situ imaging.10 Experiments with cold atoms in
optical lattices were done already at the beginning of the 1990’s in the micro-kelvin
range.11 But not until realization of Bose-Einstein Condensates, when much colder
temperatures became possible, the field started to become such an interesting and
lively field of research.

One of the most prominent examples illustrating how cold atoms in optical lat-
tices can be used to study genuine many-body phenomena is the quantum phase
transition between a Mott-insulating and a superfluid phase. In 1998 Jaksch et al.12
worked out that ultracold bosonic atoms in deep optical lattices are an essentially
perfect realization of the Bose-Hubbard model. The fermionic Hubbard model is one
of the most prominent models of a solid in a condensed-matter physics.13 The Bose-

1 [Stenger et al.(1998)]
2 [Hall et al.(1998)b,Hall et al.(1998)a,Matthews et al.(1998)]
3 [Ho(1998),Ohmi and Machida(1998)]
4 [Stamper-Kurn et al.(1998)]
5 [Barrett et al.(2001)]
6 [Chang et al.(2004),Kuwamoto et al.(2004),Schmaljohann et al.(2004)]
7 [Chang et al.(2005), Black et al.(2007), Vengalattore et al.(2008), Liu et al.(2009), Vengalat-
tore et al.(2010), Bookjans et al.(2011), Guzman et al.(2011)], see also Refs. in [Ueda and
Kawaguchi(2010),Stamper-Kurn and Ueda(2012)].

8 [Lewenstein et al.(2007),Bloch et al.(2008),Bloch et al.(2012),Lewenstein et al.(2012)]
9 [Pedri et al.(2001),Gerbier et al.(2008)]
10 [Sherson et al.(2010)]
11 [Grynberg et al.(1993),Hemmerich et al.(1995)]
12 [Jaksch et al.(1998)]
13 [Hubbard(1963),Bruus and Flensberg(2004)]
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Hubbard model is the simplest Hamiltonian which contains the essential features of
strongly interacting Bose systems, namely the competition between the kinetic and
the interaction energy. Thus, for ultracold atoms in deep optical lattices there are
only two relevant energy scales, the on-site interaction of the atoms and the tunnel-
ing amplitude between adjacent lattice sites (the tunneling amplitudes are given by
the kinetic energy of the atoms). Optical lattices allow to tune the kinetic energy of
the atoms; strong optical lattices significantly reduce the kinetic energy and there-
fore drive the tunneling amplitudes to zero. The Bose-Hubbard model with repulsive
interactions displays a generic quantum phase transition at zero temperature.1 For
large tunneling amplitudes the kinetic energy overcomes the on-site repulsion and
the bosons are delocalized over the lattice. However, at commensurate filling (i.e.
if the the total particle number is an integer multiple of the number of lattice sites)
the system looses its coherent nature when the ratio of the on-site interaction over
the tunneling amplitude exceeds a critical value and the atoms become localized.
The Bose-Hubbard model was known to display this generic quantum phase transi-
tion and so Jaksch et al. proposed that this Mott insulating-superfluid transition is
observable in ultracold atom experiments. In 2002 Greiner et al.2 demonstrated this
transition experimentally in 3D lattices and proved the coherent nature of the dy-
namics of atoms; later the superfluid to Mott-insulator transition has been observed
in 1D and 2D lattices, too.3

Due to their spin-dependent interactions spinor quantum gases in optical lattices
offer the possibility study magnetic quantum systems with an unprecedented control
of the parameters and provide therefore simulators for mesoscopic magnetism. They
are well described by the Bose-Hubbard model, but the spin-dependent effects alter
the system in a qualitative and quantitative way.4 The Bose-Hubbard model for spin-
1 atoms contains an additional term that incorporates spin-dependent interactions.
This term penalizes high-spin configurations on individual lattice sites in the case
of antiferromagnetic interactions between the atoms (e.g. for 23Na) and low-spin
configuration in the case of ferromagnetic interactions (e.g. for 87Rb). The phase
boundaries between superfluid and a Mott-insulating phases are shifted for spin-1
atoms compared to the spinless case, and for certain atomic configurations the phase
transition is no longer second- but first-order. This is a consequence of the additional
spin-dependent on-site interaction. If this interaction is antiferromagnetic, atomic
singlets are energetically favored and the Mott-insulating phase is stable in some
parameter ranges where the system is superfluid for spinless atoms. The occurrence
of first-order phase transitions comes along with metastable phases and hysteretic
behavior.

In this thesis we investigate ultracold bosons loaded into optical period-2 super-
lattices. Scalar quantum gases in optical superlattices have already been studied

1 [Fisher et al.(1989),Sachdev(2001)]
2 [Greiner et al.(2002)a,Greiner et al.(2002)b]
3 [Köhl et al.(2005),Spielman et al.(2007)]
4 [Imambekov et al.(2003),Tsuchiya et al.(2004),Krutitsky and Graham(2004),Kimura et al.(2005),
Krutitsky et al.(2005),Pai et al.(2008)]
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CHAPTER 1. INTRODUCTION

Figure 1.1: Phase diagram of spinless bosons in a two-dimensional superlattice (de-
scribed by the Hamiltonian given in Eq. (3.38) in Chapter 3). We plot the critical
internal tunneling amplitude ti as a function of chemical potential µ and energy
offset ε for ti = 10te, where te is the tunneling between neighboring double wells.
In the region above the plotted surface the system is superfluid, below the surface
the system is Mott insulating. Each of the bumps corresponds to a different Mott
phase (see Sec. 3.3). The edge at ε = 0 of the phase diagram reveals the contraction
of Mott lobes to loops at integer values of µ/U .

theoretically1 and experimentally.2 An optical period-2 superlattices is an optical
lattice that is formed by overlapping two standing-wave laser fields with a commen-
surate wavelength ratio of 2. The resulting lattice is an array of optical micro-traps
with a double-well structure. By introducing a phase shift between the two laser
fields the double wells become asymmetric and an energy offset between the two
sites emerges. This energy offset causes the atom number distribution within the
double well to be asymmetric and allows us to tune several quantum phases (see
Fig. 1.1). The Bose-Hubbard model describing atoms in deep period-2 superlattices
contains two different tunneling amplitudes. In our mean-field appproach we take
into account the dynamics in the double wells exactly and include the tunneling
between neighboring unit cells via a mean-field ansatz. The system supports Mott-
insulating phases as well as superfluid phases.3 The former are characterized by a
fixed number of atoms per unit cell. In agreement with previous studies, we find a
contraction of Mott lobes to loops for specific values of the energy offset.

In the case of spin-1 atoms in superlattices the mean-field Hamiltonian shows

1 [Rey et al.(2007)]
2 [Sebby-Strabley et al.(2006),Anderlini et al.(2007),Fölling et al.(2007),Lee et al.(2007),Trotzky
et al.(2008)]

3 [Buonsante et al.(2005),Chen et al.(2010)]
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Figure 1.2: Phase diagram for antiferromagnetic spin-1 atoms in optical two-
dimensional period-2 superlattices with symmetric unit cells (compare Sec. 3.4). The
shaded regions denote Mott-insulating phases, the white ones superfluid phases. The
dashed lines are the phase boundaries for metastable phases and the dotted lines are
the phase boundaries for the spinless case. The regions in which a metastable Mott
phase coexists beside the superfluid [SF] phase is marked with MM; MSF denotes
regions where metastable superfluid phases exist alongside the Mott [Mott] phase.
The Mott lobes are labeled according to the total atom number per double well.

a much richer quantum phase diagram (see Fig. 1.2) than in the case of spinless
bosons. For antiferromagnetic interactions all Mott lobes are elongated towards
higher tunneling amplitudes. Mott lobes with an even number of atoms at each
lattice site are especially favored because their atomic spins can couple to form spin
singlets. For spin-1 atoms we find that some of the phase transitions become first
order similar to the case of usual period-1 lattices.1

We take the effects of magnetic fields into account by using an effective Hamil-
tonian which includes a quadratic Zeeman shift. For antiferromagnetic interactions
magnetic fields break the degeneracy between different polar superfluid phases. This
leads to new classes of metastable phases and changes the phase boundaries signifi-
cantly. Thus, we can drive quantum phase transitions by applying a magnetic field
as well as by varying the lattice depth. In the ferromagnetic case magnetic fields
cause first-order phase transitions and metastable phases. These results apply to
spin-1 atoms in superlattices as well as in usual lattices.

Furthermore, we study the physics of spin-1 atoms deep in the Mott-insulating
phase, thus, in isolated double-well potentials. In this regime the atoms are described
by a two-site Bose-Hubbard model. The two-site Bose-Hubbard model for spinless

1 [Krutitsky et al.(2005)]
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CHAPTER 1. INTRODUCTION
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Figure 1.3: Two spin-1 bosons with antiferromagnetic ordering in a double-well po-
tential. Here nR is the occupation number of the right well, and ε characterizes the
energy offset between the two wells. Depending on the total spin of the system,
bosonic staircase transitions occur at different bias voltages. Note that both the
states with Stot = 0 and Stot = 2 have symmetric orbital wave functions. The differ-
ence in the occupation numbers arises due to spin-dependent interactions and not
due to a different orbital symmetry of the states. Thus, a measurement of the spin-
dependent bosonic staircases provides a demonstration of mesoscopic magnetism.

bosons can be used to describe the transfer of single Cooper pairs in small Josephson
junctions, i.e., the physics of “Cooper-pair staircases”.1 With ultracold atoms in
optical superlattices this model has been realized and was shown to give rise to
a “single-atom staircase” or “bosonic staircase”; for isolated double-well potentials
these bosonic staircases were theoretically predicted2 and experimentally detected.3
This is achieved by monitoring the particle number in either of the wells for different
values of the energy offset. In the case of small tunneling strength, the difference in
the number of atoms in the two wells does not change smoothly when the energy
offset is varied, but is characterized by a step-like behavior. Jumps from one plateau
to the next signal the tunneling of a single atom.

In this thesis, such single-atom staircases are examined for spinor condensates.
We examine the case when each double-well potential is filled with a small number
of spin-1 bosons. Depending on the energy bias, different types of magnetic order
occur, and the system of spin-1 bosons in an optical superlattice becomes a model
for mesoscopic magnetism. A specific example of how this mesoscopic magnetism
can be observed in experiments is presented in Fig. 1.3. This figure shows the
difference between bosonic staircases for two spin-1 bosons for configurations with
different total spins. If the total spin is Stot = 2, the spins of the two atoms are
parallel and for antiferromagnetic interactions (as in the case of 23Na) being in the

1 [Averin et al.(1985),Lafarge et al.(1991),Lafarge et al.(1993)]
2 [Gati and Oberthaler(2007),Averin et al.(2008),Ferrini et al.(2008),Rinck and Bruder(2011)]
3 [Cheinet et al.(2008)]
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same well costs extra energy. Therefore the Stot = 2 configuration switches later
(i.e., at a higher energy offset) to the state with both atoms in the same well. In
the ferromagnetic case (such as 87Rb), the curves for Stot = 0 and Stot = 2 will be
exchanged. We also examine single-atom tunneling resonances in superlattices. We
find clear fingerprints of single-atom resonances in the density of condensed bosons,
too.

Spinor gases in optical lattices can also be used to engineer strongly correlated,
entangled states for quantum information processing.1 Entanglement lies at the
heart of quantum mechanics since it incorporates its non-local nature.2 Thus, en-
tanglement, a generic quantum correlation, is a main feature of quantum mechanical
systems and understanding entanglement deepens our understanding of quantum
mechanics. Moreover, entanglement is a resource for quantum computation and
correlates separated systems stronger than all classical correlations can do. Spin-1
atoms allow stronger quantum correlations between the wells compared with the
case of spinless bosons. For spinless bosons it has been noted that particle fluctu-
ations between the left and the right well lead to entanglement between the wells.3
In addition to this orbital entanglement, spin-1 atoms allow spinor entanglement.
In this thesis, the quantum correlations between the wells are examined for different
values of the energy offset and different ratios of the tunneling strength relative to
the on-site interaction. We give a lower bound for the entanglement between the
wells by estimating the amount of orbital and spinor entanglement separately. At
this point, we consider entanglement mainly as a theoretical characterization of the
many-body state of the system.

1 [Widera et al.(2005)]
2 [Einstein et al.(1935)]
3see e.g., Refs. [Mazzarella et al.(2011),Dell’Anna(2012)] and references therein
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CHAPTER 1. INTRODUCTION

Thesis Overview

The thesis is organized as follows. In Chapter 2 we review some basics regarding
trapping ultracold atoms, interactions between atoms and optical lattices. We in-
troduce spinor condensates and derive a Bose-Hubbard Hamiltonian that takes spin
effects into account.

In Chapter 3 we discuss quantum phase transitions in the Bose-Hubbard model.
In Sec. 3.1 we use a mean-field decoupling approach to derive the ground-state phase
diagram for spinless bosons in conventional optical lattices. We discuss various
methods to treat the Bose-Hubbard model and review the concept of time-of-flight
measurements. In Sec. 3.2 we examine spin-1 atoms in usual lattices and discuss the
different superfluid phases and first-order phase transitions. In Sec. 3.3 we introduce
the mean-field Hamiltonian for spinless bosons in optical superlattices. We discuss
methods to treat this Hamiltonian and present the phase diagram. In Sec. 3.4 we
generalize the Bose-Hubbard Hamiltonian of Sec. 3.3 by including spin-dependent
interactions and examine the phase diagram of spin-1 atoms in optical superlattices.
We include magnetic fields in Sec. 3.4 which enhance spin-dependent effects and
lead to additional metastable phases.

In Chapter 4 we present our studies of single-atom resonances in spinor con-
densates in optical superlattices. First we study isolated double-well potentials. In
Sec. 4.2 we give the explicit form of the Bose-Hubbard Hamiltonian for small atom
numbers. In Sec. 4.3 we present bosonic staircases of spin-1 atoms and explain why
this system is a model for mesoscopic magnetism. In Sec. 4.5 the effect of magnetic
fields is included. In the second part of this chapter we extend our studies of single-
atom resonances to extended superlattices. Section 4.6.1 treats the phenomenon of
single-atom resonances for spinless atoms in optical superlattices. In Sec. 4.6.2 we
examine bosonic staircases for spin-1 atoms in superlattices.

In Chapter 5 the bipartite entanglement for the two-site Bose-Hubbard model
is examined. The total entanglement between the sites depends on orbital and spin
degrees of freedom. We obtain a lower bound of the total entanglement, which is
given by the sum of the orbital entanglement and the spin entanglement.

Parts of this thesis have been published. Chapter 3 is based on Reference A.Wagner,
A. Nunnenkamp and C. Bruder (2012)1 and Chapter 4 and Chapter 5 are based on
Reference A.Wagner, E. Demler and C. Bruder (2011).2

1 [Wagner et al.(2012)]
2 [Wagner et al.(2011)]
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Chapter 2

Ultracold Atoms in Optical
Lattices

In this chapter we review the trapping of ultracold atoms in optical dipole traps
and the interactions in dilute quantum gases. We examine the physics of ultracold
atoms in optical lattices and explain why the Bose-Hubbard model is applicable to
this system. We introduce spinor condensates and derive a Bose-Hubbard model
which takes spin-dependent interactions into account. In the last part of this review
chapter we examine how ultracold atoms in lattices are experimentally probed.

Cooling and Trapping

It is quite challenging to trap neutral atoms because they must be very cold before
they can be trapped. Ions are much easier to trap due to the strong Coulomb force;
the forces which can be exerted on neutral atoms are much weaker than the Coulomb
force.1 At room temperature the average speed of atoms is 300 m/s; the speed of
the atoms just above condensation is 150 m/s for N2 and 90 m/s for He. Thus,
neutral atoms must be highly dilute to avoid condensing and very cold, before we
can trap them.

The three most common classes of traps for neutral atoms are magnetic, radiation-
pressure and optical dipole traps. The first type of traps - magnetic traps - employ
inhomogeneous magnetic fields which exert a state-dependent force on magnetic
dipole moments.2 The second and third type of traps exploit the fact that light can
exert a radiative force on an atom because photons carry momentum. This process
happens either incoherently by absorption and emission of photons as in radiation-
pressure traps or coherently as in optical dipole traps. Incoherent interaction exerts
the “scattering force”: Light strikes an object and is scattered in random directions.
In radiation-pressure traps one uses three orthogonal standing wave laser beams to
1 [Chu(1991),Phillips(1998),Metcalf and der Straten(1999),Pethick and Smith(2008)]
2 [Migdall et al.(1985),Bergeman et al.(1987)]
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create an optical molasses, which is used to cool down the atoms.1 The narrower the
atomic resonance the better the red detuned standing laser beam can cool the atoms.
These traps cause naturally very strong dissipation, thus cool quite effectively, but
lead to unstable trap dynamics.

The third kind of traps for neutral atoms are optical dipole traps.2 Here, one
uses coherent interactions of the atoms with far detuned laser light. The laser field
polarizes the atom and the polarized atom experiences a force in the inhomogeneous
electromagnetic field of the incident light field. The atom induces a redistribution
(or lensing) of the incident field. In these traps the potential is nearly conservative
with only very weak influence from spontaneous photon scattering.

2.1 Optical Dipole Traps

The optical dipole force is generated by the dispersive interaction of the induced
atomic dipole moment with the intensity gradient of the light field. The interaction
is dispersive because the ground state of the atom is shifted by a frequency dependent
term, which is called the alternating current (AC) Stark shift.

To examine the AC Stark effect of an oscillating electric field on an atom we use
a semiclassical approach and assume the atom has got only two energy levels, an
excited state |e〉 and a ground state |g〉.3 The energy difference between these states
is ~ω0, where ω0 is the transition frequency of the system. When one sets the energy
scale such that the energy of the ground state is zero, the unperturbed Hamiltonian
of the atom may be written as Ĥ0 = ~ω0|e〉〈e|.

Suppose the atom is placed at x = 0 in an oscillating electric field of frequency
ωL, given by E(x, t) = E(x) cos(ωLt). Under the assumption that the wavelength of
the applied light is large compared to the size of the atom (which is called the dipole
approximation), the interaction Hamiltonian can be expressed as ĤI = −d̂·E, where
d̂ is the dipole moment operator of the atom. The total Hamiltonian for the atom-
light system is therefore Ĥ = Ĥ0+ĤI . The dipole moments of the energy eigenstates
of the system vanish, i.e. 〈e|d̂|e〉 = 〈g|d̂|g〉 = 0, therefore, the Hamiltonian can be
written as

Ĥ = ~ω0|e〉〈e| − ~ cos(ωLt)ΩR(x) (|e〉〈g|+ |g〉〈e|) ,

where ΩR(x) ≡ 〈e|d̂|g〉 · E(x)/~ is the Rabi frequency. The Rabi frequency deter-
mines the frequency at which the occupation of the ground state oscillates, which
is given by Ω =

√
Ω2
R + ω2

δ , where ωδ ≡ ω0 − ωL is the detuning of the laser. In
the next step we write the Hamiltonian in the interaction picture. The unitary
1 [Pritchard et al.(1986),Raab et al.(1987)]
2 [Chu et al.(1986)]
3 [Jessen and Deutsch(1996), Metcalf and der Straten(1999), Grimm et al.(2000), Pethick and
Smith(2008),Foot(2010)]
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transformation we need to do this is given by Û = eiĤ0t/~ = |g〉〈g|+ eiω0t|e〉〈e|. The
transformed interaction part of the Hamiltonian becomes

ÛĤIÛ
† = −~ΩR

2
(
ei(ω0+ωL)t + ei(ω0−ωL)t

)
|e〉〈g| − ~ΩR

2
(
e−i(ω0+ωL)t + e−i(ω0−ωL)t

)
|g〉〈e| .

The incoming laser light ωL is usually far detuned, but still of the order of the atomic
transition frequency ω0. The terms containing ω0 +ωL oscillate therefore much more
rapidly than the terms with the detuning ωδ and can be neglected. This is called
the rotating wave approximation.1 The full Hamiltonian in the Schrödinger picture
is then given by

Ĥ ≈ ~ω0|e〉〈e| −
~ΩR

2 e−iωLt|e〉〈g| − ~ΩR

2 eiωLt|g〉〈e| .

Finally, we can apply an additional unitary transformation into the frame rotating
with the laser frequency Û = eiωLt and obtain the stationary Hamiltonian

Ĥ ≈ ~ωδ|e〉〈e| −
~ΩR

2 (|e〉〈g|+ |g〉〈e|) .

We assume the laser to be far detuned from the atomic transition, hence the pop-
ulation of the ground state is not significantly reduced through optical excitations.
Thus, the Rabi frequency is smaller than the detuning, i.e. ωδ � ΩR , and we can
treat the oscillating electric field as a perturbation. The first-order contribution
vanishes because the perturbation is purely off-diagonal. Second-order perturbation
theory leads to a non-vanishing energy shift of the ground state due to the laser field
which is given by

∆E0 = |〈e|ĤI |g〉|2

E0 − Ee
= ~Ω2

R(x)
4(ωL − ω0) = −1

2α(ωL)|E(x)|2 , (2.1)

where the perturbing part of the Hamiltonian is ĤI = −~ΩR

2 (|e〉〈g|+ |g〉〈e|) and we
introduced the polarizability

α(ωL) = |〈e|d̂|g〉|2

~(ω0 − ωL) .

The energy shift in Eq. (2.1) is positive for blue-detuned laser light, i.e. ωL > ω0,
and in this case the atom is repelled by the points of maximal field intensity. For
red-detuned laser light, i.e. ωL < ω0, the atom is attracted toward the points of
maximal light intensity (See Fig. 2.1). The approximation (2.1) is valid when the
population transfer to the excited level by the laser is small; because the laser light
is far off resonance (or far detuned) this is the case (the population transfer2 is
proportional to |ΩR|2/ω2

δ ). In the above calculations we considered only coherent

1 [Barnett and P.M. Radmore(2002)]
2 [Metcalf and der Straten(1999)]
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Figure 2.1: Blue and red detuned optical dipole traps.

light-matter interations and we can treat the energy shift as a conservative potential.
From this potential one can derive a force,

F(x) = 1
2α(ωL)∇|E(x)|2 , (2.2)

which drives atoms into the regions of maximal light intensity for red detuned lasers
and away from these regions for blue detuned lasers (see Fig. 2.1).

Until now we assumed that the lifetime of the excited state is infinite, i.e. we
did not include the possibility of spontaneous emissions of photons. In this way we
obtained a real polarizability and a conservative potential (2.2). However, spon-
taneous emission events of photons lead to a finite effective decay rate Γeff of the
excited state. We can include this finite decay rate in the interaction Hamiltonian
ĤI and deduce that the perturbed ground state energy becomes a complex quan-
tity. Equivalently we can say that the polarizability becomes a complex number
with a non-vanishing imaginary part (compare Eq. (2.1)). Within the two-level
approximation one obtains a modified energy shift1

∆E0 = ~Ω2
R(x)

4(ωL − ω0) + i Γeff
~
8

(
ΩR(x)
ωδ

)2

,

which leads to a loss rate of atoms (i.e. random scattering) from the ground state
given by

Γsc(r) ∝
(

ΩR(x)
ωδ

)2

. (2.3)

This shows that incoherent light-matter interactions and energy dissipation are neg-
ligible when the detuning is large (ΩR(x) � ωδ). Since the loss rate increases with
the laser intensity the loss rate in blue detuned traps is smaller than in red detuned
ones: In red detuned traps the atoms are attracted toward regions with high light in-
tensity, contrary to blue detuned ones. But for typical ultracold atoms experiments
the loss rate is quite small for both traps and the atoms emit photons on a time
1 [Grimm et al.(2000),Rey(2004),Foot(2010)]
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scale of minutes,1 which is much longer than the duration of a usual experiment,
which takes some seconds.

The optical dipole force Eq. (2.2) can be used to generate a harmonic trap from
a focused laser beam. The intensity profile of a Gaussian laser beam along the z
direction is given by

I(r, z) = 2P
πw2(z) exp

(
− 2r2

w2(z)

)
, (2.4)

where P is the power of the laser beam, w(z) = w0

√
1 + z2/z2

R is the 1/e2 radius
(w0 is the beam waist and the Rayleigh length is zR = πw2

0/λ) and r is the radial
component. Typical values for zR are in the millimeter range and for w0 ≈ 100µm.
For a red-detuned laser the intensity maximum at z = r = 0 corresponds to a
potential minimum. We can expand the potential around this point and obtain a
harmonic dipole trap,

Vdip(r, z) ≈ − 2P
πω2

0

(
1−

(
z

zR

)2
− 2

(
r

ω0

)2
)
. (2.5)

2.2 Interactions between Ultracold Atoms

Ultracold atom experiments are usually performed by creating first a Bose-Einstein
condensate of an atom cloud. Thus, the de Broglie wavelength of the atoms is of
the order of the inter-atomic distance d; for dilute atom gases d is of the order of
hundreds of nanometers. This is much larger than the range of the inter-atomic
interactions for ultracold gases. The interactions between ultracold atoms are de-
termined by s-wave scattering,2 and vice-versa, the regime where s-wave scattering
dominates defines the regime of ultracold atoms.

A typical s-wave scattering length aS of ultracold atom collisions is a few nanome-
ters. This is much shorter than the average inter-atomic distance which implies that
the most relevant interactions are due to two-body encounters and that the exact
interaction potential can be replaced by an effective contact interaction,

V (~x1, ~x2) = gδ(~x1 − ~x2) . (2.6)

We can relate the quantity g to the physical parameter aS by demanding that the
interaction potential (2.6) reproduces the correct two-body scattering of ultracold
atoms.

The scattering amplitude is given by

f(~k′, ~k) = m

4π~2

∫
d3x′ei

~k′·~x′V (x′)ψ~k(~x
′) .

1 [Jaksch and Zoller(2005)]
2 [Bloch et al.(2008), Dalibard(1998), Pethick and Smith(2008), Gribakin and Flambaum(1993),
Fetter(1998)]
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In the low energy limit (|~k| → 0) the scattering amplitude becomes constant and is
equal to the scattering length

lim
|~k|=|~k′|→0

f(~k′, ~k) = −aS .

The scattering amplitude can be expressed via the Fourier transform of the interac-
tion potential and can be calculated iteratively

−f(~k′, ~k) ≈ m

4π~2V~k′−~k = m

4π~2 g ,

where we used that the Fourier transform of the effective interaction potential (2.6)
is V (~k) = g. We obtain the result, that the constant g is (in lowest order) related
to the scattering length via the simple equation

g ≈ 4π~2aS
m

. (2.7)

The scattering length aS can be negative as well as positive;1 the effective inter-
actions can therefore be attractive or repulsive although the interactions between
ultracold atoms are dominated by attractive van-der-Waals interactions.

The interactions in a cloud of ultracold atoms are very weak and quantum-
statistical effects are predominant. This can be seen by estimating the ratio of the
interaction energy to the kinetic energy for a Bose gas with the density n,

γ = εint
εkin

= gd−3

~2d2/m
≈ aS

d
, (2.8)

where d = n−1/3 is the average inter-particle spacing and we used that the de Broglie
wavelength is of the order of d. The scattering length aS is usually much shorter
than d; aS is a few nanometers and the atom density n is so small that d is a few
hundred nanometers.

2.3 Optical Lattices

In this section we discuss how we can use the optical dipole force Eq. (2.2) to
create a optical lattices by standing laser beams. Standing laser beams are created
by superimposing two counter-propagating laser beams. Say, one laser beam is
traveling in x-direction, E(x) = E0 exp(ikLx), with amplitude E0, wave number kL
and wave length λ = 2π/k. By adding a second laser beam running in the −x-
direction with same amplitude and wave number one obtains an optical potential
V (x) = V0 cos2(kLx) with periodicity a = λ/2 and strength V0. The strength V0
depends upon the amplitude E0 and the polarizability of the atoms. By applying
1 [Bloch et al.(2008)]
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Figure 2.2: (a) Three-dimensional optical lattice, (b) one-dimensional optical lattice
created from counter-propagating laser beams and (c) one dimensional lattice from
two laser beams enclosing an angle θ.

two additional pairs of laser beams propagating in y- and z-direction, respectively,
one obtains a 3D optical lattice

VL(x) = V0x sin2(k(x)
L x) + V0y sin2(k(y)

L y) + V0z sin2(k(z)
L z) , (2.9)

which creates a periodic array of microtraps and thereby an optical crystal (see
Fig. 2.2a). When two laser beams interfere under an angle of 180◦ the lattice has
a lattice constant of λ/2 = π/k; when the angle is smaller than 180◦, one can also
realize lattices with larger lattice constants (see Fig. 2.2b and 2.2c).

The strength of the trapping potential V0 is usually given in terms of the recoil
energy Er = ~2k2

L/2m, which is the energy an atom receives when it absorbs one
photon of the optical lattice. However, the scattering of atoms with photons from
the optical lattice is negligible and the potential (2.9) is nearly conservative, because
the laser light is usually chosen far off resonance (see Eq. (2.3)). A typical value of
the lattice constant is in the range of hundreds of nanometers and the recoil energies
are in the few kilohertz range. The lattice potential might have a strength up to
100 kHz.

It is possible to create more sophisticated optical lattices by using additional
standing laser beams, these are called optical superlattices.1 E.g., we can add on
top of the 1D potential VL(x) = V0 cos2(kx) a second one with half the wavelength
and obtain the period-2 superlattice potential

VSL(x) = Vs cos2(4πx/λ− ϕ) + V0 cos2(2πx/λ) , (2.10)
see Fig. 2.3. The phase shift ϕ induces an off-set between the two sites of the unit
cells of the superlattices. In Fig. 2.3 we choose ϕ = 0 and the unit cells are therefore
degenerate.
1 [Sebby-Strabley et al.(2006)]
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Figure 2.3: Optical superlattice created by superimposing two standing laser beams
according to Eq. (2.10) with V0 = Vs and ϕ = 0. One laser beam corresponds to
the green dashed-dotted line, the other one with half the wavelength of the first one
to the red dashed line and the superposition of both, the superlattice, is painted as
blue solid line.

For sufficiently strong optical lattices it is possible to approximate the lattice sites
by harmonic potentials.1 Around x = 0 we can use the approximation V0 sin2(kx) ≈
V0k

2x2 and obtain the Hamiltonian of a harmonic oscillator,

Ĥ = p̂2

2m + mω2
ho

2 x̂2 , (2.11)

where ~ωho =
√

2k2V0/m = 2
√
ErV0. When V0 is much larger than Er, each well

supports a number of vibrational levels that are separated by ~ωho.

Single Atoms in Optical Lattices

In this section we examine the spectrum of a single atom in a 1D optical lattice.
The Hamiltonian of this system is given by

Ĥ = p̂2

2m + VL(x) , (2.12)

where VL(x) = V0 sin2(kx) is a periodic potential (VL(x) = VL(x + a)). The Bloch
theorem states that the eigenfunctions of this Hamiltonian can be written as Bloch

1 [Jaksch et al.(1998)]
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Figure 2.4: Band structure for a single atom in an optical lattice (a) V0/ER = 0,
(b) V0/ER = 4, (c) V0/ER = 15 and (d) the bandwidth of the lowest band (black
dashed line) and the band gap between the lowest and first energy band (orange
line).

functions φ(n)
q (x) = eiqxu(n)

q (x); here n is a band index, the u(n)
q ’s have the same

periodicity as the optical potential and q is the quasi-momentum confined to the
first Brillouin zone [−π/a, π/a]. We perform a Fourier expansion over reciprocal
lattice points Gl = 2πl/a for the potential and the Bloch functions,

VL(x) = 1√
2π

∞∑
l=−∞

Vle
iGlx, uq(x) = 1√

2π

∞∑
l=−∞

ulqe
iGlx, (2.13)

where we omitted the band index (n). The Fourier coefficients of the optical poten-
tial are easily obtained because VL(x) = V0 sin2(kx) = V0(1/2 + eiG1x/4 + e−iG1x/4).
We can now perform the Fourier transform of the Schrödinger equation Ĥφq(x) =
Eqφq(x) and obtain a system of algebraic equations for the Fourier coefficients ulq,

~2

2m (q +Gl)2 ulq +
∑
m

Vl−mu
m
q = Eq u

l
q . (2.14)

We can solve these equations numerically for a finite lattice. In the case of L
lattice sites there are L quasi-momenta evenly distributed in the first Brillouin zone.
We can then rephrase the Eqs. (2.14) into a finite dimensional eigenvalue problem
Hq~uq = Eq~uq, where the corresponding Hamiltonian Hq is tridiagonal. The diagonal
elements are given by Hll = ER (qa/π + 2l)2 (ER = ~2k2

L/2M = ~2π2/2Ma2) and
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the only non-vanishing off-diagonal elements are Hlm = V0/4 for |l − m| = 1. In
Fig. 2.4 the lowest four eigenvalues of each quasi-momentum q ∈ [−π/a, π/a] are
plotted for different lattice strengths. For finite lattice strengths the energy bands
are separated by energy gaps. The band gaps vanish for a vanishing optical potential
and increase when the optical potential is increased.

It is important to note that the gap between the first and the second energy
band increases quite rapidly (see Fig. 2.4d). For sufficiently low temperatures only
the lowest vibrational levels at each lattice site are populated. It is therefore a good
approximation to assume that only the first energy band is populated; this is called
the single-band approximation.

Bloch functions depend on the quasi-momentum q and describe particles which
are spread out over the whole lattice. An alternative single-particle basis is provided
by Wannier functions.1 They are designed to be centered around single lattice sites
xi,

wn(x, xi) =
√
a

2π

∫
BZ

dq e−iqxiφ(n)
q (x) (2.15)

with BZ indicating the first Brillouin zone. Note that due to the periodicity of
the Bloch functions φ(n)

q (x), the Wannier functions depend only on the distance
x−xi, i.e., wn(x, xi) = wn(x−xi). One can use Wannier functions to derive explicit
formulas for the wavefunctions of atoms in optical lattices.2 The definition (2.15)
does not lead to a unique set of Wannier states, but leaves a gauge freedom due
to the possibility to multiply each Bloch function with a phase, φ(n)

q → eθ(q,n)φ(n)
q .

This gauge freedom preserves the centers of the Wannier functions but alters their
spatial spread ∆2 = 〈x2〉 − 〈x〉2. To obtain maximally localized Wannier functions
in a regular lattice one minimizes the spread and creates thereby exponentially
decaying wave functions.3 For superlattices it is not sufficient to use conventional
Wannier functions but one needs to introduce generalized Wannier functions4 that
mix Bloch states of different bands.

Tight-Binding Single-Particle Hamiltonian

To describe non-interacting atoms in a 3D optical potential in second quantization
we rewrite the Hamiltonian (2.12),

Ĥ =
∫
d3~x ψ̂†(~x)

(
− ~2

2m
~∇2 + VL(~x)

)
ψ̂(~x) , (2.16)

where ψ̂(~x) is a bosonic field operator for atoms in a given internal atomic state sat-
isfying the canonical commutation relations and VL(~x) the optical lattice potential.

1 [Bruus and Flensberg(2004)]
2 [Kohn(1959),Marzari and Vanderbilt(1997),Modugno and Pettini(2012)]
3 [Kohn(1959)]
4 [Marzari and Vanderbilt(1997),Modugno and Pettini(2012)]
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We can expand the field operators in terms of the complete orthonormal Wannier
basis,

ψ̂(~x) =
∑
i,~n

w~n(~x− ~xi)b̂~n,i ,

where b̂~n,i is the bosonic annihilation operator for the Wannier state w~n(~x − ~xi) =
wnx(x−xi)wny(y−yi)wnz (z−zi). This product ansatz of 1D Wannier wave functions
is possible for a simple cubic lattice geometry. For more complicated lattices the
Wannier functions need to be modified.1 Using Eq. (2.15) we obtain

Ĥ =
∫
d3~x

∫
BZ

d3q
∑
i,~n

ei~q·~xiφ
∗(~n)
~q (~x)b̂†~n,i

(− ~2

2m ∇
2 + VL(~x)

)

×

∫
BZ

d3q′
∑
j,~n′

e−i~q
′·~xjφ

(~n′)
~q′ (~x)b̂~n′,j


=

∑
i,j,~n

t~n (~xi − ~xj) b̂†~n,ib̂~n,j ,

where t~n (~xi − ~xj) = 〈w~n,i|Ĥ|wn,j〉 contains the hopping amplitude between a parti-
cle being in the Wannier state in the band n at ~xi and the Wannier state at ~xj. Note
that due to the orthogonality of the Bloch functions φ(~n)

~q (~x) = φ(nx)
qx

(x)φ(ny)
qy

(y)φ(nz)
qz

(z)
only transitions within the same band and hopping in the direction of the lattice
axes are allowed.2

Now we can use the result from the band structure calculation, that the band gap
between the lowest and the first energy band increases for deep lattices quite rapidly
and that ultracold atoms populate only the lowest energy band. Furthermore, since
the Wannier functions decay within one lattice site it is justified to neglect any
tunneling amplitudes other than nearest-neighbor ones.3 This leads to a tight-
binding Hamiltonian

Ĥ = −
∑
〈i,j〉

t b̂†i b̂j , (2.17)

where 〈i, j〉 denotes the summation over neighboring lattice sites and we omitted all
band indexes since we assume n = 0. We subtracted the diagonal contribution in
Eq. (2.17) (the on-site energy) because it merely shifts the position of the lowest en-
ergy band. We can express the real space operators b̂n,j in terms of quasi-momentum
operators and derive

Ĥ =
∑
q

εq b̂
†
q b̂q ,

1 [Modugno and Pettini(2012)]
2 [Blakie and Clark(2004)]
3 [Jaksch et al.(1998)]
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Figure 2.5: Comparison of the exact band structure (blue solid line) of the lowest
Bloch band of a single atom in an optical lattice with the tight-binding band struc-
ture (green dashed line) (a) V0/ER = 0, (b) V0/ER = 4, (c) V0/ER = 15 and (d)
V0/ER = 15.

where εq = −zt cos(qa) (z is the number of neighboring lattice sites) and q lies
within the first Brillouin zone. Note that the tunneling amplitude is a quarter of
the bandwidth of the tight-binding band for one-dimensional lattices. This band-
width decreases with increasing lattice strength (see Fig. 2.4d). In Fig. 2.5 the
tight-binding dispersion relation is compared with the exact shape of the lowest
Bloch band. We see that even for shallow lattices the exact solution is quite well ap-
proximated by the tight-binding approach and for lattice strengths above V0 ≈ 10Er
the tight-binding dispersion relation is nearly exact.

It is possible to solve Eq. (2.16) exactly by mapping it onto the Mathieu equa-
tion.1 From the width of the lowest energy band one can derive an exact value for
the tunneling amplitude,

t = 4√
π

(
V0

Er

)3/4
exp

[
−2

(
V0

Er

)1/2]
Er, (2.18)

which is the gain in the kinetic energy due to nearest-neighbor tunneling. The
tunneling amplitude decays exponentially with increasing lattice strength (compare
Fig. 2.4d).
1 [Abramowitz and Stegun(1964),Büchler et al.(2003)]
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2.4 The Bose-Hubbard Model

In this section we combine our knowledge about interactions between ultracold atoms
and the behaviour of single atoms in optical lattices. We obtain the full many-body
Hamiltonian in second quantisation for ultracold atoms by adding a term containing
the effective contact interaction to the single-particle Hamiltonian (2.16),

Ĥ =
∫
d3~x ψ̂†(~x)

(
− ~2

2m ∇
2 + VL(~x)

)
ψ̂(~x)

+ 1
2

4πas~2

m

∫
d3x ψ̂†(~x)ψ̂†(~x)ψ̂(~x)ψ̂(~x), (2.19)

where ψ̂(~x) is a bosonic field operator for atoms in a given internal atomic state
satisfying the canonical commutation relations, VL(~x) is an optical lattice potential
(e.g., Eq. (2.9)), as is the s-wave scattering length (compare Eqs. (2.6) and (2.7))
and m is mass of the atoms (see Eq. 2.6). For the sake of simplicity we omitted
the harmonic trapping potential. Following Sec. 2.3 we expand the atom operators
ψ(~x) in terms of Wannier operators,

ψ̂(~x) =
∑
j

w0(~x− ~xj)b̂j, (2.20)

where b̂i is the bosonic annihilation operator for an atom at site ~xi. We included
only the Wannier functions belonging to the lowest Bloch band, because the atom
cloud is so cold that only the lowest energy band is populated and so dilute, that
the interactions are too weak to excite the atoms to higher bands;1 that means we
apply a single-band approximation. Performing the expansion of Eq. (2.19) in terms
of Wannier functions leads to

Ĥ = −
∑
i,j

tij b̂
†
j b̂i + 1

2
∑
ijkl

Uijklb̂
†
i b̂
†
j b̂kb̂l,

where the coefficients Uijkl and tij are defined in terms of overlap integrals of Wannier
functions. The kinetic energy is contained in

tij = −
∫
d3x w∗0(~x− ~xi)

(
− ~2

2m ∇
2 + VL(~x)

)
w0(~x− ~xj) (2.21)

and the interaction between the atoms in

Uijkl = 4πas~2

m

∫
d3x w∗0(~x− ~xi)w∗0(~x− ~xj)w0(~x− ~xk)w0(~x− ~xl). (2.22)

For sufficiently deep optical lattices, the Wannier functions decay within one lattice
site and the overlap of neighboring Wannier functions is very small. We can restrict
1 [Jaksch et al.(1998),Jaksch and Zoller(2005)]
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Figure 2.6: (a) Sketch of the Bose-Hubbard parameters given in Eq. (2.23) with
repulsive on-site interactions. The optical wells support a number of vibrational
levels (indicated with n · ~ωho). (b) Lattice strength dependence of the on-site
interaction U (blue line, we used the harmonic approximation given in Eq. (2.24)
to calculate U) and lattice strength dependence of the tunneling amplitude t (green
line), which is orders of magnitude smaller than the on-site interaction.

the tunneling to nearest neighbor tunneling (tij = t) and the interactions to on-
site interactions (U0000 = U).1 We obtain the standard tight-binding Bose-Hubbard
Hamiltonian,2

Ĥ = −t
∑
<i,j>

b̂†j b̂i + µ
∑
i

n̂i + U

2
∑
i

n̂i(n̂i − 1), (2.23)

where n̂i = b̂†i b̂i and the operators b̂i satisfy boson commutation relations. We
included a term containing the chemical potential µ to tune the particle number. The
Bose-Hubbard model describes Bose particles on a lattice with on-site interaction,
so that only particles occupying the same site interact, while tunneling is allowed
between adjacent sites. The tunneling parameter t corresponds to the gain in kinetic
energy during a tunneling event and the strength of the on-site interaction is given by
U (compare Fig. 2.6a). Repulsive interactions result in a positive U and attractive
interactions in a negative U .

We can use the harmonic approximation (2.11) to obtain an expression for the
on-site interaction. The Wannier wave-function in a lattice site is then replaced by
ψho(x) = (

√
πaho)−1/2 exp[−x2/2a2

ho] where aho =
√
~/mωho and ~ωho = 2

√
ErV0.

The on-site interaction in the harmonic approximation is then

U (ho) = 4πas~2

m
·
(

1√
2πaho

)3

=
√

8πas
a

(
V0

Er

)3/4
Er, (2.24)

where a is the lattice spacing and we used ~2/m = 2Era2/π2. Thus, the strength of
the repulsive interaction increases with V0 (due to tighter squeezing of the wavefunc-
1 [Jaksch et al.(1998)]
2 [Hubbard(1963),Fisher et al.(1989)]
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tions w0(~x− ~xi)). Using the harmonic approximation and the tunneling amplitude
given in Eq. (2.18) we see that it is possible to tune the ratio

U

t
≈ as

a
exp

[
2
√
V0

Er

]
(2.25)

from the regime of weak to strong interactions by tuning the laser strength V0 (see
Fig. 2.6b). The kinetic energy of the atoms in a lattice decreases exponentially when
optical lattice gets stronger; in the same time the on-site interactions increases only
polynomially with the lattice strength. We see that the ratio γ = εint

εkin
(compare

Eq. (2.8)) is changed because of the optical lattice. Even if the atom density in
the microtraps is still small, the weakly interacting condensate is transformed into
a strongly interacting system. The lattice does not increase the interaction energies
much but reduces the kinetic energy a lot. Alternatively, one can say that the lattice
increases the effective mass of the atoms exponentially.

The Bose-Hubbard model contains the essential features of interacting Bose sys-
tems in a minimal way, namely the competition between kinetic and potential en-
ergy. Because the parameters in the Bose-Hubbard model can be controlled by
external laser fields, one can consider the system as a toolbox, with which one can
create plenty of different Hamiltonians. There are many theoretical tools to examine
the Bose-Hubbard model, some will be presented in Chapter 3. Nonetheless, the
Bose-Hubbard model is not exactly solvable, not even in one dimension, where the
corresponding continuum model (the Lieb-Liniger model) is exactly solvable (on the
contrary, the fermionic Hubbard model is solvable in one dimension via the Bethe
ansatz). This makes ultracold quantum gases in optical lattices an ideal paradigm
for quantum simulations, in the sense that we can use a physical system to simulate
a theoretical model or another physical system which is approximated by this theo-
retical model. Physical realizations of strongly interacting Bose systems include
Josephson junction arrays, granular and short-correlation-length superconductors
and flux lattices in type-II superconductors.

2.5 Spinor Condensates

Trapping ultracold atoms in conventional magnetic traps leads to frozen spin degrees
of freedom, i.e., all atoms are in the same internal hyperfine state, such that the
atoms behave effectively as spinless particles.1 If the atoms are trapped by optical
means only, the atoms keep the extra spin degree of freedom and the Bose-Einstein
condensate becomes a spinor condensate.2 The spinor degree of freedom on alkaline
gases corresponds to the manifold of degenerate Zeeman hyperfine levels. Experi-
mentally, long-lived alkali spinor gases have been explored in the F = 1 manifold
1 [Stamper-Kurn and Ketterle(2000)]
2 [Stamper-Kurn et al.(1998),Stenger et al.(1998)]
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both of 23N (by D. Stamper-Kurn et al.(1998)) and 87Rb (by Barrett et al.(2001)1)
and the higher energy F = 2 manifold of 87Rb.2 The ground-state properties of
spinor Bose-Einstein condensates in single traps were theoretically investigated by
T. Ho and Ohmi et al..3 There are review articles about spinor quantum gases writ-
ten by M. Lewenstein et al.,4 Ma. Ueda and Y. Kawaguchi5 and D. Stamper-Kurn
et al..6

Atoms can be bosons or fermions, depending on the total angular momentum
they carry. The total atomic angular momentum F is the result of the coupling of
the orbital angular momentum of the electrons L, the electronic spins S and the
nuclear spin I. The alkali-metal atoms 23Na and 87Rb carry no electronic orbital
angular momentum, the electron spin 1/2 and the nuclear spin 3/2; their total
angular momentum is therefore 1 or 2 and the atoms are Bosons. The Rubidium
isotope 85Rb carries nuclear spin 5/2 and its total spin is therefore 2 or 3. The alkali-
metal atoms 133Cs carry nuclear spin 7/2 and their hyperfine quantum number is 3
or 4.

In this section we want to describe spin-1 atoms. Instead of a scalar wavefunction
we use a three-component wavefunction to describe the atoms,

~ψ(~r) =

 ψ1(~r)
ψ0(~r)
ψ−1(~r)

 , (2.26)

where the subscripts of ψm refer to the spin projection on the quantization axes,
mF ∈ {−1, 0, 1}. The wavefunction transforms as a vector and this vectorial char-
acter has a pronounced effect on the inter-atomic interactions, which we will see
when we examine the symmetry constraints of our model in detail.

To include interactions between the atoms we follow Sec. (2.2). The only relevant
interactions are two-body contact interactions. The atoms can therefore be modeled
by a generalized version of Eq. (2.19),

Ĥ =
∫
d3r

{
ψ̂†m

(
− ~2

2m∇
2 + Vext

)
ψ̂m + gij,kl

2 ψ̂†i ψ̂
†
j ψ̂kψ̂l

}
, (2.27)

where ψ̂m (ψ̂†m) is a field operator that annihilates (or creates) an atom in the m-th
hyperfine state (m ∈ {−1, 0, 1} ) at point r and we sum over repeated indexes.
The interaction term describes the annihilation of two atoms in the hyperfine states
k and l and the creation of two atoms in the states i and j. There are 34 = 81
possible coefficients gij,kl but fundamental symmetries restrict the number of allowed
interactions and independent parameters.
1 [Barrett et al.(2001)]
2 [Chang et al.(2004),Kuwamoto et al.(2004),Schmaljohann et al.(2004)]
3 [Ho(1998),Ohmi and Machida(1998)]
4 [Lewenstein et al.(2007),Lewenstein et al.(2012)]
5 [Ueda and Kawaguchi(2010)]
6 [Stamper-Kurn and Ketterle(2000),Stamper-Kurn and Ueda(2012)]
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The particle exchange symmetry, which holds in this case due to the indistin-
guishability of the bosons, states that it does not make a difference if particle A
collides with B or particle B with A, i.e., gij,kl = gji,kl. There are six possible tuples
ij for three different hyperfine states (ij ∈ [11, 10, 1 − 1, 00, 0 − 1,−1 − 1]). Fur-
thermore the system is time reversal invariant, i.e., gij,kl = gkl,ij, which reduces the
number of independent interaction parameters gij,kl to ( 6+2−1

2 ) = 21.
Another symmetry restricts the interactions considerably, namely rotational sym-

metry. Without an external magnetic field there is no preferred direction in a system
of spin-1 atoms and the system is therefore invariant under rotations. This leads
to the conservation of the total angular momentum and there is only a small num-
ber of independent interaction parameters left. The contact interaction for spin-1
atoms can be written in terms of scattering channels according to the total spin.
For indistinguishable spin-1 bosons the interaction reads

V̂ (r1, r2) =
∑
S=0,2

gS P̂S δ(r1 − r2), (2.28)

where gS = 4π~2aS

m
is the interaction strength for every channel, aS is the respective

scattering length and the sum is over S = 0 and S = 2 only, because of the particle-
exchange symmetry. Here we speak of channels, but the P̂ are just projection
operators, i.e. 1̂ = P̂0 + P̂2. The different aS will lead to distinct magnetic ordering.
To see this, it is convenient to rewrite the contact potential in terms of spin operators,

(F1 · F2)|φ〉 = (F1 · F2)(P̂0 + P̂2)|φ〉 = (−2P̂0 + P̂2)|φ〉,

because the P ’s project onto eigenstates of F1 · F2. This leads to

V̂ (r1, r2) =
(
g0 + 2g2

3 + g2 − g0

3 F1 · F2

)
δ(r1 − r2). (2.29)

The difference between the scattering lengths a0 and a2 is usually small such that the
spin-independent part g0+2g2

3 of the interaction potential dominates. Nevertheless,
the spin ordering leads to a ferromagnetic phase when a0 > a2 (e.g. Rubidium) and
to a antiferromagnetic phase when a0 < a2 (e.g. Sodium).

We can plug in the interaction potential (2.29) into the Hamiltonian (2.27) and
obtain1

Ĥ =
∫
d3r

ψ̂†m
(
− ~2

2M∇
2 + Vext

)
ψ̂m + c0

2 ψ̂
†
mψ̂
†
j ψ̂jψ̂m

+ c2

2 ψ̂†m(Fν)mjψ̂j · ψ̂†l (Fν)lkψ̂k

, (2.30)

where

c0 = g0 + 2g2

3 = 4π~2a0 + 2a2

3m (2.31)

1 [Ho(1998),Ohmi and Machida(1998)]
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and

c2 = g2 − g0

3 = 4π~2a2 − a0

3m . (2.32)

Thus, we can use the angular momentum conservation to express the interaction
parameters gij,kl by scattering lengths, which are well known physical parameters.
The repeated indexes in Eq. (2.30) are summed over and Fν with ν = x, y, z are the
spin-1 matrices,

Fx = 1√
2

 0 1 0
1 0 1
0 1 0

 , Fy = i√
2

 0 −1 0
1 0 −1
0 1 0

 , Fz =

 1 0 0
0 0 0
0 0 −1

 . (2.33)
It is instructive to write down the interaction terms in detail,

c0ψ̂
†
mψ̂
†
j ψ̂jψ̂m + c2 ψ̂

†
m(Fν)mjψ̂j · ψ̂†l (Fν)lkψ̂k =

(c0 + c2)ψ̂†1ψ̂†1ψ̂1ψ̂1 + c0ψ̂
†
0ψ̂
†
0ψ̂0ψ̂0 + (c0 + c2)ψ̂†−1ψ̂

†
−1ψ̂−1ψ̂−1

+ 2(c0 + c2)ψ̂†1ψ̂†0ψ̂1ψ̂0 + 2(c0 + c2)ψ̂†−1ψ̂
†
0ψ̂−1ψ̂0 + 2(c0 − c2)ψ̂†1ψ̂†−1ψ̂1ψ̂−1

+ 2c2ψ̂
†
0ψ̂
†
0ψ̂1ψ̂−1 + 2c2ψ̂

†
1ψ̂
†
−1ψ̂0ψ̂0.

(2.34)

The comparison with Eq. (2.27) shows that we expressed the interaction coefficients
with the two independent physical parameters a0 and a2. Only eight interaction
terms remain, three self-scattering (first three terms one the right side of Eq. (2.34)),
three cross-scattering (next three terms of Eq. (2.34)) and two spin relaxation terms
(last row of Eq. (2.34). We can now make a clear distinction between usual multi-
component condensates and spinor condensates. A usual multi-component conden-
sate consists for example out of 87Rb atoms in a conventional magneto-optical trap.
For certain magnetic field strengths the singlet and the triplet scattering length are
practically equal allowing simultaneous magnetic trapping of more than one hyper-
fine component.1 These multi-component ultracold gases are also called pseudo-spin
systems. The spin-relaxation terms are the result of the rotational symmetry in
spinor condensates and do not appear in pseudo-spin multi-component condensates.
In these condensates the atom number of each component is conserved; spin relax-
ation leads to trap loss for them. In spinor quantum gases the population transfer
between different hyperfine components is only subjected to conservation of the total
number of atoms and the total magnetization.

The simplification of the interaction is only strictly valid in the absence of mag-
netic fields. In the presence of a non-vanishing magnetic field the hyperfine spin is
not a good quantum number anymore and the collisional properties will be more
complicated. The strongest deviations from the rotationally symmetric case occur
at Feshbach resonances where a closed scattering channel is coupled to an open one
via a certain magnetic field. Nevertheless, away from Feshbach resonances and for
weak magnetic fields the zero-field description is a good approximation.
1 [Myatt et al.(1997)]

26



2.5. SPINOR CONDENSATES

Meanfield Ansatz for a Weakly Interacting Spinor Conden-
sate

In this section we examine a spin-1 quantum gas trapped in a shallow harmonic
trap without an optical lattice.1 For a weakly interacting spinor quantum gas we
can replace the bosonic field operators ~̂ψ by their expectation values, ~̂ψ = ~φ, where
~φ = (φ1, φ0, φ−1) is a vector of c-numbers. Using this in Eq. (2.30) we obtain the
energy functional E[~φ] = 〈Ĥ − µN̂〉,

E[~φ] =
∫
d3r

{
~2

2m
(
∇
√
n
)2

+ ~2

2m
(
∇~ξ
)2
n+ (Vext − µ) + n2

2
(
c0 + c2〈~F 〉2

)}
,

(2.35)

where we introduced a spinor ~ξ such that

~φ =
√
n~ξ . (2.36)

The spinor is normalized |~ξ|2 = 1, n is the atomic density and 〈~F 〉 = ∑
kl ξ
∗
k
~Fklξl. All

spinors that are related to each other by gauge transformations ~ξ → eiϕ~ξ and spin
rotations ~ξ → U(α, β, γ)~ξ, where U(α, β, γ) = e−iαFze−iβFye−iγFzand {α, β, γ} are
the Euler angles, lead to degenerate values of E[~φ]. The ground state of the system
is found by minimizing the energy functional. The value of the spin-independent
interaction parameter c0 must be positive, otherwise the condensate collapses. De-
pending on the sign of of the spin-dependent interaction parameter c2 there are two
distinct mean-field phases.

Ferromagnetic phase: For ferromagnetic spin interactions, i.e. c2 < 0, the
system is minimized for 〈~F 〉2 = 1. The ground state in this case corresponds to all
possible rotations of the state (1, 0, 0)T , such as

~ξ = eiϕU(α, β, γ)

1
0
0

 = ei(ϕ−γ)

 e−iα cos2(β/2)√
2 cos(β/2) sin(β/2)
eiα sin2(β/2)

 .
This state is called ferromagnetic state. The symmetry group of this phase is SO(3).
Given that the square of the order parameter is just the atom number we can ask
for the positive, real values of ~ξ. For β = π/2, α = 0 and 0 < θ = γ ≤ 2π we obtain

~ξ = 1
2

 1√
2

1

 . (2.37)

Ferromagnetic spin interactions occur for 87Rb in the F = 1 manifold.

1 [Ho(1998),Ohmi and Machida(1998)]
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Polar phase: For antiferromagnetic spin interactions, i.e. c2 > 0, the system is
minimized for 〈~F 〉2 = 0. The ground state spinor in this case is given by

~ξ = eiϕU(α, β, γ)

0
1
0

 = eiϕ


− 1√

2e
−iα sin(β)

cos(β)
1√
2e
iα sin(β)


and the ground state is called polar. Here the spinor ~ξ is independent of the Euler
angle γ and the symmetry group is U(1)×S2, where S2 consists of all vectors pointing
at the surface of a unit sphere. Again we can use gauge invariance to obtain a real,
positive order parameter. One possible tuple {ϕ, α, β} to generate a real order
parameters is β = ±π/2 and ϕ± α = 0, π, . . ., which leads to

~ξ = 1√
2

1
0
1

 , (2.38)

which is called the transverse polar state.1 There is another possibility to obtain a
real, positive order parameter, namely ϕ = 0, π, . . . and α = 0, π, . . ., which leads to

~ξ =

0
1
0

 . (2.39)

This state is called longitudinal polar. Thus, in the antiferromagnetic case there are
two possible spinors. antiferromagnetic interactions are present for 23Na and 85Rb
in the F = 1 manifold.

Ultracold Spin-1 Atoms in Optical Lattices

In this section we want to derive a Hubbard type lattice model similar to Eq. (2.30)
for spinor gases in optical lattices. We expand the field operators (2.26) in the
Wannier basis analogous to Eq. (2.20),

ψ̂(~x) =
∑
i,σ

b̂iσw0(~x− ~xi), (2.40)

where we included only the lowest vibrational states (see above) and assumed that
the Wannier functions are independent of the hyperfine quantum number σ. The
bosonic operators b̂i,σ (b̂†i,σ) annihilate (create) an atom in the lowest Bloch band
localized at site i in the hyperfine state σ. The operators b̂i,σ obey the canonical

1 [Stamper-Kurn and Ueda(2012)]

28



2.5. SPINOR CONDENSATES

commutation relations [b̂i,σ, b̂†j,σ′ ] = δijδσσ′ and [b̂†i,σ, b̂
†
j,σ′ ] = [b̂i,σ, b̂j,σ′ ] = 0. Using this

expansion in Eq. (2.30) we can derive a Hubbard-type tight-binding Hamiltonian1

Ĥ = −t
∑
〈i,j〉,σ

b̂†σib̂σj + U0

2
∑
i

n̂i(n̂i − 1) + µ
∑
i

n̂i + U2

2
∑
i

(
~̂S2
i − 2n̂i

)
, (2.41)

where n̂i = ∑
σ b̂
†
σib̂σi is the atom number operator of site i and 〈i, j〉 denotes nearest

neighbors. The first term in Eq. (2.41) contains the spin-symmetric tunneling be-
tween the wells and t is the hopping matrix element between the lattice sites. The
amplitude t can be calculated via overlap integrals of Wannier functions similar to
Eq. (2.21). The on-site repulsive interaction is described by two terms. The first
one, which is parameterized by U0, is independent of the spin of the atoms. The term
proportional to U2 describes spin-dependent interactions: it penalizes nonzero spin
configurations on individual lattice sites in the case of antiferromagnetic interactions
(U2 > 0, e.g. 23Na) and favors high-spin configurations in the case of ferromagnetic
interactions (U2 < 0, e.g. 87Rb). The values of the on-site interaction parameters
are given in terms of overlap integrals,

U0 = 4π~2

3m (a0 + 2a2)
∫
d3x w∗0(~x− ~xi)w∗0(~x− ~xj)w0(~x− ~xk)w0(~x− ~xl)

U2 = 4π~2

3m (a2 − a0)
∫
d3x w∗0(~x− ~xi)w∗0(~x− ~xj)w0(~x− ~xk)w0(~x− ~xl) ,

where we can choose any value for i, because the on-site interaction is assumed to
be site-independent (compare Eq. (2.22)). The operators

~̂Si =
∑
σσ′

b̂†i,σ ~Fσσ′ b̂i,σ′ (2.42)

correspond to the total spin at site i, with F denoting the spin-1 matrices given in
Eq. (2.33). The components of the spin operator are given by

Ŝix = 1√
2
(
b̂†1ib̂0i + b̂†0ib̂1i + b̂†−1ib̂0i + b̂†0ib̂−1i

)
Ŝiy = i√

2
(
−b̂†1ib̂0i + b̂†0ib̂1i + b̂†−1ib̂0i − b̂†0ib̂−1i

)
Ŝiz = b̂†1ib̂1i − b̂†−1ib̂−1i. (2.43)

and obey the usual angular momentum commutation relations [Ŝik, Ŝil] = iεklmŜim
with {k, l,m} = {x, y, z}.

The parameters Eq. (2.41) can be controlled by adjusting the intensity of the
laser beams; it is possible to move from regimes of strong tunneling (U0 � t) to
regimes of very weak tunneling (t� U0). We can check this by calculating the ratio
U0/t in the harmonic approximation (compare Eq. (2.25)),

t

U0
≈ 3a
a0 + 2a2

exp
− 2

√
V0

Er

 , (2.44)

1 [Jaksch et al.(1998), Imambekov et al.(2003)]
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where a is the lattice spacing and Er is the recoil energy. Whereas the ratio of t/U0
can be changed, the ratio U0/U2 is fixed for all lattice geometries,

U2

U0
= a2 − a0

a0 + 2a2
, (2.45)

because the scattering lengths a0 and a2 do not depend on the trapping potentials.
The optical dipole force depends on the hyperfine state of the atoms, but only weakly.
Let ωδ be the detuning of the laser light from the atomic transition frequency, then
the spin-independent energy shift is proportional to 1/ωδ (compare Eq. (2.1)) and
the spin-dependent is proportional to as 1/ω2

δ .1 An estimated ratio of U2/U0 is 0.04
for 23Na and −0.005 for 87Rb.2

Effects of Magnetic Fields

In this section we want to examine the effect of weak magnetic fields on spinor
condensates. Spinor Bose-Einstein condensates are realized in optical traps, because
strong magnetic traps would break the degeneracy of the different hyperfine levels
and align the atom spins, thus creating a condensate of effectively spinless bosons.
Nevertheless it is interesting to include weak magnetic fields in the calculations (also
because magnetic shielding is needed but can be done only to a certain degree).

The most obvious contribution from a weak homogeneous magnetic field is the
linear Zeeman shift. The linear Zeeman energy caused by a homogeneous magnetic
field ~B = (0, 0, B0) chosen along the z-axis (which is our quantization axis) is given
by

Elin = −p
∫
d3x n 〈Fz〉 (2.46)

and is minimized by placing all atoms in the strong-field seeking |mF = 1〉 state.
Here p = gµBB0 where g is the Landé factor, µB is the Bohr magneton and n is
the mean-field atomic density (compare Eq. (2.35)). The linear Zeeman shift for the
Bose-Hubbard model for spin-1 bosons (2.41) is given by

Ĥlin = p
∑
i,σ

miσn̂iσ = p Ŝtotz , (2.47)

where n̂iσ is the particle number operator for the ith site that gives the number of
bosons in themth hyperfine state. The linear Zeeman energy splitting is much larger
than the spin-dependent interactions energy scale already at magnetic fields of tens
of µG.3 Thus, under the application of even very weak magnetic fields exothermic

1see [Stamper-Kurn and Ueda(2012)], Sec. IV.A “Experimental Realities”.
2 [Burke et al.(1998), Imambekov et al.(2003),Black et al.(2007),Stamper-Kurn and Ueda(2012)]
3 [Stamper-Kurn and Ketterle(2000)]
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2.5. SPINOR CONDENSATES

Figure 2.7: Sketch of the magnetic field dependence of the hyperfine (F,mF ) levels
of 87Rb. This rubidium isotope has a nuclear spin of I = 3/2 and therefore a total
angular momentum of F = 1 or F = 2. The F = 1 and F = 2 spin manifolds are
separated by the hyperfine interaction. In (a) the Zeeman splitting of the hyperfine
levels is shown. For small magnetic fields F is a good quantum number. In (b)
the zero-field hyperfine splitting and the linear Zeeman shift are subtracted. The
quadratic Zeeman shift is positive for the (F = 1,mF = ±1) levels and negative for
the (F = 2,mF = ±2) and (F = 2,mF = ±1) levels.

dipolar relaxation collisions might drive the spinor condensate into a scalar conden-
sate where all atoms are spin-aligned. However, these spin-relaxation collisions are
quite rare and the magnetization of the spinor gas is on the time scale of seconds a
conserved quantity. All experiments take place on a shorter timescale and we can
therefore ignore the linear Zeeman effect.1 One can include spin conservation via a
Lagrange multiplier;2 the parameter p in Eq. (2.46) can be chosen as the Lagrange
multiplier and the linear Zeeman shift can be gauged away.

However, the Zeeman shift of hyperfine spin states at weak magnetic fields is
not strictly linear (see Fig. 2.7). For alkali atoms the shift of the energy levels can
be calculated by the Breit-Rabi Hamiltonian3 and the quadratic Zeeman shift to
Eq. (2.35) is given by

Equad = q
∫
d3r n 〈F 2

z 〉, (2.48)

where q = q0B
2 and q0 = h × 390 Hz/G2 for the (F = 1, mF = ±1) states of

sodium.4 The quadratic Zeeman effect for spin-1 atoms in optical lattices can be
1 [Stenger et al.(1998),Rodriguez et al.(2011),Stamper-Kurn and Ueda(2012)]
2 [Stenger et al.(1998)]
3 [Breit and Rabi(1931)]
4 [Stenger et al.(1998)]
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Figure 2.8: Time-of-flight absorption imaging. After some time-of-flight in which the
Bose-Einstein condensate (BEC) expands freely only subjected to the gravitational
force an imaging laser is used to take a picture of the expanded cloud on a CCD
chip.

incorporated in the Hamiltonian (2.41) by adding the term

ĤQZ = q
∑
i,σ

m2
iσn̂iσ, (2.49)

where n̂iσ counts the number of atoms in the mith hyperfine spin. Only for small
magnetic fields the hyperfine quantum number is conserved and therefore a good
quantum number.

2.6 Probing Ultracold Atoms

Ultracold atoms offer the possibility to prepare, manipulate and detect quantum
states with a very high degree of perfection. In this section we review some methods
to probe ultracold atoms experimentally.

Time of Flight Measurements

In time-of-flight measurements trapping potentials are switched off and the expand-
ing cloud of atoms is probed via an absorption image1 (see Fig. 2.8). There are two
possibilities how to switch off the trapping potentials. One can either switch off the
laser fields abruptly, which is called sudden release, or release the atom cloud slowly
by an adiabatic shutoff. After a sudden release the quasi-momentum distribution
is abruptly transformed into momentum space and after some time of flight this
momentum distribution is experimentally detectable as spatial distribution.2 By

1 [Pedri et al.(2001), Isacsson and Girvin(2005),Bloch et al.(2008),Gerbier et al.(2008)]
2 [Roth and Burnett(2003),Toth et al.(2008)]
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removing the lattice in an adiabatic manner it is also possible to map out the quasi-
momentum distribution and thereby visualize the occupation within the Brillouin
zone.1

To examine the mechanism of time of flight measurements we assume that the
atom cloud trapped in the lattice is in the many body state |Φ〉. After switching off
the trapping potentials the interactions vanish and the system evolves freely,2 i.e.,
the propagator is given by Û(t) = exp(−iĤt/~) with Ĥ =

∫
d3xψ̂†(x)p̂2/(2m)ψ̂(x).

This propagator describes the ballistic expansion of the atom cloud, i.e., given an
atom with momentum ~p its position ~x after some time t is ~x(t) = ~t~p/m. The
spatial density of the atom cloud after some time of flight t is given by

〈n(~x)〉t = 〈Φ|U †(t)n̂(~x)U(t)|Φ〉

We can expand the density distribution in terms of momentum components,

〈n(~x)〉t =
∫ d~k1

(2π)3

∫ d~k2

(2π)3 e
−i(~k1·~x)ei(

~k2·~x)e−i~t|
~k1|2/2me−i~t|

~k2|2/2m〈Φ|ψ̂†~k1
ψ̂~k2
|Φ〉

=
∫ d~k1

(2π)3

∫ d~k2

(2π)3 e
−i(~k1−~k2)·[~x−(~t/2m)(~k1+~k2)]〈Φ|ψ̂†~k1

ψ̂~k2
|Φ〉 (2.50)

For long t we can make a far-field approximation which uses the fact that the size
of the expanded cloud is much larger than the size L of the atom cloud before
the traps are switched off. Thus, we use ~t � mL2 and make a stationary-phase
approximation to calculate the integral in Eq. (2.50). Let the phase be ϕ(~k1, ~k2).
For the sake of simplicity we consider a 1D integral; the points of stationary phase
are at ∂ϕ

∂k1
= ∂ϕ

∂k2
= 0, which leads to k1 = k2 = mx

~t . From this we can calculate the
full integral, obtaining

〈n̂(~x)〉t ≈
(
m

ht

)3
〈Φ|n̂~k(~x)|Φ〉, (2.51)

where n̂~k = ψ̂†~kψ̂~k and ~k(~x) = m~x/~t relates the in situ momentum ~~k to the final
observation position ~x. Measuring the the density of atoms after a long time of
flight t at a point ~x thus corresponds to a measurement of momentum distribution
at ~k = m~x/~t of the state |Φ〉 prior to trap release.

Time-of-flight experiments also allow the detection of higher order correlations
by noise measurements.3 Similar to the density distribution, the density-density
correlation function after some time-of-flight mirrors the momentum correlations of
the trapped system,

〈n̂(~x1)n(~x2)〉t ∝ 〈Φ|n̂~k1
n̂~k2
|Φ〉,

1 [Greiner et al.(2001)]
2 [Kupferschmidt and Müller(2010)]
3 [Altman et al.(2004)]
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where t denotes the time of free expansion and |Φ〉 is the quantum state in the
trap. The method allows to distinguish many different phases of proposed phase
diagrams.1

In order to probe spinor atoms a combination of Stern-Gerlach experiments2
and time-of flight measurements can be used. During the time-of-flight a magnetic
field gradient is applied to separate atoms in different magnetic hyperfine states
in different spatial regions. Here, the magnetic field is switched on adiabatically
during the expansion to obtain a projective measurement of the distribution of
atoms among the Zeeman sublevels in the trap. The population of each different
sublevel has been measured by several groups with sub-poissonian measurement
uncertainty.3 However, until now experiments with spinor condensates and Stern-
Gerlach time-of-flight mapping have been performed only with conventional traps
and not with optical lattices.4

Single-Site Measurements

It is possible to probe quantum gases in optical lattice with single site accuracy.5
These in situ images allow to go beyond the analysis of the momentum distribution
and of the coherence properties of trapped atoms. In single-site fluorescence imaging
near-resonant light is used, such that the atoms start fluorescing. This laser-induced
fluorescence is captured by a high resolution microscope and imaged onto a low-noise
CCD camera. To achieve sufficiently high scattering rates the atoms are constantly
cooled to keep the temperature below the lattice depth and at the same time the
lattice depth is increased to hold the atoms at their position. Because the imaging
laser is near resonant atom pairs are expelled out of the trap by light-induced colli-
sions;6 the imaged occupation in the lattice reflects therefor the parity of the atom
number per site. Another in situ detection method is absorption imaging.7

Quantum Polarization Spectroscopy

In quantum polarization spectroscopy the quantum Faraday effect is used to detect
magnetic ordering of ultracold atoms in optical lattices.8 The quantum Faraday
effect describes the rotation of the polarization of light when it is propagating inside
a magnetic medium. The method is non-demolishing and can be used with a very
high spatial resolution.

1 [Greiner et al.(2005),Fölling et al.(2005),Rom et al.(2006),Greif et al.(2011)]
2 [Gerlach and Stern(1924)]
3 [Bookjans et al.(2011),Gross et al.(2011),Lücke et al.(2011),Hamley et al.(2012)]
4e.g., [Liu et al.(2009)]
5 [Nelson et al.(2007),Sherson et al.(2010),Bakr et al.(2010),Weitenberg et al.(2011)]
6 [DePue et al.(1999)]
7 [Gemelke et al.(2009),Hung et al.(2010),Zimmermann et al.(2011)]
8 [Julsgaard(2003),Eckert et al.(2008),Roscilde et al.(2009),Hammerer et al.(2010),De Chiara and
Sanpera(2011),De Chiara et al.(2011)]
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Bragg Spectroscopy

Two-photon Bragg spectroscopy allows to detect the low-energy excitations and
thereby reveals fundamental properties of the quantum state of the system. The
Bragg spectroscopy provides a direct measure of the dynamic structure factor, i.e.,
the Fourier transform of the density-density correlation function. By means of Bragg
spectroscopy one can probe the band structure of the excitation spectrum in the
presence of a periodic potential.1 Bragg spectroscopy allows also to detect the
magnetic order in an atomic gas because appropriately tuned light couples differently
to the different spin components of the sample.2

1 [Stöferle et al.(2004), Köhl et al.(2005), Fabbri et al.(2009), Clément et al.(2009), Clément
et al.(2010)] and references therein.

2 [Partridge et al.(2006),Shin et al.(2006)]
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Chapter 3

Quantum Phase Transitions in the
Bose-Hubbard Model

In this chapter we discuss the Mott-superfluid quantum phase transition of ultracold
atoms in optical lattices. The Bose-Hubbard model represents an excellent model of
these systems1 and is known to display this phase transition.2 In Sec. 3.1 we examine
the two limiting cases of the Bose-Hubbard model (vanishing tunneling and vanishing
interactions), present some methods to treat the model for finite interactions and
discuss Gutzwiller mean-field methods in detail. In Sec. 3.1.1 we present the phase
diagram of spinless bosons in optical lattices. In Sec. 3.2 we discuss spin-1 atoms
in optical lattices, in Sec. 3.3 spinless bosons in optical superlattices and in Sec. 3.4
spin-1 atoms in optical superlattices.

Quantum Phase Transitions

Quantum phase transitions occur at zero temperature. They are not driven by
thermal fluctuations (like classical phase transitions), but by quantum fluctuations.
Quantum phase transitions are based on an abrupt qualitative change of the ground
state of the many body system.

In a classical system at finite temperature the thermal equilibrium is reached
when the free energy,

F = E − TS, (3.1)

is minimal (E is the internal energy, T the temperature and S the entropy). The
system can lower the free energy in two ways: The state of the system can be chosen
such that the internal energy is minimized, or one chooses a configuration such that
the entropy is maximal. The temperature determines which of the two possibilities
leads to a smaller free energy. Let us consider a three-dimensional array of spins
1 [Jaksch et al.(1998)]
2 [Fisher et al.(1989)]
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with nearest-neighbor, ferromagnetic interactions, e.g., an Ising ferromagnet. This
system has its minimal internal energy when all spins are aligned, but the entropy
is minimal in this state as well. In order to maximize its entropy all spins must be
in disorder, although the internal energy is maximal in this configuration. The tem-
perature T then decides which of the two states is realized. For high temperatures
the free energy is minimal for high entropy and the spins are in disorder. Below a
critical temperature Tc the advantage of a high entropy does not compensate the
disadvantage of a higher internal energy anymore and all the spins are aligned, which
is then the stable equilibrium state of the system.

Classical phase transitions are a result of two competing elements while mini-
mizing the free energy. For T = 0 no classical phase transition is possible anymore
because the free energy is equal to the internal energy and the classical entropy
vanishes. But at this temperature quantum phase transitions may occur; they are
driven by competing terms in the ground-state energy. These phase transitions
can only be accessed by varying a physical parameter, such as magnetic field or
interaction properties.1

3.1 The Mott-Superfluid Quantum Phase Transi-
tion

We can use the Bose-Hubbard model to describe ultra-cold atoms in deep optical
lattices (see Sec. 2.4). For low temperatures and sufficiently strong lattices the
thermal and interaction energies are much smaller than the band-gap between the
first and second energy band, and the Wannier functions decay inside a single lattice
site. The Bose-Hubbard model of such a system is given by

Ĥ = −t
∑
<i,j>

b̂†i b̂j − µ
∑
i

n̂i + U

2
∑
i

n̂i(n̂i − 1), (3.2)

where b̂†i creates an atom at the site i, n̂i = b̂†i b̂i counts the atoms at each site,
U gives the strength of the on-site interaction and t corresponds to the tunneling
amplitude between neighboring lattice sites (compare Eq. 2.23).

The Bose-Hubbard model with repulsive interactions supports two prominent
quantum phases2 at T = 0. For small on-site interactions (U � t) the wave functions
of the atoms superimpose coherently and a finite fraction of the bosons is condensed.
In this regime the system is in the superfluid quantum phase which is characterized
by long-range correlations, a gapless excitation spectrum and a finite compressibility.
When the on-site interactions dominate (U � t) and the filling is commensurate,

1 [Sachdev(2001)]
2 [Fisher et al.(1989), Rokhsar and Kotliar(1991), Krauth et al.(1992), Bruder et al.(1993), Zwer-
ger(2003),Jaksch and Zoller(2005)]
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the system is called Mott-insulating. In this quantum phase there is no long-range
order, the excitation spectrum has a gap, and the system is incompressible.

Although the Bose-Hubbard model is so simple it contains the essential features
of strongly interacting Bose systems, namely the competition between kinetic and
interaction energy. Similar to Eq. (3.1), where for each given temperature one of
the two terms dominates, for each ratio of t/U either the kinetic or the potential
energy determines the quantum phase of the system. Thus, the Bose-Hubbard model
provides one of the simplest realizations of a quantum phase transition.1

Limit of Strong Tunneling

In the limit of vanishing on-site interactions (U = 0) the Hamiltonian Eq. (3.2) can
be trivially diagonalized by a discrete Fourier transform into the space of quasi-
momentum. Assuming a regular lattice with L sites, we replace the operators b̂†
creating an atom at a specific site by

ĉ†~k = 1√
L

∑
i

b̂†ie
−i~k·~ri , (3.3)

which create atoms with a certain quasi-momentum ~k, which is discretized over the
first Brillouin zone. When we substitute this quasi-momentum operators into the
Hamiltonian (3.2), we find

Ĥ =
∑
k

(
ε~k − µ

)
ĉ†~kĉ~k + U

2L
∑

k1,...,k4

ĉ†~k1
c†~k2
c~k3
c~k4
δ~k1+~k2

δ~k3+~k4
(3.4)

where

ε~k = −2t
D∑
d=1

cos(kda) (3.5)

is the free-particle dispersion relation in a cubic lattice with lattice spacing a and
dimension D. For small lattice spacings and small velocities, the dispersion relation
is quadratic and describes the dynamics of free particles. For vanishing interactions
all atoms are Bose-condensed in the zero momentum state and the ground state of
N atoms is given by

ΨSF =

(
ĉ†0
)N

√
N !
|0〉 = 1√

N !

 1√
L

L∑
j=1

b̂†j

N |0〉,
where |0〉 denotes the vacuum state. Thus, for vanishing interactions the atoms are
totally delocalized over the lattice, which minimizes the overall kinetic energy. This
quantum phase is called superfluid.2 In the superfluid phase the wave functions
1 [Sachdev(2001)]
2The fraction of condensed atoms is in general not the same as the fraction of superfluid atoms
(see [Yukalov(2009)]).
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of the ultracold atoms superpose coherently to a macroscopic wavefunction; in the
thermodynamic limit (i.e., N,L → ∞ at a fixed density n̄ = N/L) the superfluid
wave function can be written as a product of coherent states,

ΨSF =
L∏
i

|ψi〉, where |ψi〉 = e−|φi|2/2
∞∑
n=0

φni√
n!
|n〉i, (3.6)

where |n〉i is the Fock state with n atoms on site i. For vanishing interactions
|φi| = |〈b̂i〉| =

√
N/L =

√
n̄ and the atom number distribution in each site is

Poissonian, i.e., the probability to find n atoms in a lattice site is p(n) = n̄ne−n̄

n! .

Atomic Limit

The atomic limit is the limit of vanishing tunneling amplitudes, i.e., t = 0. The
Hamiltonian in this limit decomposes into a sum over single-site operators,

Ĥ0 = −
∑
i

µn̂i + U

2
∑
i

n̂i(n̂i − 1), (3.7)

where n̂i = b̂†i b̂i is the particle number operator on each site. Since there is no
tunneling in the lattice and the interactions are predominant the atoms do not
move and the system is a Mott insulator. The ground state of the system for t = 0
is simply a product of on-site Fock states with no correlations,

ΨMott ∝
L∏
i=1
|n̄〉i, (3.8)

where the filling of each lattice site N/L = n̄ is an integer. Here we assume that
the chemical potential is constant over the lattice and the filling is the same in each
site. In the atomic limit all atoms are localized and the compressibility

κ = ∂〈n̂〉
∂µ

vanishes for non-integer values of µ/U (see below). As we will see there are is-
lands in the phase diagram nearby t = 0 of fixed particle number and vanishing
compressibility. These islands are called Mott lobes.

To excite the ground state of the system described in Eq. (3.7) at a constant
particle number, one has to move one atom to another site, thereby producing one
site with n−1 atoms and one with n+1 atoms. For vanishing tunneling, the energy
difference between the ground state and the first excited state is

∆E = U

2
[
(n+ 1)2 + (n− 1)2 − 2n2

]
= U. (3.9)

Consequently, there is an energy gap between the ground state and the first excited
states. This energy gap characterizes the Mott-insulating phase and can be probed
by Bragg spectroscopy.1

1 [Stöferle et al.(2004),Köhl et al.(2005)]
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Finite Interactions

For ultracold atoms in optical lattices we can tune the ratio of of the interactions over
the tunneling amplitudes (U/t) over many orders of magnitude (compare Eq. (2.25)).
In this section we want to mention some methods to describe the properties of the
Bose-Hubbard model for finite ratios of U/t.

Starting from the limit of vanishing interactions, increasing interactions will grad-
ually remove atoms from the condensate even at zero temperature, a phenomenon
called quantum depletion. We can describe this process with a Bogoliubov ap-
proach.1 For small interactions we replace the annihilation and creation operators
of the zero momentum state (in which the vast majority of atoms still is) in the
Hamiltonian (3.4) by their mean values plus a fluctuation,

ĉ†0 →
√
N0 + δĉ†0 and ĉ0 →

√
N0 + δĉ0,

where N0 is the number of condensed atoms. The approximation consists of neglect-
ing higher order correlations of the deviations from the condensate (or equivalently,
interactions between the quasi-particles). This approach does predict a gapless
spectrum in the thermodynamic limit;2 it is therefore not suited to examine the
quantum phase transition. Nevertheless, it works well for small interactions and
gives the correct dispersion relation of the atom cloud when the kinetic energy of
the atoms dominates.

Corrections to the limiting case of vanishing tunneling amplitudes can be in-
cluded via the strong coupling expansion.3 This approximation examines the
corrections within the Mott-insulating phase due to weak tunneling; it is a pertur-
bative expansion of Eq. (3.2) in t/U . Increased tunneling is due to lowering the
strength of the lattice potential. In first order the ground-state wave function is
given by

Ψ(1)
Mott = ΨMott + t

U

∑
<i,j>

b̂†i b̂jΨMott, (3.10)

where < i, j > denotes the summation over adjacent lattice sites. Equation (3.10)
states that small tunneling t � U adds adjacent particle-hole excitations to the
state ΨMott of completely localized atoms. When the tunneling amplitudes increases
higher order excitations appear as well, i.e., additional particle-hole excitations and
particle-hole pairs which are separated further apart. Once the kinetic energy of the
atoms (approximately t) becomes of the order of the interaction energy U , the gain
in kinetic energy outweighs the repulsion and the atoms will be delocalized over the
whole lattice and the strong coupling expansion breaks down. The strong-coupling
expansion has been performed up to 13th order and is used as a benchmark for
other approximations. Nevertheless it is analytically and numerically quite involved
1 [Bogoliubov(1947),van Oosten et al.(2001)]
2 [Hugenholtz and Pines(1959)]
3 [Freericks and Monien(1996),Elstner and Monien(1999),Rey et al.(2005)]
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and the much simpler mean-field approach also predicts important features of the
Bose-Hubbard model.

The Gutzwiller mean-field1 approach is able to predict a quantum phase
transition for the Bose-Hubbard model. In this approach we reduce the Hamiltonian
(3.2) to a single-site Hamiltonian by neglecting correlations of neighboring deviation
operators,

b̂†i b̂j = (b̂†i − 〈b̂
†
i〉)(b̂j − 〈b̂j〉) + b̂†i〈b̂j〉+ b̂j〈b̂†i〉 − 〈b̂

†
i〉〈b̂j〉

MF−→ b̂†i〈b̂j〉+ b̂j〈b̂†i〉 − 〈b̂
†
i〉〈b̂j〉. (3.11)

The result is the zero-dimensional mean-field Hamiltonian

ĤMF =
∑
i

[
−µn̂i + U

2 n̂i(n̂i − 1)− zt(φ∗b̂i + φ b̂†i ) + zt|φ|2
]
, (3.12)

where z denotes the number of neighbors of each lattice site; for 1D lattices z = 2,
for 2D z = 4 and for 3D z = 6. The superfluid order parameter is given by

〈bj〉 = φ, (3.13)

since it is connected to its conjugate “field”2 zt by

φ = −∂〈ĤMF 〉
∂(zt) .

In the Mott phase the expectation value of b̂ (and b̂†) vanishes, since the Mott wave
function is a product of Fock-states (see Eq. (3.8)). In the superfluid phase the
expectation value of b̂ is given by 〈b̂〉 = √nsf where nsf is the number of condensed
atoms per site. The decoupling mean-field approach is equivalent to decomposing the
many-particle wave function of the lattice into a product of single site contributions,

|ΨMF 〉 =
∏
j

|ψ〉j with |ψ〉j =
∞∑
n=0

α(j)
n |n〉j,

where |n〉j denotes the Fock state of n atoms at the j-th site and
∣∣∣α(j)
n

∣∣∣2 corresponds
to the probability of having n atoms at the j-th site. For a homogeneous Bose-
Hubbard model as in Eq. (3.2) these probabilities do not depend on the site index
j. The strength of the Gutzwiller approach is that it includes the correct wave
function for the non-interacting limit Eq. (3.6) as well as for the limit of vanishing
tunneling Eq. (3.8),3 which are both product states of single-site wave functions. In
this chapter we will use a decoupling mean-field approach to model ultracold atoms
in deep optical lattices.
1 [Gutzwiller(1963),Sheshadri et al.(1993),van Oosten et al.(2001)]
2 [Huang(1987)]
3 [Zwerger(2003)]
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Before we discuss the mean-field ansatz in detail we want mention the numer-
ical methods to treat the Bose-Hubbard Hamiltonian. Quantum Monte Carlo
(QMC) simulations have been used shortly after the seminal paper of Fisher et al.
and reproduced important features of it;1 improved computational resources have
led to greatly enhanced QMC simulations.2 DMRG (density matrix renormaliza-
tion group) methods were also used highly successfully for 1D systems (and less
successfully for 2D systems).3 Both QMC and DMRG calculations are used as very
reliable tools to obtain quantitative results but also to obtain qualitative insights as
for example the importance of entanglement to reproduce the correct many body
state in 1D lattices.4

3.1.1 Gutzwiller Mean-Field Approximation

In this chapter we analyze Bose-Hubbard models via a mean field approach. The
most simple model we examine is given in Eq. (3.2) and its single-site mean-field
approximation is given in Eq. (3.12). The Hamiltonian (3.12) must be solved self-
consistently, i.e., one has to find the value of the mean-field parameter φ such that

φ = 〈ψ(0)
φ |b̂|ψ

(0)
φ 〉 ≡ 〈b̂〉φ,

where |ψ(0)
φ 〉 denotes the ground state of the Hamiltonian Eq. (3.12) for a given φ.

The self-consistent value of φ can be found in an iterative procedure,
φi+1 = 〈b̂〉φi

, (3.14)
which defines a map φi → φi+1. When φi+1 ≈ φi with some satisfying accuracy,
the value of φ is said to be self-consistent; the self-consistent values of φ are stable
fixed points of the map (3.14). These fixed points correspond to the extrema of the
energy functional

E[φ] = 〈ψ(0)
φ |Ĥ|ψ

(0)
φ 〉. (3.15)

This can be seen by analyzing the energy functional
E[φ] = 〈Ĥ0〉φ − zt

(
φ∗〈b̂〉φ + φ〈b̂†〉φ − |φ|2

)
,

where Ĥ0 = ∑
i [U/2n̂i(n̂i − 1)− µn̂i]. The extrema of this functional are determined

by demanding that
∂E[|φ|]
∂|φ|

= −zt
(
〈b̂〉φ + 〈b̂†〉φ − 2|φ|

) != 0,

1 [Batrouni et al.(1990),Scalettar et al.(1991)]
2see e.g. [Prokof’ev et al.(1998), Batrouni et al.(2002), Alet et al.(2006), Capogrosso-Sansone
et al.(2007),Trotzky et al.(2010),Trefzger and Sengupta(2011)] and references therein.

3see for example [White(1992),Rommer and Östlund(1997),Orús and Vidal(2008)] and references
therein.

4 [Pino et al.(2012)]
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Figure 3.1: Ground-state energy E[φ] of the Hamiltonian (3.2) as a function of the
order parameter φ. The green line E[φ]sf corresponds to the parameters t/U = 0.5
and µ/U = 0.5 and signals a non-vanishing order parameter φ. The blue line
E[φ]Mott corresponds to the parameters t/U = 0.1 and µ/U = 0.5 and the Mott-
insulating phase.

where we used the Hellmann-Feynman theorem1 and ∂Ĥ0/∂φ = 0. Thus, the en-
ergy functional has an extremum when 〈b̂〉φ = φ, which is equivalent to the self-
consistency equation. Therefore, each fixed point of the map (3.14) corresponds to
an extremum of E[φ]. The stable fixed points correspond to the local minima of
E[φ] given in Eq. (3.15), the unstable ones to the local maxima.2 It is therefore
equivalent to find the minima of the energy functional E[φ] or to use an iterative
procedure to find the mean field ground state of the system. In the following two
sections we will study both approaches.

Analysis of the Ground-State Energy Functional

The Hamiltonian (3.12) is so simple that it generates only two classes of energy
functionals (see Fig. 3.1). The first type of energy functionals are qualitatively
equivalent to E[φ]sf in Fig. 3.1 which has its minimum at φ 6= 0. Such energy
functionals correspond to a values of t/U and µ/U for which the system is superfluid.
The other class of energy functionals is equivalent to E[φ]Mott in Fig. 3.1; here the
only self-consistent value of φ is zero and the energy functional has only one local

1 [Cohen-Tannoudji et al.(1992)]
2 [Bruus and Flensberg(2004)]
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extremum.
For each given set of parameters {U, t, µ} we can analyze the energy functional

with a Landau procedure, i.e., we calculate E[φ] up to second order in φ,

E[φ] = const.+ β|φ|2 +O(|φ|4). (3.16)

The coefficient β depends on the parameters {U, t, µ}. When two of these parame-
ters are fixed and β changes its sign when the third one is varied, one crosses a phase
boundary. This sign change of β marks a phase transition because it signals that
the ground-state energy functional changes its character from one class to the other.
This can be seen by approximating E[φ] with a symmetric fourth-order polynomial,
which is sufficient to interpolate the energy functionals given in Fig. 3.1. The poly-
nomial f(x) = ax4+bx2+c has one extremum at x = 0 and two at x = ±

√
−2b/(4a).

The coefficient a corresponds to the fourth order coefficient in Eq. (3.16); it is al-
ways positive. The coefficient b corresponds to β and c is the constant in Eq. (3.16).
Thus, E[φ] has only one extremum for β > 0 and an additional extremum for β < 0.
It is straightforward to calculate E[φ] in second order perturbation theory. We use
the following perturbative ansatz for the Hamiltonian (3.12),

Ĥ = Ĥ(0) + φ V̂ , (3.17)

where Ĥ(0) = −µn̂+ U
2 n̂(n̂−1)+zt|φ|2, V̂ = −zt(b̂+ b̂†). The perturbation couples

states with an atom number difference of one, thus the second order shift of the
ground state energy is given by

E
(2)
0 = |〈n̄+ 1|ztb̂†|n̄〉|2

En̄ − En̄+1
+ |〈n̄− 1|ztb̂|n̄〉|2

En̄ − En̄−1
= z2t2(n̄+ 1)

µ− Un̄
+ z2t2n̄

U(n̄− 1)− µ,

where n̄ is an integer and corresponds to the filling of each lattice site. Because the
unperturbed Hamiltonian Ĥ(0) contains a term with |φ|2, the second order coefficient
of the Landau expansion is given by

β = β(µ, t, U) = E
(2)
0 + zt.

The condition that this coefficient must vanish translates into

z2t2(n̄+ 1)
µ− Un̄

+ z2t2n̄

U(n̄− 1)− µ + zt = 0,

and we obtain the phase boundary for a given chemical potential

µ/U = 1
2

2n̄− 1− zt

U
+
√

1− 2(2n̄+ 1)zt
U

+
(
zt

U

)2
 . (3.18)
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Stability Analysis Approach

Instead of examining the ground state energy functional we can also analyze the map
given in Eq. (3.14). The map changes its qualitative features for different values of
t, U and µ. The self-consistent values of the order parameter are the positions of the
stable fixed points of this map. The φ = 0 point is always a fixed point; when it is
a stable one the system is in the Mott insulating phase, when it is an unstable fixed
point the system is superfluid. Hence, due to the simple structure of the energy
functionals given in Fig. (3.1) it is sufficient to analyze if φ = 0 is a stable fixed
point or an unstable one to distinguish the two quantum phases.

We can linearize the map around the φ = 0 fixed point,

φi+1 ≈
d〈b̂〉φ
dφ

∣∣∣∣∣∣
φ=0

φi +O
(
φ2
)
≈ c φi.

The absolute value of the coefficient c determines if the fixed point is stable or not:1
If it is smaller than 1, the fixed point is stable (the Lyapunov exponent is negative),
when it is larger than 1, the fixed point is unstable (the Lyapunov exponent is
positive). To obtain the value of c we rewrite the Hamiltonian (3.12),

Ĥ = Ĥ(0) + t V̂ ,

where V̂ = −zφ(b̂+ b̂†) and Ĥ(0) = −µn̂+ U
2 n̂(n̂− 1) + zt|φ|2 (compare Eq. (3.17)).

Let |ψ0〉 be the ground state of Ĥ(0). The first order approximation for the ground
state is |ψ〉 = |ψ0〉+ t |ψ1〉 where |ψ1〉 = ∑

i 6=0
〈ψi|V̂ |ψ0〉
E0−Ei

|ψi〉. It follows that

〈b̂〉φi
≈ t〈ψ0|b̂|ψ1〉+ t〈ψ1|b̂|ψ0〉 = t〈ψ0|b+ b†|ψ1〉 = c φi

where

c = t
∑
i 6=0

z|〈ψi|b̂+ b̂†|ψ0〉|2

Ei − E0
(3.19)

It is much easier to check for each point (µ, t) if c < 1 or c > 1 than to do the com-
plete iterative procedure and actually determine the order parameter. Furthermore,
Eq. (3.19) enables us to give an analytical expression for the phase boundary in the
same way as in Eq. (3.18) since the coefficient c is linear in t. The phases boundary
is at c = 1 which leads to

tc = 1∑
i 6=0

z|〈ψi|b̂+b̂†|ψ0〉|2
Ei−E0

. (3.20)

In Fig. 3.2 we give a graphical analysis of the map (3.14). On the ordinate axes
of Fig. 3.2 the change of the order parameter

δφ = φi+1

φi

1 [Abraham and Shaw(1992)]
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Figure 3.2: Graphical analysis of the map φi → φi+1 given in Eq. (3.14): δφ denotes
φi+1/φi. The parameters are the same as in Fig. 3.1: In (a) µ = 0.5 and t/U = 0.1
(compare E[φ]Mott) and in (b) µ = 0.5 and t/U = 0.5 (compare E[φ]sf). The red
dots denote the stable fixed points of the maps and correspond to the local minima
in Fig. 3.1.

is plotted. If δφ is larger than one, the order parameter increases during an iteration
starting with the given φ, if δφ < 0 the order parameter decreases. All values of φ
which correspond to δφ = 1 are to fixed points. When the functions δφ cross the
δφ = 1 line with a positive slope the crossing denotes an unstable fixed point, when
the slope is negative the crossing corresponds to a stable fixed point (red dots in
Fig. 3.2). In Fig. 3.2a we choose the same parameters as in E[φ]Mott in Fig. 3.1 and
in Fig. 3.2b the same parameters as in E[φ]sf in Fig. 3.1. In Fig. 3.2a there is a
stable fixed point at φ = 0, because φ cannot be smaller than zero (by definition)
and δφ is smaller than one at this point, thus any order parameter above zero will
be driven to zero. In Fig. 3.2b the point φ = 0 is above δφ = 1 and the stable fixed
point is at φ = 1.02.

The Phase Diagram

The phase diagram calculated with the Gutzwiller mean-field procedure is plotted in
Fig. 3.3. The calculations are presented in Appendix A.1. The areas of fixed integer
filling build up Mott lobes (light blue regions in Fig. 3.3). For any noninteger
filling the ground state of the homogeneous Bose-Hubbard model given in Eq. (3.2)
contains a superfluid fraction even for very small tunneling amplitudes. This can
be seen by considering a filling which is slightly larger than one, 〈n̂〉 = 1 + ε (see
red line Fig. 3.3). At this filling the atoms are delocalized over the whole lattice
for large tunneling amplitudes and the situation is hardly different from the case of
integer filing. However, for small tunneling the red line in Fig. 3.3 remains in the
superfluid region.

In the non-interacting limit all atoms condense in the ~k = 0 quasi-momentum
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Figure 3.3: Mean-field phase diagram for the Bose-Hubbard model given in Eq. (3.2).
The Mott-insulating phases (MI) are painted in light blue. The surrounding param-
eter region is superfluid (SF). The grey dashed lines depict lines of constant integer
density which hit the Mott lobes at their tip. The red line denotes a contour of con-
stant density slightly above 1, i.e. 〈n̂〉 = 1 + ε. The green dashed lines display the
parameter curves for different strengths of the optical lattice when the surrounding
harmonic trap and the particle density is chosen such that µ/U = 3.5 in the center
of the trap (see Fig. 3.4).

state with every particle having an energy −zt (compare Eq. (3.5)). If the chemical
potential is smaller than −zt, the system is empty since it costs energy to add a
particle. For fixed on-site interaction U and chemical potential µ > −zt the density
in in the lattice goes to infinity for t → ∞ because every additional atom reduces
the energy of the system; thus, the contours with fixed particle number in Fig. 3.3
have negative slope once t is large enough.1 For large t � U we can deduce from
the Bogoliubov theory that the contours follow the straight lines

µ = Un0 − zt, (3.21)

where n0 is the superfluid density.2 We can derive Eq. (3.21) from physical argu-
ments since the chemical potential is the energy needed to add one particle to the
system. If there are n0 atoms at each site (for large t the number of condensed atoms
is equal to the total number of atoms) the energy of the system increases by Un0
when one particle is added. In the same time there is an energy decrease per added
1 [Elstner and Monien(1999)]
2 [van Oosten et al.(2001)]
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Figure 3.4: Atomic density inside a harmonic trap according to the Bose-Hubbard
Hamiltonian (3.2) in mean-field approximation. The four “weddingcakes” corre-
spond to four different lattice strengths (a) t = 0, (b) t/U = 0.6, (c) t/U = 1.2 and
(d) t/U = 1.8 (compare green dashed lines in Fig. 3.3).

particle since the kinetic energy of each particle is negative due to the hopping to z
neighbors.

The contours corresponding to a constant integer filling hit the Mott lobes at
their tip (see dashed grey lines in Fig. 3.3); this must be the case because otherwise
the compressibility ∂n

∂µ
would be negative around the tip breaking a fundamental

thermodynamic law. The transitions at the tips are therefore different from any
other point on the lobe boundary. At the tips the density remains commensurate
during the quantum phase transition whereas elsewhere a commensurately filled
Mott phase changes into an incommensurate filled superfluid phase. Fisher et al1
developed a scaling theory for the tips and showed that the phase transition there are
in the universality class of the (d+1)-dimensional XY model, whereas the transitions
at the other points are described by mean-field critical exponents in any dimension.

The mean-field approximation is exact in infinite dimensions. For a 2D and
1 [Fisher et al.(1989)]
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3D lattice the mean-field approach gives a very good approximation for the phase
diagram. However, it fails to generate some important features of the phase diagram
for 1D systems. At the tip of the Mott lobes the 1D system does not show a
phase transition but a Kosterlitz-Thouless transition1 (like the 2D XY model, see
above). This is because the the energy gap separating the Mott-insulating phase
from excitations closes exponentially slowly. Since the width of the Mott lobes along
the µ-direction is equal to the energy gap the Mott lobes change their shape in 1D:
They are no longer round but sharp. Furthermore the Mott lobes show a reentrance
behavior.2

In a weak harmonic trap of the type given in Eq. (2.5) the chemical potential is
not constant over the whole lattice. Instead the slowly varying external potential
causes a spatially varying chemical potential

µ(r) = µ(0)− ε(r), (3.22)

where r denotes the distance from the trap center and we set ε(0) = 0. The atoms
occupy the region around the trap center up to the distance where µ(0) = ε(r). In
this way all the different quantum phases which exist for given t/U below µ(0) are
present simultaneously, although at different positions of the trap. In Fig. 3.4 we
show the spatial distribution of the atomic density for four different lattice strengths
t/U ; in each plot we choose µ(0) = 3.5. The realized chemical potentials are drawn
in Fig. 3.3 as green dashed lines. In Fig. 3.4a the tunneling amplitude is chosen
to be zero and the Mott plateaus corresponding to n = 4, n = 3, n = 2 and
n = 1 are clearly visible. In Fig. 3.4b the Mott plateau n = 4 is “melting”; in
Fig. 3.4c the chemical potential curve in Fig. 3.3 cuts only the n = 1 Mott lobe and
correspondingly only the n = 1 Mott plateau is clearly visible. In Fig. 3.4d there are
no Mott plateaus anymore and the density distribution reflects already the shape
of the harmonic trap; thus, we enter the regime where Eq. (3.21) is valid and the
atomic density is equal to

n = µ(r) + zt

U
,

where µ(r) is given by Eq. (3.22).

Detection of the Mott-Superfluid Phase Transitions

In 2002 Greiner et al.3 experimentally demonstrated the Mott-superfluid phase tran-
sition (see Fig. 3.5). In their experiments time-of-flight measurements were used.
In order to understand how time-of-flight experiments provide a direct evidence
of the Mott-superfluid transition we examine the idealized situation of a lattice

1 [Kosterlitz and Thouless(1973)]
2 [Kashurnikov et al.(1996), Kühner and Monien(1998), Elstner and Monien(1999), Kühner
et al.(2000),Pino et al.(2012)]

3 [Greiner et al.(2002)a]
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Figure 3.5: Density distributions of ultracold atoms released from an optical lattice
after time-of-flight expansion as measured by Greiner et al.(2002). The different
pictures correspond to different lattice depths V0 (V0 is the amplitude of the spatially
varying optical potential and is given in units of the recoil energy Er, compare
Sec. 2.3); (a) V0 = 0, (b) V0 = 3Er, (c) V0 = 7Er, (d) V0 = 10Er, (e) V0 = 13Er,
(f) V0 = 14Er, (g) V0 = 16Er and (h) V0 = 20Er (Taken from Reference [Greiner
et al.(2002)a]).

without a harmonic trap. In these experiments the spatial distribution of an atom
cloud after some time of flight is probed: This distribution gives evidence of the
momentum distribution prior to trap release, 〈n̂(~x)〉t ≈

(
m
ht

)3
〈Φ|n̂~k(~x)|Φ〉 where

~k(~x) = m~x/~t relates the in situ momentum ~~k to the final observation position ~x
(compare Eq. (2.51)). The momentum distribution can be expressed in terms of the
exact one-particle density matrix ρ1(~x) = 〈b̂†~xb̂0〉,

〈Φ|n~k(~x)|Φ〉 = n |w(~k(~x))|2
∑
~x

ei
~k·~x〈b̂†~xb̂0〉, (3.23)

where the summation is over all lattice vectors which are integer multiples of the
three primitive vectors of the lattice, Φ is the many-body state of the atom cloud
in the lattice prior to trap release, n is the density and w(~k) the Fourier transform
of the Wannier function w0(~x).

In the superfluid regime the one-particle density matrix converges to a finite
value,

lim
|~x|→∞

〈b̂†~xb̂0〉 = n0

n
,

which defines the superfluid density n0. For vanishing interactions, i.e. U � t,
all atoms become superfluid and n0 = n. The existence of this off-diagonal long-
range order in dilute atomic gases has been verified by experiments of Bloch et
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al. in 2000.1 When 〈b̂†~xb̂0〉 takes a constant value we see from Eq. (3.23) that
the momentum distribution has peaks at reciprocal lattice vectors ~q = ~G, where
~G · ~x = 2π. These peaks in the momentum distribution are observable as peaks in
the spatial distribution (see Fig. 3.5). We can also say that within the superfluid
phase the wave packets from different lattice sites interfere coherently an lead to
diffraction peaks in the spatial resolution. In the strongly interacting limit all phase
coherences are lost, the one-particle density matrix decreases exponentially fast and
the spatial resolution reflects only the Fourier transform of the Wannier functions
(see Fig. 3.5h).

In conclusion, time-of-flight measurements give a possibility to determine the
one-particle density matrix; the interference pattern of the spatial resolution is di-
rectly related to the existence of off-diagonal long-range order in 〈b̂†i b̂j〉. To compare
the measured momentum distribution with the theory we need to take the finite size
of the atom cloud and the co-existence of several Mott and superfluid phases into
account.2

A second possibility to detect the Mott-superfluid transition is to probe if there
is a finite energy gap separating the ground state from excited states. Deep in the
Mott phase this gap is U (compare Eq. (3.9)). For larger tunneling amplitudes the
gap closes, which has been experimentally detected.3 Furthermore in situ imaging
of the Mott-superfluid phase transition has become possible.4

1 [Bloch et al.(2000)]
2 [Kashurnikov et al.(2002),Roth and Burnett(2003)]
3 [Stöferle et al.(2004)]
4 [Gemelke et al.(2009),Hung et al.(2010),Sherson et al.(2010),Bakr et al.(2010)]
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3.2 Ultracold Spin-1 Atoms in Optical Lattices

In this section we examine spin-1 bosons in optical lattices in mean-field approx-
imation. Ultracold spin-1 bosons in deep optical lattices are well described by a
Bose-Hubbard model given Eq. (2.41). We transform this Hamiltonian to a single-
site mean-field Hamiltonian similar to Eq. (3.12) using Eq. (3.11),

ĤMF = −µn̂+ U0

2 n̂(n̂− 1) + U2

2

(
~̂S2 − 2n̂

)
− zt

∑
σ

(φ∗σ b̂σ + φσ b̂
†
σ) + zt|~φ|2 ,

(3.24)
where we introduced

~φ =

 φ1
φ0
φ−1

 (3.25)

with φσ ≡ 〈b̂σ〉 (compare Eq. (2.36)); thus, the order parameter is in the case of spin-
1 atoms no longer a simple scalar but a vector. The chemical potential is given by
µ, the hopping matrix element is t and n̂ = ∑

σ b̂
†
σ b̂σi is the atom number operator.

Because the tunneling term in Eq. (2.41) includes only spin symmetric tunneling
the mth-component of the order parameter couples only to the mth-component of
the annihilation and creation operators. The on-site interaction is described by a
spin-independent term with U0 and a spin-dependent one parametrized by U2.

The term proportional to U2 describes spin-dependent contact interactions; it
penalizes non-zero spin configurations for antiferromagnetic atoms (e.g. 23Na) while
it favors high-spin configurations in the case of ferromagnetic interactions (e.g. 87Rb).
Whereas the ratio t/U0 can be controlled with the intensity of the laser beams
(compare Eq. (2.44)), the ratio U2/U0 depends on the spin-2 and spin-0 scattering
lengths of the spin-1 atoms (compare Eq. (2.45)).

Due to the spinor nature of the order parameter additional properties of the
superfluid phases arise. For antiferromagnetic interactions (U2 > 0) the bosons
form a polar superfluid,1 i.e. the spin-dependent interaction energy is minimized
by 〈 ~̂S〉 = 0. There are two different classes of polar order parameters,2 one is the
transverse polar state  φ1

φ0
φ−1

 =
√
nsf

1√
2

1
0
1

 (3.26)

(compare Eq. (2.38)) the other one the longitudinal polar state φ1
φ0
φ−1

 =
√
nsf

0
1
0

 , (3.27)

1 [Ho(1998)]
2 [Pai et al.(2008),Stamper-Kurn and Ueda(2012)]

53



CHAPTER 3. QUANTUM PHASE TRANSITIONS IN THE BHM

(compare Eq. (2.39)) where
√
nsf is the number of condensed atoms per site. In the

ferromagnetic case (U2 < 0) there is only one superfluid order parameter, which is
given by  φ1

φ0
φ−1

 =
√
nsf

1
2

 1√
2

1

 , (3.28)

(compare Eq. (2.37)).
Note that due to the symmetries discussed in Sec. 2.5 (which determine the

superfluid order parameter given in Eqs. (3.27) and (3.26)) φ1 is always equal to
φ−1, when one uses the gauge freedom in the absence of vortexes and chooses the
order parameter real.

In Fig. 3.6 we plot the energy functional E[~φ] as a function of the order parameter
~φ. Because φ1 = φ−1 we use φ1 and φ0 as x- and y-axes, respectively. In Fig. 3.6a
we assume antiferromagnetic interactions. The parameters are chosen such that
the system is in the superfluid regime (t/U0 = 0.25, µ/U0 = 0.7 and U2/U0 =
0.04). There are two minima clearly visible: One corresponding to a transverse
polar superfluid at ~φ = {0.6208, 0, 0.6208}T and the other one corresponding to
a longitudinal polar superfluid at ~φ = {0, 0.8782, 0}T . Because superfluid density
is the same in each minimum the two positions are connected via 0.8782 ≈

√
2 ·

0.6208 (compare Eqs. (3.26) and (3.27)). The two minima at a non-vanishing order
parameter are degenerate because both correspond to 〈 ~̂S〉 = 0 and therefore suffer
the same spin-dependent energy shift of the on-site interaction. Due to the special
form of the two superfluid phases given in Eqs. (3.26) and (3.27) the superfluid
minima are always on the φ1 = 0 and the φ0 = 0 axes, respectively.

In Fig. 3.6b the spin interactions are ferromagnetic and the parameters (t/U0 =
0.18, µ/U0 = 0.7 and U2/U0 = −0.04) are chosen such that the system is superfluid.
In accordance with Eq. (3.28) there is only one minimum at ~φ = {0.3829, 0.5413,
0.3829}T , where indeed φ1 ·

√
2 = φ0 and φ1 = φ−1.

In Fig. 3.6c we set the spin-dependent interactions to zero (U2/U0 = 0). The
energy functional is rotationally symmetric around φ1 = φ0 = 0; thus, the spin-
dependent interaction changes the symmetry of the energy functional E[~φ] in the
φ0-φ1 plane. In Fig. 3.6d we choose the parameters such that the system is Mott
insulating (t/U0 = 0.08, µ/U0 = 0.5 and U2/U0 = −0.04).
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Figure 3.6: Ground-state energy E[~φ] of the Hamiltonian (3.2) as a function of
the order parameter ~φ. (a) E[~φ] for antiferromagnetic spin interactions in the su-
perfluid regime (t/U0 = 0.25, µ/U0 = 0.7 and U2/U0 = 0.04). There are two de-
generate minima at ~φ = {0.6208, 0, 0.6208}T and ~φ = {0, 0.8782, 0}T . (b) E[~φ]
for ferromagnetic interactions in the superfluid regime with one minimum at ~φ =
{0.3829, 0.5413, 0.3829}T (t/U0 = 0.18, µ/U0 = 0.7 and U2/U0 = −0.04). (c) Super-
fluid phase for vanishing spin-dependent interactions and (t/U0 = 0.08, µ/U0 = 0.5
and U2/U0 = −0) (d) E[~φ] in the Mott-insulating regime (t/U0 = 0.08, µ/U0 = 0.5
and U2/U0 = −0.04) with one minimum at ~φ = {0, 0, 0}T .
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First Order Quantum Phase Transitions

The energy functionals in Fig 3.6 are more complicated and have a richer structure
than the energy functionals for spinless atoms shown in Fig. 3.1 but they do not show
qualitatively different features: They correspond either to superfluid or to Mott-
insulating phases. In addition to those shown in Fig. 3.6, two qualitatively different
classes of energy functionals arise in certain parameter regimes for antiferromagnetic
spin interactions (U2 > 0), see Fig. 3.7. For these figures, we plot only the cuts of
E[~φ] at the φ0 = 0 axes and the φ1 = 0 axes because all local minima of the full
energy functional are on these axes (see Eqs. (3.26) and (3.27) and compare Fig. 3.6).
The ground-state energy functionals in Fig. 3.7 display additional local minima. For
each of these functionals the global minimum determines the stable quantum phase
of the system; the other one at a higher energy corresponds to a meta-stable phase.
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Figure 3.7: Energy functionals E[~φ] for (a) t/U0 = 0.2, µ/U0 = 1.4 and U2/U0 = 0.04
and (b) t/U0 = 0.185, µ/U0 = 1.4 and U2/U0 = 0.04. The blue lines E[φ1] denote
the energy functionals with φ0 = 0 and the green lines E[φ0] the energy functionals
for φ1 = φ−1 = 0. The energy functionals in (a) signal meta-stable Mott insulating
phases and the energy functionals in (b) metastable superfluid phases.

In Fig. 3.7a there is one local minimum of E[~φ] at ~φ = ~0 and two energetically
lower minima at ~φ 6= ~0; thus, the stable quantum phase in this case is superfluid but
there exists also a meta-stable Mott-insulating quantum phase. In Fig. 3.7b there
exists beside a stable Mott phase a meta-stable superfluid one. Metastable phases
cause first order phase transition;1 to see what this means we plot in Fig. 3.8 the
order parameter φ0 as a function of the tunneling amplitude t/U . In Fig. 3.8a the
order parameter itself changes discontinuously its value at tc/U and not only its

1 [Huang(1987)]
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Figure 3.8: Second and first order phase transitions: Superfluid order parameter
φ0 = 〈b̂0〉 as a function of the tunneling amplitude t for fixed on-site interaction U
and antiferromagnetic spin interactions U2/U0 = 0.04. In (a) the chemical potential
is µ/U = 1.4 and the phase transition is a first order one; in (b) the chemical
potential is µ/U = 0.4 and the phase transition is of second order.

first derivative as in Fig. 3.8b. Thus, the system undergoes in Fig. 3.8a a first order
phase transition and in Fig. 3.8b a second order transition.

In conclusion, the Bose-Hubbard model for spin-1 atoms with antiferromagnetic
interactions gives rise to metastable quantum phases and therefore to first-order
phase transitions and hysteretic behavior of the system.1 The additional local min-
imum for certain parameter regimes are a result of a “spin barrier”: For a vanish-
ing order parameter the spin fluctuations and therefore the spin-dependent energy
penalty in Eq. (3.24) are minimal. An increased order parameter leads to higher
spin configurations and an increased ground state energy, hence the barrier at a
small order parameter. In the ferromagnetic case, the spin-dependent interaction in
Eq. (3.24) has the same sign as the tunneling term and therefore does not create
metastable quantum phases.

Analysis of the Ground-State Energy Functional

Next we analyze the ground-state energy functionals of the Hamiltonanian (3.24)
with a Landau procedure. The qualitative features of the functionals given in Fig. 3.7
can be described by even sixth order polynomials,

E[φ] = 1
2aφ

2 + 1
4bφ

4 + 1
6cφ

6, (3.29)

1 [Krutitsky et al.(2005),Kimura et al.(2005)]

57



CHAPTER 3. QUANTUM PHASE TRANSITIONS IN THE BHM

Figure 3.9: Graphical analysis of the Landau ground-state energy fucntional given
in Eq. (3.29). The coefficient of φ6 is c; it is always positive. The coefficient of φ2 is
a and of φ4 is b; these coefficients can be negative or positive. The shaded parameter
region is superfluid, the other one Mott insulating (see text for details). Along the
line of second order phase transitions the minima of E[φ] are degenerate; along the
line of first order phase transitions the energy functional has only one minimum.
(after [Huang(1987)])

where we set E[0] = 0. For simplicity we consider a scalar order parameter; φ can
be either φ1, φ−1 or φ0. The sixth order coefficient is always positive, i.e. c > 0,
whereas a and b can be negative as well as positive. The derivatives of E[φ] are
given by

E ′[φ] = aφ+ bφ3 + cφ5 (3.30)
E ′′[φ] = a+ 3bφ2 + 5cφ4 . (3.31)

The the function (3.29) has got maximally five extrema; the extremum at φ = 0 is
a minimum according to Eq. (3.31) when a > 0. Other possible minima of (3.29)
are at

φsf = ±

√√√√√ b2

4c2 −
a

c
− b

2c. (3.32)
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Figure 3.10: The shaded regions denote areas where the ground-state energy func-
tional E[~φ] has two local minima. In these regions the Mott-superfluid phase tran-
sition is of first order, in the the remaining region it is second order. (Plot appeared
first in Reference [Krutitsky et al.(2005)].)

The other extrema are (if they exist) maxima. In Fig. 3.9 we give a graphical
overview over the qualitative features of the functional (3.29). We discriminate
between the four possible choices for the signs of {a, b} and included for each one
a sketch of the terms containing a, b and c as well as the sum E[φ] of these. For
a < 0 (the left side of Fig. 3.9) the functional has a maximum at φ = 0 and the
Mott insulating is not stable, thus the system is superfluid and the value of the
order parameter is given by the absolute value of Eq. (3.32). When both a and b
are positive (top right corner of Fig. 3.9) the functional has a minimum at φ = 0
and only there because the Eq. (3.32) returns an imaginary number. The region
a > 0 and b < 0 is special (bottom right corner of Fig. 3.9): Here the functional has
three minima. This quadrant decomposes into two regions, one where the minimum
at φ = 0 is the global minimum and one where the minimum given by Eq. (3.32)
determines the stable quantum phase.

Thus, there are two qualitatively different ways to cross from the superfluid to
the Mott insulating region. When b > 0 the energy functional has always only one
local minimum and a = 0 marks a line of second order phase transitions (compare
Fig. 3.8b). For b < 0 the energy functional has for a < 0 only one local minimum but
at a = 0 a second local minimum emerges. For a certain range of a the minimum at
a non-vanishing order parameter is still the global minimum; but at a certain point
this changes and the order parameter jumps to zero signaling a first order phase
transition (compare Fig. 3.8a). The point where the line of first and second order
transitions meet and thus the minima coincide is called tricritical point.1 Along
the line of first order phase transitions the minima of the energy functional are
degenerate. We can calculate this line from

E[φsf ] = 0 , (3.33)
1 [Huang(1987)]
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Figure 3.11: Plot of the map ~φi → ~φi+1: δφ1 denotes (φ1)i+1/(φ1)i and δφ0 denotes
(φ0)i+1/(φ0)i. In (a) the parameters are chosen such that the point lies within
the region of three stable fixed points (the red dots denote the stable fixed points,
µ = 1.4, t/U0 = 0.2 and U2/U0 = 0.04). In (b) the point ~φ = 0 is above the
δφm = 1 line and is therefore no longer a stable fixed point (µ = 1.4, t/U0 = 0.25
and U2/U0 = 0.04).

since the minimum at φ = 0 is at E[0] = 0. This leads to

b = −4
√
ca

3 ,

as the line of first order phase transitions, which we indicated in Fig. 3.9. We can now
calculate the fourth order expansion coefficient of the ground-state energy functional
of Eq. (3.24) and determine its sign.1 In Fig. 3.10 the regions with negative fourth
order coefficients and therefore first order phase transitions are displayed.

The energy functionals in Fig. 3.7 have two local minima and an iterative pro-
cedure similar to the one described in Sec. 3.1.1 does not lead to an unique value of
the order parameter but depends on the starting point. When the starting point of
the iterative procedure is chosen close to zero, one finds the minimum at ~φ = ~0. If
one starts at a value beyond the maximum separating the two minima one obtains
the second minimum corresponding to a superfluid phase. Thus, for spin-1 atoms
it is no longer sufficient to determine the stability of the ~φ = ~0 fixed point of the
iterative map as it is for spinless bosons (compare Sec. 3.1.1). To see this more
clearly we examine the map defined by the iterative procedure

~φi+1 = 〈~̂b〉~φ, (3.34)

where 〈·〉~φ denotes the expectation value in the ground state of Hamiltonian (3.24)

for a given ~φ (compare Eq. (3.14)) and ~̂b = (b̂1, b̂0, b̂−1)T . In Fig. 3.11 we give a
1 [Krutitsky et al.(2005)]
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graphical analysis of the map (3.34). On the ordinate axes of Fig. 3.11 the changes
of the components of the order parameter

δφm = (φm)i+1

(φm)i

are plotted. If δφm is larger than one, the component of the order parameter in-
creases during an iteration starting with the given ~φ, if δφm < 0 the order parameter
decreases. All values of ~φ which correspond to δφm = 1 correspond to fixed points.
When the functions δφm cross the δφm = 1 line with a positive slope the crossing
denotes an unstable fixed point, when the slope is negative the crossing corresponds
to a stable fixed point (red dots in Fig. 3.11).1 There is an additional stable fixed
point at ~φ = 0 in Fig. 3.11a because ~φ cannot be smaller than zero by definition and
δ~φ is smaller than one at this point. In Fig. 3.11b the point ~φ = 0 is above δ~φ = 1,
thus, ~φ increases for any value of ~φ close to zero. The analysis of the map (3.34) is
well suited to determine all stable fixed points of the iterative procedure but does
not answer the question which of the fixed points corresponds to meta-stable or
stable quantum phases. This difference can only be sorted out in an analysis of the
ground-state energy functional E[~φ].

The Phase Diagram

The mean-field phase diagram of antiferromagnetic spin-1 atoms in optical lattices is
shown in Fig. 3.12. The familiar Mott lobes of the spinless case given in Fig. 3.3 are
significantly changed.2 The spin-dependent interactions penalize high-spin configu-
rations in the antiferromagnetic case. This leads to an enlargement of the Mott lobes
corresponding to an even number of bosons because in this case the bosons can form
spin singlets and thus minimize their repulsive interactions. On the contrary, Mott
lobes carrying an odd number of bosons are decreased by antiferromagnetic interac-
tions and disappear altogether for U2 > 0.5 U0.3 When a Mott lobe corresponds to
an odd number of bosons, the spin-1 bosons couple to a total spin 1 and the system
is called nematic. Thus, the ground state in the n = 1 Mott lobe is a superposition
of the three degenerate states |n = 1, S = 1, Sz = 1〉, |1, 1, 0〉 and |1, 1,−1〉, where
S denotes the total spin per lattice site. The phase transition between the n = 1
Mott lobe and the superfluid phase is always second order (compare Fig. 3.10). The
ground state in the Mott insulating phase with n = 2 contains is the state |2, 0, 0〉
and the quantum phase is therefore called singlet phase. This is a result of the
mean-field approximation; however, if one takes into account the influence of higher
order correlations (for example by examining a spin Hamiltonian for very weak tun-

1 [Abraham and Shaw(1992)]
2 [Tsuchiya et al.(2004),Krutitsky and Graham(2004),Kimura et al.(2005),Krutitsky et al.(2005)]
3 [Demler and Zhou(2002)]
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Figure 3.12: Phase boundary of the spin-1 Bose-Hubbard model with U2/U0 = 0.04.
MI denotes the Mott insulating phase, MM a metastable Mott insulating phase, SF
the superfluid phase and MSF a metastable superfluid phase.

neling1) one obtains different Mott insulating phases; the Mott lobes carrying an
even number of atoms decompose into singlet and nematic regimes separated by first
order phase transitions. These transitions happen when the tunneling ampliutudes
are high enough to break the rotational symmetry, thus, there is an admixture of
〈~S〉 6= 0 in the ground state.

Within the mean-field theory, the n = 3 Mott lobe is nematic again and contains
the three states |3, 1, 1〉, |3, 1, 0〉 and |3, 1,−1〉. When a Mott lobe corresponds to
an even number of atoms the phase transition is first order for values U2/U0 < 0.188
(compare Fig. 3.10 and Ref. Krutitsky et al.(2005)2). For Mott lobes containing an
odd number of atoms and at least three atoms the phase transition is second order
if U2/U0 > 0.012 (compare Fig. 3.10 and Ref. Krutitsky et al.(2005)). Around the
first-order phase transitions metastable phases exist.

There are several studies of the phase diagram of spin-1 atom in optical lattices
using other tools than the mean-field ansatz, in the following we mention a few of
them. For a complete overview see Lewenstein et al.(2012).3 In 2002 E. Demler
and F. Zhou4 studied fundamental properties of the system like symmetry breaking
and fractionalization. Demler et al. discuss in a qualitative way the phase diagram
and point out, that for strong antiferromagnetic interactions the insulating as well

1 [Imambekov et al.(2003)]
2 [Krutitsky et al.(2005)]
3 [Lewenstein et al.(2012)]
4 [Demler and Zhou(2002)]
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Figure 3.13: Magnetic field dependence of the ground-state energy functional E[~φ]
for µ/U0 = 1.4, t/U0 = 0.2 and U2/U0 = 0.04 (compare Fig. 3.7a). In (a) the
parameter of the quadratic Zeeman shift is q = 0.015 and in (b) q = 0.05.

as the superfluid regime is dominated by pairs of singlets. In the superfluid phase
singlet-pairs of atoms condense and in the Mott insulating phase there are only even
fillings allowed. In 2003 A. Imambekov, E, Demler and M. Lukin1 derived a spin
Hamiltonian by applying a weak tunneling approximation of Eq. (2.41). They have
shown that in the Mott insulating phase the system does not decompose into an
array of isolated, non-interacting sites but higher order tunneling events lead to an
spin ordering in the lattice. This bilinear-biquadratic spin Hamiltonian has been a
topic of intensive research.2 The 1D case has been examined by Rizzi et al.3 with
the help of DMRG calculations. Batrouni et al.4 have used quantum Monte Carlo
simulations to determine the phase diagram of 1D systems.

Effects of Magnetic Fields

The impact of magnetic fields on spinor condensates is discussed in Sec. 2.5. The
linear Zeeman shift can in general be gauged away and only the quadratic Zeeman
shift is relevant. We can include the quadratic Zeeman shift in our model by adding

1 [Imambekov et al.(2003)]
2see [García-Ripoll et al.(2004),Chung and Yip(2009),Rodriguez et al.(2011),Leggio et al.(2011),
Lewenstein et al.(2012)] and references therein.

3 [Rizzi et al.(2005)]
4 [Batrouni et al.(2009)]
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Figure 3.14: Plot of the map ~φi → ~φi+1: δφ1 denotes (φ1)i+1/(φ1)i and δφ0 denotes
(φ0)i+1/(φ0)i. The parameters µ = 1.4, t/U0 = 0.2 and U2/U0 = 0.04 are the same
as in Fig. 3.7 and Fig. 3.13. The red dots denote the stable fixed points. In (a) the
parameter of the quadratic Zeeman shift is q = 0.015 and in (b) q = 0.05.

an energy shift given in Eq. (2.49) to the the mean-field Hamiltonian (3.24),

ĤQZ
MF = −µn̂+ U0

2 n̂(n̂− 1) + U2

2

(
~̂S2 − 2n̂

)
− zt

∑
σ

(φ∗σ b̂σ + φσ b̂
†
σ) + zt|~φ|2

+ q
∑
σ

m2
σn̂σ, (3.35)

where q > 0 because we are examining the spin-1 manifold of alkali atoms (compare
Fig. 2.7). The symmetries of the ground-state energy functional are fundamentally
changed due to the quadratic Zeeman shift. The notion that both minima for an-
tiferromagnetic interactions are degenerate is no longer true (see Fig. 3.13). The
quadratic Zeeman shift also drives phase transitions: In Fig. 3.13 the on-site inter-
actions U0 and U2 and the tunneling amplitude t is the same as in Fig. 3.7a but the
magnetic field parameter q is chosen to be q = 0.015 in Fig. 3.13a and q = 0.05 in
Fig. 3.13b. In Fig. 3.13a the magnetic field increases the functional E[φ1] such that
the superfluid minimum corresponds now to a metastable phase and E[φ0] does not
show a metastable Mott-insulating phase anymore. In Fig. 3.13b the magnetic field
is stronger than in Fig. 3.13a and the minimum of E[φ1] at a non-vanishing order
parameter disappears altogether leaving only a metastable Mott-insulating phase
corresponding to E[φ1] and a stable superfluid phase corresponding to E[φ0]. We
can compare these energy functionals with the graphical analysis of the map (3.34)
which is given in Fig. 3.14. There are three stable fixed points in Fig. 3.14a (denoted
by red dots) which correspond to the three local minima in Fig. 3.13a. In Fig. 3.14b
there are two stable fixed points corresponding to the two minima in Fig. 3.13b.
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3.3 Spinless Bosons in Superlattices

Adapted from Phys. Rev. A 86, 023624 (2012).

In this section we want to examine ultracold bosonic atoms in optical period-2
superlattices.1 The unit cell of a period-2 superlattice is a double-well potential2
(compare Eq. (2.10) and Fig. 2.3). If one neglects tunneling between neighboring
unit cells the atoms in each unit cell can be described by the Hamiltonian3

Ĥ0 = U

2
∑

k=L,R
n̂k(n̂k − 1)− ti(L̂†R̂ + h.c.) + ε (n̂L − n̂R)− µ (n̂L + n̂R) , (3.36)

where L̂ (L̂†) and R̂ (R̂†) are bosonic annihilation (creation) operators for atoms
in the left or right well, n̂L (n̂R) is the atom number operator at the left (right)
site. U is the on-site interaction and ti is the tunneling strength between the sites of
the double well. The energy offset between the sites is given by ε and the chemical
potential is µ (see Fig. 3.15). The parameters can be tuned by changing the intensity
and the phase difference between the counter-propagating laser beams; it is possible
to tune the system from the regime of strong tunneling (ti � U) to the regime of
weak tunneling (ti � U).

The Hamiltonian of an array of connected double-well potentials includes tun-
neling between neighboring unit cells. We choose the configuration as shown in
Fig. 3.16 where there are in general three different inter-well tunneling amplitudes,

Figure 3.15: Potential landscape of an optical superlattice and parameters of the
Bose-Hubbard model (3.38) for spinless ultracold atoms in optical superlattices.
The dots depict the atoms in the superlattice potential VSL(x) given in Eq. (2.10),
ε is the energy offset between the two sides of the double well, ti (te) is the intra-
(inter-)well tunneling amplitude and U is the strength of the on-site interaction.

1 [Buonsante et al.(2005),Chen et al.(2010)]
2 [Anderlini et al.(2007),Fölling et al.(2007),Lee et al.(2007),Trotzky et al.(2008)]
3 [Jaksch et al.(1998),Vaucher et al.(2008)]
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Figure 3.16: Sketch of the two-dimensional period-2 superlattice. The filled circles
depict the left wells of each unit cell, the open ones the right wells. The tunneling
amplitude within the unit cells is ti. There are three different tunneling processes
between neighboring unit cells, t(1)

e , t(2)
e , and t(3)

e .

t(1)
e , t(2)

e and t(3)
e . It turns out that our results depend only weakly on the differences

among the inter-well tunneling amplitudes. This is why we will assume

te = t(1)
e = t(2)

e = t(3)
e .

When we focus on one double well and the the tunneling between this one and
the neighboring ones we obtain the Hamiltonian

Ĥ = Ĥ0 − te(L̂†0R̂1 + L̂†0L̂2 + R̂†0R̂2 + R̂†0L̂3 + L̂†0L̂4 + R̂†0R̂4 + h.c.). (3.37)

The operator Ĥ0 is given in Eq. (3.36) and contains the information about the
internal degrees of freedom of the central unit cell in Fig. 3.16. The subscript {0}
denotes operators acting in the central unit cell and the indexes {1, 2, 3, 4} refer to
neighboring double wells according to Fig. 3.16.

To reduce the Hamiltonian (3.37) to a single double-well Hamiltonian we split
the operators into their mean values and deviations from this. Next we apply a
mean-field approximation, i.e., we neglect the correlations of the deviations between
neighboring double wells (compare Eq. (3.11)),

L̂†0R̂N = (L̂†0 − 〈L̂†0〉)(R̂N − 〈R̂N〉) + L̂†0〈R̂N〉+ R̂N〈L̂†0〉 − 〈L̂
†
0〉〈R̂N〉

MF−→ L̂†0〈R̂N〉+ R̂N〈L̂†0〉 − 〈L̂
†
0〉〈R̂N〉,

where the index N refers to a neighboring site.
Using this approximation for the Hamiltonian (3.37) we obtain a single-site mean-

field Hamiltonian,1

Ĥ = Ĥ0 − te
(
φRL̂

† + φLR̂
† + 2zφRR̂† + 2zφLL̂†

− φRφ
∗
L − zφRφ∗R − zφ∗LφL + h.c.

)
, (3.38)

1 [Sheshadri et al.(1993),Buonsante et al.(2005)]
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where we introduced the mean-field parameters φR = 〈R̂〉, φL = 〈L̂〉, and z = 1
for 2D lattices and z = 2 for 3D lattices. We suppressed all subscripts labeling
the unit cells because the Hamiltonian (3.38) is a single unit-cell Hamiltonian. The
Hamiltonian treats the internal degrees of freedom of each unit cell exactly and
approximates the tunneling between the unit cells via a mean-field ansatz. This
approach is expected to give satisfactory results if the tunneling inside the unit
cells is stronger than the tunneling between the unit cells (i.e., te < ti), otherwise
correlations between neighboring double wells would be stronger than correlations
within the double wells and should not be neglected.

The system is in the Mott-insulating phase if

φL = φR = 0

and in the superfluid phase if

φL 6= 0 6= φR .

In the latter case the number of superfluid atoms nsfL and nsfR on the left and right
site is given by

~φ =
(
φL
φR

)
=
√nsfL√

nsfR


Note that we use the symbol ~φ in this section in a different way than in Eq. (3.25).
Within the mean-field approximation the superlattice decomposes in the Mott-
insulating into an array of isolated double-well potentials. Note that in the su-
perfluid phase both mean-field parameters are non-zero because they are coupled to
each other in Eq. (3.38) (compare also Fig. 4.15).

Similar to Sec. 3.1.1 there are two equivalent methods to treat the Hamiltonian
(3.38). For a given set of parameters {µ, ε, ti, te, U} the task is to find the self-
consistent values of

~φ =
〈ψ(0)

~φ
|L̂|ψ(0)

~φ
〉

〈ψ(0)
~φ
|R̂|ψ(0)

~φ
〉

 ,
where |ψ(0)

~φ
〉 denotes the ground state of the Hamiltonian (3.38) for a given order

parameter ~φ. On the one hand the self-consistent values are fixed points of the map

~φi+1 =
〈R̂〉~φi

〈L̂〉~φi

 (3.39)

where the index i refers to the ith step in the iterative procedure used to find the
self-consistent value of the order parameter. On the other hand the self-consistent
values of ~φ correspond to the local extrema of the energy functional

E[φL, φR] = 〈ψ(0)
~φ
|Ĥ|ψ(0)

~φ
〉

67



CHAPTER 3. QUANTUM PHASE TRANSITIONS IN THE BHM

-0.005

0

0.005

0.01

0.015

0.02

0.025

0 0.2 0.4 0.6 0.8 1

(E[φ]−E[0])/U

φ

E [φ]

E [φ]sf

Mott

Figure 3.17: Ground-state energy E[φL, φR] of the Hamiltonian (3.38) as a function
of the order parameter ~φ = {φL, φR}. For a symmetric unit cell ε = 0, we have
φL = φR = φ. The red line E[φ]Mott corresponds to the Mott-insulating phase
(µ/U = 0.2, ti/U = 0.05, and te/U = 0.005), the blue line E[φ]sf to the superfluid
phase (µ/U = 0.5, ti/U = 0.22, and te/U = 0.022).

and its local minima correspond to stable fixed points of the map (3.39) which can
be found by the iterative procedure (compare beginning of Sec. 3.1.1).

In the same way as in Sec. 3.1.1 there are only two classes of energy functionals
for the Hamiltonian (3.38)(see Fig. 3.17): First, there are those with only one local
extremum at φL = φR = 0 corresponding to a Mott-insulating phase. The second
class are those with a second extremum at φL 6= 0 6= φR, which is the global
minimum, and which are corresponding to a superfluid phase. This enables us to
distinguish the Mott and superfluid quantum phases with minimal numerical effort.
We only have to calculate the ground-state energy for ~φ = 0 and in its proximity
~φ ≈ 0. If E[~φ ≈ 0] − E[~φ = 0] is positive, the system is Mott-insulating; if it is
negative the system is superfluid.

Stability Analysis Approach

We can use a stability analysis to calculate the phase boundary similar to Sec. 3.1.1
following Buonsante et al.(2005).1 The point ~φ = ~0 is always a fixed point of the

1 [Buonsante et al.(2005)]
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map (3.39). To distinguish the two quantum phases it is sufficient to examine if it
is a stable fixed point or an unstable one. If this is a stable fixed point, the system
is in the Mott phase. To find out, if it is stable for a given parameters µ, U , ti and
te we linearize the map around the fixed point,

~φi+1 ≈
∂
(
〈L̂〉~φ, 〈R̂〉~φ

)
∂(φL, φR)

∣∣∣∣∣∣
~φ=0

· ~φi +O
(
~φ2
i

)
= J · ~φi +O

(
~φ2
i

)
. (3.40)

The absolute values of the eigenvalues of the Jacobian matrix J determine the sta-
bility of the fixed point: If they are all smaller than 1, the fixed point is stable (the
Lyapunov exponents are negative). If at least one is larger than 1, the fixed point is
unstable (the Lyapunov exponents are positive). The Jacobian matrix is given by

J =
∂φL

〈L̂〉~φ ∂φR
〈L̂〉~φ

∂φL
〈R̂〉~φ ∂φR

〈R̂〉~φ

 .
The two numbers 〈L̂〉~φ and 〈R̂〉~φ are in general non-linear functions of the order-
parameters φL and φR. Because we are only interested in the derivative at ~φ = ~0 it is
sufficient to expand the two functions around this value and calculate only the linear
term. This is equivalent to a first order perturbation theory of the Hamiltonian with
a perturbation linear in the mean-field parameters,

Ĥ = Ĥ0 + te V̂ ,

where

V̂ = −(φRL̂† + φ∗RL̂+ φ∗LR̂ + φLR̂
†)

and Ĥ0 is given in Eq. (3.36). Let |ψ0〉 be the ground state of Ĥ0. The first order
correction of this is given by |ψ〉 = |ψ0〉+ te |ψ1〉 where |ψ1〉 = ∑

i 6=0
〈ψi|V |ψ0〉
E0−Ei

|ψi〉. It
follows that

〈Â〉φi
≈ te〈ψ0|Â|ψ1〉+ te〈ψ1|Â|ψ0〉 = te〈ψ0|Â+ Â†|ψ1〉 = cAR φL + cAL φR ,

where Â ∈ {L̂, R̂} and the coefficients cAR and cAL are given by

cAB = te
∑
i 6=0

〈ψi|Â+ Â†|ψ0〉〈ψi|B̂ + B̂†|ψ0〉
Ei − E0

.

The fixed point at ~φ = ~0 is stable if both eigenvalues of J = ( cLL cLR
cRL cRR ) are smaller

than one, i.e.,

|cRL ±
√
cRRcLL| < 1.
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Figure 3.18: Phase diagram of spinless bosons in a superlattice described by the
Hamiltonian (3.38) in the atomic limit ti = te = 0. For ti = te = 0 the Hamiltonian
is diagonal in the Fock basis and supports only Mott-insulating phases. The blue
lines mark the phase boundaries and (nL, nR) denotes the occupation of the left and
the right site in the double well.

This stability condition enables us to calculate the phase boundary with only mini-
mal numerical effort. To determine the eigenvalues of J it is sufficient to diagonalize
the Hamiltonian Eq. (3.38) only once. One chooses any value for te and an ini-
tial value for ~φs in the vicinity of ~φ = ~0 and calculates {〈R̂〉~φs

, 〈L̂〉~φs
}. The ratio

φsL
/〈L̂〉~φs

corresponds to the the first eigenvalue of J, the ratio φsR
/〈R̂〉~φs

corre-
sponds to the second. The eigenvalues are linear in te; because of that, the ratio of
te and the larger of the two eigenvalues gives the critical value of te, i.e., at which
the system turns superfluid for a given ti, U and µ.

The Phase Diagram for Spinless Bosons in Superlattices

In this section we determine the ground-state phase diagram of the Hamiltonian
(3.38). For a chemical potential µ, an energy offset ε, and a given ratio of the
tunneling amplitudes te/ti we calculate the critical tunneling amplitude te above
which the system is superfluid. In the following we use the on-site interaction U as
the unit of energy.

In Fig. 3.18 we plot the ground state as a function of chemical potential µ and
offset ε in the atomic limit ti = te = 0. In this case, the Hamiltonian (3.38)
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state energy state energy state energy
E00 0 E22 2 U − 4µ E33 6U − 6µ
E01 −µ− ε E13 3U − 4µ− 2ε E24 7U − 2ε− 6µ
E11 −2µ E04 6U − 4µ− 4ε E15 10U − 4ε− 6µ
E02 U − 2µ− 2ε E23 4U − ε− 5µ E06 15U − 6ε− 6µ
E12 U − 3µ− ε E14 6U − 3ε− 5µ . . .
E03 3U − 3µ− 3ε E05 10U − 5ε− 5µ . . .

Table 3.1: Diagonal elements of the Hamiltonian (3.38) for ti = te = 0 in Fock space
(i.e., |nL, nR〉) for small occupancies.

is diagonal in the Fock basis and the system supports only Mott phases (nL, nR)
characterized by the number of atoms in the left nL and right well nR. The energy
levels of the Hamiltonian (3.38) with ti = te = 0 are given by

E(µ, nL, nR, ε) = U

2 (n2
L − nL + n2

R − nR) + ε (nL − nR)− µ (nL + nR)

The eigenstates and the eigenenergies of the system for small occupation numbers
nL and nR can be read off the Table 3.1. For each µ/U ∈ [0, 2.5] and ε/U ∈ [0, 3.5]
this collection of eigenstates is sufficient to determine the ground state (compare
Fig. 3.18). Each of the diamonds in Fig. 3.18 corresponds to one Fock state, i.e., a
fixed particle number in the unit cell as well as a fixed particle number in the left
and the right site of each unit cell. When we increase µ/U for fixed energy offset ε/U
the number of particles in the unit cells increases while the ratio between left and
right remains similar. When we increase ε/U for fixed chemical potential µ/U the
atom number is constant but the atom distribution within the unit cells changes.
Because we set the tunneling to zero this happens non-continuously. Figure 3.18
is mirror-symmetric along the ε = 0 axis, i.e., when ε → −ε the atom number
distribution is inverted, (nL, nR)→ (nR, nL).

In Fig. 3.19 we plot the critical tunneling strength ti at which the system becomes
superfluid as a function of the chemical potential µ and the offset ε for ti/te = 10.
It is convenient to pick a fixed ratio of ti/te in order to obey the constraint te < ti.
For fixed energy offset ε we recover Mott lobes, which are familiar from the case of
a usual lattice,1 although the Mott phase for atoms in superlattices is characterized
by a fixed integer atom number per unit cell, i.e. n = 〈n̂L + n̂R〉 where n is an
integer number. When ε/U has an integer value the Mott lobes corresponding to an
odd atom number per unit cell contract to Mott loops and if ε/U has an half-integer
value the lobes corresponding to an even atom number contract to loops.2 As the
energy offset ε is varied, the size of the Mott lobes changes and they constitute tubes
of fixed integer atom number per unit cell. The base of the plot (i.e., the ti = te = 0
plane) shows the diamond structure given in Fig. 3.18. The nodes of the diamonds
1 [Fisher et al.(1989)]
2 [Buonsante et al.(2005)]
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Figure 3.19: Phase diagram of spinless bosons in a two-dimensional superlattice de-
scribed by the Hamiltonian (3.38). We plot the critical internal tunneling amplitude
ti as a function of chemical potential µ and energy offset ε for ti = 10te. In Fig. 3.18
we show a cut through this 3D plot at ti = te = 0 and in Fig. 3.20 at ti/U = 0.05.
The edge at ε = 0 of the phase diagram reveals the contraction of Mott lobes to
loops at integer values of µ/U .

are special: these are the values of the energy offset ε where the lobes contract to
loops, i.e. the Mott tubes touch the ti = te = 0 plane only at one point.

Figure 3.20 presents a cut through Fig. 3.19 at ti/U = 0.05, showing the Mott
insulating phases in white and the superfluid phases in blue. The Mott diamonds
of Fig. 3.18 are connected for non-vanishing tunneling amplitudes. This means that
the quantum numbers (nL, nR) change continuously when ε is varied and the Mott
insulating phases are characterized by one number n = nL+nR, the total number of
particles per unit cell. In Fig. 3.20 the chosen tunneling amplitudes are too large to
see the connections between the Mott diamonds for n ≥ 5, nevertheless the quantum
numbers (nL, nR) are not fixed to integer values for these Mott phases either.
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Figure 3.20: Phase diagram of spinless bosons in a two-dimensional superlattice
described by the Hamiltonian (3.38) for ti/U = 10te/U = 0.05. The blue areas
depict the superfluid phase. The dashed line corresponds to the parameters chosen
for Fig. 4.13.
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3.4 Spin-1 Bosons in Superlattices

Adapted from Phys. Rev. A 86, 023624 (2012).

In this section we describe spin-1 atoms in optical period-2 superlattices. We use
similar to Sec. 3.3 a model which treats the dynamics within a unit cell exactly
and includes the influence of the neighboring unit cells via a Gutzwiller mean-field
ansatz. Spin-1 atoms in isolated double wells are described by a variant of the
two-site Bose-Hubbard model,1

Ĥ0 = U0

2
∑
i=L,R

n̂i(n̂i − 1)− t
∑
σ

(L̂†σR̂σ + h.c.) + ε (nL − nR) + U2

2
∑
i=L,R

(
~S2
i − 2ni

)
,

where the annihilation and creation operators L̂, R̂, L̂† and R̂† from Eq. (4.1) have
an extra index labelling their hyperfine state σ ∈ {−1, 0, 1} (compare Eq. (2.41).
The operator nL = ∑

σ L
†
σLσ

(
nR = ∑

σ R
†
σRσ

)
is the atom number operator at the

left (right) site and ~SL = ∑
σσ′ L

†
σ
~Tσσ′Lσ′ is the total spin on the left site and the

total spin on the right site is ~SR = ∑
σσ′ R

†
σ
~Tσσ′Rσ′ , where ~Tσσ′ are the usual spin-1

matrices (see Eq (2.33)).
Similar to Eq. (3.38) we can include neighboring double wells via a mean-field

approximation and use as in Sec. 3.2 vectors as the order parameter. The resulting
Hamiltonian is

Ĥ = U0

2
∑

k=L,R
n̂k(n̂k − 1)− ti

(
L̂
†
· R̂ + h.c.

)
+ ε (n̂L − n̂R)− µ (n̂L + n̂R)

+ U2

2
∑

k=L,R

(
Ŝ

2
k − 2n̂k

)
− te

[
~φR · L̂

† + ~φL · R̂
† + 2z~φL · L̂

† + 2z~φR · R̂
†

− ~φR · ~φ∗L − z~φL · ~φ∗L − z~φ∗R · ~φR + h.c.
]
, (3.41)

where we introduced a vector notation for the annihilation and creation operators.
The dimensionality of the array is contained in the parameter z; for 2D lattices
z = 1 and for 3D lattices z = 2. The vectors

~φL =


φ

(1)
L

φ
(0)
L

φ
(−1)
L

 and ~φR =


φ

(1)
R

φ
(0)
R

φ
(−1)
R


contain the six mean-field parameters of the Hamiltonian (3.41). Note that the
system is rotationally symmetric and φ1 = φ−1 for both ~φL and ~φR.2

1 [Jaksch et al.(1998), Imambekov et al.(2003)]
2 [Ho(1998)]
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Figure 3.21: Ground-state energy E[~φL, ~φR] of the Hamiltonian (3.41) as a function
of the order parameter ~φ. The unit cell is chosen to be symmetric ε = 0, i.e.,
we have ~φL = ~φR = ~φ, we have chosen φ0 = 0, and φ1 = φ−1 due to symmetry
constraints. The blue line E[φ]MM corresponds a point in parameter space (µ/U0 =
0.25, ti/U0 = 0.35, te/U0 = 0.035, U2/U0 = 0.04 , and ε = 0) where there is a
metastable Mott phase in addition to the stable superfluid phase. The green line
E[φ]MSF corresponds a point within the metastable superfluid phase (µ/U0 = 0.25,
ti/U0 = 0.3, te/U0 = 0.03, U2/U0 = 0.04, and ε = 0). E[φ]MM is shifted by 0.09U0
to show the two curves in the same plot.

The on-site interaction parametrized by U2 describes spin-dependent contact
interactions: in the case of antiferromagnetic interactions (e.g. 23Na) it penalizes
non-zero spin configurations while it favors high-spin configurations in the case of
ferromagnetic interactions (e.g. 87Rb). Whereas the ratio t/U0 can be controlled
with the intensity of the laser beams (compare Eq. (2.44)), the ratio U2/U0 depends
on the spin-2 and spin-0 scattering lengths of the spin-1 atoms (compare Eq. (2.45)).

The Hamiltonian (3.41) has a much richer phase diagram than the Hamilto-
nian (3.38). In addition to Mott-insulating and superfluid quantum phases, the
spin-1 Bose-Hubbard model gives rise to metastable quantum phases. This can be
seen by looking at the energy functionals E[~φL, ~φR] of the Hamiltonian (3.41). In
addition to those shown in Fig. 3.17, two other classes of energy functionals arise for
antiferromagnetic spin interactions U2 > 0, see Fig. 3.21. These energy functionals
have two local minima and an iterative procedure similar to the one described in
Sec. 3.1.1 does not lead to an unique value of the order parameter but depends on
the starting point. When the starting point of the iterative procedure is chosen
close to zero, one finds the minimum at ~φL = ~φR = 0. If one starts at a value
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Figure 3.22: Energy functional E[~φL, ~φR] for the Hamiltonian (3.41) with antifer-
romagnetic interactions (ti/U0 = 0.3, te/U0 = 0.03, U2/U0 = 0.04, µ/U0 = 0.25,
ε = 0). Because the unit cell is chosen to be symmetric the mean-field parameters
of the left and the right are equal (~φ = ~φL = ~φR) and the corresponding indices are
suppressed. Because of the rotational symmetry φ1 = φ−1.

beyond the maximum separating the two minima one obtains the second minimum
corresponding to a superfluid phase. The global minimum of the energy functional
determines the stable quantum phase of the system. The other one corresponds to
a metastable phase.

Thus, energy functionals such as the ones in Fig. 3.21 signal metastable phases,
first-order phase transitions and hysteric behavior of the system; they do not allow
the same analysis as the spinless case. The stability analysis of the ~φ = 0 fixed
point does not answer the question, if there is a second stable fixed point and if it
is energetically lower or higher. To determine the quantum phase we numerically
calculate the energy functional and analyze its local minima.

Due to the spinor nature of the order parameter additional properties of the
superfluid phases arise. The spin-dependent interaction changes the symmetry of
the energy functional E[~φL, ~φR] in the φ0-φ1 plane for ~φL as well as ~φR. For anti-
ferromagnetic interactions there are two different classes of polar order parameters
given in Eq. (3.26) and (3.27). In the ferromagnetic case (U2 < 0) there is only one
superfluid order parameter which is given Eq. (3.28). In the ferromagnetic case, the
spin-dependent interaction in Eq. (3.41) has the same sign as the tunneling term
and therefore does not create metastable quantum phases.

In Fig. 3.22 we plot the energy functional E[~φL, ~φL] as a function of the order
parameter for a symmetric unit cell and a point in parameter space at which there are
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two local minima corresponding to a longitudinal and a transverse polar superfluid
phase as well as a local minimum signaling a stable Mott insulating phase. Since
the unit cell is chosen to be symmetric (ε = 0) the mean-field parameters in the
left and the right site are the same (~φL = ~φR). The two minima at a non-vanishing
order parameter are degenerate, because both correspond to 〈ŜL〉 = 〈ŜR〉 = 0 and
therefore suffer the same spin-dependent energy shift of the on-site interaction. Due
to the special form of the two superfluid phases given in Eq. (3.26) and Eq. (3.27)
the superfluid minima are always on the φ1 = 0 and the φ0 = 0 axes, respectively.
This justifies why we chose φ0 = 0 in Fig. 3.21. The additional minimum in Fig. 3.22
at φ0 = φ1 = φ−1 = 0 is the global minimum and corresponds to the Mott-insulating
phase; the two degenerate minima corresponding to a non-vanishing order parameter
belong therefore to two degenerate metastable phases.

The Phase Diagram

In this section we calculate the phase diagram of spin-1 atoms in superlattices. We
focus on the differences to the spinless case which was discussed in Sec. 3.3.

For ti = te = 0 the Hamiltonian (3.41) is diagonal in the Fock basis and the
system supports only Mott phases. Similar to the spinless case the Mott phases are
characterized by (nL, nR) and the boundaries between Mott phases carrying a small
number of atoms can be calculated directly from the collection of eigenstates and
eigenenergies in Table 3.2.

state energy state energy
E00 0 E22 2U0 − 4µ− 4U2
E01 −µ− ε E13 3U0 − 4µ− 2ε− 2U2
E11 −2µ E04 6U0 − 4µ− 4ε− 4U2
E02 U0 − 2µ− 2ε− 2U2 E23 4U0 − 5µ− ε− 4U2
E12 U0 − 3µ− ε− 2U2 E14 6U0 − 5µ− 3ε− 4U2
E03 3U0 − 3µ− 3ε− 2U2 E05 10U0 − 5µ− 5ε− 4U2

Table 3.2: Diagonal elements of the Hamiltonian (3.41) for ti = te = 0 in Fock space
(i.e., |nL, nR〉). Because we are interested in ground-state properties for antiferro-
magnetic interactions we choose for each atom number configuration the smallest
spin configuration. For ferromagnetic interactions the highest spin configuration is
energetically favorable and the table is thus changed.

In Fig. 3.23 we show how the phase boundaries are shifted compared to the
spinless case for antiferromagnetic interactions. Again, there is a diamond-shaped
structure as in Fig. 3.18. The Mott diamonds of Fig. 3.18 increase or shrink depend-
ing on their atom number configuration. For antiferromagnetic spin interactions, the
strength of the on-site interaction depends upon the parity of the atom number at
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Figure 3.23: Sketch of the phase boundaries of spin-1 bosons in a two-dimensional
superlattice for ti = te = 0, described by the Hamiltonian (3.41). The red lines
denote deviations in the phase boundaries relative to the spinless case (see Fig. 3.18),
black solid lines to phase boundaries which are not changed and black dotted lines
to shifted phase boundaries of the spinless case. Each Mott diamond is labeled
by its atom number configuration (nL, nR) (in black) and the energy penalty due
to spin-dependent interactions (in red below). The green diamonds correspond to
odd-even particle number configurations, the yellow ones to odd-odd, and the blue
ones to even-even configurations.

each lattice site. An even number of spin-1 atoms allows the formation of a spin
singlet, i.e. vanishing total spin per site, which minimizes the on-site repulsion. Odd
atom numbers are penalized, because the spin-singlet wave function is antisymmetric
for an odd atom number and thereby ruled out by symmetry constraints. Diamonds
corresponding to an even particle number in the left as well as the right well are
favored and diamonds corresponding to an odd-odd configuration are penalized.

The boundary between two Mott diamonds is shifted only if the spin-dependent
energy penalty (or bonus) is different for them (compare Table 3.2). The value of
this shift depends linearly on U2. In the antiferromagnetic case, a phase boundary
is either unshifted or shifted by a constant amount. This is because at each phase
boundary the atom configuration changes only by one atom and the only possible
ground-state spin configurations at each lattice site are spin singlets (〈Ŝ2

〉 = 0)
and total spin equals one (〈Ŝ2

〉 = 2). This is the reason why the straight lines in
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Figure 3.24: Phase diagram for spin-1 atoms in optical superlattices (U2/U0 = 0.04,
ε = 0, and ti = 10te). The shaded regions denote Mott-insulating phases. The
dashed lines are the phase boundaries for metastable phases and the dotted lines
are the phase boundaries for the spinless case U2 = 0. The regions in which a
metastable Mott phase coexists beside the superfluid [SF] phase is marked with
MM; MSF denotes regions where metastable superfluid phases exist alongside the
Mott [Mott] phase. The Mott lobes are labeled according to the total atom number
n per double well.

Fig. 3.18 are preserved in case of antiferromagnetic interactions. Thus, to determine
the shift of the phase boundaries it is enough to examine an example, say the phase
boundary between the Mott diamonds containing one atom in the left well and the
ones containing two atoms in the left well. The phase boundary follows for positive
ε the path along

ε = −µ+ U0 − 2U2 ,

which can be seen by setting E11 = E12 or E10 = E20. The shift of the phase
boundary is therefore ∆ =

√
2U2. The diamonds corresponding to an odd number

of atoms in the double well (green diamonds in Fig. 3.23) change their size from 1/2
(in units of U2

0 ) to 1/2−∆2/U2
0 . Double wells carrying an even number of atoms allow

even-even configurations (blue diamonds in Fig. 3.23 with area (1/
√

2+∆/U0)2) and
odd-odd configurations (yellow diamonds in Fig. 3.23 with area (1/

√
2 − ∆/U0)2).

Note that both yellow and green Mott diamonds vanish for

1
2 = ∆2

U2
0

= 2 U2
2

U2
0
.
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Thus, for U2 > 0.5 U0 there are only Mott phases carrying even atom numbers in
each lattice site.

The full ground-state phase diagram for antiferromagnetic interactions, a sym-
metric double well and ti = 10te is shown in Fig. 3.24. We choose U2/U0 = 0.04
corresponding to 23Na.1 Spin-dependent interactions lead to elongated Mott lobes.
In general, the spin configuration is higher in the superfluid phase than in the Mott
phase and this leads to an energy penalty (see Hamiltonian (3.41)). Whenever there
is an even number of atoms in a lattice site this effect is strongest, because an even
number of spin-1 bosons can form spin singlets (see above). In Fig. 3.24 the Mott
lobe containing four atoms is therefore significantly enlarged, since this Mott phase
corresponds to two atoms in the left as well as the right site (the unit cells are
chosen to be symmetric, i.e., ε = 0). The Mott lobe n = 2 is significantly enlarged
for ε/U0 = ±1 (not contained in Fig. 3.24), because the atoms pair up on the left
(or right) site and form spin singlets. The phase transitions between Mott lobes
corresponding to an even number of atoms in the double well are of second order
whereas the others are first-order phase transitions. For smaller values of U2/U0 all
phase transitions become first order at a tricritical point, in contrast to spin-1 atoms
in usual lattices for which the boundary of the Mott phase with one atom per site
is always a second-order phase transition.2

Magnetic Fields

Finally, we want to examine the effect of weak magnetic fields on the phase diagram
of spin-1 atoms in optical superlattices. In Sec. 2.5 we discussed the influence of
magnetic fields and in Sec. 3.2 we saw how the quadratic Zeeman shift lifts the
degeneracy of the two polar state and changes the qualitative features of the ground-
state energy functionals. In the case of spin-1 atom in superlattices we can include
the quadratic Zeeman shift by creating an effective Hamiltonian,

ĤQZ = q
∑
i=L,R

∑
σ

m2
iσn̂iσ, (3.42)

which is added to the Hamiltonian (3.41). Here p = gµBB and n̂iσ is the particle
number operator for the ith site that gives the number of bosons in themth hyperfine
state.

The quadratic Zeeman effect affects the phase diagram considerably. The local
minima of the energy functional E[~φL, ~φR] belonging to transverse and longitudinal
polar superfluids are no longer degenerate in same way as in usual lattices (see
Fig. 3.25). For positive q the longitudinal superfluid states are always energetically
favored, for negative q the transverse ones. For antiferromagnetic spin interaction
new classes of metastable quantum phases arise, see Fig. 3.26. It is important to
1 [Burke et al.(1998)]
2 [Krutitsky et al.(2005)]
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Figure 3.25: Energy functional E[~φL, ~φR] for a symmetric unit cell (ε = 0) and
antiferromagnetic interactions U2/U0 = 0.04 in the presence of a magnetic field
q/U0 = 0.002. The parameters are chosen identical to Fig. 3.22 (ti/U0 = 0.3,
te/U0 = 0.03 and µ/U0 = 0.25). Because the unit cell is chosen to be symmetric
the mean-field parameters of the left and the right site are equal (~φL = ~φR) and the
corresponding indexes are suppressed. Because of the rotational symmetry φ1 = φ−1.

notice, that even very weak magnetic fields (q/U0 = 0.002 in Fig. 3.25) change the
properties of the ground state energy functional substantially. In Fig. 3.26 we choose
the same parameters as in Fig. 3.22 just adding a very weak magnetic field. The
magnetic field causes a quantum phase transition from the superfluid phase to a
Mott insulating one since the minimum at φ1 = φ−1 = 0, φ0 = 0.55 is now the
global one. Additionally, there are now two metastable quantum phases. The first
is a metastable Mott-insulating phase at φ0 = φ1 = φ−1 = 0. The second one is a
metastable transverse polar superfluid phase at φ1 = φ−1 = 0.38 and φ0 = 0.

Finally, we have also analyzed the ferromagnetic case. The presence of a magnetic
field changes the energy functional of the ground state in such a way that first-order
phase transitions and metastable phases are possible.
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Figure 3.26: Phase diagram for spin-1 atoms in optical superlattices with a magnetic
field described by the Hamiltonian (3.42) (U2/U0 = 0.04, ε = 0, ti = 10te, and
q/U0 = 0.02). The shaded regions denote Mott-insulating phases. The dashed
lines are the phase boundaries for metastable phases. There are no metastable
quantum phases in the Mott-insulating region, but additional metastable phases in
the superfluid one. The quantum phase (a) denotes a superfluid region where there
are two metastable phases. There is a metastable superfluid phase of the transverse
polar state and energetically higher a metastable Mott phase. In the quantum
phase (b) there are also both metastable phases but the metastable Mott phase
of the transverse polar state is energetically lower than the metastable superfluid
phase. The quantum phase (c) contains only one metastable phase of the transverse
polar state which is a Mott phase.
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Chapter 4

Bosonic Staircases

In this chapter we examine the physics of spinless and spin-1 atoms in double-well
potentials. We use a two site Bose-Hubbard model to do this. When the double-well
potential is asymmetric the atom number distribution becomes asymmetric as well.
Due to the finite on-site interaction the atom numbers do not change proportionally
to the double well asymmetry but in steps. This step-like behavior gives rise to
bosonic staircases.

For spin-1 atoms the on-site interaction and therefore the interaction blockade
is spin-dependent. Thus, the system of spinor bosons in an optical superlattice
becomes a model for mesoscopic magnetism; depending on the energy bias different
types of magnetic order occur.

4.1 Spinless Bosons

In this section we want to review the bosonic staircases for spinless atoms. We can
use a two side Bose-Hubbard model to describe ultracold, spinless bosons in a deep
double-well potential,1

Ĥ = U

2
∑
i=L,R

n̂i(n̂i − 1)− t(L̂†R̂ + R̂†L̂)− ε(n̂L − n̂R), (4.1)

where n̂L (n̂R) is the atom number operator in the left (right) well and L̂ (R̂) is the
particle annihilation operator in the left (right) well. The bosonic annihilation and
creation operators obey the canonical commutation relations [L,L†] = [R,R†] = 1
and [R,L†] = [L,R†] = 0. The parameter U gives the strength of the on-site
interaction and t the tunneling amplitude (compare Eq. (2.23)). The parameter
ε incorporates the energy offset between the sites (see Fig. 4.1). The potential in
Fig. 4.1 is a unit cell of the superlattice potential given in Eq. (2.10)

The Hamiltonian in Eq. (4.1) conserves the total atom number nL + nR = n
in the double-well potential. In this section we are interested in the occupancies
1 [Averin et al.(2008)]
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Figure 4.1: Sketch of the parameters in the two-site Bose-Hubbard model in
Eq. (4.1). The dots depict the atoms in the double-well potential V (x), ε is the
energy offset between the two sides of the double well, t is the tunneling amplitude
and U is the strength of the on-site interaction.

of the sites at fixed atom number n. We calculate the Hamiltonian for a small
number of bosons; we write down the Hamiltonian in the Fock basis because the
terms containing the on-site interaction and the energy offset are diagonal in this
basis.

As an example we study the case of five bosons in a double well. The Fock basis
given by {nL, nR} ∈ {{5, 0}, {4, 1}, {3, 2}, {2, 3}, {1, 4}, {0, 5}} and in this basis the

-1.0 -0.5 0.0 0.5 1.0

4

6

8

10

12

14

Ε�U

E
�U

Figure 4.2: The spectrum of 5 spinless bosons in a double well potential which are
described by the Hamiltonian given in Eq. (4.2) (t/U = 0.05).
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Figure 4.3: Left picture: Bosonic staircase of five bosons in an optical double-well
potential (t/U = 0.05). Right picture: Superposition of four bosonic staircases, the
bosonic staircases correspond to one, three, five and seven atoms in the double well.
Such superposition are measured in experiments (compare [Cheinet et al.(2008)]).

Hamiltonian is given by

H(5) =



10U − 5ε −
√

5t 0 0 0 0
−
√

5t 6U − 3ε 2−
√

2t 0 0 0
0 −2

√
2t 4U − ε −3t 0 0

0 0 −3t 4U + ε −2
√

2t 0
0 0 0 −2

√
2t 6U + 3ε −

√
5t

0 0 0 0 −
√

5t 10U + 5ε


. (4.2)

The only non-vanishing off-diagonal elements connect states with a number
asymmetry of one, i.e., |nL − nR| = 1. It is fairly easy to calculate the Hamilto-
nian Eq. (4.2) by hand, nevertheless, we present the derivation of the Hamiltonian
in Appendix B.1 with a Mathematica notebook to prepare ourself for the more
complicated case of spinor bosons. In this Mathematica notebook we use algebraic
tools to simplify the calculations. The spectrum of the Hamiltonian Eq. (4.2) for a
range of ε is given in Fig. 4.2.

It is now easy to calculate the occupancy of one of the sites in the ground state
for each parameter tuple {U, t, ε}. In the left panel of Fig. 4.3 the expectation
value of the number operator of the left well is plotted. It is clearly visible that the
occupancy of the left well does not change continuously but in steps. Due to the
finite on-site interaction each atom has to pay a certain energy to accompany the
atoms in the other site. The difference in interaction energy between one and two
atoms is the same as between two and three atoms (it is always U). Thus, the steps
are regular; their mutual distance is ε/U which means that atoms can only tunnel
to the other site when the energy asymmetry is equal to the on-site repulsion. The
single-atom staircase has been measured by Cheinet et al.1 with ultra-cold 87Rb
atoms. In the experiments the steps are not equally spaced anymore and differ in

1 [Cheinet et al.(2008)]
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height. That is due to the fact that Cheinet et al. do not plot the energy off-set but
the phase difference ϕ in Eq. (2.10) against the occupation number; furthermore, in
their plots the staircases of different overall occupancies (i.e. atoms per double well)
are superimposed. In the right panel of Fig. 4.3 a superposition of four staircases
is plotted. The bosonic staircases correspond to one, three, five and seven atoms in
the double well.

4.2 Spin-1 Atoms

Adapted from Phys. Rev. A 84, 063636 (2011).

In this section we examine the physics of spin-1 atoms in double-well potentials.
The atoms we have in mind are alkali-metal atoms, such as 23Na and 87Rb. When
these atoms are are trapped by optical means only they keep their spin spin degree
of freedom and can be used to create a spinor condensate (compare Sec. 2.5). Spin-1
bosonic atoms in a double-well potential can be described by a variant of the two-site
Bose-Hubbard Hamiltonian,1

Ĥ0 = U0

2
∑
i=L,R

n̂i(n̂i − 1)− t
∑
σ

(L̂†σR̂σ + R̂†σL̂σ) + ε (nL − nR)

+ U2

2
∑
i=L,R

(
~S2
i − 2ni

)
, (4.3)

where the operator L̂m (L̂†m) annihilates (creates) an atom in the left site in the
mth-hyperfine state (analogously R̂m and R̂†m). The operator nL = ∑

σ L
†
σLσ (nR =∑

σ R
†
σRσ) is the atom number operator at the left (right) site and ~SL = ∑

σσ′ L
†
σ
~Tσσ′Lσ′

is the total spin on the left site and the total spin on the right site is ~SR =∑
σσ′ R

†
σ
~Tσσ′Rσ′ , where ~Tσσ′ are the usual spin-1 matrices (see Eq. (2.33)).

Two Spin-1 Bosons

Since the hopping term in Eq. (4.3) conserves the absolute value of the total spin
Stot = |~SL + ~SR|, the Hilbert space decomposes in orthogonal subspaces which do
not mix, i.e.,

H = H(Stot = 0)⊕H(Stot = 1)⊕H(Stot = 2) . (4.4)

1 [Jaksch et al.(1998), Imambekov et al.(2003)]
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In the case of two spin-1 bosons, the Hilbert space is seven-dimensional,

|E1〉 = |{2, 0}, {0, 0}, 0〉, |E2〉 = |{1, 1}, {1, 1}, 0〉,
|E3〉 = |{0, 2}, {0, 0}, 0〉, |E4〉 = |{1, 1}, {1, 1}, 1〉,
|E5〉 = |{2, 0}, {2, 0}, 2〉, |E6〉 = |{1, 1}, {1, 1}, 2〉,
|E7〉 = |{0, 2}, {0, 2}, 2〉, (4.5)

using the notation |{nL, nR}, {SL, SR}, Stot〉. These basis vectors belong to three
orthogonal subspaces,

H = {E1, E2, E3}︸ ︷︷ ︸
Stot=0

⊕ {E4}︸ ︷︷ ︸
Stot=1

⊕ {E5, E6, E7}︸ ︷︷ ︸
Stot=2

.

To examine the ground-state properties of this system, the Hamiltonian needs to
be calculated and diagonalized for each subspace separately. To calculate the off-
diagonal elements of the Hamiltonian, it is necessary to write the elements of the
whole system as product of the single-well wave functions, e.g.,

|{2, 0}, {2, 0}, 2〉 = |nL = 2, SL = 2, S1z = 0〉 ⊗ |nR = 0, SR = 0, S2z = 0〉 ,

and

|{1, 1}, {1, 1}, 2〉 =
∑

m=−1,0,1
C

(2,0)
(1,m),(1,−m)|1, 1,m〉 ⊗ |1, 1,−m〉

= 1√
6

(|1, 1, 1〉 ⊗ |1, 1,−1〉+ 2|1, 1, 0〉 ⊗ |1, 1, 0〉

+ |1, 1,−1〉 ⊗ |1, 1, 1〉) ,

where we have chosen the Sz = 0 component for convenience, because the energy
does not depend on the Sz component. The single-well wavefunctions need to be
written in terms of single-particle creation operators. For two spin-1 bosons this can
be done using the standard Clebsch-Gordan coefficients. The individual blocks of
the Hamiltonian Eq. (4.4) are given by

H(Stot = 0) =

 2ε− 2U2 + U0 −
√

2t 0
−
√

2t 0 −
√

2t
0 −

√
2t −2ε− 2U2 + U0


H(Stot = 1) = (0)

H(Stot = 2) =

 2ε+ U2 + U0 −
√

2t 0
−
√

2t 0 −
√

2t
0 −

√
2t −2ε+ U2 + U0

 .
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Three Spin-1 Bosons

The Hilbert space for three spin-1 bosons is given by the direct sum of the following
subspaces:

H = {E1, E2, E3, E4, E5, E6}︸ ︷︷ ︸
Stot=1

⊕{E7, E8}︸ ︷︷ ︸
Stot=2

⊕{E9, E10, E11, E12}︸ ︷︷ ︸
Stot=3

.

The subspace {E1, E2, E3, E4, E5, E6} belongs to |~SL+~SR| = 1, the subspace {E7, E8}
belongs to |~SL+~SR| = 2 and he subspace {E9, E10, E11, E12} belongs to |~SL+~SR| = 3.
The basis vectors are given by

|E1〉 = |{3, 0}, {1, 0}, 1〉, |E2〉 = |{2, 1}, {2, 1}, 1〉,
|E3〉 = |{2, 1}, {0, 1}, 1〉, |E4〉 = |{1, 2}, {1, 2}, 1〉,
|E5〉 = |{1, 2}, {1, 0}, 1〉, |E6〉 = |{0, 3}, {0, 1}, 1〉,

|E7〉 = |{2, 1}, {2, 1}, 2〉, |E8〉 = |{1, 2}, {1, 2}, 2〉,

|E9〉 = |{3, 0}, {3, 0}, 3〉, |E10〉 = |{2, 1}, {2, 1}, 3〉,
|E11〉 = |{1, 2}, {1, 2}, 3〉, |E12〉 = |{0, 3}, {0, 3}, 3〉,

again using the notation |{nL, nR}, {SL, SR}, Stot〉.
The Hamiltonian is block diagonal in the basis given above as in the case of

two bosons. The Hamiltonians belonging to |~SL + ~SR| = 2 and |~SL + ~SR| = 3 are
quite similar to the spinless case and the case of two spin-1 atoms. To calculate the
off-diagonal elements of the Hamiltonian we need to know how three spin-1 bosons
couple to a total spin ~S with a z-projection Sz. In order to calculate this we need
to diagonalize the S2. In Appendix B.2 we have done that and the result is shown
in Table 4.1.

The Hamiltonian belonging to |~SL + ~SR|=2 is given by

Ĥ(Stot = 2) =
(
U0 + ε+ U2 −t
−t U0 − ε+ U2

)
,

and the Hamiltonian belonging to |~SL + ~SR|=3 is given by

Ĥ(Stot = 3) =


3U0 + 3ε+ 3U2 −

√
3t 0 0

−
√

3t U0 + ε+ U2 −2t 0
0 −2t U0 − ε+ U2 −

√
3t

0 0 −
√

3t 3U0 − 3ε+ 3U2

 .

The Hamiltonian belonging to the Hilbert space |~SL + ~SR| = 1 exhibits a richer
structure and differs from the spinless case. This is because the term −t∑σ(L†σRσ+
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S Sz state
3 3 |0−1, 00, 31〉
3 2 |0−1, 10, 21〉
3 1 1√

5(2 |0−1, 20, 11〉+ |1−1, 00, 21〉)
3 0

√
2
5 |0−1, 30, 01〉+

√
3
5 |1−1, 10, 11〉

3 -1 1√
5(2 |1−1, 20, 01〉+ |2−1, 00, 11̂〉)

3 -2 |2−1, 10, 01〉
3 -3 |3−1, 00, 01〉
1 1 1√

5(− |0−1, 20, 11〉+ 2 |1−1, 00, 21〉)
1 0 −

√
3
5 |0−1, 30, 01〉+

√
2
5 |1−1, 10, 11〉

1 -1 1√
5(− |1−1, 20, 01〉+ 2 |2−1, 00, 11〉)

Table 4.1: Coupling of three spin-1 particles to the total spin S with the z-projection
Sz. The ket-vectors on the right are written in the basis |n1, n0, n−1〉, where nσ
denotes the number of atoms in the hyperfine state σ ∈ {1, 0,−1}.

R†σLσ) describes tunneling between several basis vectors, e.g., between |E1〉 and |E2〉
as well as between |E1〉 and |E3〉. Because the energy does not depend on the Sz
projection, we can set Sz = 0. The basis vector |E1〉 is given by

|{3, 0}, {1, 0}, 1〉 = |3, 1, 0〉 ⊗ |0, 0, 0〉 =
√2

5 L̂
†
−1L̂0

†L̂†1 −
√

1
10
(
L̂†0
)3
 |0〉,

and the basis vector |E2〉 is given by

|{2, 1}, {2, 1}, 1〉 =
∑

m=−2,...,2

∑
n=−1,0,1

C
(1,0)
(1,m),(1,n)|2, 2,m〉 ⊗ |1, 1, n〉

=
√

3
10 |2, 1,−1〉 ⊗ |1, 1, 1〉 −

√
4
10 |2, 1, 0〉 ⊗ |1, 1, 0〉

+
√

3
10 |2, 1, 1〉 ⊗ |1, 1,−1〉

=
−

√
2
15
(
L̂†0
)2
R̂†0 +

√
3
10 L̂

†
1L̂
†
0R̂
†
−1

+
√

3
10L̂

†
−1L̂

†
0R̂
†
1 −

√
2
15L̂

†
−1L̂

†
1R̂
†
0

|0〉.
Now, we can calculate the corresponding non-diagonal element of the Hamiltonian,

〈E1|H|E2〉 = −t 〈E1|
∑
σ

(L̂†σR̂σ + R̂†σL̂σ)|E2〉 = −
√

5
3 t .

89



CHAPTER 4. BOSONIC STAIRCASES

The basis vector |E3〉 is given by

|{2, 1}, {0, 1}, 1〉 = |2, 0, 0〉 ⊗ |1, 1, 0〉 =
√2

3 L̂
†
−1L̂

†
1R̂
†
0 −

1√
6
(
L̂†0
)2
R̂†0

 |0〉 ,
and the corresponding non-diagonal element of the Hamiltonian is

〈E1|H|E3〉 = −
√

4
3 t.

Note that the off-diagonal elements of the Hamiltonian depend on the spin config-
urations, also, the off-diagonal elements do not depend on the strength of the spin-
dependent interactions U2. Similar calculations lead to the remaining off-diagonal
elements. The Hamiltonian belonging to |~SL + ~SR|=1 is given by

Ĥ(Stot = 1) =



3U0+3ε−2U2 − 2t√
3

−
√

5
3 t 0 0 0

− 2t√
3

U0+ε+U2 0 − t
3 − 2

√
5t

3 0

−
√

5
3 t 0 U0+ε−2U2 − 2

√
5t

3 − 2t
3 0

0 − t
3 − 2

√
5t

3 U0−ε+U2 0 − 2t√
3

0 − 2
√

5t
3 − 2t

3 0 U0−ε−2U2 −
√

5
3 t

0 0 0 − 2t√
3

−
√

5
3 t 3U0−3ε−2U2


.

Four Spin-1 Bosons

Due to the conservation of the total spin the Hilbert space decomposes into the
following sum,

H = H(Stot = 0)⊕H(Stot = 1)⊕H(Stot = 2)⊕H(Stot = 3)⊕H(Stot = 4) . (4.6)
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The basis for four bosons is given by

E1 = |{4, 0}, {0, 0}, 0}〉, E2 = |{3, 1}, {1, 1}, 0}〉,
E3 = |{2, 2}, {2, 2}, 0}〉, E4 = |{2, 2}, {0, 0}, 0}〉,
E5 = |{1, 3}, {1, 1}, 0}〉, E6 = |{0, 4}, {0, 0}, 0}〉,

E7 = |{3, 1}, {1, 1}, 1}〉, E8 = |{2, 2}, {2, 2}, 1}〉,
E9 = |{1, 3}, {1, 1}, 1}〉,

E10 = |{4, 0}, {2, 0}, 2}〉, E11 = |{3, 1}, {3, 1}, 2}〉,
E12 = |{3, 1}, {1, 1}, 2}〉, E13 = |{2, 2}, {2, 2}, 2}〉,
E14 = |{2, 2}, {2, 0}, 2}〉, E15 = |{2, 2}, {0, 2}, 2}〉,
E16 = |{1, 3}, {1, 3}, 2}〉, E17 = |{1, 3}, {1, 1}, 2}〉,
E18 = |{0, 4}, {0, 2}, 2}〉,

E19 = |{3, 1}, {3, 1}, 3}〉, E20 = |{2, 2}, {2, 2}, 3}〉,
E21 = |{1, 3}, {1, 3}, 3}〉,

E22 = |{4, 0}, {4, 0}, 4}〉, E23 = |{3, 1}, {3, 1}, 4}〉,
E24 = |{2, 2}, {2, 2}, 4}〉, E25 = |{1, 3}, {1, 3}, 4}〉,
E26 = |{0, 4}, {0, 4}, 4}〉 . (4.7)

The coupling of four spin-1 particles is given in Table 4.2. We can now calculate the
Hamilton operator in this basis. The block belonging to basis vectors with Stot = 0
is given by

4ε−4U2+6U0 −2t 0 0 0 0
−2t 2ε−2U2+3U0 −2

√
2
3 t −

√
10
3 t 0 0

0 −2
√

2
3 t 2U2+2U0 0 −2

√
2
3 t 0

0 −
√

10
3 t 0 −4U2+2U0 −

√
10
3 t 0

0 0 −2
√

2
3 t −

√
10
3 t −2ε−2U2+3U0 −2t

0 0 0 0 −2t −4ε−4U2+6U0

 . (4.8)

The block belonging to Stot = 1 is 2ε− 2U2 + 3U0 −
√

2t 0
−
√

2t 2U2 + 2U0 −
√

2t
0 −

√
2t −2ε− 2U2 + 3U0

 . (4.9)
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S Sz state
4 4 |0−1, 00, 41〉
4 3 |0−1, 10, 31〉
4 2

√
6|0−1,20,21〉+|1−1,00,31〉√

7

4 1
√

3|1−1,10,21〉+2|0−1,30,11〉√
7

4 0 2
√

2(|0−1,40,01〉+
√

3|1−1,20,11〉)+
√

3|2−1,00,21〉√
35

4 -1
√

3|2−1,10,11〉+2|1−1,30,01〉√
7

4 -2
√

6|2−1,20,01〉+|3−1,00,11〉√
7

4 -3 |3−1, 10, 01〉
4 -4 |4−1, 00, 01〉
2 2

√
6|00,31,1−1〉−|20,21,0−1〉√

7

2 1 2|10,21,1−1〉−
√

3|30,11,0−1〉√
7

2 0 2
√

6|00,21,2−1〉+
√

3|20,11,1−1〉−6|40,01,0−1〉
3
√

7

2 -1 2|10,11,2−1〉−
√

3|30,01,1−1〉√
7

2 -2
√

6|00,11,3−1〉−|20,01,2−1〉√
7

0 0 2
√

6|00,21,2−1〉−2
√

3|20,11,1−1〉+3|40,01,0−1〉
3
√

5

Table 4.2: Coupling of four spin-1 particles to the total spin S with the z-projection
Sz. The ket-vectors on the right are written in the basis |n1, n0, n−1〉, where nσ
denotes the number of atoms in the hyperfine state σ ∈ {1, 0,−1}.

The block corresponding to the 9 basis vectors with Stot = 2 is given by

4ε−U2+6U0 −
√

6
5 t −

√
14
5 t 0 0 0 0 0 0

−
√

6
5 t 2ε+3U2+3U0 0 −

√
2
5 t −

√
14
5 t 0 0 0 0

−
√

14
5 t 0 2ε−2U2+3U0 −

√
14
15 t −2

√
2
15 t −

√
10
3 t 0 0 0

0 −
√

2
5 t −

√
14
15 t 2U2+2U0 0 0 −

√
2
5 t −

√
14
15 t 0

0 −
√

14
5 t −2

√
2
15 t 0 −U2+2U0 0 0 −

√
10
3 t 0

0 0 −
√

10
3 t 0 0 −U2+2U0 −

√
14
5 t −2

√
2
15 t 0

0 0 0 −
√

2
5 t 0 −

√
14
5 t −2ε+3U2+3U0 0 −

√
6
5 t

0 0 0 −
√

14
15 t −

√
10
3 t −2

√
2
15 t 0 −2ε−2U2+3U0 −

√
14
5 t

0 0 0 0 0 0 −
√

6
5 t −

√
14
5 t −4ε−U2+6U0


(4.10)

The part of the Hamiltonian corresponding to Stot = 3 is 2ε+ 3U2 + 3U0 −
√

2t 0
−
√

2t 2U2 + 2U0 −
√

2t
0 −

√
2t −2ε+ 3U2 + 3U0

 (4.11)
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-1.0 -0.5 0.5 1.0
Ε�U0

0.5

1.0

1.5

2.0

<nR>

Stot=0

Stot=2

Figure 4.4: Two spin-1 bosons with antiferromagnetic ordering in a double-well po-
tential. Here nR is the occupation number of the right well, and ε characterizes
the energy offset between the two wells (t/U0 = 0.05 and U2/U0 = 0.1). Depend-
ing on the total spin of the system, bosonic staircase transitions occur at different
bias voltages ε. Note that both the states with Stot = 0 and Stot = 2 have sym-
metric orbital wavefunctions. The difference in the occupation numbers arises due
to spin-dependent interactions and not due to a different orbital symmetry of the
states. Thus, a measurement of the spin-dependent bosonic staircases provides a
demonstration of mesoscopic magnetism.

and the last block belonging to to Stot = 4 is
4ε+6U2+6U0 −2t 0 0 0

−2t 2ε+3U2+3U0 −
√

6t 0 0
0 −

√
6t 2U2+2U0 −

√
6t 0

0 0 −
√

6t −2ε+3U2+3U0 −2t
0 0 0 −2t −4ε+6U2+6U0

 . (4.12)

4.3 Bosonic Staircases for Spinor Atoms

In this section we present the bosonic staircases for spin-1 atoms. The Hilbert
space decomposes into different subspaces according to the total spin of the system.
Different subspaces are not mixed by ramping up the energy difference between the
double wells and behave in a different way. In the case of two bosons this is shown in
Fig. 4.4. The different widths of the steps centered at ε = 0 corresponds to different
values of total spins per site. At ε = 0.5, the state |{1, 1}, {1, 1}, 2〉 is energetically
lower than the state |{0, 2}, {0, 2}, 2〉, which makes the step broader for Stot = 2.
On the contrary, at ε = 0.5 the state |{1, 1}, {1, 1}, 0〉 is energetically higher than
the state |{0, 2}, {0, 0}, 0〉, which makes the step narrower for Stot = 0.

This is a specific example of how this mesoscopic magnetism can be observed in
experiments. If the total spin is Stot = 2, the spins of the two atoms are parallel
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Figure 4.5: Bosonic staircase for three spin-1 bosons with antiferromagnetic ordering
in a double-well potential (t/U0 = 0.05 and U2/U0 = 0.1). Inset: Variance of the
particle number in the left well for the step around ε = 0.

and for antiferromagnetic interactions, as in the case of 23Na, being in the same
well costs extra energy. Therefore the Stot = 2 configuration switches later (i.e. at
larger energy offset) to the state with both atoms in the same well. The bosonic
staircases of spinless atoms are evenly spaced (see Sec. 4.1) because the difference
the in interaction energy between one and two atoms is the same as between two
and three atoms (it is always U). This is not the case for spin-1 atoms, and that is
the reason why the steps are not regular anymore.

In general, depending on the sign of U2, states with high single-well angular
momenta get penalized or favored. If U2 > 0 (like e.g. for 23Na) nonzero spin
configurations get penalized. In the case of 87Rb, U2 is negative and spin-dependent
interactions lead to the opposite effect: high-spin configurations are favored and the
corresponding steps are broader. Therefore, in the ferromagnetic case, the curves
for Stot = 0 and Stot in Fig. 4.4 will be exchanged.

The exact position of the steps can be calculated in the “atomic limit”, i.e. t = 0.
The step positions depend generally linearly on U2. For some spin configurations,
e.g. odd atom number, lowest possible total spin, and antiferromagnetic interactions,
the step positions do not depend on spin-dependent interactions.

For higher boson numbers, the richer structure of the off-diagonal elements means
that the variance of the particle number depends on the total spin and the energy
offset. In the case of three bosons (Fig. 4.5) the step at ε = 0 is not shifted due to
symmetry reasons, whereas the steps at ε = 1 and ε = −1 are shifted linearly. In the
same time the steps belonging to Stot = 3 are not as sharp as the steps belonging to
Stot = 1, i.e. the curve of the variance of nL is broader in the case of Stot = 3.

The staircases for different total spins may be used to arrange spin-1 atoms
in a two-dimensional superlattice according to their spin degrees of freedom (see
Fig. 4.6).
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(a) (b)

(c) (d)

S = 0

S = 2

S = 0

S = 2

Figure 4.6: A possible way to separate the Stot = 2 spin component from the Stot = 0
spin component in the case of antiferromagnetic interactions between the atoms: the
potentials in x- and y-direction are manipulated separately. In a first step (b), the
energy offset between the double wells is lifted until the bosons combining to the
total spin Stot = 0 separate while the bosons belonging to Stot = 2 still remain in the
same site. (c) Next, the wells are separated by a large potential barrier and tunneling
is suppressed. (d) An additional laser is switched on and the bosons coupling to
Stot = 2 distribute in the resulting double well. The switching is assumed to happen
adiabatically such that the system can be regarded to be in the ground state at
every instant.

4.4 Beyond Ground-State Analysis

The gap between the ground state and the first excited state in the energy spectrum
depends strongly on the tunneling between the sites (see Fig. 4.7). For finite tem-
peratures the density matrix describing the system is thus highly mixed for small
tunneling parameters, and the ground-state behavior only dominates if tunneling is
sufficiently strong.

Nonetheless, the bosonic staircases survive for small temperatures, but the spin-
dependent effects are not robust. In Fig. 4.8 we include non-zero temperature
bosonic staircases for two bosons with antiferromagnetic interactions (U2/U0 = 0.1)
and small tunneling amplitudes (t/U0 = 0.05). The thermal density matrix describ-
ing these states is given by

ρ(T ) = 1
Z

∑
i

gi e
− Ei

kBT |ψi〉〈ψi| ,

where Z is the partition function and gi denotes the degeneracy of the state |ψi〉.
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Figure 4.7: Left panel: Energy spectrum of two spin-1 bosons in a double well
with strong tunneling (t/U0 = 0.5 and U2/U0 = 0.1). The red energy levels belong
to the Stot = 0 subspace, the blue to Stot = 2 and the green to Stot = 1. Right
panel: Energy spectrum of two spin-1 bosons in a double well with weak tunneling
(t/U0 = 0.05 and U2/U0 = 0.1).
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Figure 4.8: Bosonic staircases for non-zero temperatures. The thick red line denotes
the expectation value of n̂R at kBT = 0.2U0 (left panel) and kBT = 0.6U0 (right
panel). The energies are measured in units of U0. The thin blue line denotes the
ground-state expectation value; t/U0 = 0.05 and U2/U0 = 0.1 for both plots.
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4.5 Effects of Magnetic Fields

The effect of a magnetic field can be included in the model (4.3) by adding a term
to the Hamiltonian which describes the coupling of the spins to the magnetic field.1
The first contribution of a magnetic field ~B = (0, 0, B) is a regular Zeeman shift of
the energy levels:

H = H0 + p
∑
i=L,R

∑
σ

miσn̂iσ = H0 + p Stotz

where p = gµBB and n̂iσ is the particle number operator for the ith site which gives
the number of bosons in the mth hyperfine state. The linear Zeeman shift changes
the overall state considerably. The energy eigenvalues belonging to Stot 6= 0 split
into multiplets because the hyperfine levels are no longer degenerate (see Fig. 4.9).
Note that in contrast to the spectra given in Fig. 4.7 there are level crossings in the
ground state in Fig. 4.9. The magnetic field couples to a conserved quantity, the
magnetization Stotz , and this leads to an non-analytic behavior of the ground state
properties at certain values of the energy offset.

For a given tunneling strength there is a critical magnetic field strength which
leads to ground-state level crossings. Such level crossings correspond to spin-flip
transitions, i.e. the ground-state energy is continuous, but the expectation values of
the particle number and of the magnetization are not. This means that the overall
ground state of the system does not belong to the same z-projection of the total
spin for all values of the energy offset ε. Figure 4.10 shows the critical value of the
magnetic field in the case of two bosons.

-1.0 -0.5 0.0 0.5 1.0

-1

0

1

2

Ε�U0

E

Figure 4.9: Linear Zeeman shift of the energy levels in the energy spectrum of two
spin-1 bosons (B/U0 = 0.05, t/U0 = 0.05 and U2/U0 = 0.1). The energy levels
of Fig. 4.7 split into spin multiplets. The red arrows denote ground state level
crossings. Color code as in Fig. 4.7.

1 [Svidzinsky and Chui(2003), Imambekov et al.(2004)]
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Figure 4.10: Critical magnetic field p = gµBB above which the staircase for two
bosons shows a discontinuous behavior signifying spin-flip transitions (U2/U0 = 0.1).

However, spin non-conserving collisions are negligible over the lifetime of the
condensate, and the total magnetization is a conserved quantity on the time scale
of the experiment.1 For a given magnetization the properties of the system are not
altered by the linear Zeeman effect, the whole spectrum is merely shifted. Only if
one is interested in comparing different magnetizations, the linear Zeeman effect has
to be taken into account. In a series of experiments with a given magnetization, it is
therefore necessary to include higher-order contributions in the magnetic field. The
quadratic Zeeman effect arises because the hyperfine spins characterizing ultracold
atoms are mixtures of electron and nuclear spins. Since the magnetic field couples
approximately only to the electron spin, the Zeeman effect is nonlinear in the field
but can typically be described by a sum of linear and quadratic terms.

For each of the subspaces belonging to different magnetizations Stotz there is a
separate effective Hamiltonian

Hq = H0 + q
∑
i=L,R

∑
σ

m2
iσn̂iσ . (4.13)

The magnitude of the quadratic Zeeman shift is given by q = q0B
2, where e.g.

q0 = h× 390 Hz/G2 for sodium.2
In the case of two bosons the system with magnetization Stotz = 0 possesses the

most interesting structure, because the Hilbert space is composed of states with dif-
ferent total spin. For Stotz = 2 the quadratic Zeeman shift does not alter the staircase
since it leads to a homogeneous shift of all the energy levels. The staircases at differ-
ent magnetic fields are shown in Fig. 4.11. For Stotz = 0, the step positions depend
in a non-linear way on the magnetic field strength. It is no longer possible to read

1 [Stenger et al.(1998),Rodriguez et al.(2011)]
2 [Stenger et al.(1998)]
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Figure 4.11: Two spin-1 bosons with antiferromagnetic ordering in a double-well
potential (t/U0 = 0.05 and U2/U0 = 0.1). Solid lines: Stotz = 0 for different magnetic
fields q = q0B

2. Dashed line: Stotz = 2. In this case the staircase does not depend on
the magnetic field. The difference of this staircase to the ones with Stotz = 0, which
is the main manifestation of mesoscopic magnetism, persists in the presence of the
quadratic Zeeman effect.

them off in the atomic limit (i.e. t = 0), because the existence of the quadratic Zee-
man shift leads to additional non-diagonal elements in the Hamiltonian. Note that
the quadratic Zeeman effect does not eliminate the difference of the two staircases,
which is the main manifestation of mesoscopic magnetism.

Due to the fact that the quadratic Zeeman shift does not commute with the
operator of the total spin Stot, the eigenstates of the Hamiltonian given in Eq. (4.13)
are no longer eigenstates of Stot. For B 6= 0, the ground state of the system is a
superposition of different eigenstates of Stot, i.e. states with different Stot hybridize
(see Fig. 4.12). For certain values of the energy offset ε (e.g. ε/U0 = 1 and ε/U0 = −1
for four bosons) the appearance of a magnetic field changes the ground state strongly.
This reflects the specific spin configurations.

The quadratic Zeeman shift changes also the overall spectrum for a given mag-
netization qualitatively, such that in the case of thermal occupation of the double
well the density matrix of the system changes considerably. For q = 0 the ground
state is nearly degenerate with the first excited state, whereas the gap widens for
finite values of q.

Additionally one can include inhomogeneous magnetic fields,

H = Hq + ∆B · (SLz − SRz) ,

where ∆B describes the strength of the field gradient. The magnetic field offset ∆B
changes the Hamiltonian if Stotz 6= 0. For some configurations, e.g. two bosons in a
double well, ∆B leads merely to an overall shift of ε i.e., an inhomogeneous magnetic
field is equivalent to an energy offset ε. In general this is not the case and ∆B is an
additional tool to reshape the staircases depending on the spin configuration of the
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Figure 4.12: Expectation value 〈S2
tot〉 of the system for four bosons for different

magnetic fields q = q0B
2 (Stotz = 0, t/U0 = 0.05 and U2/U0 = 0.1).

system.
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4.6 Single Atom Resonances in Superlattices

Adapted from Phys. Rev. A 86, 023624 (2012).

In this section we go beyond the approximation of isolated double-wells and include
the influence of neighboring double wells via a mean-field approximation.

4.6.1 Staircases for Spinless Bosons in Superlattices

Starting from the Hamiltonian (4.3) we can include neighboring double wells via a
mean-field ansatz and obtain Eq. (3.38),

Ĥ = U

2
∑

k=L,R
n̂k(n̂k − 1)− ti(L̂†R̂ + h.c.) + ε (n̂L − n̂R)− µ (n̂L + n̂R)

− te
(
φRL̂

† + φLR̂
† + 2zφRR̂† + 2zφLL̂† − φRφ∗L − zφRφ∗R − zφ∗LφL + h.c.

)
.

(4.14)

The parameters of this Hamiltonian are the intra-well tunneling amplitude ti, the
tunneling amplitude te between different double wells (recall that ti > te), the on-
site interaction strength U , the chemical potential µ and the energy offset within
the double wells ε (compare Fig. 3.15). The mean-field order parameters φL and φR
denote the superfluid density via the relations nsfL = |〈L̂〉|2 and nsfR = |〈R̂〉|2. When
the self consistent values of the order parameters are φL = φR = 0 all tunneling
between the unit cells of the superlattice is suppressed and the system is called
Mott insulating (see Sec. 3.3).

If the offset ε is changed with the other parameters µ, ti, and te fixed, the
atom number distribution within the double wells becomes asymmetric. Due to the
finite on-site interaction the atom numbers do not change proportionally to ε but in
steps, which are called single-atom resonances. In Sec. 4.3 these bosonic staircases
were examined for isolated double-well potentials. In the Mott-insulating phase the
superlattice decomposes (within mean-field approximation) into an array of isolated
double wells (compare Sec. 3.3). Thus, it is possible in this regime to observe the
same bosonic staircases as in the case of single double-well potentials.

Figure 4.13 shows the mean atom number in the right well 〈n̂R〉 and the standard
deviation

∆nR =
√
〈n̂2

R〉 − 〈n̂R〉2

along the dashed line shown in Fig. 3.20. The system is Mott-insulating for a large
parameter range (µ/U = 1, ti/U = 0.05, te/U = 0.005, and −1.9 ≤ ε/U ≤ 1.9).
The inset shows the total number of atoms in the double well 〈n̂〉 = 〈n̂L + n̂R〉
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Figure 4.13: Mean particle number in the right well 〈n̂R〉 (solid) and standard
deviation ∆nR =

√
〈n̂2

R〉 − 〈n̂R〉2 (dashed) as a function of the energy offset ε for
Hamiltonian (4.14) with µ/U = 1 and ti/U = 10te/U = 0.05. The inset shows
the mean total particle number in the double well 〈n̂〉 = 〈n̂L + n̂R〉. The standard
deviation is multiplied by 5.

which changes discontinuously at ε/U ≈ ±2 signaling that the system leaves the
Mott-insulating phase. This causes a discontinuity in the function 〈n̂R〉. The steps
are equidistant since the difference in the on-site interaction between one and two
atoms and between two and three atoms (and for higher atom numbers) are the
same, namely equal to the on-site interaction U . The spacing between two steps is
∆ε = U , i.e., the steps occur when the energy offset is large enough to compensate
the on-site interaction.

In Fig. 4.14 the expectation value 〈n̂R〉 is plotted along a curve with stronger
tunneling amplitudes and a shifted chemical potential as compared to Fig. 4.13.
Along this curve the system is mostly superfluid. This can be seen from the inset
of Fig. 4.14: for −2U ≤ ε ≤ 2U the particle number per double well 〈n̂〉 is not
constant anymore. Although the atom staircase looks similar to the one in Fig. 4.13
there are significant differences. The fluctuations in the particle number ∆nR are
greatly increased and additional maxima appear. These number fluctuations can be
measured in experiments.1

Single-atom resonances can also be seen in the density of condensed atoms. The
number of condensed atoms per site is connected to the value of the order parameters
via the relations, nsfL = |〈L̂〉|2 and nsfR = |〈R̂〉|2. The ratio of condensed atoms in the

1 [Cheinet et al.(2008)]
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Figure 4.14: Mean particle number in the right well 〈n̂R〉 (solid) and standard
deviation ∆nR =

√
〈n̂2

R〉 − 〈n̂R〉2 (dashed) as a function of the energy offset ε for
Hamiltonian (4.14) with µ/U = 1.2 and ti/U = 10te/U = 0.1. The inset shows the
total particle number in the double well 〈n̂〉 = 〈n̂L + n̂R〉. The standard deviation
is multiplied by 5.

right well to the number of condensed atoms in both wells,

nsfR
nsf

= |〈R̂〉|2

|〈L̂〉|2 + |〈R̂〉|2
, (4.15)

is plotted in Fig. 4.15 along several paths in parameter space. The solid line corre-
sponds to ti = 10te = 0.15U and shows steplike behavior. The dotted line shows the
total atom number in the right well 〈n̂R〉 for the same tunneling amplitudes. Note
that the steplike structure is more pronounced for the density of condensed atoms
than for the total atom number. For higher tunneling rates the staircase structure
disappears (see dashed line with ti = 10te = 1U). In the limit of infinite tunnel-
ing amplitudes the ratio nsfL/R/nsf does not depend on ε because there is an infinite
amount of atoms in the unit cell and changing ε/U by one moves only one atom
from one site to the other. This analysis of the asymmetry of the superfluid density
also helps to understand the connection between φL and φR. The ratio of the two
order parameters φL and φR does not only depend on the energy offset ε but also
on the tunneling amplitudes, the chemical potential, and the on-site interaction.
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Figure 4.15: Fraction of condensed particles in the right well nsfR/nsf (4.15) for spin-
less atoms described by the Hamiltonian (4.14). The parameters are chosen such that
the system is superfluid over the full range of ε/U ∈ [−1.8, 1.8]. The chemical poten-
tial for all curves is µ/U = 1.25. The solid line corresponds to ti/U = 10te/U = 0.15,
the dashed line to ti/U = 10te/U = 1 and the dashed-dotted line to ti = te = ∞.
The dotted line shows the atom number in the right well 〈n̂R〉 as a function of ε for
ti/U = 10te/U = 0.15.

4.6.2 Staircases for Spin-1 Bosons in Superlattices

To illustrate the phase diagram and to compare it to the case of spinless bosons we
include a bosonic staircase for spin-1 atoms with antiferromagnetic interactions in
Fig. 4.16. In this figure the occupation number of the right site of each unit cell 〈n̂R〉
is plotted as a function of the energy offset ε. We choose parameters so that the
system is Mott-insulating for −2.5 ≤ ε/U0 ≤ 2.5. The comparison with Fig. 4.13
shows that antiferromagnetic interactions shift the steps and make them unequally
wide. The step corresponding to two atoms in the left site and two atoms in the
right site allows the formation of spin singlets (〈Ŝ2

L〉 = 〈Ŝ2
R〉 = 0) in both sites. This

is energetically favorable compared to the case of an odd number of atoms on both
sites, which form states with 〈Ŝ2

L〉 = 〈Ŝ2
R〉 = 2 (this is analogous to the changed size

of the diamonds in Fig. 3.23).
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Figure 4.16: Bosonic staircase for spin-1 atoms described by the Hamiltonian (3.41)
along the curve µ/U0 = 1.4, ti/U0 = 0.05, te/U0 = 0.005, U2/U0 = 0.1 and ε/U0 ∈
[−2.5, 2.5]. The thick solid line shows the particle number in the right well 〈nR〉
and the dashed line the standard deviation ∆nR =

√
〈n2

R〉 − 〈nR〉2. The thin solid
line shows SR, the quantum number of the square of the spin in the right well,
i.e. 〈Ŝ2

R〉 = SR(SR+1). The total particle number 〈n̂L+ n̂R〉 = 4 over the full shown
range of ε. The standard deviation is multiplied by 4.
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Chapter 5

Entanglement in Superlattices

Entanglement is a unique feature of quantum mechanical systems. Understanding
entanglement deepens our understanding of quantum mechanics and, therefore, is
of fundamental interest. Moreover, entanglement is a resource for quantum compu-
tation and correlates separated systems stronger than all classical correlations can
do.

Pure State Entanglement

In classical mechanics as well as in quantum mechanics we can define pure states. In
classical mechanics such a state is a single point in the phase space and in quantum
mechanics a complex vector in the Hilbert space. Both times the state is maximally
specified and not a probabilistic mixture of distinct pure states. A composite clas-
sical system that is in a pure state can be divided and its parts are always pure
states. In quantum mechanics this is no longer true: It is possible to prepare a
composite systems in a specific pure state, divide it and its parts are not in pure
states anymore. Such states are called entangled. Although one has the best pos-
sible knowledge of the whole one does not have the best possible knowledge of its
parts.1 When we assume that the two entangled parts are spatially separated there
will be some “spooky action over distance”: When measuring one part one changes
the quantum state of the other part instantaneously.2

As an example we examine two entangled qubits, which are in the state

|ψ〉AB = 1√
2

(| ↑A↓B〉+ | ↓A↑B〉) , (5.1)

where A and B label the qubits. The state (5.1) is a pure state. The von Neumann

1 [Schrödinger(1935)]
2 [Einstein et al.(1935)]
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entropy,1

S = −tr(% log2(%)) , (5.2)

measures how mixed a density matrix % is; this entropy is zero for the state (5.1).
The entropy has the meaning of a measure of information in the same way as in
statistical physics:2 A mixed state implies less knowledge of the system than a pure
state. To calculate the quantum state %1 of the first qubit in the state (5.1) we trace
out the second one,3

%A = 〈↑B |%AB| ↑B〉+ 〈↓B |%AB| ↓B〉 =
(

1/2 0
0 1/2

)
, (5.3)

where %AB = |ψ〉AB〈ψ|AB. The density matrix %A corresponds to a mixed state
and its von Neumann entropy is 1. Note that the von Neumann entropy of a 2× 2
matrix cannot be larger than 1; therefore, we call the state (5.3) maximally mixed
and the state (5.1) maximally entangled. In conclusion, although we have maximal
knowledge about the state (5.1) we cannot know less about the state (5.3). Therefore
one says that in entangled states knowledge is stored non-locally.

Whenever we can write a pure state of a composite system as product of pure
states,

|ψ〉AB = |ψ〉A ⊗ |ψ〉B ,

we say that the state is separable. The density matrix of one part, say A, of a
separable state corresponds to a pure state,

%A = 〈↑B |%AB| ↑B〉+ 〈↓B |%AB| ↓B〉 = |ψ〉A〈ψ|A ,

where we assumed (for convenience) a qubit basis (the same is true for higher di-
mensional systems); the density matrix of the composite state is given by %AB =
(|ψ〉A ⊗ |ψ〉B) (〈ψ|A ⊗ 〈ψ|B). Therefore, separable states are not entangled.

In general any pure state |ψ〉 of a composite system can be written in the Schmidt
decomposition4

|ψ〉 =
D∑
i=1

ci|ψAi 〉 ⊗ |ψBi 〉 ,

where {ψA1 , . . . , ψAD} and {ψB1 , . . . , ψBD} are complete sets of orthonormal states of
the subsystems A and B, respectively. The coefficients ci are invariant under local
operations and can therefore be used to quantify the entanglement between A and

1 [Neumann(1955),Nielsen and Chuang(2000)]
2 [Popescu and Rohrlich(1997)]
3 [Nielsen and Chuang(2000)]
4 [Horodecki et al.(2009)]
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B. The von Neumann entropy of the reduced density matrix of each single qudit is
given by1

E(ψ) = S(TrB|ψ〉〈ψ|) = S(TrA|ψ〉〈ψ|) = −
D∑
i=1

c2
i log2 c

2
i , (5.4)

where S indicates the entropy. This entanglement measure is called entanglement of
formation (EOF). The EOF is the number of Einstein-Podolsky-Rosen pairs asymp-
totically required to prepare a given state by local operations and classical com-
munication. It ranges from zero to log2D. The entanglement of formation of two
qudits with D > 2 thereby exceeds the entanglement of formation of two qubits,
i.e. higher-dimensional objects contain more entanglement and violate all Clauser-
Horne-Shimony-Holt-inequalities more strongly than qubits.2

Mixed State Entanglement

For a mixed state the von Neumann entropy of a subsystem is not a good en-
tanglement measure anymore because each subsystem can be a mixed state even
if there is no entanglement. In general, a mixed state is entangled if it cannot be
written as a mixture of unentangled pure states. However, there are infinitely many
possibilities to write a mixed state. For example, let us consider two pure two qubit
states,

|ψ+〉 = 1√
2

(| ↑↓〉+ | ↓↑〉) and |ψ−〉 = 1√
2

(| ↑↓〉 − | ↓↑〉) , (5.5)

where we suppressed the labels of the parts. The mixed state

% = 1
2%+ + 1

2%− ,

(where %+ = |ψ+〉〈ψ+| and %− = |ψ−〉〈ψ−|) is a mixture of entangled states. Never-
theless, % can also be written as

% = 1
2 | ↑↓〉〈↑↓ |+

1
2 | ↓↑〉〈↓↑ | ,

which is mixture of unentangled states. Thus % is not entangled. Therefore, to
obtain the amount of entanglement in a given mixed state one must perform a
minimization procedure over all pure-state decompositions.

The minimal number of Einstein-Podolsky-Rosen pairs asymptotically required
to prepare a given mixed state % is called the entanglement of formation. It is defined
as

EOF(%) = inf
N∑
j=1

pjE(ψj) , (5.6)

1 [Dennison and Wootters(2001)]
2 [Horodecki et al.(2009)]
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where E(ψj) is the pure state entanglement measure given in Eq. (5.4) and the
infimum is taken over all pure-state decompositions of %. Note that the pure states
ψj need to be normalized.

There is a formula to calculate the entanglement of formation for any two qubit
state %.1 It is given by

EOF(%) = h

1 +
√

1− C(%)2

2

 ,

where h(x) = −x log2 x − (1 − x) log2(1 − x) and C(%) is the concurrence. The
concurrence does not have a direct physical interpretation but can be explicitly
calculated for any two qubit state. It is

C(%) = max{0, λ1 − λ2 − λ3 − λ4} ,

where the λi’s are the square roots of the eigenvalues of %%̃ in descending order.
Here %̃ is the result of applying a spin-flip operation to %,

%̃ = %̃AB =
(
σAy ⊗ σBy

)
%∗AB

(
σAy ⊗ σBy

)
,

where %∗ denotes the complex conjugate of %, the density matrix is written in the
standard basis, which is {| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉} and σy is the Pauli operator ( 0 −i

i 0 ).
The concurrence of a pure state |ψAB〉 essentially measures the overlap of the wave
function with the wavefunction in which all spins are flipped. The concurrence of
|ψAB〉 is given by C(ψAB) = |〈ψAB|ψ̃AB〉|, where |ψ̃AB〉 =

(
σAy ⊗ σBy

)
|ψ∗AB〉. For

example, when we flip the spins in the maximally entangled states (5.5) the states
do not change (except for a phase factor) and the concurrence of these states is
maximal.

However, there is no closed formula for mixed state entanglement for higher
dimensional systems.2 There are many different entanglement measures for these
but none of them is sufficient and able to capture all facets of entanglement.

In the following we will use the negativity of a density matrix as an entanglement
measure which is easy to calculate (but fails to detect all entanglement). This
measure is based on the notion that any separable density matrix of a bipartite
system can be written as

ρ =
∑
n

wn ρ
A
n ⊗ ρBn .

If one takes the transpose of only one subsystem, the resulting partial-transpose
matrix is still a regular density matrix,

σ =
∑
n

wn
(
ρAn
)T
⊗ ρBn ,

1 [Wootters(1998)]
2 [Horodecki et al.(2009)]
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which means that σ has only positive eigenvalues. From this we can follow that
whenever the partial transpose of a given density matrix % has negative eigenval-
ues % is entangled. Note that this is a sufficient but not necessary condition for
entanglement.

The entanglement measure negativity is defined as the sum over the negative
eigenvalues of the partial transpose of %,1

N (%) ≡
∑
i |λi| − λi

2 = ‖%
ΓA‖1 − 1

2 ,

where %ΓA is partial transpose of % with respect to subsystem A, the λi’s are the
eigenvalues of %ΓA and ||X||1 = Tr

√
X†X is the trace norm2 or the sum of the

singular values of the operator X.

5.1 Entanglement in Double-Well Potentials

Adapted from Phys. Rev. A 84, 063636 (2011).

In the following we calculate the entanglement of formation in superlattices deep
in the Mott-insulating quantum phase. In this regime the superlattice decomposes
into isolated double-well potentials (within mean-field approximation). Thus, we
determine the bipartite entanglement in a double well. We assume ultracold atoms
are loaded in a deep double-well potential and describe them with a two-site Bose-
Hubbard model

Ĥ0 = U0

2
∑
i=L,R

n̂i(n̂i − 1)− t
∑
σ

(L̂†σR̂σ + h.c.) + ε (nL − nR) + U2

2
∑
i=L,R

(
~S2
i − 2ni

)
,

where the operators are described below Eq. (4.3). At this point, we consider the
entanglement mainly as a theoretical characterization of the many-body state of the
system.

The entanglement of formation for typical parameters is shown in Fig. 5.1.
The maximal entanglement exceeds the maximal entanglement between two qutrits
(log2 3 ≈ 1.585). This is due to particle fluctuations. The total amount of entangle-
ment stems from orbital and spin degrees of freedom.

Magnetic fields have a strong effect on the entanglement of formation. Figure 5.2
shows the EOF of four bosons at Stotz = 0 (compare Sec. 2.5). For q > 0, the contri-
bution of the spin degrees of freedom to the entanglement of formation is suppressed
already by small magnetic fields. This is somewhat surprising, because the system

1 [Vidal and Werner(2002)]
2 [Golub and Van Loan(1996)]
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Figure 5.1: Entanglement of formation (EOF) between two wells for two bosons
with antiferromagnetic interactions (t/U0 = 0.1 and U2/U0 = 0.1) for the total spin
Stot = 0.

is constrained to Stotz = 0, i.e. the state with the strongest spin entanglement of all
states with a given total spin. For q < 0, this contribution is initially reduced but
then remains constant as a function of q.

5.2 Two Spin-1 Bosons

For two bosons and in the case of Stot = 0 a possible orthonormal basis is given by

{ψ1, ψ2, ψ3} = {|{2, 0}, {0, 0}, 0〉, |{1, 1}, {1, 1}, 0〉, |{0, 2}, {0, 0}, 0〉}

using the notation |{nL, nR}, {SL, SR}, Stot〉. The decomposition

|Ψ〉 =
3∑
i

ci|ψi〉

is not a Schmidt decomposition, because the vector |ψ2〉 is a superposition of or-
thonormal states:

|{1, 1}, {1, 1}, 0〉 = − 1√
3
|1, 1, 0; 1, 1, 0〉+ 1√

3
|1, 1, 1; 1, 1,−1〉+ 1√

3
|1, 1,−1; 1, 1, 1〉,

using the notation |nL, SL, SLz;nR, SR, SRz〉. The entanglement of formation of |ψ2〉
is given by

E(|ψ2〉) = 31
3 log2 3 .
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5.2. TWO SPIN-1 BOSONS

Figure 5.2: EOF between two wells for four particles in the presence of a magnetic
field (Stotz = 0, t/U0 = 0.05 and U2/U0 = 0.1). For q > 0, even small fields will
eliminate the contribution of the spin degrees of freedom to the entanglement.

The EOF of |Ψ〉 is given by

E(|Ψ〉) = −c2
1 log2 c

2
1 − c2

3 log2 c
2
3 − 3

(
c2

1√
3

)2

log2

(
c2

1√
3

)2

= −
3∑
i

c2
i log2 c

2
i + c2

2 log2 3 = −
3∑
i

c2
i log2 c

2
i +

3∑
i

c2
iE(|ψi〉)

= Eorbital + Espin. (5.7)

The total entanglement between the left and the right well decomposes in an orbital
part and a spin part. The orbital part stems from the coefficients which distinguish
different orbital wave functions. The spin part originates from the EOF of the
individual basis vectors, each weighted with the coefficient c2

i . The coefficients ci
depend on the tunneling strength t, on the on-site interaction U0, on the spin-
dependent interaction U2 and the energy offset ε.

In the limit of weak tunneling t � U0 the Hamiltonian is diagonal in the basis
{ψ1, ψ2, ψ3} and the ground state of a symmetric double-well potential (i.e. ε = 0)
is given by

|Ψ0〉 = |ψ2〉 = − 1√
3
|1, 1, 0; 1, 1, 0〉+ 1√

3
|1, 1, 1; 1, 1,−1〉+ 1√

3
|1, 1,−1; 1, 1, 1〉 ,

(5.8)
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Figure 5.3: EOF between two wells for two bosons for very weak tunneling and
antiferromagnetic interactions (t/U0 = 0.001 and U2/U0 = 0.1) for the total spin
Stot = 0.

which leads to an entanglement of E(|ψ2〉) = log2 3, see Fig. 5.3.
In the limit of strong tunneling (i.e. U0 � t), the ground state of the system is

|Ψ0〉 = 1
2 |ψ1〉+ 1√

2
|ψ2〉+ 1

2 |ψ3〉. (5.9)

For this state the orbital entanglement is given by

Eorbital = −21
4 log2

1
4 −

1
2 log2

1
2 = 3/2 ,

and the spin entanglement is given by

Espin =
(

1√
2

)2

log2 3 ≈ 0.792 .

The total entanglement is therefore E(|Ψ2〉) ≈ 2.292. This is not the maximum
amount of entanglement that can be obtained for this system (see Fig. 5.4). The
maximal entanglement is not the sum of the maximal qutrit entanglement and the
maximal orbital entanglement, because the orbital motion leads to particle num-
ber fluctuations and reduces the spin entanglement (see Fig. 5.5). The maximal
orbital entanglement is realized in the limit of strong tunneling, the maximal spin
entanglement corresponds to the maximally localized state, i.e. |ψ2〉.

Non-Zero Temperatures

In this section we present some results of the bipartite entanglement for the two-
site Bose-Hubbard model for non-zero temperatures. The thermal density matrix
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Figure 5.4: EOF between two symmetric wells (ε = 0) for different values of U2, i.e.,
different spin interactions.

describing these states is given by

ρ(T ) = 1
Z

∑
i

gi e
− Ei

kBT |ψi〉〈ψi| ,

where Z is the partition function and gi denotes the degeneracy of the state |ψi〉. In
Fig. 5.6 we present the negativity as a function of the energy offset for three temper-
atures. For small temperatures (blue line in Fig. 5.6, kBT = 0.25U0) the negativity
resembles main features of the ground state entanglement. Higher temperatures
decrease the entanglement and wash out the spikes due to orbital entanglement at
ε/U2 = ±0.4.

5.3 Three Spin-1 Bosons

The EOF between the two sites is presented in Fig. 5.7 for t/U0 = 0.1 and in Fig. 5.8
for very weak tunneling. In contrast to the case of two bosons, in the weak-tunneling
case the system is not entangled for large intervals of the energy offset ε.

To quantify this effect, we analyze the EOF again in detail. The spins ~SL and ~SR
couple to a total spin, for which three absolute values are possible, Stot ∈ {1, 2, 3}.

It is obvious that Eq. (5.7) is applicable for Stot = 2 and Stot = 3. The interesting
case is Stot = 1. Each state with the quantum number Stot = 1 can be written as

|Ψ〉 =
6∑
i

ci|ψi〉. (5.10)

Only two of the basis vectors contain true spin entanglement:
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Figure 5.5: EOF, Espin and Eorbital between two symmetric wells for U2/U0 = 0.1.

|ψ2〉 = |((2, 1), (2, 1), 1)〉 = α|2, 2, 0; 1, 1, 0〉+ β|2, 2, 1; 1, 1,−1〉+ γ|2, 2,−1; 1, 1, 1〉
|ψ4〉 = |((1, 2), (1, 2), 1)〉 = α|1, 1, 0; 2, 2, 0〉+ β|1, 1, 1; 2, 2,−1〉+ γ|1, 1,−1; 2, 2, 1〉

with α = −
√

2
5 , β = γ =

√
3
10 . Any superposition of |ψ2〉 and |ψ3〉 can be written as

c2|ψ2〉+ c3|ψ3〉 =
√
c2

2α
2 + c2

3|L〉 ⊗ |1, 1, 0〉R + c2β|2, 2, 1; 1, 1,−1〉
+ c2γ|2, 2,−1; 1, 1, 1〉 (5.11)

where |L〉 is the normalized function

|L〉 = 1/
√
c2

2α
2 + c2

3 (c2α|2, 2, 0〉L + c3|2, 0, 0〉L) ,

which is orthogonal to the other vectors appearing in Eqs. (5.11) and (5.10). The
decomposition Eq. (5.11) is therefore a Schmidt decomposition and the full entan-
glement of formation of |Ψ〉 can be calculated:

E(|Ψ〉) = −c2
1 log2 c

2
1 −

(
c2

2α
2 + c2

3

)
log2

(
c2

2α
2 + c2

3

)
−

(
c2

2β
2
)

log2

(
c2

2β
2
)
−
(
c2

2γ
2
)

log2

(
c2

2γ
2
)

−
(
c2

4α
2 + c2

5

)
log2

(
c2

4α
2 + c2

5

)
−
(
c2

4β
2
)

log2

(
c2

4β
2
)

−
(
c2

4γ
2
)

log2

(
c2

4γ
2
)
− c2

6 log2 c
2
6 . (5.12)

It is possible to decompose the entanglement into different contributions and to
generalize the expressions for Eorbital and Espin in Eq. (5.7). To calculate the orbital
entanglement we construct the orbital wave function and use this to get the EOF of
the reduced density matrix. The orbital wave function is

|Ψ〉orbital = c1|3, 0〉+
√
c2

2 + c2
3|2, 1〉+

√
c2

4 + c2
5|1, 2〉+ c6|0, 3〉,
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Figure 5.6: Negativity for the two-site Bose-Hubbard model for three different tem-
peratures. The tunneling amplitude is for all temperatures t/U0 = 0.1 and the
spin-dependent on-site interaction is U2/U0 = 0.1. The blue line and the blue dots
correspond to kBT = 0.25U0, red line and red dots correspond to kBT = 0.5U0
and green line and green dots correspond to kBT = 0.5U0. Note that due to sig-
nificant numerical errors the negativity is correct only up to ±0.025; nevertheless,
the accuracy is high enough to obtain the main qualitative features for the different
temperatures.

where the quantum numbers refer to |nL, nR〉. So the orbital entanglement of for-
mation between the left and the right well is given by

Eorbital = −c2
1 log2 c

2
1 − (c2

2 + c2
3) log2(c2

2 + c2
3)− (c2

4 + c2
5) log2(c2

4 + c2
5)− c2

6 log2 c
2
6 .

(5.13)

The spin wave function is given by

|Ψ〉spin =
√
c2

1 + c2
5|{1, 0}, 1〉+ c2|{2, 1}, 1〉+

√
c2

3 + c2
6|{0, 1}, 1〉+ c4|{1, 2}, 1〉 ,

(5.14)

where the quantum numbers refer to |{SL, SR}, Stot〉. The EOF of these orthonormal
basis vectors is

E(|{1, 0}, 1〉) = E(|{0, 1}, 1〉) = 0

and

E(|{2, 1}, 1〉) = E(|{1, 2}, 1〉) = −α2 log2 α
2 − β2 log2 β

2 − γ2 log2 γ
2 .

The EOF due to spin entanglement is therefore

Espin = c2
2E(|ψ2〉) + c2

4E(|ψ4〉). (5.15)
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Figure 5.7: EOF between two wells for three bosons with antiferromagnetic inter-
actions (t/U0 = 0.1 and U2/U0 = 0.1) for the total spin Stot = 1.

Note that(
c2

2α
2 + c2

3

)
log2

(
c2

2α
2 + c2

3

)
+
(
c2

2β
2
)

log2

(
c2

2β
2
)

+
(
c2

2γ
2
)

log2

(
c2

2γ
2
)

≤ c2
3 log2

(
c2

2 + c2
3

)
+
(
c2

2

)
log2

(
1 + c2

3
c2

2

)
+ c2

2 log2 c
2
2 − c2

2E(|ψ2〉)

=
(
c2

2 + c2
3

)
log2

(
c2

2 + c2
3

)
− c2

2E(|ψ2〉), (5.16)

where log(1 + dz) ≤ d log(1 + z) for d ≥ 1 and z ≥ 0 has been used. Because of
Eq. (5.16) the entanglement of formation is bounded from below,

E(|Ψ〉) ≥ Eorbital + Espin . (5.17)

5.4 Arbitrary Number of Bosons

Let Ψ be a wave function which describes the state of N bosons. This wave function
can be written in terms of a basis, which is ordered according to the occupation
numbers NL and NR, the spin in the left well SL and in the right well SR, and the
total spin Stot;

|Ψ〉 =
D∑
n=1

cn|φn〉, (5.18)
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Figure 5.8: EOF between two wells for three bosons with antiferromagnetic inter-
actions (t/U0 = 0.005 and U2/U0 = 0.1) for the total spin Stot = 1.

where ∑n c
2
n = 1 and D ≥ N is the dimension of the basis. We can rearrange this

sum by sorting it according to the occupation numbers:

|Ψ〉 =
N∑
m=0
|ψm〉,

where |ψm〉 is the part of the wave function belonging to NL = m. If N(m) is the
number of basis vectors belonging to NL = m, |ψm〉 is given by

|ψm〉 =
N(m)∑
i=1

c(m)i|φ(m)i〉, (5.19)

where∑N(m)
i=1 c(m)2

i ≤ 1 and c(m)i denote the coefficients ci which belong toNL = m.
Now it is possible to generalize Eqs. (5.13) and (5.15) and to define the orbital EOF

Eorbital = −
N∑
m=0

N(m)∑
i=1

c(m)2
i log2

N(m)∑
i=1

c(m)2
i (5.20)

and the spin EOF

Espin =
D∑
n=1

c2
nE(|φn〉). (5.21)

It is not necessary to to specify which basis vectors in Eq. (5.18) belong to which
angular momentum configuration like in Eq. (5.14), because the total spin entangle-
ment entropy can be written as a sum over all basis vectors.

In this section we prove that Eq. (5.17) is true for any number of bosons in a
double well:

E(|Ψ〉) ≥ Eorbital + Espin . (5.22)

119



CHAPTER 5. ENTANGLEMENT IN SUPERLATTICES

0 2 4 6 8 10
t�U0

0.5

1.0

1.5

2.0

2.5

3.0

EOF

EHYL

Eorb ital

Esp in

Eorb ital+Esp in

Figure 5.9: EOF, Espin, Eorbital and Espin + Eorbital between two symmetric wells
for three bosons with antiferromagnetic interactions (U2/U0 = 0.1) in a symmetric
double-well potential (ε/U0 = 0).

E(|Ψ〉) decomposes in a sum over m: E(|Ψ〉) = ∑N
mE(|ψm〉). It is possible to write

down the EOF for each |ψm〉 in the following way:

E(|ψm〉) = −
∑
j

(∑
i

α(m)2
ijc(m)2

i

)
log2

(∑
i

α(m)2
ijc(m)2

i

)
,

which defines a basis for each vector φ(m)i:

|φ(m)i〉 =
∑
k

∑
l

a(m)ika(m)il|Lk〉 ⊗ |Rl〉 =
∑
j

α(m)ij|L,R〉j ,

where ∑j α
2
ij = 1. To prove Eq. (5.22) for any number of bosons, it is necessary and

sufficient to show that Eq. (5.22) is true for each E(|ψm〉), i.e.,

∑
j

(∑
i

α2
ijc

2
i

)
log2

(∑
i

α2
ijc

2
i

)
≤
(∑

i

c2
i

)
log2

(∑
i

c2
i

)
+
∑
i

c2
i

∑
j

α2
ij log2 α

2
ij .

The term on the left-hand side can be rearranged,

∑
j

(∑
i

α2
ijc

2
i

)
log2

(∑
i

α2
ijc

2
i

)
=

∑
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∑
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α2
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2
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log2

(
α2
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2
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)

+
∑
j

∑
i

(
α2
ijc

2
i

)
log2

(∑
n α

2
njc

2
n

α2
ijc

2
i

)
,

(5.23)
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as well as the term on the right-hand side,(∑
i

c2
i

)
log2

(∑
i

c2
i

)
+
∑
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i

∑
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=
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Note that due to Jensen’s inequality

∑
j

(
α2
ijc

2
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)
log2
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i log2

(∑
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2
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)

= c2
i log2

(∑
n

c2
n

)
− c2

i log2 c
2
i ,

Eq. (5.23) is fulfilled and therefore Eq. (5.22).

Comparison with the Entanglement of Particles

The amount of entanglement shared between two parties might be lowered by super-
selection rules.1 In case two parties share N particles and a particle superselection
rule applies, the extractable bipartite entanglement, i.e. the degree of entanglement
one can entangle two initially not entangled quantum registers located at A and B,
is given by the entanglement of particles2

EP (|ΨAB〉) ≡
∑
n

Pn E
(
|Ψ(n)

AB〉
)
,

where |Ψ(n)
AB〉 is |ΨAB〉 projected onto the subspace of fixed local particle number,

i.e. n particles for one party and N − n for the other.
The entanglement of particles for two bosons in a double well is given by Espin

in Eq. (5.7). For three bosons the case Stot = 2 and Stot = 3 is trivial, but the
case Stot = 1 is more interesting and will be examined. To calculate EP we write
down the projection obeying local particle superselection rules. The projections onto
nL = 3 and nL = 0 are trivial and do not contribute to EP . The projection onto
nL = 2 leads to Eq. (5.11) with P2 = c2

2 + c2
3. The entanglement contained in this

state is given by

E
(
|Ψ(2)

LR〉
)

= −c
2
2α

2 + c2
3

c2
2 + c2

3
log2

c2
2α

2 + c2
3

c2
2 + c2

3
− c2

2β
2

c2
2 + c2

3
log2

c2
2β

2

c2
2 + c2

3
− c2

2γ
2

c2
2 + c2

3
log2

c2
2γ

2

c2
2 + c2

3

1 [Bartlett and Wiseman(2003)]
2 [Wiseman and Vaccaro(2003)]
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and thereby contributes

P2 E|Ψ(2)
LR〉 = −
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log2
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)
to EP . A comparison with Eq. (5.12) shows, that the equation

E(|Ψ〉) = Eorbital + EP (5.24)

holds for three bosons. This equation is also true for higher boson numbers. The
contribution of the state (5.19) to EP is given by

Pm E|Ψ(m)
LR 〉 = −

∑
j

(∑
i

α(m)2
ijc(m)2

i

)
log2

(∑
i

α(m)2
ijc(m)2

i

)

+
(∑

i

c(m)2
i

)
log2

(∑
i

c(m)2
i

)
.

A comparison with Eq. (5.20) shows that Eq. (5.24) holds indeed for all boson
numbers.

The necessity to take a superselection rule into account may arise due to sev-
eral reasons. In some cases the phase between states with different local particle
occupation numbers is not well defined.1 Consider the bipartite state

|ψθ〉AB =
√

1
2
(
|1, 0〉+ eiφ|0, 1〉

)
. (5.25)

In case there is no shared reference frame and no tunneling between the two parties
the phase is experimentally not accessible and the state is indistinguishable from an
incoherent mixture

ρAB = 1
2 (|1, 0〉〈1, 0|+ |0, 1〉〈0, 1|) . (5.26)

Whenever one is concerned with the occupation number of massive particles, the
detailed properties of the system determine which LOCCs (local operations and
classical communication) are allowed: if tunneling is forbidden LOCCs will conserve
the local particle number. In this case a local particle number super:selection rule
must be taken into account. A more trivial example is the case of a superselection
rule for the total particle number.2

In our model (4.3) the phase is well-defined due to the finite tunneling ampli-
tude. The amount of orbital entanglement Eorbital depends directly on the particle
fluctuations caused by the tunneling between the sites. In the absence of tunneling,
the orbital entanglement vanishes and the superselection rule for the local particle
number is effectively enforced.
1 [Dowling et al.(2006)]
2 [Cramer et al.(2011)]
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Creation of Entanglement Structures

In the case of two spin-1 bosons in a double well the state of total spin zero (Stot =
|~SL + ~SR| = 0) is singled out. First, it can be separated from the Stot = 2 state due
to a different particle distribution within the double well in the vicinity of the single-
particle tunneling resonance (i.e. ε/U0 = 0.5). Secondly, it represents the two-qutrit
singlet state and thereby contains the maximal qutrit entanglement of log2 3. This
distinguishes the qutrit entanglement from qubit entanglement, where the singlet
state and the triplet (Stot)z = 0 state contain the same amount of entanglement.

This can be used to create specific entanglement structures in 2D optical super-
lattices (see Fig. 4.6).
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Chapter 6

Conclusions

In this thesis we have analyzed various aspects of spinor condensates in optical
superlattices, focusing on possibilities to use them as simulators for mesoscopic
magnetism and as devices to create entangled states.

We have analyzed the ground-state phase diagram for spinless and spin-1 atoms
in period-2 superlattices. To prepare ourself for this task we reviewed the case of
spinless and spin-1 atoms in conventional optical lattices. To study atoms in super-
lattices we included the dynamics within the unit cells exactly and the tunneling
between unit cells in a mean-field approximation. We discussed several methods to
treat this mean-field Hamiltonian and concluded that in the spinless case a simple
stability analysis is sufficient to determine whether the system is Mott-insulating
or superfluid. Using this method, we have calculated the phase diagram for spin-
less bosons in optical superlattices. In agreement with previous studies we found
a contraction of Mott lobes to loops for specific values of the energy offset. We
have presented a detailed study of the various Mott phases which emerge when the
chemical potential and the energy offset are varied.

In the case of spin-1 atoms in superlattices the mean-field Hamiltonian shows a
much richer quantum phase diagram. For antiferromagnetic interactions all Mott
lobes are elongated towards higher tunneling amplitudes. Mott lobes with an even
number of atoms at each lattice site are especially favored because their atomic
spins can couple to form spin singlets. A small, non-vanishing order parameter
leads to increased atom number fluctuations and higher spin configurations, and, as
a consequence, to higher on-site repulsion. Thus, the ground-state energy for small
values of the order parameter is increased. For certain parameter regimes this leads
to the appearance of two local minima of the ground state energy functional (one at
vanishing order parameter, one at a finite value of the order parameter) separated
by an energy barrier. The higher one corresponds to a metastable quantum phase.
Thus, the system shows a hysteretic behavior and the phase transitions are of first
order, whereas they are strictly of second order for the spinless case. For a realistic
value of the spin-dependent interactions for sodium it depends on the parity of the
atom number if the phase transition of a specific Mott lobe becomes first order or
remains second order. For smaller values of the spin-dependent interactions all Mott
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lobes show first-order phase transitions, contrary to the case of spin-1 atoms in usual
lattices where the phase transition of the Mott lobe with one atom per site remains
second order for all values of the spin interaction. Because of the richer properties
of the energy functional in the spin-1 case it is no longer possible to determine the
quantum phase of the system with a stability analysis of the Mott phase only. The
ground-state energy functional for each point in parameter space has to be analyzed,
and we have given a detailed analysis of the size of the various Mott phases in the
atomic limit and pointed out the differences to the case of spinless bosons.

We have also discussed the effects of magnetic fields by using an effective Hamil-
tonian which includes a quadratic Zeeman shift. For antiferromagnetic interactions
magnetic fields break the degeneracy between different polar superfluid phases. This
leads to new classes of metastable phases and thus an even richer phase diagram.
In the ferromagnetic case magnetic fields cause first-order phase transitions and
metastable phases. These results apply to spin-1 atoms in superlattices as well as
in usual lattices.

Furthermore, we have studied spin-1 atoms deep in the Mott-insulating phase
when the superlattice decomposes within mean-field theory into isolated double-well
potentials. Ultracold atoms in deep double-well potentials are well described by a
two site Bose-Hubbard model. We analyzed the two-site Bose-Hubbard model for
spin-1 atoms explicitly for small numbers of bosons. Starting from the explicit form
of the Hamiltonian, we have discussed the physics of the bosonic staircases. These
bosonic staircases are the result of the finite on-site interaction in the Bose-Hubbard
model. Atoms can move from on site to the other when the energy offset is large
enough to compensate this on-site interaction; high tunneling amplitudes wash out
the staircase structure since the atoms are delocalized in this case. Bosonic staircases
of spinless atoms are evenly spaced because the difference in the interaction energy
between one and two atoms is the same as between two and three atoms (and for
higher atom numbers). This is not the case for spin-1 atoms, and that is the reason
why the steps are not regular for spin-1 atoms. The staircases for different total
spins establish a correspondence of the spatial motion and the spin configuration
making the system a model for mesoscopic magnetism. We have also studied the
impact of magnetic fields and found that weak magnetic fields do not destroy this
correspondence.

We also generalized the concept of bosonic staircases to extended superlattices.
We examined the occupation numbers of single sites and found single-atom reso-
nances. We detected clear fingerprints of single-atom resonances also in the density
of condensed bosons. In superlattices, we have also compared the single-atom reso-
nances for spin-1 atoms with the case of spinless atoms and concluded that magnetic
ordering changes the occupation numbers of individual lattice sites.

Spinor gases in optical lattices can also be used to engineer strongly correlated
states for quantum information processing. We have examined the bipartite en-
tanglement for the two-site Bose-Hubbard model and have constructed states of
maximal entanglement. We have shown that spin-1 atoms allow stronger quantum
correlations between the wells than spinless bosons. In addition to orbital entangle-
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ment, spin-1 atoms allow spinor entanglement. We have analyzed the contribution
of orbital and spin degrees of freedom and derived a lower bound of the total entan-
glement, which is the sum of the orbital entanglement and the spin entanglement.
We have examined the quantum correlations between the wells for different values of
the energy offset and different ratios of the tunneling strength relative to the on-site
interaction. Because the Stot = 0 singlet state of two bosons does contain more
entanglement than the other eigenstates of the system this correspondence can be
used to construct an entanglement witness in the system: in case one detects the
typical spatial behavior of the Stot = 0 state one can conclude to have its entan-
glement. With the help of fluorescence imaging it is also possible to depopulate
doubly-occupied sites in the lattice and thereby to build a spin filter. At this point,
we have consider entanglement mainly as a theoretical characterization of the many-
body state of the system. We compared the entanglement of particles and thereby
elucidated the meaning of orbital entanglement and of superselection rules for the
local particle number.

We have discussed entanglement between the sites, not the entanglement be-
tween the individual atoms. Even for an occupancy of one, i.e., one atom per site,
these are different quantities, because the bosons are indistinguishable. It was pro-
posed to measure the entanglement between (spinless) bosons in an optical lattice
by standard time-of-flight measurements.1 Such measurements do not preserve the
information about the entanglement between the individual sites. There are other
possibilities to examine these systems experimentally. First, it is possible to estimate
the entanglement by measurements of the atom positions, because these correspond
to specific spin configurations, as we have demonstrated. These atom positions can
be determined by standard time-of-flight measurements or direct fluorescence detec-
tion of individual sites. It is also possible to detect the spin configurations directly
in a non-demolishing way with the help of the quantum polarization spectroscopy.
Furthermore, it may be possible to relate the entanglement to additional observable
experimental quantities, such as magnetization fluctuations in one of the wells, in
analogy to what has been discussed for non-interacting particles.2

Outlook

Main questions for future works regarding spinor atoms in superlattices will be the
the impact of spin-correlations in the Mott phase. It is interesting to generalize
the spin-Hamiltonian for usual lattices to superlattices. Two regimes are can be
differentiated: When the intra-well tunneling is strong the total spins per double
well couples to each other. When the intra-well tunneling is small the total spins
per site will couple. Depending on the regime we expect singlet or nematic ordering
on sub-lattices and additional points of symmetry breaking and first order phase
transitions.

Another future project will be the analysis of spin-2 atoms in superlattices. It

1 [Cramer et al.(2011)]
2 [Song et al.(2011)]
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turns out that the total spin and its projection on quantization axes do not suf-
fices anymore to describe the state fully. In this case additional quantum numbers
determine the magnetic ordering.

In conclusion, we have shown that spinor bosons in optical superlattices show a
rich phenomenology of different quantum phases and provide simulators for meso-
scopic magnetism due to an unprecedented control of the parameters.
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Appendix A

Mean-Field Calculations

A.1 Mathematica Code for Sec. 3.1.1

In this section we want to present some calculations done in Chapter 3. The
boundaries of the Mott-lobes for spinless bosons in a usual lattice in mean-field
approximation (3.12) can be obtained from Eq. (3.18)or Eq. (3.20). To determine
the ground state for each parameter tuple (t, U, µ) we use an iterative procedure to
calculate the self-consistent value of the order parameter. In this section we use the
“Quantum Package” for Mathematica.1

To treat the problem numerically one has to limit the basis to a finite size and
choose an Nmax such that

|ψ〉 =
Nmax∑
n=0

αn|n〉 . (A.1)

In this section we choose Nmax = 10 and create the basis:

basis = Table A in
`], 8i, 0, 10<E

9 0n
`\, 1n

`\, 2n
`\, 3n

`\, 4n
`\, 5n

`\, 6n
`\, 7n

`\, 8n
`\, 9n

`\, 10n
`\=

Using the “Quantum Package”, we can define operators,

DefineOperatorOnKetsB ae , : i_n
`] ¦ i + 1 i + 1n

`]> F;

DefineOperatorOnKetsB av , : i_n
`] ¦ i H i - 1Ln

`]> F;

Here is ae the operator b̂† in Eq. (3.12) and av is b̂.

1Version 2.3.0 (May 2011) for Mathematica 8 by José Luis Gómez-Muñoz and Francisco Delgado
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We can now calculate b̂† and b̂ in the given basis:

vf@x_ , y_ D := Expand AH x L†
×H av L× y E

ef@x_ , y_ D := Expand AH x L†
×H ae L× y E

v = Expand @Function @8y <, Function @8x <, vf@x , y DD �� basisD �� basisD;

e = Expand @Function @8y <, Function @8x <, ef@x , y DD �� basisD �� basisD;

The Hamiltonian is given by:

h @x_ , y_ , Μ_ D := Expand AH x L†
×I 1 � 2 I n

`
×I n

`
- 1MM - Μ n

` M× y E
ham = Expand @Function @8y <, Function @8x <, h @x , y , mu DD �� basisD �� basisD;

stoerterm @x_ , y_ D := Expand AH x L†
×H av + ae L× y E

stoer = Expand @Function @8y <, Function @8x <, stoerterm @x , y DD �� basisD �� basisD;

hamiltonian @Μ_ , t_ , Φ_ D := H ham - t Φ stoer L �. 8mu ® Μ<

We can use Eq. (3.20) to determine the phase boundary numerically:

grenze @Μ_ D := Block B8eigen <,

eigen = Sort@Thread @Eigensystem @hamiltonian @Μ, 0, 0DDDD;

1 � IfB eigen P 2, 1T == eigen P 1, 1T,

1. ´ 1020 , Sum B
H eigen P n , 2T.stoer .eigen P 1, 2TL2

eigen P n , 1T - eigen P 1, 1T
, 8n , 2, dim <FF F
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The ground state of the system is determined by an iterative procedure and can be
calculated with the following function:

gz@Μ_ , t_ , prec_ D := Block @8ord , Φ , grund <,

Φ = .5;

grund = Chop@First@Sort@Thread @Eigensystem @hamiltonian @Μ, t, Φ DDDDDP 2T, prec D;

ord = grund .v .grund ;

While @Abs@Φ - ord D > prec ,

Φ = ord ;

grund = Chop@First@Sort@Thread @Eigensystem @hamiltonian @Μ, t, Φ DDDDDP 2T, prec D;

ord = grund .v .grund D;

grund .basis

D

The function gz[µ,t,prec] calculates the ground state for any given t/U , µ/U and
precision prec. The calculation starts with φ = 0.5 and performs as many iteration
as needed to obtain the precision 〈b̂〉i+1 − 〈b̂〉i < prec.

For example we obtain for t/U = 0.15, µ/U = 0.9 and prec = 0.001

gz@.9, .15, .001D

0.0937197 0n
`\ + 0.769862 1n

`\ + 0.622636 2n
`\ + 0.103888 3n

`\ + 0.00779753 4n
`\

At this parameter point the atomic density is given by

n @Μ_ , t_ , prec_ D := H gz@Μ, t, prec DL†
×H ae × av L× gz@Μ, t, prec D

n @.9, .15, .001D

1.40066

A.2 Matlab Code for Sec. 3.1.1

For most of the calculation in Chapter 3 we used Matlab because it is much
more efficient for matrix diagonalizations. The algorithms we use are based on
Mathematica algorithms presented in Appendix A.1. To prepare ourself for the
more involved calculations in the following we examine the matlab code for the
mean-field approximation of the usual Bose-Hubbard model.

To calculate the phase diagram given in Fig. 3.3 we choose our basis according
to Eq. (A.1) with Nmax = 11, define the annihilation operators b̂ =dest in this basis
as well as the identity matrix 1 =iden,
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N = 11;
dest = spdiags(sqrt(0:N-1)’,1,N,N);
iden = speye(N,N);

a = dest;
n = a’*a;

We can build up the different terms in the Hamiltonian given in Eq. (3.12),
Ham_int = n*(n-iden);
Ham_mu = n;
Ham_mean = (a+a’);

and define a function which generates the Hamiltonian for each given µ, t, U and φ,
function A=ham(mu,t,ph);
global Ham_int; global Ham_mu; global Ham_mean;global iden;
A=(1/2 * Ham_int - mu * Ham_mu - t*ph*Ham_mean + t *(ph^2)*iden);

Note that we had to introduce global variables. The iterative procedure to calculate
the self-consistent mean-field parameter φ can be written like
function l=it(mu,t,prec)

ph=.5;
[ground,~] = eigs(ham(mu,t,ph),1,’sa’);
global a;
ord=ground’*a*ground;
while abs(ph-ord)>prec

ph=ord;
[ground,~] = eigs(ham(mu,t,ph),1,’sa’);
ord=ground’*a*ground;

end;
l=ord;

Matlab Code for Sec. 3.2

We write derive the annihilation operators b̂1, b̂0 and b̂−1 in the basis withNmax =
10
N = 10;
dest = spdiags(sqrt(0:N-1)’,1,N,N);
iden = speye(N,N);

aa1 = kron(kron(dest,iden),iden);
aa0 = kron(kron(iden,dest),iden);
aa1m= kron(kron(iden,iden),dest);
iid = kron(kron(iden,iden),iden);
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Note that the size of the operators is much bigger than necessary to describe 10
spin-1 atoms. The operators aa1, aa0, aa1m and iid have size N3 × N3. We sort out
all irrelavant entries by introducing a cutoff:

cutoff = N;
temp = round(full(diag(aa1’*aa1 +aa0’*aa0+aa1m’*aa1m)));
index = temp<cutoff;

a1 = aa1(index,index);
a0 = aa0(index,index);
a1m = aa1m(index,index);
id = iid(index,index);

After this cutoff procedure the size decrease from N3 × N3=1000 × 1000 to 220 ×
220. Now we can continue by defining the atom number operator n̂ =n and the
spin-1 matrices according to Eq. (2.33),

n = a1’*a1+a0’*a0+a1m’*a1m;
Sx = (a0’*a1 + a1’*a0 + a1m’*a0 + a0’*a1m)/sqrt(2);
Sy = sqrt(-1) * (a0’*a1 - a1’*a0 + a1m’*a0 - a0’*a1m)/sqrt(2);
Sz = (a1’*a1 - a1m’*a1m);

and build up the terms of the Hamiltonian (3.24),

Ham_int = n*n-n;
Ham_mu = n;
Ham_spin = Sx^2 + Sy^2 + Sz^2 -2*n;

Similar to the spinless case we introduce a function which generates the Hamilto-
nian (3.24) for each given t, U , µ and ~φ

function A=ham(t,mu,s,ph1,ph0,ph1m)
global a1; global a0; global a1m; global id;
global Ham_int; global Ham_mu; global Ham_spin;

A=(1/2 * Ham_int + s/2* Ham_spin - mu * Ham_mu
- t*(ph1*(a1+a1’)+ph0*(a0+a0’)+ph1m*(a1m+a1m’))
+ id*t*(ph1^2+ph0^2+ph1m^2));

The iterative procedure can be implemented like in the function it_spinor, which
is a function of the system parameters and returns the self-consistent value of ~φ,

function l=it_spinor(t,mu,s,q,prec,anf1,anf0,anf1m)
ph1 = anf1; ph0 = anf0; ph1m = anf1m;
[ground,~] = eigs(ham(t,mu,s,q,ph1,ph0,ph1m),1,’sa’);
global a1; global a0;global a1m;
ord1=ground’*a1*ground;
ord0=ground’*a0*ground;
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ord1m=ground’*a1m*ground;
while (abs(ph1-ord1)+abs(ph0-ord0)+abs(ph1m-ord1m))>prec

ph1=ord1;ph0=ord0;ph1m=ord1m;
[ground,energy] = eigs(ham(t,mu,s,q,ph1,ph0,ph1m),1,’sa’);
ord1=ground’*a1*ground;
ord0=ground’*a0*ground;
ord1m=ground’*a1m*ground;

end;
l=[ord1,ord0,ord1m];

The stable quantum phase of the system can only be determined by an analysis of the
ground-state energy functionals since for certain parameter regimes there are several
fixed points of the map (3.34). It is straightforward to analyze E[φ] numerically.
When we analyze E[φ] along one direction, say φ0 = 0 and φ1 = φ−1 6= 0 we can
use the following function

function A=efph(t,mu,s)
prec = 0.1;
liste(1)= eigs(ham(t,mu,s,0.01,0,0.01),1,’sa’);
liste(2)= eigs(ham(t,mu,s,0.05,0,0.05),1,’sa’);
sf = liste(1) > liste(2);
if sf == 0

ph=0:prec:1;
l=length(ph);
for ind = 3:l;

liste(ind) = eigs(ham(t,mu,s,ph(ind),0,ph(ind)),1,’sa’);
end;
test = diff(diff(liste)>0);
[a,b]=sort(test,’descend’);
if a(1)==0

phase = 1;
elseif a(1) == 1

if liste(b(1)) < liste(1)
phase = 3;

elseif liste(b(1)) > liste(1)
phase = 2;

end;
end;

else
phase = 4;

end;
A=phase;

For given parameters t, U0, U2 and µ the function efph returns a number where
(1) denotes the Mott phase, (2) the metastable superfluid one, (3) the metastable
Mott phase and (4) the superfluid one. Note that this code snippet is insufficient
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to calculate the stable quantum phase: for magnetic fields the symmetry betweeen
the longitudinal and transversal polar order parameters is broken and one needs to
analyze E[φ] along φ0 6= 0 as well.

After performing this numerically efficient method to determine the quantum
phase we can use the function it_spinor to determine the order parameter of the
system. In the superfluid phase we choose a starting point sufficiently far away
from zero, say 1; when we know already from the energy-functional analysis that
the system is Mott insulating, the order parameter is 0 and we do not need another
iterative procedure.

Matlab Code for Sec. 3.3

We start by calculating the relevant operators L̂ and R̂

N = 8;
dest = spdiags(sqrt(0:N-1)’,1,N,N);
iden = speye(N,N);

ll = kron(dest,iden);
rr = kron(iden,dest);
iid = kron(iden,iden);

We use a cutoff to keep only the basis states belonging to a maximal atom number
of Nmax=8:

cutoff = N;
temp = round(full(diag(ll’*ll +rr’*rr )));
index = temp<cutoff;

l = ll(index,index);
r = rr(index,index);
id = iid(index,index);

nl = l’*l;
nr = r’*r;
n=nl+nr;

Next we determine the different terms of the Hamiltonian (3.38)

Ham_int = nl*nl-nl+nr*nr-nr;
Ham_mu = nl+nr;
Ham_eps = nl-nr;
Ham_ti = l’*r + r’*l;

and define a function which return for each ti, te, U , µ and ε the Hamiltonian (3.38),

135



APPENDIX A. MEAN-FIELD CALCULATIONS

function A=ham(ti,te,mu,eps,phl,phr)
global l;global r;global id;
global Ham_int; global Ham_mu; global Ham_ti; global Ham_eps;
te_reward = (phr*(l+l’)+phl*(r+r’)+2*phr*(r+r’)+2*phl*(l+l’));
te_punish = 2*(id*phl*phr+id*phl*phl+id*phr*phr);
A = 1/2 * Ham_int - ti * Ham_ti - mu * Ham_mu + eps * Ham_eps

- te * te_reward + te * te_punish;

We can determine the self-consistent order parameter by an iterative procedure since
we deal with spinless bosons. The function performing the iterations is

function longit(ti,te,mu,eps,prec,anf)
phl = anf; phr = anf;
[ground,~] = eigs(ham(ti,te,mu,eps,phl,phr),1,’sa’);
global l;global r;
ordl=max(ground’*l*ground,0);
ordr=max(ground’*r*ground,0);
ind = 1;
while (abs(phl-ordl)+abs(phr-ordr))>prec% & ind < 100

if ind > 50
break;

else
phl=ordl;phr=ordr;
[ground,~] = eigs(ham(ti,te,mu,eps,phl,phr),1,’sa’);
ordl=max(ground’*l*ground,0);
ordr=max(ground’*r*ground,0);
ind =ind+1;

end;
end;
long=[ordl,ordr];

In the function longit we stop the iterative procedure when the wanted precession
prec is not reached after 50 iterations. We can use a similar function to deter-
mine the ground state and thereby calcualate expectation values such as 〈n̂〉 for the
bosonic staircases in Sec. 4.3.

Matlab Code for Sec. 3.4

In this section we present the matlab code for spin-1 atoms in superlattices
without commenting it because the concepts used are the ones used for spin-1 atoms
in usual lattices and spinless bosons in superlattices. For the sake of completeness
we cite some code snippets.

The basis and relevant operators are defined as follows:

136



A.2. MATLAB CODE FOR MEAN FIELD CALCULATIONS

N = 7;
cutoff = N;
dest = spdiags(sqrt(0:N-1)’,1,N,N);
iden = speye(N,N);

ll1 = kron(kron(kron(kron(kron(dest,iden),iden),iden),iden),iden);
ll0 = kron(kron(kron(kron(kron(iden,dest),iden),iden),iden),iden);
ll1m= kron(kron(kron(kron(kron(iden,iden),dest),iden),iden),iden);

rr1 = kron(kron(kron(kron(kron(iden,iden),iden),dest),iden),iden);
rr0 = kron(kron(kron(kron(kron(iden,iden),iden),iden),dest),iden);
rr1m= kron(kron(kron(kron(kron(iden,iden),iden),iden),iden),dest);

iid = kron(kron(kron(kron(kron(iden,iden),iden),iden),iden),iden);

% Find the relevant entries
temp = round(full(diag(ll1’*ll1 + ll0’*ll0 + ll1m’*ll1m
+ rr1’*rr1 + rr0’*rr0 + rr1m’*rr1m)));
index = temp<cutoff;

% And redefine the operators
global l1;global l0;global l1m;
global r1;global r0;global r1m; global id;

l1 = ll1(index,index);
l0 = ll0(index,index);
l1m = ll1m(index,index);

r1 = rr1(index,index);
r0 = rr0(index,index);
r1m = rr1m(index,index);

id = iid(index,index);

nl = l1’*l1 + l0’*l0 + l1m’*l1m;
nr = r1’*r1 + r0’*r0 + r1m’*r1m;
n=nl+nr;

Sxl = (l0’*l1 + l1’*l0 + l1m’*l0 + l0’*l1m)/sqrt(2);
Syl = sqrt(-1) * (l0’*l1 - l1’*l0 + l1m’*l0 - l0’*l1m)/sqrt(2);
Szl = (l1’*l1 - l1m’*l1m);

Sxr = (r0’*r1 + r1’*r0 + r1m’*r0 + r0’*r1m)/sqrt(2);
Syr = sqrt(-1) * (r0’*r1 - r1’*r0 + r1m’*r0 - r0’*r1m)/sqrt(2);
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Szr = (r1’*r1 - r1m’*r1m);

% Build up the Hamiltonian
global Ham_int; global Ham_mu; global Ham_spin;
global Ham_ti; global Ham_eps; global S; global Slq; global Srq;

Slq = Sxl^2 + Syl^2 + Szl^2;
Srq = Sxr^2 + Syr^2 + Szr^2;
S = Slq + Srq +2*(Sxl*Sxr + Syl*Syr + Szl*Szr);

Ham_int = nl*nl-nl+nr*nr-nr;
Ham_mu = nl+nr;
Ham_eps = nl-nr;
Ham_spin = Slq -2*nl + Srq -2*nr;
Ham_ti = l1’*r1 + r1’*l1 +l0’*r0 + r0’*l0 +l1m’*r1m + r1m’*l1m ;

In the same way as in the previous sections we can use this to define a function
generating the Hamiltonian (3.41). The determination of the stable quantum phase
is more elaborate than in the other cases but not qualitatively different.
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Calculations for Bosonic Staircases

In this section we present the Mathematica code for Chapter 4; not all necessary
Mathematica commands are included but the most relevant.

B.1 Spinless Atoms in a Double-Well Potential

In this section we use the “Quantum Package” for Mathematica1 to calculate
the Hamiltonian Eq. (4.1) for different atom numbers per double well. The problem
we are solving in this section is fairly easy and it is not necessary to apply this
complicated framework, but we can use it as an example for more complicated
problems.

Using the “Quantum Package”, we can define operators,

DefineOperatorOnKetsAm1ae, 9 i_
m1
` ] ¦ i + 1 i + 1

m1
` ]=E;

DefineOperatorOnKetsAm1av, 9 i_
m1
` ] ¦ i Hi - 1L

m1
` ]=E;

DefineOperatorOnKetsAm2ae, 9 i_
m2
` ] ¦ i + 1 i + 1

m2
` ]=E;

DefineOperatorOnKetsAm2av, 9 i_
m2
` ] ¦ i Hi - 1L

m2
` ]=E;

Here is m1ae the operator L̂† in Eq. (4.1), m1av is L̂, m2ae is R̂† and m2av is R̂. Next
we create the basis for five bosons in the double-well potential,

bosons = 5;

basis = TableA Hbosons - iL
m1
` , i

m2
` ], 8i, 0, bosons<E

9 5
m1
` , 0

m2
` ], 4

m1
` , 1

m2
` ], 3

m1
` , 2

m2
` ], 2

m1
` , 3

m2
` ], 1

m1
` , 4

m2
` ], 0

m1
` , 5

m2
` ]=

1Version 2.3.0 (May 2011) for Mathematica 8 by José Luis Gómez-Muñoz and Francisco Delgado
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We can now calculate the Hamiltonian.

n1 = m1ae × m1av;

n2 = m2ae × m2av;

tunnelterm = -t Hm1ae × m2av + m2ae × m1avL;

diagonal = 1 � 2 H n1 × Hn1 - 1L + n2 × Hn2 - 1LL - Ε Hn1 - n2L;

h@x_, y_D := HxL†
× H diagonal + tunneltermL × y

ham =

Expand@Function@8y<, Function@8x<, h@x, yDD �� basisD �� basisD;

The operator n1 (n2) is the atom number operator of the left (right) well. The
function h[x,y] takes any two basis vectors and returns their matrix element of
Hamiltonian. The variable ham is the matrix given in Eq. (4.2). The eigenvalues of
this Hamiltonian are given by

ew@p_D := Sort@Eigenvalues@ham �. 8Ε ® p, t ® .1<DD

Fig. 4.2 is a plot of the function ew[p]. The bosonic staircase can be calculated in
the following way.

bas = Table@8bosons - i, i<, 8i, 0, bosons<D;

nl@p_D := basPAll, 1T.Hð^2 & �� First@Sort@Thread@
Eigensystem@ham �. 8Ε ® p, t ® .02<DDDDP2TL

int = Table@p, 8p, -4, 4, .025<D;

n5 = Table@nl@intPiTD, 8i, Length@intD<D;

The function nl[p] calculates the expectation value of the operator n̂L in the ground
state of the system when the energy off-set has the value p. Fig. 4.3 is a ListPlot
of the table n5. We have used the Table function instead of the Plot command in
order to superimpose the bosonic staircases belonging to different boson numbers
(see right panel of Fig. 4.3).

B.2 Spin-1 Atoms in a Double-Well Potential

In this section we develop the Mathematica code for Sec. 4.2. We include in
the code of Sec. B.1 the additional aspects of the spin-1 case. We want to find
the ground state properties of the Hamiltonian Eq. (4.3). The basis we choose to
treat this Hamiltonian is still a Fock basis, but we need to specify more quantum
numbers (see Sec. 4.2), such as the total spin and the spin in the left and right site.
To generate the basis given in Eq. (4.5) we use the function
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basisb@x_D := Table@Table@Table@88x - n, n<, 8i, j<, k<, 8k, Abs@i + jD,

Abs@i - jD, -1<D,

8i, x - n, 0, -2<, 8j, n, 0, -2<D, 8n, 0, x<D �� Flatten@ð, 3D & ;

We rewrite this basis in terms of the spins of the left and right site and their z-
projections, whereby we can use the usual Clebsch-Gordan coefficients. Thus, we
relate two equivalent choices for the basis spanning the Hilbert space,

|{nL, nR}, {SL, SR}, Stot〉 ⇔ |nL, SL, SzL, nR, SR, SzR〉. (B.1)

The following function secondquant[x,sz] does this.

secondquant@x_, sz_D :=

Table@ClebschGordan@8xP2, 1T, l<, 8xP2, 2T, m<, 8xP3T, sz<D
state@xP1, 1T, xP2, 1T, l, xP1, 2T, xP2, 2T, mD,

8l, xP2, 1T, -xP2, 1T, -1<,

8m, xP2, 2T, -xP2, 2T, -1<D �� Flatten �� Plus �� ð &

To illustrate the function secondquant we give an example.

test = basisb@2DP4T

881, 1<, 81, 1<, 1<

secondquant@test, 0D

-

state@1, 1, -1, 1, 1, 1D

2
+

state@1, 1, 1, 1, 1, -1D

2

The variable test is the basis vector E4 in Eq. (4.5) and is translated into an expres-
sion containing the function state which has as functions parameters nL, SL, SzL, nR,
SR, S

z
R. To calculate the function state we need to know how the spins of the atoms

in each single site couple.
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We define annihilation and creation operators for the left site,

DefineOperatorOnKetsAm1ae1, 9 i_
m1n1

` ] ¦ i + 1 i + 1
m1n1

` ]=E;

DefineOperatorOnKetsAm1ae0, 9 j_
m1n0

` ] ¦ j + 1 Hj + 1L
m1n0

` ]=E;

DefineOperatorOnKetsAm1ae1m, 9 k_
m1n1m

` ] ¦ k + 1 Hk + 1L
m1n1m

` ]=E;

DefineOperatorOnKetsAm1av1, 9 i_
m1n1

` ] ¦ i Hi - 1L
m1n1

` ]=E;

DefineOperatorOnKetsAm1av0, 9 j_
m1n0

` ] ¦ j Hj - 1L
m1n0

` ]=E;

DefineOperatorOnKetsAm1av1m, 9 k_
m1n1m

` ] ¦ k Hk - 1L
m1n1m

` ]=E;

The annihilation and creation operators for the right well are introduced analogously.
Now we are able to express all relevant spin operators such as SL, S2

L, S
2
tot etc. (see

Eq. (2.33)) in terms of annihilation and creation operators.

sz = 881, 0, 0<, 80, 0, 0<, 80, 0, -1<<;

sp = 2 880, 1, 0<, 80, 0, 1<, 80, 0, 0<<;

sm = 2 880, 0, 0<, 81, 0, 0<, 80, 1, 0<<;

avvm1 = 8m1av1, m1av0, m1av1m<;

aevm1 = 8m1ae1, m1ae0, m1ae1m<;

sm2qm1 = Table@aevm1PiT × Hsm.avvm1LPiT, 8i, 3<D �� Plus �� ð &;

sp2qm1 = Table@aevm1PiT × Hsp.avvm1LPiT, 8i, 3<D �� Plus �� ð &;

sz2qm1 = Table@aevm1PiT × Hsz.avvm1LPiT, 8i, 3<D �� Plus �� ð &;

squadm1 = sp2qm1 × sm2qm1 - sz2qm1 + sz2qm1 × sz2qm1 �� Expand;

Here S−L is given by sm2qm1 and S+
L by sm2qm1. The operator S2

L is given by squadm1.
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We are now able to calculate the Clebsch-Gordan coefficients for any number of
spin-1 bosons. For example, for 3 bosons in the same site the operator S2 (can
equal to S2

L or S2
R) takes the form test:

num = 3;

basis = TableATableA i
m1n1

` , j
m1n0

` , Hnum - i - jL
m1n1m

` ], 8j, 0, num - i<E,

8i, 0, num<E �� Flatten;

l = Length@basisD;

test = TableATableAHbasisPiTL†
× squadm1 × basisPnT, 8i, l<E, 8n, l<E;

test �� MatrixForm

12 0 0 0 0 0 0 0 0 0

0 12 0 0 0 0 0 0 0 0

0 0 10 0 4 0 0 0 0 0

0 0 0 6 0 2 6 0 0 0 0

0 0 4 0 4 0 0 0 0 0

0 0 0 2 6 0 8 0 0 0 0

0 0 0 0 0 0 10 4 0 0

0 0 0 0 0 0 4 4 0 0

0 0 0 0 0 0 0 0 12 0

0 0 0 0 0 0 0 0 0 12
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We can diagonalize the matrix test to obtain the eigenstates of S2 in terms of
annihilation and creation operators.

table@3D = TableA9H1 � Norm@eigenPi, 2TD eigenPi, 2T.basisL†
× squadm1 × H

1 � Norm@eigenPi, 2TD eigenPi, 2TL.basis ��
FunctionAx, l �. SolveAl2

+ l � x, lE �� Flatten �� Sort �� LastE,

H1 � Norm@eigenPi, 2TD eigenPi, 2T.basisL†
× sz2qm1 ×

H1 � Norm@eigenPi, 2TD eigenPi, 2TL.basis,

H1 � Norm@eigenPi, 2TD eigenPi, 2TL.basis=, 8i, l<E �� Simplify;

table@3D �� MatrixForm

3 3 0
m1n0

` , 3
m1n1

` , 0
m1n1m

` ]

3 2 1
m1n0

` , 2
m1n1

` , 0
m1n1m

` ]

3 1
0

m1n0
` ,2

m1n1
` ,1

m1n1m
` ]+2 2

m1n0
` ,1

m1n1
` ,0

m1n1m
` ]

5

3 0
3

5
1

m1n0
` , 1

m1n1
` , 1

m1n1m
` ] +

2

5
3

m1n0
` , 0

m1n1
` , 0

m1n1m
` ]

3 -1
0

m1n0
` ,1

m1n1
` ,2

m1n1m
` ]+2 2

m1n0
` ,0

m1n1
` ,1

m1n1m
` ]

5

3 -2 1
m1n0

` , 0
m1n1

` , 2
m1n1m

` ]

3 -3 0
m1n0

` , 0
m1n1

` , 3
m1n1m

` ]

1 1
2 0

m1n0
` ,2

m1n1
` ,1

m1n1m
` ]- 2

m1n0
` ,1

m1n1
` ,0

m1n1m
` ]

5

1 0
2

5
1

m1n0
` , 1

m1n1
` , 1

m1n1m
` ] -

3

5
3

m1n0
` , 0

m1n1
` , 0

m1n1m
` ]

1 -1
2 0

m1n0
` ,1

m1n1
` ,2

m1n1m
` ]- 2

m1n0
` ,0

m1n1
` ,1

m1n1m
` ]

5

The table table[3] contains for each total spin quantum number and each z-
projection Sz the state in the basis |n1, n0, n−1〉, where nσ denotes the number of
atoms in the hyperfine state σ ∈ {1, 0,−1}.

To calculate the Hamiltonian Eq. (4.3) for eg. 4 bosons we need to build the
table[n] for up to n=4. Having these eigenfunctions of S2 we derived an expression
for the function state

state@n1_, s1_, sz1_, n2_, s2_, sz2_D :=

HSelect@table@n1D, ðP1T � s1 && ðP2T � sz1 &D �� Flatten �� ðP3T &L Ä

HSelect@table@n2D, ðP1T � s2 && ðP2T � sz2 &D �� Flatten �� ðP3T &L ��
Expand
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The function state[n1,sl,slz,nr,sr,srz] returns the wavefunction of the atoms
in the double well when the quantum numbers nL, SL, SzL, nR, SR and SzR are given.
As an example we look at the wavefunction of the system, when three atom are
placed in the left site and the right site is empty. Their spin configuration is such
that they couple to the total spin 1 and the z-projection is -1.

state@3, 1, -1, 0, 0, 0D

2 0
m1n0

` , 1
m1n1

` , 2
m1n1m

` , 0
m2n0

` , 0
m2n1

` , 0
m2n1m

` ]

5
-

2
m1n0

` , 0
m1n1

` , 1
m1n1m

` , 0
m2n0

` , 0
m2n1

` , 0
m2n1m

` ]

5

We can now use the function secondquant to express the basis given in Eq. (4.5)
in second quantisation

secondquant@basisb@2DP4T, 0D

-

0
m1n0

` , 0
m1n1

` , 1
m1n1m

` , 0
m2n0

` , 1
m2n1

` , 0
m2n1m

` ]

2
+

0
m1n0

` , 1
m1n1

` , 0
m1n1m

` , 0
m2n0

` , 0
m2n1

` , 1
m2n1m

` ]

2

To calculate the Hamiltonian we define a function h which calculates the matrix
elements of the Hamiltonian.

tunnelterm = Hm1ae1 × m2av1 + m2ae1 × m1av1 +

m1ae0 × m2av0 + m2ae0 × m1av0 + m1ae1m × m2av1m + m2ae1m × m1av1m L;

h@x_, y_, Ε_, u2_, tu_D := Herzeinzeln@x, 0DL†
×

II u0 � 2 IxP1, 1T2
- xP1, 1T + xP1, 2T2

- xP1, 2TM + Ε HxP1, 1T - xP1, 2TL +

u2 � 2 HxP2, 1T HxP2, 1T + 1L - 2 xP1, 1T + xP2, 2T HxP2, 2T + 1L - 2 xP1, 2T L M
× erzeinzeln@y, 0DM

+ Herzeinzeln@x, 0DL†
× H-tu tunnelterm × erzeinzeln@y, 0DL

This function can be used in the same way as in Sec. B.1 to generate the Hamiltonian.
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