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Summary

About a century after the genesis of quantum mechanics, continuous development in
many directions of theory and engineering persists. Several open questions like the
quantum theory of gravity tested by macroscopic quantum states, the realization of a
fault-tolerant quantum computer, or the discovery of new unique quantum effects in
general remain to be answered. In this thesis, aspects of the latter two of these topics
are studied in more detail. The common ground on which they meet is the quantum
simulation of open quantum systems.
The first part of the thesis focuses on quantum computing. In particular, the

extension of the standard two-level bit-like qubit, on which standard quantum com-
puters rely, is studied: the qudit. Qudits are multilevel quantum systems whose larger
Hilbert space can provide advantages in quantum computation. To profit from the
additional degrees of freedom of a qudit, its individual states have to be properly
discriminated during readout. Two measurement strategies, based on a readout model
of a superconducting transmon qudit, are proposed and compared by their theoretical
performance. We implement the measurement of the four lowest eigenstates on state-
of-the-art quantum computing hardware and employ higher-order gate operations
realized as two-photon transitions. Moreover, we investigate a way of simulating open
quantum systems by engineering adjustable effective gain using echo-sequence-like
gate operations.

In the second part of this thesis, the quantum analogue of synchronization of oscilla-
tors, i.e., the alignment of features like frequency and phase, is studied. The building
blocks of quantum synchronization are limit-cycle states. These states are stabilized by
incoherent gain and damping and feature a free phase of oscillation that can be locked
to an external signal or to the phases of other limit-cycle oscillators. We investigate
spin-1 and harmonic-oscillator-like models by a refined operator representation of
common synchronization measures. In particular, we show that in a system of spins 1
synchronization through interference blockades, that suppress synchronization effects,
is possible. Furthermore, for harmonic-oscillator-like limit-cycle states, we find that
the interplay of three independent synchronization mechanisms leads to active states
induced by nonreciprocal interactions. The phase diagrams for both the quantum and
classical version are analyzed. Finally, a new avenue of quantum synchronization is
identified: quantum oscillators that host multiple limit cycles. Here, one phenomenon
is the coexistence of both the occurrence and the absence of quantum synchronization
in a single quantum state.

This thesis combines the theoretical study of new quantum features of synchroniza-
tion with proposals of potential realizations on quantum simulators and quantum
computers, especially, with a focus on superconducting transmon qudits and trapped
ions.
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Chapter 1

Introduction

The year 2025 marks the 100th anniversary of the famous “Umdeutung” paper by

Werner Heisenberg [Heisenberg (1925)]. For this reason, on the 7th June of 2024, the

year 2025 was officially declared to be the International Year of Quantum Science and

Technology by the U.N. General Assembly following the resolution by the nation of

Ghana in May 2024 [UNESCO (2025)].

In the last century, quantum mechanics became one of the most relevant theories

not only for fundamental research but also for human daily life: it is the foundation of,

e.g., semiconductors [Bardeen and Brattain (1948)], solar cells [Chapin et al. (1954)],

atomic clocks [Essen and Parry (1955)], lasers [Maiman (1960)], light-emitting diodes

[Holonyak and Bevacqua (1962)], and medical imaging [Lauterbur (1973), Hounsfield

(2014)]. In return, these technological inventions like the computer or the laser became

essential tools for subsequent scientific research.

A selection of famous contributors to quantum mechanics besides Heisenberg are

Max Planck [Planck (1901)], Albert Einstein [Einstein (1905), Einstein (1917)], Niels

Bohr [Bohr (1913a), Bohr (1913b), Bohr (1913c)], Arnold Sommerfeld [Sommerfeld

(1916a), Sommerfeld (1916b)], Paul Dirac [Dirac and Fowler (1925), Dirac and Fowler

(1927)], De Broglie [De Broglie (1925)], and Erwin Schrödinger [Schrödinger (1926a),

Schrödinger (1926b), Schrödinger (1926c), Schrödinger (1926d), Schrödinger (1926e)].

A historical overview of the early developments of quantum mechanics is presented in

[Duncan and Janssen (2019), Janssen and Duncan (2023)].

Another architect of quantum mechanics is John von Neumann, mainly known for

his contributions to classical computing [Neumann (1993)], who introduced the density-

matrix representation of ensembles of quantum systems in a Hilbert space formalism

[Neumann (1927a), Neumann (1927b), Neumann (1927c)]. Considering von Neumann,

the “personification of the combination of computing and quantum mechanics”, as an

inspiration, we arrive at the first topic of this thesis: quantum computing. Innovative

suggestions to consider a quantum description of computers [Benioff (1980)] and to

utilize quantum systems as platforms for computation [Feynman (1982)] have been

made in the 1980s. Following these proposals, first prototypical problems were solved

by quantum algorithms [Deutsch and Penrose (1985), Deutsch and Jozsa (1992), Simon

(1997), Bernstein and Vazirani (1997)]. Subsequently, more practical algorithms like

Grover’s search algorithm [Grover (1996)] and Shor’s prime-factorization algorithm

1



Chapter 1 Introduction

[Shor (1997)] have been published.

These quantum algorithms rely on fault-tolerant quantum computers that do not yet

exist. However, in the current noisy intermediate-scale quantum era [Preskill (2018)],

we have access to a variety of quantum computing platforms that are candidates for

future quantum computers. Examples of these platforms are superconducting circuits

[Blais et al. (2021)], trapped ions [Bruzewicz et al. (2019)], cold atoms and Rydberg

atoms [Saffman (2016)], electron spins in quantum dots [Burkard et al. (2023)],

magnetic racetracks [Zou et al. (2023)], photonic circuits [Slussarenko and Pryde

(2019)], and topological states [Nayak et al. (2008)]. In the last years, many quantum

computing companies focusing on hardware and/or software have been founded. One

of the early competitors with a substantial history in classical computing is IBM.

The evolution of the superconducting-qubit hardware of IBM Quantum involves an

increase in the number of qubits from 1 to 100+ [Kandala et al. (2017), Kim et al.

(2023), Miessen et al. (2024), Mandelbaum et al. (2024)] and a reduction of the error

rates of single and two-qubit gates to the orders O(10−3) and O(10−4) [McKay et al.

(2023), IBM Quantum. (2025)]. Note that in 2022 a 433-qubit chip1 and in 2023 a

1121-qubit chip2 were released.

A common feature among many quantum computing platforms is that the qubit

Hilbert space is realized as a two-level subspace of a larger physical Hilbert space.

Quantum systems that exhibit d states are called qudits [Wang et al. (2020)]. In the

example of the transmon qudit [Koch et al. (2007)], an anharmonic superconducting

oscillator, the qubit is formed by the ground state and first excited state. The higher-

excited states of qudits can provide advantages in a passive way by improving, e.g.,

qubit readout [Elder et al. (2020)], the implementation of multiqubit gates [Fedorov

et al. (2012)], or qubit reset [Zeytinoğlu et al. (2015), Egger et al. (2018)]. Moreover,

the full potential of qudits can be unleashed by taking advantage of higher-excited

states in an active way by, e.g., using them as ancillas [Fischer et al. (2022)], logical

states [Cervera-Lierta et al. (2022)], or for quantum simulation [Ciavarella et al. (2021),

Champion et al. (2025)]. One of the main limiting factors of superconducting qubits is

their readout [Dumas et al. (2024)]. The default readout scheme for qubits optimizes

the distinguishability between the qubit states. Since this scheme is not necessarily

optimal for distinguishing all qudit states, we propose different measurement strategies

based on a qudit readout model.

In the first part of this thesis, this project, together with the description of an

echo-sequence-like model that can be used to simulate effective gain and damping

on quantum hardware, will be discussed. Simulating open quantum systems, i.e.,

including incoherent processes like decay, on quantum hardware is of great interest

[Weimer et al. (2010), Barreiro et al. (2011)], especially on quantum computers [Sweke

et al. (2015), Schlimgen et al. (2021), Leppäkangas et al. (2023)].

In the second part of this thesis, we will focus on open quantum systems. In

1https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-
Next-Generation-IBM-Quantum-System-Two [Accessed: August 10, 2025]

2https://www.ibm.com/quantum/blog/quantum-roadmap-2033 [Accessed: August 10, 2025]
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the scenarios we will present, gain and damping are essential to stabilize particular

quantum states that feature a free phase that can be synchronized. Synchronization,

i.e., the alignment of features of oscillators like their frequency and phase of oscillations,

has been initially studied in 1665 by Christiaan Huygues [Huygens (1893)] in the setup

of two coupled pendulum clocks. In many scientific domains like biology [Buck (1938)]

or civil engineering [Strogatz et al. (2005)], synchronization has been observed. In the

research domain called quantum synchronization, people usually aim at identifying

unique quantum effects of synchronization of quantum oscillators [Lee et al. (2014),

Lörch et al. (2017), Roulet and Bruder (2018b)]. In recent years, quantized classical

oscillators [Lee and Sadeghpour (2013)] (top-down approach) and inherently quantum

spin-like oscillators [Roulet and Bruder (2018a)] (bottom-up approach) have been

studied. Quantum synchronization is in some aspects related to quantum sensing

[Vaidya et al. (2025)], quantum thermodynamics [Jaseem et al. (2020b)], and time-

crystals [Hajdušek et al. (2022)].

In this second part, we will present publications on both spin-oscillator models

and harmonic-oscillator-like models. We will discuss the synchronization of indirectly

coupled spin-1 oscillators in the presence of synchronization blockades [Solanki et

al. (2023)] that simultaneously suppress synchronization of directly coupled spin-1

oscillators. Moreover, in a setup of two harmonic-oscillator-like oscillators, we will

consider an effective nonreciprocal interaction realized by coherent and dissipative

couplings and find, e.g., quantum analogues of traveling-wave states [Fruchart et al.

(2021)] that are related to active matter [Vrugt and Wittkowski (2025)].

Finally, we identify a new direction of quantum synchronization: multi-limit-cycle

oscillators. Here, multiple limit cycles coexist in the same steady state of a single

oscillator. We will present refined synchronization measures to access the locking

information of the individual limit cycles and discuss the basic quantum synchronization

features of a model that features two coexisting limit cycles. The study of multi-

limit-cycle oscillators provides a multitude of research possibilities by exploring how

well-known quantum synchronization effects manifest in this class of models as well as

by finding exclusive unique quantum features.

Overview

This thesis is structured as follows:

Chapter 2 We will start by a recap of the theoretical foundations of the building

blocks of most models considered in this thesis: the quantum harmonic oscillator and

spins. In addition to their unitary time evolution, we want to describe nonunitary

processes like decay and incoherent pumping of open quantum systems. Thus, we will

briefly derive the Lindblad master equation in the Born-Markov approximation.
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Chapter 1 Introduction

Part I: Quantum Computing on Superconducting Hardware

Chapter 3 In the first chapter of the first part of this thesis, we will introduce the

basic elements of universal quantum computing. We will build intuition for why

the universal gate set is universal by constructing approximations for noncommuting

rotations of states on the Bloch sphere around two linear independent axes. These

operations can be used to generate any unitary operator with a desired level of error.

After introducing the quantum circuit as the representation of the gate sequences of a

quantum algorithm, we will briefly learn how to use fault-tolerant quantum computers

as a digital quantum simulator.

A more promising way of using quantum hardware at the moment is analog quan-

tum simulation. We will understand the basic modeling aspects of superconducting

transmon qudits like their level structure and driving of (higher-order) transitions. In

contrast to the previously described qubits of standard universal quantum computing,

qudits feature more than two states.

The mathematical description of a second quantum platform, viz., trapped ions,

will be outlined. Trapped ions are often the prime candidate for implementing setups

considered in Chs. 8 to 10 in the second part of the thesis.

Chapter 4 In this chapter presenting the publication [Kehrer et al. (2024a)], we will

learn about the readout model of transmon qudits. In contrast to the standard readout

scheme for qubits that optimizes the discrimination of both qubit states, measurement

strategies for qudits have to provide sufficient distinguishability of multiple states

simultaneously. We will present two measurement strategies that are based on the

readout-drive-dependent model. The first one features a single readout frequency

whereas the second one splits the total number of measurement runs into experiments

at different readout frequencies. We will present actual data of a ququart implemented

on an IBM Quantum device. By the realization of two-photon transitions, higher-order

X gates are used to prepare the ququart states.

Chapter 5 Having learned how to improve the readout of qudit states, in this chapter,

we will study an echo-sequence-like model that mimics the simulation of effective

incoherent gain and damping on a quantum computer. Despite being designed for

unitary operations, state-of-the-art quantum computers still feature loss. On the

contrary, native decay can be viewed as a source for quantum simulation of open

quantum systems. We will present a sequence of operations involving gates and decay

periods that enables the generation of mixed states by the realization of tunable gain

and damping rates. Extending this model to qutrits will potentially be interesting

regarding the implementation of spin-1-like setups, e.g., the ones discussed in Ch. 8.
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Part II: Quantum Synchronization of Oscillating Systems

Chapter 6 The second part of this thesis focuses on a particular family of open

quantum systems that we would like to implement on a quantum simulator of platforms

like the ones presented in Sec. 3.3 using methods that might have evolved from Ch. 5.

This family is called “quantum synchronization”. Its classical analogue has been

established in 1665 by Christiaan Huyguens. In this chapter, we will give a broad

overview of relevant models an their features that will be reference points for the studies

of quantum synchronization in Chs. 8 to 10. We will begin with the Kuramoto model

of phase oscillators, meaning oscillators that exhibit only one free parameter, viz. their

phase of oscillation. With this model, we will understand the basics of synchronization,

i.e., the alignment of oscillator properties like their frequency or phase of oscillation.

Next, we will define the building block of further models of synchronization: the

limit cycle. It is a stabilized, closed, and isolated trajectory in the phase space of

an oscillator that exhibits a phase and an amplitude. We will introduce the van

der Pol and the Stuart-Landau oscillator and begin to study frequency and phase

synchronization. Furthermore, we will understand synchronization blockades whose

quantum analogues will play a significant role in Chs. 8 to 10.

Chapter 7 After having established the tools for analyzing classical synchronization,

in this chapter, we will introduce quantum synchronization, the main topic of the

second part of this thesis. We will introduce two typical setups and their measures

of quantum synchronization that will be relevant for Chs. 9 and 10. The first one is

the harmonic-oscillator-like “quantum van der Pol” oscillator. For a single coherently

driven oscillator and for two coherently coupled oscillators, we will review the basic

synchronization effects. For the second setup, spin-1 oscillators that will be studied in

Ch. 8, we will recall similar basics of synchronization properties.

Chapter 8 In this chapter, in which the work published in [Kehrer et al. (2024b)] will

be discussed, two scenarios of coherently coupled spin-1 oscillators will be considered:

(i) two oscillators, one of which is driven, and (ii) a chain of three oscillators. Quantum

synchronization interference blockades, like the ones introduced in Sec. 7.2, between

pairs of coupled oscillators as well as between the driven spin and its coherent drive

exist. The surprising quantum feature is that even if both types of blockades persist,

the undriven spin synchronizes with the external drive as well as both spins at the

ends of the three-oscillator chain. We will define an operator representation of the

common synchronization measure that reduces its calculation complexity and increases

its interpretability.

Chapter 9 This chapter based on the publication [Kehrer and Bruder (2025)], will

present a phase diagram of three competing independent quantum synchronization

mechanisms. A coherent drive and a coherent coupling, that will be presented

individually in Sec. 7.1, will be combined together with a dissipative interaction in a

5
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model of two quantum van der Pol oscillators. Effective nonreciprocal interactions

arise and induce quantum analogues of traveling-wave states. We will see that tuning

these interactions to become unidirectional, a synchronization blockade between the

undriven oscillator and the coherent drive, that acts only on the other oscillator,

emerges. At the end of this chapter we will furthermore investigate the rich phase

diagrams of the classical analogues of two and three such oscillators and will show

examples of highly nontrivial active states.

Chapter 10 The last publication [Kehrer et al. (2025)] presented in this thesis will be

discussed in this chapter. We will consider a quantum Liénard system whose classical

analogue features two concentric limit cycles and call it a“twin limit cycle”. This creates

the avenue of quantum synchronization of multi-limit-cycle oscillators. We will provide

its foundations by showing the coexistence of quantum synchronization behavior in

the cases of a single coherently driven twin limit cycle and two coherently coupled

twin limit-cycle oscillators. By defining refined measures of quantum synchronization

we will be able to access the individual phase-locking information of the two limit

cycles of one oscillator. For both cases, we will find intriguing synchronization effects:

the limit cycles of the driven oscillator lock to distinct phases and the steady state of

the two-oscillator model features both synchronization and synchronization blockades.

Part III: Conclusion

Chapter 11 In the final chapter, we summarize the main findings presented in this

thesis and propose several directions of future research. By relating the thesis to other

works, further projects are identified.
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Chapter 2

Theoretical Background

In this chapter, theoretical foundations that are relevant for both parts of this thesis

are presented.

2.1 Quantum Harmonic Oscillator

The harmonic oscillator is probably one of the most considered approximations in

physics. One reason might be the fact that in many domains of physics local minima

of potentials can be approximated by a quadratic function. Another reason might be

their simple analytical solutions. Moreover, it is the standard example of canonical

quantization leading to the quantum harmonic oscillator that is relevant for Chs. 4, 9

and 10. The following section is based on [Schwabl (2007)].

The classical harmonic oscillator is given by the Hamiltonian

H =
p2

2m
+
mω2

2
x2 , (2.1.1)

which corresponds to the total energy of a nonrelativistic particle with momentum p,

position x, and mass m moving in a quadratic potential with curvature ∂2xH/m = ω2.

As canonical quantization, we understand replacing position and momentum by

quantum mechanical operators as well as replacing the Poisson bracket {x, p} = 1 of

the classical system with the commutator [x, p] = xp− px = iℏ. The system can be

transformed into a different set of operators a and a†,

x =

√
ℏ

2mω
(a† + a), p = i

√
ℏmω
2

(a† − a) , (2.1.2)

called the annihilation and creation operators that obey [a, a†] = 1. Using these

operators the Hamiltonian of the quantum harmonic oscillator reads

H = ℏω
(
a†a+

1

2

)
. (2.1.3)

Here, eigenstates of the Hamiltonian are eigenstates of the number operator n = a†a.

These states are called Fock states a†a |n⟩ = n |n⟩ and obey ⟨n|m⟩ = δnm, where δnm
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Chapter 2 Theoretical Background

is the Kronecker delta. Using [n, a†] = a† and [n, a] = −a, the action of a† and a on

these states can be derived,

na† |n⟩ = (a†n+ [n, a†]) |n⟩ = (n+ 1)a† |n⟩ = (n+ 1)c1 |n+ 1⟩ , (2.1.4)

na |n⟩ = (a†n+ [n, a]) |n⟩ = (n− 1)a |n⟩ = (n− 1)c2 |n− 1⟩ , (2.1.5)

⟨n| aa† |n⟩ = ⟨n+ 1| c∗1c1 |n+ 1⟩ = ⟨n| (a†a+ 1) |n⟩ = |c1|2 = n+ 1 , (2.1.6)

⟨n| a†a |n⟩ = ⟨n− 1| c∗2c2 |n− 1⟩ = |c2|2 = n , (2.1.7)

leading to c1 =
√
n+ 1 and c2 =

√
n. The Fock-state representation of both operators

is

a† =

∞∑

n=0

√
n+ 1 |n+ 1⟩⟨n| , a =

∞∑

n=0

√
n+ 1 |n⟩⟨n+ 1| . (2.1.8)

The eigenstates |α⟩3 of the annihilation operator a are also well known as coherent

states [Glauber (1963)]. Using a superposition of Fock states as an ansatz,

a |α⟩ = α |α⟩ = a

∞∑

n=0

dn |n⟩ =
∞∑

n=0

dn
√
n |n− 1⟩ =

∞∑

n=0

dn+1

√
n+ 1 |n⟩ = α

∞∑

n=0

dn |n⟩ ,

(2.1.9)

results in a recursion relation dn+1

√
n+ 1 = dnα that is solved by dn = d0α

n/
√
n!.

The normalization

⟨α|α⟩ =
∞∑

n,m=0

|d0|2
α∗nαm

√
n!m!

⟨n|m⟩ = |d0|2
∞∑

n,m=0

|α|n
n!

= |d0|2e|α|
2
= 1 (2.1.10)

is guaranteed by d0 = e−|α|2/2,

|α⟩ = e−|α|2/2
∞∑

n=0

αn

√
n!

|n⟩ . (2.1.11)

Remembering the relation between a and position and momentum operators, see

Eq. (2.1.2), we see that the real part of α can be related to position and the imaginary

part of α can be related to momentum,

x |α⟩ =
√

2ℏ
mω

Re[α] |α⟩ , p |α⟩ =
√
2ℏmω Im[α] |α⟩ . (2.1.12)

Moreover, the position and momentum expectation values of coherent states obey the

classical equations of motion. These states might therefore be interpreted as the “most

classical quantum states”.

In systems with multiple harmonic oscillators, annihilation operators of oscillator A,

B, C, . . . are often denoted by aA = a, aB = b, aC = c, . . . . Studying unitary time

3Note that the same symbol |·⟩ as for Fock states is used even if α = n does not imply |α⟩ = |n⟩.
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evolutions, transforming between different reference frames is relevant. A transfor-

mation |ψ⟩ → U |ϕ⟩, with U = exp
(
−iωa†at

)
, of a system given by a Hamiltonian H

leads to

iℏ
d

dt
|ψ⟩ = H |ψ⟩ → iℏ

d

dt
(U |ϕ⟩) = iℏU̇ |ϕ⟩+ iℏU

d

dt
|ϕ⟩ = HU |ϕ⟩ , (2.1.13)

and the effective Hamiltonian for |ϕ⟩

iℏ
d

dt
|ϕ⟩ = Heff |ϕ⟩ = U †(HU − iℏU̇) |ϕ⟩ = (U †HU − ℏωa†a) |ϕ⟩ . (2.1.14)

Since U extracted the time evolution induced byH0 = ℏωa†a, the effective Hamiltonian

Heff for |ϕ⟩ is missing exactly this term in comparison to H for |ψ⟩. This frame is also

called the “rotating frame”. Note that in the majority of the thesis ℏ = 1 is chosen.

2.2 Spin

Another highly important quantum model are spins [Pauli (1925)] that will be consid-

ered in Ch. 8. A spin state |s,ms⟩ is defined by its quantum numbers s ∈ {n
2 |n ∈ N}

and ms = −s,−s + 1 . . . , s. In contrast to the infinite-dimensional creation and

annihilation operators of the quantum harmonic oscillator, vector representations

(s, s− 1, . . . ,−s) of spins are (2s+ 1)-dimensional. Spin-s operators Sj correspond

to the (2s + 1)-dimensional representation of the su(2) Lie algebra elements. The

traceless Hermitian elements T a of su(N) [Duistermaat and Kolk (2000)],

su(N) = {T a ∈ LC(C
N ,CN ) |T a† = T a and Tr[T a] = 0} , (2.2.1)

are the generators of the Lie group

SU(N) = {U ∈ U(N) |det(U) = 1} , (2.2.2)

called the special unitary group. Here, U = exp(i
∑

a xaT
a) with xa ∈ R are elements

of a subset of the unitary group [Duistermaat and Kolk (2000)]

U(N) = {U ∈ LC(C
N ,CN ) |U †U = 1} , (2.2.3)

where LC(C
N ,CN ) is the space of complex-linear maps CN → CN . The Spin-s

operators Sj obey4

[Si, Sj ] = i
∑

k

ϵijkS
k . (2.2.4)

4Note that we neglect factors of ℏ, i.e., we measure spin in multiples of ℏ.
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Here,

ϵijk =





1 for even permutations (i, j, k) of (x, y, z) ,

−1 for odd permutations (i, j, k) of (x, y, z) ,

0 else ,

(2.2.5)

is the Levi-Civita symbol. The spin operators are defined by their nonvanishing matrix

elements [Landau and Lifshitz (1977)]

⟨s,ms|Sx |s,ms − 1⟩ = ⟨s,ms − 1|Sx |s,ms⟩ =
1

2

√
(s+ms)(s−ms + 1) , (2.2.6)

⟨s,ms|Sy |s,ms − 1⟩ = −⟨s,ms − 1|Sy |s,ms⟩ =
1

2i

√
(s+ms)(s−ms + 1) , (2.2.7)

⟨s,ms|Sz |s,ms⟩ = ms . (2.2.8)

The quantum numbers mentioned in the beginning are the eigenvalues of the following

operators

S⃗2 |s,ms⟩ =
∑

j

Sj2 |s,ms⟩ = s(s+ 1) |s,ms⟩ , (2.2.9)

Sz |s,ms⟩ = ms |s,ms⟩ . (2.2.10)

Spin ladder operators are defined as S± = Sx ± iSy and raise and lower the ms

quantum number,

S± |s,ms⟩ =
√

(s∓ms)(s±ms + 1) |s,ms ± 1⟩
=
√
s(s+ 1)−ms(ms ± 1) |s,ms ± 1⟩ . (2.2.11)

Since thems quantum number is bounded, S+ |s, s⟩ = S− |s,−s⟩ = 0 and S±(2s+1) = 0.

The smallest but somewhat trivial spin is s = 0 which has only one state ms = 0,

i.e., it is a scalar. Since here S⃗2 |0, 0⟩ = 0, the spin vector has zero length and

Sj = 0. Therefore, a spin-0 object does not define a particular reference frame in the

three-dimensional spin space, i.e., it is spherically symmetric.

2.2.1 Spin-1/2

The smallest half-integer spin is s = 1/2 which has two states ms = ±1/2. The

most famous examples and applications are, e.g., electrons and qubits. The spin-1/2

operators

Sx =
1

2

(
0 1

1 0

)
, Sy =

1

2

(
0 −i

i 0

)
, Sz =

1

2

(
1 0

0 −1

)
, (2.2.12)
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obey Sj2 = 1/4, Tr[1] = 2, and

SiSj =
1

4
δij1+

i

2

∑

k

ϵijkS
k , (2.2.13)

Tr
[
Sj
]
= 0, Tr

[
SiSj

]
=

1

2
δij , Tr

[
SiSjSk

]
=

i

4
ϵijk . (2.2.14)

A spin-1/2 density matrix

ρ =
1

2
1+ n⃗S⃗ (2.2.15)

exhibits three real-valued degrees of freedom n⃗ ∈ R3. Purity, i.e., Tr
[
ρ2
]
= 1/2 +

Tr
[
(n⃗S⃗)2

]
= (1+ |n⃗|2)/2 = 1 is provided by unit length vectors n⃗. These n⃗ correspond

to states that lie on the so-called Bloch sphere. See Fig. 3.1 in the next chapter for a

visualization.

2.2.2 Spin-1

The next larger spin is s = 1 and has three states ms = −1, 0, 1. Its spin operators

Sx =
1√
2



0 1 0

1 0 1

0 1 0


 , Sy =

1√
2



0 −i 0

i 0 −i

0 i 0


 , Sz =



1 0 0

0 0 0

0 0 −1


 , (2.2.16)

obey Sj3 = Sj , Tr[1] = 3, and

Tr
[
Sj
]
= 0, Tr

[
SiSj

]
= 2δij , Tr

[
SiSjSk

]
= iϵijk, Tr

[
SiSjSkSl

]
= δijδkl + δilδjk .

(2.2.17)

The density matrix exhibits 32 − 1 = 8 (hermiticity and purity Tr[ρ] = 1) free

parameters that are restricted to guarantee positive semidefiniteness. One choice of

parameters are the expectation values of Sj , Sx2, Sz2, SxSy, SySz, and SzSx,

ρ =
1

3
1+

n⃗

2
S⃗ +

∑

ij

nijS
ij , (2.2.18)

where [Band and Park (1971)]

Sxx =



0 0 1

0 0 0

1 0 0


 , Szz =



1 0 0

0 −2 0

0 0 1


 , (2.2.19)

Sxy =



0 0 −i

0 0 0

i 0 0


 , Syz =

1√
2



0 −i 0

i 0 i

0 −i 0


 , Szx =

1√
2



0 1 0

1 0 −1

0 −1 0


 .

(2.2.20)
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2.3 Open Quantum Systems

Unitary time evolution originates from a Hamiltonian H and the Schrödinger equation

iℏ
d

dt
|ψ⟩ = H |ψ⟩ , (2.3.1)

where |ψ⟩ = U |ψ0⟩ with U = exp(−iHt/ℏ) solves the equation for time-independent H.

Some crucial features of unitary time evolutions are the preserving of norm, linearity,

and time reversibility. The last feature is a clear indication that the description of

nonreversible processes like decay is not included. In this section, which is based on

[Wiseman and Milburn (2009)], the quantum master equation of systems including

dissipative processes will be presented. This framework is highly relevant for the main

part of this thesis. In the following, we set ℏ = 1.

2.3.1 Lindblad Master Equation

To move from unitary time evolution of “closed quantum systems” to nonunitary time

evolutions of “open quantum systems”, we start by breaking the total Hilbert space

apart in the system S of interest and its environment E. The aim is to consider the

environment as a large reservoir, i.e., not significantly influenced by state changes in

the system, that couples to the system. The unitary time evolution of the density

matrix of the total system is

d

dt
ρtot = −i[HS +HE +Hint, ρtot] . (2.3.2)

Here, HS and HE are the individual Hamiltonians of the system and its environment

and Hint describes the interaction between both. In the rotating frame of the free

Hamiltonians HS +HE ,

ρtot = e−i(HS+HE)tρtot,inte
i(HS+HE)t , (2.3.3)

the time evolution obeys

d

dt
ρtot,int = −i[ei(HS+HE)tHinte

−i(HS+HE)t, ρtot,int] = −i[V, ρtot,int] . (2.3.4)

Similar to Eq. (2.1.14), this unitary transformation of the density matrix leads to the

subtraction of −i[HS +HE , ρtot,int] from Eq. (2.3.2). The formal solution

ρtot,int(t) = ρtot,int(0)− i

t∫

0

dt1[V (t1), ρtot,int(t1)] , (2.3.5)
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is used to find the equation of motion of the total system in the rotating frame by

inserting it back into Eq. (2.3.4),

d

dt
ρtot,int(t) = −i[V (t), ρtot,int(0)]−

t∫

0

dt1[V (t), [V (t1), ρtot,int(t1)]] . (2.3.6)

In the so-called Born approximation, a system that is initialized in an uncorrelated

state

ρtot,int(0) = ρS,int(0)⊗ ρE,int(0) , (2.3.7)

is assumed to stay uncorrelated,

ρtot,int(t) ≈ ρS,int(t)⊗ ρE,int(0) , (2.3.8)

if the system-environment coupling is weak. In this case, the state of the large

environment is approximately unchanged when the system state evolves. The second

term in Eq. (2.3.6) still depends on the full solution of the system state. To turn

this equation into a local-in-time differential equation, we have to assume that the

integrand is small except around t1 ≈ t. This, together with replacing the lower time

limit by −∞ is so-called Markov approximation,

d

dt
ρtot,int(t) = −i[V (t), ρtot,int(0)]−

t∫

−∞

dt1[V (t), [V (t1), ρS,int(t)⊗ ρE,int(0)]] . (2.3.9)

The Markov approximation is often interpreted as “the state does not have a memory”,

i.e., meaning the derivative of the state at time t should not depend on the full history

of the previous state evolution.

The Hamiltonian of the environment, also called bath or reservoir, is now assumed

to be a collection of many harmonic oscillators,

HE =
∑

k

ωkb
†
kbk , (2.3.10)

where the annihilation operators bk are commuting with each other [bj , b
†
k] = δjk

and the system annihilation operator [a, b
(†)
k ] = 0. The coupling is set to the Jaynes-

Cummings type [Jaynes and Cummings (1963)]

Hint =
∑

k

gk(a
† + a)(b†k + bk) , (2.3.11)

also called a dipole-dipole interaction. In the rotating frame of HS + HE , where

exp(iHSt)a exp(−iHSt) = ae−iωSt is assumed, two options arise. Either the sum ωS +

ωk of system and environment frequencies is large compared to their difference ωS−ωk

or vice versa. In the case ωS + ωk ≫ ωS − ωk, in the rotating-wave approximation,
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the rapidly oscillating terms proportional to abk and a†b†k average to zero on smaller

time scales than the evolution of the system. The resulting terms of the interaction

Hamiltonian in the rotating frame are

V =
∑

k

gk(a
†bke

−i(ωk−ωS)t + ab†ke
i(ωk−ωS)t) . (2.3.12)

To obtain an equation of motion for ρS,int, we have to take the partial trace over the

environment of Eq. (2.3.6). In the Born approximation, see Eq. (2.3.8), and initializing

the environment ρE,int(0) in the vacuum state, leads to

d

dt
ρS,int(t) =− i TrE [[V (t), ρS,int(t)⊗ ρE,int(0)]]

−
t∫

0

dt1TrE [[V (t), [V (t1), ρS,int(t1)⊗ ρE,int(0)]]]

=−
t∫

0

dt1
∑

k

g2ke
−i(ωk−ωS)(t−t1)(a†aρS,int(t1)− aρS,int(t1)a

†) + H.c. .

(2.3.13)

Here, the terms in the first line vanish since TrE [b
(†)
k ρE,int(0)] = 0. In the second line, we

additionally use TrE [b
†
jb

†
kρE,int(0)] = TrE [ρE,int(0)bjbk] = 0 and TrE [b

†
jρE,int(0)bk] =

δjk. The sum over k of the many coupling strengths g2k weighted by the complex

phase factor e−i(ωk−ωS)(t−t1) can be expected to be sharply located at t ≈ t1 due to

destructive interference of the many phase factors for t ≠ t1. This motivates the

Markov approximation ρS,int(t1) ≈ ρS,int(t). The value of the t1 integral over this

factor will feature a real part and an imaginary part,

−
t∫

0

dt1
∑

k

g2ke
−i(ωk−ωS)(t−t1)ρS,int(t1) ≈

(
i∆− κ

2

)
ρS,int(t) . (2.3.14)

The final result back in the nonrotating frame is the well-known Lindblad master

equation

d

dt
ρS =

d

dt
ρ = −i[HS +∆a†a, ρ] + κD[a](ρ) . (2.3.15)

Here, the state ρ of the system is evolving under its Hamiltonian HS and a correction

∆a†a and now additionally exhibits a decay with rate κ described by the Lindblad

dissipator

D[L](ρ) = LρL† − 1

2
(L†L+ ρL†L) . (2.3.16)
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2.3 Open Quantum Systems

The operators L are called Lindblad operators. Note that

D[L](UρU †) = UD[U †LU ](ρ)U † (2.3.17)

and

D[λL](ρ) = |λ|2D[L](ρ) (2.3.18)

were used to go back from the rotating to the nonrotating frame.

In the above derivation of the Lindblad master equation, we used the fact that the

interaction Hamiltonian of Eq. (2.3.11) is of the form

Hint =
∑

k

gk(l
†(a, a†) + l(a, a†))(b†k + bk) , (2.3.19)

where l(a, a†) transforms like exp(iHSt)l(a, a
†) exp(−iHSt) = l(a, a†)e−iωS,lt such that

a rotating-wave approximation can be made, see Eq. (2.3.12). Similar to the case

l(a, a†) = a discussed above, the resulting Lindblad operator in the effective master

equation of the system, see Eq. (2.3.15), is L = l(a, a†) and the Hamiltonian correction

is ∆L†L. In, e.g., Sec. 7.1.2 as well as Chs. 8 to 10, different choices of Lindblad

operators like L = an and L = a†m are considered.

Since in general D[L1 + L2](ρ) ̸= D[L1](ρ) + D[L2](ρ), the realization of multi-

ple Lindblad dissipation terms D[Lj ] requires independent baths, e.g., consider the

interaction Hamiltonian

Hint =
J∑

j=1

∑

k∈Kj

gk(L
†
j + Lj)(b

†
k + bk) , (2.3.20)

where J is the number of Lindblad dissipators and Kj are the disjoint sets of bath-mode

indices.

2.3.2 Engineered Dissipation

In experiments, decay is almost always present. Despite its negative connotation,

it can be used to engineer particular Lindblad dissipators as presented below, see

[Poyatos et al. (1996)]. Consider the total master equation

d

dt
ρ = −i[HS +Hint, ρ] + κD[c](ρ) , (2.3.21)

of a mode a of interest and a rapidly decaying mode c (κ ≫ g, ωS , where ωS is the

energy scale of HS), e.g., a lossy cavity or an ion transition starting from a short-lived

state. Both are coupled by the interaction Hamiltonian Hint = g l(a, a†)c† + H.c..

The time evolution of c is given by the Heisenberg equation of motion [Wiseman and

15



Chapter 2 Theoretical Background

Milburn (2009)]

d

dt
c = ig[l(a, a†)c† + l†(a, a†)c, c] + κ

(
c†cc− 1

2
(c†cc+ cc†c)

)
= −igl(a, a†)− κ

2
c .

(2.3.22)

If this mode is rapidly decaying in comparison to the time evolution of the system

mode a, it can be assumed to be in its steady state ċ = 0 during the time evolution of

a. The steady state solution

c = −2i
g

κ
l(a, a†) (2.3.23)

can be used to simplify the total time evolution of Eq. (2.3.21) to an effective time

evolution

d

dt
ρ = −i[HS , ρ] + 4

g2

κ
D[l(a, a†)](ρ) , (2.3.24)

where Hint → 0 and Eq. (2.3.18) is used. This method can be used to realize the

Lindblad operators L = an and L = a†m mentioned at the end of the previous section.

Moreover, coupling multiple modes aj of interest to the same lossy mode c leads to

a dissipative interaction, see [Metelmann and Clerk (2015)]. This is used in Ch. 9 to

engineer the collective decay of two modes: D[aA + aB].

2.4 State Representations

To compress the information about a state ρ stored in its many degrees of freedom,

e.g., for visualization, a particular state representation with fewer or more accessible

degrees of freedom has to be chosen. An overview of common examples is given in

the following. This section is based on Chapters 3 and 4 of [Carmichael (1999)] and

Chapter 3 of [Gerry and Knight (2004)].

2.4.1 Glauber-Sudarshan P Representation

The Glauber-Sudarshan P representation is defined as a quasi probability distribution

of coherent states forming a density matrix

ρ =

∫
d2α |α⟩⟨α|P (α, α∗) , (2.4.1)

or vice versa,

P (α, α∗) =
1

π2

∫
d2β eβ

∗α−βα∗
Tr[D(β, 1)ρ] , (2.4.2)

16
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where

D(β, s) = eβa
†−β∗a+s|β|2/2 = e(s−1)|β|2/2eβa

†
e−β∗a (2.4.3)

is a generalization of the standard displacement operator D(β) = D(β, 0). A coherent

state |α⟩, see Eq. (2.1.11), can be generated by applying D(α) to the ground state,

|α⟩ = e−|α|2/2
∞∑

n=0

αn

√
n!

|n⟩ = e−|α|2/2eαa
† |0⟩ = D(α) |0⟩ . (2.4.4)

Further useful identities of the displacement operator are

D†(α) = D(−α) , (2.4.5)

aD(α) = D(α)(a+ α) , (2.4.6)

D(α)a† = (a† − α∗)D(α) , (2.4.7)

D(β) |α⟩ = e(βα
∗−β∗α)/2 |α+ β⟩ . (2.4.8)

Given a Lindblad Master equation, that defines the time evolution of ρ, the corre-

sponding equation of motion of the state representation function P (α, α∗, t) can be

obtained as follows. The creation and annihilation operators that act on |α⟩⟨α| can be

expressed by derivatives with respect to α and α∗ using

∂α |α⟩⟨α| = ∂α(e
−|α|2eαa

† |0⟩⟨0| eα∗a) = (a† − α∗) |α⟩⟨α| , (2.4.9)

∂α∗ |α⟩⟨α| = ∂α∗(e−|α|2eαa
† |0⟩⟨0| eα∗a) = |α⟩⟨α| (a− α) . (2.4.10)

By inserting Eq. (2.4.1) in the Lindblad master equation, terms of the form

f(a†, a)ρ =

∫
d2αP (α, α∗, t)f(a†, a) |α⟩⟨α| , (2.4.11)

ρ g(a†, a) =

∫
d2αP (α, α∗, t) |α⟩⟨α| g(a†, a) , (2.4.12)

can be identified and replaced using Eqs. (2.4.9) and (2.4.10). By partial integration,

the derivatives that act on |α⟩⟨α| can be moved to act on P (α, α∗, t).

A state that exhibits negative values of its corresponding P is defined to be non-

classical.

2.4.2 Husimi Q Function

Another famous probability distribution is the Husimi Q function [Husimi (1940)]

which will be relevant in, e.g., Secs. 7.1.1 and 7.2.1 as well as Ch. 8. Its definition

Q(α, α∗) =
1

π2

∫
d2β eβ

∗α−βα∗
Tr[D(β,−1)ρ] =

1

π

∫
d2β e−|α−β|2P (β, β∗)

=
1

π
⟨α| ρ |α⟩ , (2.4.13)
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note the similarity to Eq. (2.4.2), can be written as the projection of a state ρ

onto coherent states |α⟩. The exponential in the second equation in the first line of

Eq. (2.4.13) can be interpreted as a Gaussian filter leading to smoothing of P . The

last line of Eq. (2.4.13) together with
∫
d2α |α⟩⟨α| = π1 shows that Q is a proper

probability distribution, i.e., normalized to one and nonnegative.

2.4.3 Wigner Function

Maybe the most famous quasi probability distribution is the Wigner function,

W (α, α∗) =
1

π2

∫
d2β eβ

∗α−βα∗
Tr[D(β, 0)ρ] =

2

π

∫
d2β e−2|α−β|2P (β, β∗) . (2.4.14)

Note the similarity to Eqs. (2.4.2) and (2.4.13). It will be the standard function to

visualize states in this thesis.

As an example, the Wigner function of a coherent state,

W (α, α∗) =
2

π
e−2|α−β|2 , (2.4.15)

is nonnegative. In contrast, the Wigner function of the Fock state |n⟩,

W (α, α∗) = (−1)n
2

π
L0
n(4|α|2)e−2|α|2 , (2.4.16)

where L0
n is a Laguerre polynomial, see Eq. (3.3.12), features negative values. The

definition of nonclassical states given in Sec. 2.4.1 partially applies to the Wigner

function: if the Wigner function features negative values, the state is nonclassical.

An example for which the other direction is not true are squeezed states [Gerry and

Knight (2004)],

|ζ⟩ = e(ζ
∗a2−ζa†2)/2 |0⟩ , (2.4.17)

with Wigner function

W (α, α∗) =
2

π
exp

(
−Re[α]2e−2|ζ| + Im[α]2e2|ζ|

2

)
. (2.4.18)

In comparison to Eq. (2.4.3), the squeezing operator can be interpreted as a general-

ization of the displacement operator to higher-orders of a. Squeezing of even higher

orders is visualized in Fig. 7.3.
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Chapter 3

Quantum Computing and Quantum

Simulation

In the 1980s, inspirational suggestions have been made to consider a quantum descrip-

tion of computers [Benioff (1980)], or vice versa, quantum systems as platforms for

computation [Feynman (1982)]. Shortly thereafter, a handful of elementary algorithms

[Deutsch and Penrose (1985), Deutsch and Jozsa (1992), Simon (1997), Bernstein and

Vazirani (1997)] as well as more advanced algorithms like Grover’s algorithm [Grover

(1996)] and Shor’s algorithm [Shor (1997)] have been published

3.1 Universal Quantum Computing

These quantum algorithms mentioned above, rely on quantum computation and

quantum information. The terms quantum computing and quantum computation

will be mostly used as synonyms, similar for quantum information and quantum

information processing. This section is based on [Nielsen and Chuang (2010)].

3.1.1 Qubits and Quantum Gates

The fundamental building block of a classical computer is a bit c which can take two

values c ∈ {0, 1}. Similarly, the fundamental building block of a quantum computer

and quantum information is called a quantum bit (qubit). It is a quantum mechanical

two-level system, i.e., a spin-1/2, whose states are most often defined as

|0⟩ ↔
(
1

0

)
, |1⟩ ↔

(
0

1

)
. (3.1.1)

The state space of an arbitrary pure qubit state |ψ⟩ = α |0⟩+ β |1⟩ with α, β ∈ C is

limited due to the normalization condition

⟨ψ|ψ⟩ = (α∗ ⟨0|+ β∗ ⟨1|)(α |0⟩+ β |1⟩) = |α|2 + |β|2 = 1 , (3.1.2)
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Figure 3.1: Bloch sphere state representations. (a) A pure state (red arrow) can be de-
scribed by two angles θ and ϕ. (b) Arbitrary rotations (purple circle) of |0⟩ around n⃗∗ =
(cos(π/8), sin(π/8), cos(π/8)) (purple arrow with solid head), see Eq. (3.1.12), can be approxi-
mated by R∗n. The dots correspond to R∗n |0⟩ for n = 0, 1, 2, 3, 4, 5, 6. Note that R∗6 |0⟩ ≠ |0⟩.
(c) Arbitrary rotations (green circle) of |0⟩ around m⃗∗ = (cos(π/8),− sin(π/8), cos(π/8))
(green arrow with solid head), see Eq. (3.1.13), can be approximated by (HR∗H)n.

which is used to fix the magnitude of the coefficients. A common parametrization is

|ψ⟩ = cos(θ/2) |0⟩+ eiϕ sin(θ/2) |1⟩ , (3.1.3)

where θ ∈ [0, π] and ϕ ∈ [0, 2π]. The state can be visualized as a three-dimensional

real-valued vector connecting the origin with a point on the so-called Bloch sphere of

unit radius, see Fig. 3.1(a).

In the qubit Hilbert space, arbitrary transformations that preserve the norm of the

state are described by unitary SU(2) operators

U = eiη exp

(
− i

2
n⃗σ⃗

)
= eiη cos

( |n⃗|
2

)
1− ieiη sin

( |n⃗|
2

)
n⃗

|n⃗| σ⃗ , (3.1.4)

where σ⃗ is the vector of Pauli matrices

σx = X = |1⟩⟨0|+ |0⟩⟨1| ↔
(
0 1

1 0

)
, (3.1.5)

σy = Y = i |1⟩⟨0| − i |0⟩⟨1| ↔
(
0 −i

i 0

)
, (3.1.6)

σz = Z = |0⟩⟨0| − |1⟩⟨1| ↔
(
1 0

0 −1

)
. (3.1.7)

The unitary operator in Eq. (3.1.4) can be interpreted as a SO(3) rotation of states on

the Bloch sphere with angle |n⃗| around the axis n⃗/|n⃗|. Rotations around the individual

axes are defined as

RX(ϕ) = exp

(
− i

2
ϕX

)
, RY (ϕ) = exp

(
− i

2
ϕY

)
, RZ(ϕ) = exp

(
− i

2
ϕZ

)
. (3.1.8)
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On actual quantum hardware, not all of these operations, called “gates” like in

classical computing, have to implemented physically. For example, since RZ can

be realized virtually [McKay et al. (2017)], a rotation around the x-axis can be

realized effectively by a fixed rotation around the x-axis, i.e., the Hardamard gate

H = (X + Z)/
√
2 = −iRZ(π/2)RX(π/2)RZ(π/2), and virtual rotations around the

z-axis,

RX(θ) = HRZ(θ)H . (3.1.9)

In general, the less gates that need to be calibrated the better. However, this approach

of replacing a single parametrized gate by a sequence of few calibrated gates is only

preferable if the few gates have low error. An alternative way of expressing the general

single-qubit gate U of Eq. (3.1.4) using the elementary rotations defined in Eq. (3.1.8)

is

U = eiηRZ(ϕ)RY (θ)RZ(γ) = eiηRZ(ϕ+ π/2)RX(θ)RZ(γ − π/2) . (3.1.10)

Other relevant gates are the S and T gate that obey Z = S2 = T 4,

S =

(
1 0

0 i

)
, T =

(
1 0

0 eiπ/4

)
. (3.1.11)

Using only T and H gates, a rotation around n⃗∗/|n⃗∗|, where

n⃗∗ = (cos(π/8), sin(π/8), cos(π/8)) , (3.1.12)

by an irrational rotation angle θ∗, that is implicitly defined by cos(θ∗/2) = cos2(π/8),

can be realized by the gate R∗ = THTH. Since 3θ∗/π ≈ 1.046657, R∗6 almost matches

−i1, i.e., since θ∗ is irrational, an integer multiple of rotations R∗ do not come back to

the initial starting point, see Fig. 3.1(b). Thus, this small discrepancy leads to the fact

that R∗n can approximate any rotation around the axis n⃗∗/|n⃗∗|. Since furthermore

HR∗H corresponds to a rotation around a linearly independent axis m⃗∗/|m⃗∗|, where

m⃗∗ = (cos(π/8),− sin(π/8), cos(π/8)) , (3.1.13)

see Fig. 3.1(c), an arbitrary single-qubit gate can be realized by only using T and H

gates,

U = R∗k1(HR∗H)k2R∗k3 . (3.1.14)

The exponents kj have to be chosen such that U approximates the desired gate up

to the required accuracy. In conclusion, if a quantum computer can apply a large

number of gates efficiently enough, only two gates (T and H) have to be implemented

physically to realize any single-qubit operation!

In a useful algorithm, more than one qubit is needed. Quantum states of n qubits,
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a so-called register, are defined by tensor products

|qn−1qn−2 . . . q1q0⟩ = |qn−1⟩n−1 ⊗ |qn−2⟩n−2 ⊗ · · · ⊗ |q1⟩1 ⊗ |q0⟩0 ↔ |z⟩ . (3.1.15)

The symbol |qj⟩j denotes that the jth qubit is in state qj ∈ {0, 1}. Sometimes,

the index j that indicates the difference between multiqubit and single-qubit states

as well as ⊗ are omitted. Here, we use the standard convention of binary number

representation z =
∑n−1

j=0 qj2
j such that the multiqubit state can be written as |z⟩.

A fundamental two-qubit gate is the CNOT gate,

CNOT(1, 0) |q1⟩1 ⊗ |q0⟩0 = |q1⟩1 ⊗ |q1 ⊕ q0⟩0 , (3.1.16)

CNOT(0, 1) |q1⟩1 ⊗ |q0⟩0 = |q1 ⊕ q0⟩1 ⊗ |q0⟩0 , (3.1.17)

where the first index corresponds to the control qubit and the second index to the

target qubit. Here, ⊕ denotes a cyclical addition,

q1 ⊕ q0 = (q0 + q1)mod 2 . (3.1.18)

Therefore, if the control qubit is in state |0⟩i, then the target qubit state remains

unchanged. If the control qubit is in state |1⟩i, then an X gate is applied to the target

state, i.e., X |qj⟩j = |qj ⊕ 1⟩j . Note that this conditional behavior of applying an

X gate on the target qubit or not does not involve a measurement. If the control

qubit is in a superposition, the total state will also be in a superposition, e.g., for the

maximally entangled Bell state

|B00⟩ = CNOT(1, 0)(H |0⟩1)⊗ |0⟩0 = (|00⟩+ |11⟩)/
√
2 . (3.1.19)

Here, entanglement is quantified by the von Neumann entropy [Neumann (1927c)]

S(Trj [ρ]) = −Tr[Trj [ρ] ln(Trj [ρ])] = −
∑

k

λk ln(λk) , (3.1.20)

where λk are the eigenvalues of the state reduced density matrix Trj [ρ]. The partial

trace Trj traces out only states of qubit j.

The H, S, and CNOT gate are elements of the so-called Clifford group. Together

with the T gate, they form a set of universal quantum gates, meaning any unitary two-

qubit operation can be represented as a sequence of these gates. Note the redundancy

S = T 2. Furthermore, an n-qubit unitary operator can be decomposed into sequences

of two-qubit unitaries [Barenco et al. (1995)].

3.1.2 Quantum Algorithms

Using the universal gate set {H,S,CNOT, T}, any n-qubit unitary operation can be

constructed. In general, quantum algorithms consist of sequences of many gates and

are presented in a circuit diagram. The standard readout method is to measure every

qubit in the Z basis at the end of the circuit. Here, the final state |ψ⟩ = Ucircuit |0⟩⊗n =
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Ucircuit |0⟩n−1 ⊗ · · · ⊗ |0⟩0 will be projected onto possible outcomes qn−1 . . . q0 with

the probability | ⟨qn−1 . . . q0|ψ⟩ |2. Here, we will look at some basic example circuits.

The visualizations of the quantum circuits shown below are generated using Qiskit

[Javadi-Abhari et al. (2024)].

The previously mentioned Bell state |B00⟩ is generated by the circuit

q0 : H •
q1 :

Each qubit in the register has its own timeline of gates that are applied to it and

is initialize to |0⟩. The “time” (order of operations) flows from left to right, i.e., the

opposite direction of matrix multiplication. Single-qubit gates appear as boxes and

multiqubit gates are connected to all qubit lines they are applied to. The CNOT gate

is connected to the line of the control qubit with a solid dot and to the line of the

target qubit with the ⊕ symbol, see Eq. (3.1.18). A solid (empty) dot means that the

rest of the gate operation is active if the control qubit is in state |1⟩ (|0⟩). Another
important two-qubit gate is the SWAP gate

q0 : × •
q1 : × •

q0 : • •
q1 : •

which can be constructed using three CNOTs. It swaps the state of the two connected

qubits. Multiple swaps can be used to virtually move qubits around in the register

such that two-qubit gates between distant qubits can be executed.

An example for a three-qubit gate is the Toffoli gate

q0 : •
q1 : •
q2 :

q0 : • • • • T

q1 : • • T† T† S

q2 : H T† T T† T H

Here, an X gate is applied to the last qubit if both q0 and q1 are in the state |1⟩. Note
that T † = T 3Z. Interestingly, applying an X gate to q2 after the Toffoli gate, the

classical NAND gate q2 = ¬(q0 ∧ q1) is realized. The NAND gate is the universal gate

of classical computing [Mano and Ciletti (2013)], i.e., it can be used to implement any

logical operation and therefore any algorithm. Thus, any classical algorithm can be

implemented on a quantum computer.

The arguably most famous quantum algorithm is the Shor algorithm [Shor (1997)]. It

can be used to speed up prime factorization, whose difficulty is essential for the security

of RSA encryption [Rivest et al. (1978)], from exponential scaling to polynomial scaling.

A detailed description can be found in Ch. 5 of [Nielsen and Chuang (2010)].

Another important class of gate sequences are error correction codes that provide

protection against certain errors. Famous examples are the Shor code [Shor (1995)], the

toric code [Kitaev (1997)], the color code [Bombin and Martin-Delgado (2006), Bombin

and Martin-Delgado (2007)], low-density parity-check codes [Gottesman (2014)], the

binomial code [Michael et al. (2016)], and the cat code [Ofek et al. (2016)].
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3.2 Digital Quantum Simulation

A perfectly operating quantum computer can be used to simulate the unitary time

evolution of a quantum system. The Suzuki-Trotter decomposition [Trotter (1959),

Suzuki (1976)] can be used to split the time evolution of a Hamiltonian H =
∑

j Hj

into products of time evolutions of its constituents Hj . The unitaries describing the

time evolutions of these constituents can be represented by quantum gates. The

approximation can be performed in various orders of the small time step ∆t [Nielsen

and Chuang (2010)]

e−i(H0+H1)∆t = e−iH0∆te−iH1∆t +O(∆t2) = e−iH0∆t/2e−iH1∆te−iH0∆t/2 +O(∆t3).

(3.2.1)

The higher-order approximations can be interpreted as analogies to classical higher-

order integration algorithms like the Runge-Kutta methods [Runge (1895), Kutta

(1901)]. An example where such a decomposition has been used to simulate the

effective time evolution of a spin-1 is presented in [Koppenhöfer et al. (2020)].

3.3 Quantum Computing Hardware

So far, we discussed the theoretical and abstract form of quantum computing and

quantum gates. In this section, the focus will be on the physical implementation of

qubits and gate operations. Similar to the various platforms of classical computing,

e.g., silicon, spintronics [Wolf et al. (2006)], and carbon nanotubes [Shulaker et al.

(2013)]), there exists a variety of platforms that are candidates for quantum computers.

Examples include superconducting circuits [Blais et al. (2021)], trapped ions [Bruzewicz

et al. (2019)], cold atoms and Rydberg atoms [Saffman (2016)], electron spins in

quantum dots [Burkard et al. (2023)], and photonic circuits [Bourassa et al. (2021)].

In the following, the superconducting transmon [Koch et al. (2007)] and trapped ions

[Leibfried et al. (2003)] will be presented in more detail.

As we will see below, physical implementations of two-level qubits often feature

many more quantum states. A system with d available computational states is called

a qudit. The higher-excited states of qudits can provide advantages in many ways,

e.g., see the works [Fedorov et al. (2012), Zeytinoğlu et al. (2015), Egger et al. (2018),

Elder et al. (2020)] or the review [Wang et al. (2020)].

3.3.1 Transmon Qudits

The superconducting circuits subgroup of quantum computing platforms itself is a zoo

of different materials and architectures. Examples include the charge qubit [Shnirman

et al. (1997)], fluxonium [Manucharyan et al. (2009)], the phase qubit [Martinis et al.

(2002)], the Xmon [Barends et al. (2013)], and the blochnium [Pechenezhskiy et al.

(2020)]. Reviews of superconducting architechtures are [Makhlin et al. (2001), Krantz

et al. (2019)]. Several companies including IBM, Google, IQM, and Rigetti are building
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Figure 3.2: Schematic potentials of quantum oscillators and lower-excited Fock states.
(a) Quantum harmonic oscillator, see Eqs. (3.3.1) and (3.3.3). (b) Quantum anhar-
monic oscillator, see Eq. (3.3.4). (c) False-colored scanning electron microscope (up-
per) and scanning transmission electron microscope (lower) images of an Al-AlOx-Al
Josephson junction. Adapted from [Willsch et al. (2024)] and used under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

commercial superconducting quantum computers. The following is based on [Blais

et al. (2021)].

The arguably most famous quantum model is the quantum harmonic oscillator,

see Sec. 2.1. A well-known example in classical electronics is the LC oscillator, an

electronic circuit consisting of a coil with inductance L and a capacitor with capacitance

C. The eigenfrequency of this resonator is ωr = 1/
√
LC and the Hamiltonian reads

HLC =
Q2

2C
+

Φ2

2L
=
Q2

2C
+
C

2
ω2
rΦ

2 . (3.3.1)

Here, Q is the charge stored on the capacitor and Φ is the magnetic flux in the

inductance. The right-hand side can be identified as the electronic analogue of the

mechanical harmonic oscillator where C corresponds to a mass m, Q to a momentum

p, and Φ to a position x. Therefore, the canonical quantization procedure in this case

corresponds to the following choice of creation and annihilation operators

Φ =

√
ℏ

2ωrC
(a† + a), Q = i

√
ℏωrC

2
(a† − a) , (3.3.2)

leading to

HLC = ℏωr

(
a†a+

1

2

)
. (3.3.3)

Eigenstates of this Hamiltonian are Fock states |n⟩, with a†a |n⟩ = n |n⟩. Energy

differences between neighboring states |n⟩ and |n+ 1⟩ are constant ℏωr, see Fig. 3.2(a).

In Sec. 3.1, we saw that quantum computers should feature two quantum states that

are perfectly addressable in the sense of quantum gate operations. However, since

the energy spacing of the quantum harmonic oscillator is constant, a drive that is in

resonance with the |0⟩ ↔ |1⟩ transition will also drive all other transitions of the form

|j⟩ ↔ |j + 1⟩.

27

https://creativecommons.org/licenses/by/4.0/
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This problem can be solved by introducing anharmonicity. One possibility is to

replace the standard inductance with a Josephson junction [Josephson (1962)], see

Fig. 3.2(c). The transmon Hamiltonian incorporating the capacitance, the Josephson

junction, and an (i) external gate voltage or (ii) influence by quasi-particle tunneling

[Ristè et al. (2013)] reads

HT = 4EC(n− ng)
2 − EJ cos

(
2π

Φ

Φ0

)
. (3.3.4)

Here, n = Q/2e is the charge number operator of the Cooper pairs, the scalar ng is

the so-called offset charge, Φ0 = h/2e the flux quantum, EC the charging energy, and

EJ the Josephson energy. The anharmonic cosine potential is depicted schematically

in Fig. 3.2(b). It can be interpreted as an analogy to the gravitational potential of

a pendulum or a rotor. Note that higher-order Josephson harmonics of the cosine

potential can be relevant [Willsch et al. (2024), Wang et al. (2025)].

The quantized version of Eq. (3.3.4) can be written as [Vool and Devoret (2017)]

HT = 4EC

∑

n

(n− ng)
2 |n⟩⟨n| − EJ

2

∑

n

(|n⟩⟨n+ 1|+ |n+ 1⟩⟨n|) , (3.3.5)

or in the EJ ≫ EC limit as

HT
EJ≫EC≈ ℏωqb

†b− EC

2
b†b†bb . (3.3.6)

Here, b is the annihilation operator of the transmon, ωq =
√
8EJEC − EC is the

qubit energy between the ground state and the first excited state, and −EC is the

anharmonicity. The resulting spectra for EJ/EC = 5 and EJ/EC = 45 are shown in

Figs. 3.3(a) and 3.3(b). For EJ/EC = 45, the anharmonicity of the levels is visible and

enables driving transitions between |j⟩ ↔ |j + 1⟩ selectively. Especially, transitions in
the qubit subspace |0⟩ ↔ |1⟩, i.e., gates, can be realized. The number of addressable

transmon levels can be estimated as the number of bound states in the Josephson

potential. Assuming zero anharmonicity, it can be approximated by dividing the

height of the potential 2EJ by the energy spacing between neighboring levels

Nbound ≈ 2EJ√
8EJEC − EC

≈
√

EJ

2EC
, (3.3.7)

see the dashed curve in Fig. 3.3(c). Taking a constant anharmonicity −EC into

account, the approximation turns into Nbound ≈ (
√
8 − 2)

√
EJ/EC , see the dotted

curve in Fig. 3.3(c).

In the paragraphs above, we have seen that physical implementations of qubits, e.g.,

the superconducting transmon, feature more states than only the two qubit states.

Therefore, it is natural to think about quantum information beyond two-level systems.

Taking higher-excited states into account, the so-called quantum dit (qudit) is born.

Here, the “d” stands for an integer number d larger than two and corresponds to the
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Figure 3.3: Schematic level structure based on the eigenenergies Ej(ng) of the transmon
Hamiltonian Eq. (3.3.5). (a) Low EJ/EC limit: strong dependence of the eigenenergies on ng.
(b) Large EJ/EC limit, typical values for transmon qubits, see Fig. 4.1: less dependence of
the eigenenergies on ng. (c) The ratio Ej(0)/E0(0) which depends smoothly on j for bound
states and jumps between zero and values above one for unbound states. The dashed curve
corresponds to

√
EJ/2EC and the dotted curve corresponds to (

√
8− 2)

√
EJ/EC . Both are

approximations of the number of bound states, see Eq. (3.3.7).

base of the number system we use for representing states. The case d = 3 is also

known as the qutrit. In Ch. 4, that is based on [Kehrer et al. (2024a)], a measurement

of a ququart (four states) on an IBM Quantum transmon will be presented. Qudits

can be used to simulate large-spin systems more naturally [Champion et al. (2025)].

Using Qiskit [Javadi-Abhari et al. (2024)], the software development kit for quantum

hardware of IBM and other companies, quantum algorithms can be programmed.

On superconducting platforms, gates are implemented as microwave pulses of an

external drive that acts on the qudit. The model Hamiltonian of qudit states |j⟩ with
eigenenergies ωj in the rotating frame of the drive is

H =
∑

j

(ωj − jωd) |j⟩⟨j|+Ωq(b
† + b) , (3.3.8)

where ωd is the drive frequency and Ωq is the drive strength. In Fig. 3.4, simulation

data based on Rabi oscillations between |j⟩ ↔ |j + k⟩ for k = 1, 2, 3 are shown. The

qudit is prepared in the state |j⟩ (corresponds to color) and a drive with frequency

ωd is applied, see Eq. (3.3.8). The height of the curve corresponds to the minimal

population of this state in the time evolution of duration tω0,1 = 4000. A dip indicates

a resonant transition. Solid, dashed and dotted lines correspond to the predictions of

first, second, and third-order transitions. In Fig. 4.6, we will present measurement

data of the implementation of a |0⟩ ↔ |2⟩ and |1⟩ ↔ |3⟩ transition.
In preparation for the publication [Kehrer et al. (2024a)] presented in Ch. 4, several

experiments have been run on IBM Quantum hardware. Experimental data on up to

second-order transitions is presented in Fig. 4.6. Preliminary data on the |0⟩ ↔ |3⟩
transition on ibmq lima as well as on the |2⟩ ↔ |4⟩ transition on ibmq guadalupe has

been collected. A Ramsey measurement like in [Ristè et al. (2013)] has revealed the

two background charge configurations ng = 0, 0.5 indicated by two observed qubit
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Figure 3.4: Simulated Rabi oscillations for EJ/EC = 45 and Ωq = 0.008ω0,1 of duration
tω0,1 = 4000 between states |j⟩ ↔ |j + k⟩, see Eq. (3.3.8). The color of the curves corresponds
to the state |j⟩ in which the qudit is initialized and the height of the curves corresponds to the
minimal population of |j⟩ during the time evolution. Vertical lines of solid, dashed, and dotted
(for k = 1, 2, 3) style indicate the prediction of the transition frequency ωj,j+k = (Ej+k−Ej)/k
between |j⟩ ↔ |j + k⟩. The energy Ej is the average of Ej(ng) over ng ∈ [−0.5, 0.5], see
Fig. 3.3(b). The choice of EJ/EC is typical for IBM Quantum devices, see Fig. 4.1(b).

frequencies.

An overview of other retired devices with, e.g., nq = 1, 5, 7, 16, 27, 65, 127, 433 qubits,

can be found online5. For IBM’s vision about the future of quantum computing, check

out the roadmap6 of IBM Quantum.

In Sec. 4.4, the model for reading out transmon qudit states is presented. Measure-

ment data of a ququart on an IBM Quantum device can be found in Sec. 4.6.

3.3.2 Trapped Ions

Another promising physical platform for quantum computing are trapped ions. Here,

some lower-energy levels in the electronic structure of single ions, e.g., of calcium,

beryllium, strontium, or ytterbium, are used to encode the logical qubit states |g⟩
(ground state) and |e⟩ (excited state), see [Bruzewicz et al. (2019)]. Companies that

are building commercial trapped-ion quantum computers are, e.g., AQT, IonQ, and

Quantinuum. The following is based on [Leibfried et al. (2003)].

Single ions are mostly trapped in either Penning traps [Penning (1936)] or Paul traps

[Paul (1990)]. The latter trap uses oscillating electromagnetic fields at radio-frequency.

The effective trapping potential is often described as a quadratic harmonic potential.

In so-called linear traps, ions are trapped strongly in the radial direction but less

strong in the axial direction. The interaction between the motional degree of freedom

along the trap axis and the electronic states is mediated by laser light propagating

along the same trap axis. The so-called Lamb-Dicke parameter η = kx0 = k
√
ℏ/2mν

depends on the effective wave vector k of the light, on the ion mass, and on the trap

5https://quantum.cloud.ibm.com/docs/de/guides/retired-qpus [Accessed: August 3, 2025]
6https://www.ibm.com/quantum/technology [Accessed: August 3, 2025]
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Figure 3.5: Blue and red sideband transitions. (a) The first blue sideband corresponds to
δ = ν and the first red sideband corresponds to δ = −ν. The surplus (missing) energy ν is
compensated by (de)exciting the motion by one quanta |n⟩ → |n+ 1⟩ (|n⟩ → |n− 1⟩). (b)
Including the fast decay of the ion state |e⟩ → |g⟩ with rate κ, the sidebands with effective
Rabi frequency ΩBSB and ΩRSB can be interpreted to heat and cool the ion motion.

frequency ν. Using η, the effective model Hamiltonian reads

H =
ℏ
2
Ω0σ

+ exp
(
iη(ae−iνt + a†eiνt)

)
ei(ϕ−δt) +H.c. . (3.3.9)

Here, σ+ = |e⟩⟨g| is the operator exciting the ion from state |g⟩ to |e⟩, δ is the

detuning between the drive frequency and the ion frequency ωcar (“carrier”), and a is

the annihilation operator of the quantum harmonic oscillator of motion.

In the so-called Lamb-Dicke regime, where η ≪ 1 is small, the first exponential

factor in Eq. (3.3.9) can be Taylor expanded. Choosing a detuning δ = sν, with s ∈ Z,
the so-called |s|th blue (red) sideband transition is driven resonantly if s > 0 (s < 0),

see Fig. 3.5(a). In the |s|th blue (red) sideband case, the surplus (missing) energy ν

is compensated by (de)exciting the motion by |s| quanta. Including the fast decay

of the ion state |e⟩ → |g⟩ with rate κ, the blue (red) sideband heat (cool) the ion

motion |n⟩ → |n+ s⟩, see Fig. 3.5(b). Their effective Rabi frequency is ΩBSB and

ΩRSB, where BSB (RSB) means blue (red) sideband. In [Behrle et al. (2023)], a red

sideband is realized on a calcium ion and a blue sideband is driven on a beryllium ion

simultaneously, both trapped in the same potential. In a certain parameter regime,

this leads to a lasing state, also understood as a limit cycle, see Sec. 6.2. In contrast,

if the sidebands are driven on the same electronic transition, e.g., squeezed states

occur, [Rojkov et al. (2024)]. See Sec. 10.6 for a brief discussion about simultaneous

driving of multiple higher-order sidebands.

In Sec. 10.6, another setup will be discussed: the operation of trapped ions outside

the Lamb-Dicke regime of small η. Here, the higher orders of the first exponential in

Eq. (3.3.9) lead to nonlinear effective Rabi frequencies [Leibfried et al. (2003)],

Ωn,n+s = Ωn+s,n = Ω0| ⟨n+ s| eiη(a†+a) |n⟩ | = Ω0η
|s|e−η2/2

√
nmin!

nmax!
L|s|
nmin

(η2) ,

(3.3.10)
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Figure 3.6: Blue and red sidebands driven on the same ion transition with ΩBSB = ΩRSB = 0.2κ.
(a) Squeezed-like state for ηBSB = 0.1. (b), (c) Squeezed-cat-like states for ηBSB = 0.4, 0.6
(from left to right). For panels (a) to (c) (sBSB, sRSB) = (1,−1) and ηRSB = 0.3 is chosen. (d)
State resembling a squeezed three-legged cat state for (sBSB, sRSB) = (2,−1) and ηRSB = 0.1.
(e) State resembling a squeezed four-legged cat state for (sBSB, sRSB) = (2,−2) and ηRSB = 0.2.
For panels (d) and (e) ηBSB = 0.6 is chosen.

where

nmin = min(n, n+ s), nmax = max(n, n+ s) , (3.3.11)

and the generalized Laguerre polynomials are

Lk
n(x) =

n∑

m=0

(−1)m
(
n+ k

n−m

)
xm

m!
, (3.3.12)

see Eq. (8.970.1) of [Gradshteyn and Ryzhik (2015)].

Applying a red and a blue sideband to the same electronic transition leads to squeezed

states, see Fig. 3.6(a), and states that look like squeezed cat states, see Figs. 3.6(b) and

3.6(c). Moreover, choosing (sBSB, sRSB) = (2,−1) or (sBSB, sRSB) = (2,−2), states

that resemble squeezed three-legged or four-legged cat states can be generated, see

Figs. 3.6(d) and 3.6(e). An l-legged cat state is defined as [Haroche and Raimond

(2006)]

∣∣∣Cl,n
α

〉
=
an

N
l−1∑

k=0

∣∣∣ei2πk/lα
〉
, (3.3.13)

where n ∈ [0, l − 1] and N guarantees normalization
〈
Cl,n
α

∣∣∣Cl,m
α

〉
= δnm. In [Rojkov

et al. (2024)], the setup was studied with a focus on bosonic error-correction codes

[Gottesman et al. (2001), Mirrahimi et al. (2014)]. Depending on the parameters

ΩBSB/RSB and ηBSB/RSB, a large phase diagram hosting interesting states might be

explored in future research projects, e.g., in the context of dissipative phase transitions

[Minganti et al. (2023), Beaulieu et al. (2025)].
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Chapter 4

Resolving Transmon Qudit States on

IBM Quantum Hardware

This chapter is based on the results published in:

T. Kehrer, T. Nadolny, and C. Bruder,

Improving transmon qudit measurement on IBM Quantum hardware,

Physical Review Research 6, 013050 (2024)

4.1 Motivation

Conventional quantum computing is based on qubits which are realized on two-level

subspaces of a larger physical Hilbert space. A number of physical realizations of

qubits have been proposed and implemented on various platforms. These include

superconducting qubits [Blais et al. (2021)], trapped ions [Bruzewicz et al. (2019)],

cold atoms and Rydberg atoms [Saffman (2016)], as well as electron spins in quantum

dots [Burkard et al. (2023)]. On all of these platforms, it is necessary to isolate the

two-dimensional qubit space from the remaining states of the physical Hilbert space

to avoid leakage out of the computation space. However, utilizing qudits, i.e., d-

dimensional building blocks of quantum computation, can provide advantages [Fedorov

et al. (2012), Zeytinoğlu et al. (2015), Jerger et al. (2016), Egger et al. (2018), Elder

et al. (2020), Yurtalan et al. (2020), Wang et al. (2020), Ciavarella et al. (2021), Li

et al. (2021), Tacchino et al. (2021), Cervera-Lierta et al. (2022), Fischer et al. (2022),

Fischer et al. (2023)]. Examples include implementing an ancilla qubit within the

second and third excited states of a qudit [Fischer et al. (2022)] that leads to a smaller

number of physical qubits needed to realize the same algorithm. Another example is

the so-called shelving [Elder et al. (2020)]: by transferring the population of the first

excited state to the second excited state before final readout, the error of identifying

the ground state decreases.

Superconducting qubits [Blais et al. (2004), Koch et al. (2007)] are prominent build-

ing blocks of noisy intermediate-scale quantum (NISQ) systems [Preskill (2018)]. The

most promising example is the so-called transmon that can effectively be described as a
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quantum anharmonic electromagnetic oscillator. In this system, the two lowest-energy

levels are identified as the qubit. Taking into account higher-lying transmon levels

leads to a natural realization of a superconducting qudit. The smallest extension of the

qubit is the qutrit, i.e., a three-level system. Qutrits have been used to implement a

Toffoli gate [Fedorov et al. (2012)] with a significantly lower number of elementary gates

compared with a realization based on two-level systems. Another interesting example

is the recent experimental demonstration of a qutrit Greenberger–Horne–Zeilinger

(GHZ) state [Cervera-Lierta et al. (2022)].

In general, if one is interested in measuring a qudit state, a proper classification of

all levels involved is needed. In [Bianchetti et al. (2010)], the qubit state is determined

by a fit of the time evolution of the system. In setups which do not provide time-

resolved data, such as the current IBM Quantum [IBM Quantum. (2023)] devices,

other methods of separating qudit states have to be employed [Wang et al. (2021),

Chen et al. (2023), Miao et al. (2023)]. The strategies described in [Wang et al.

(2021), Chen et al. (2023)] involve exciting the qudit-resonator system at readout

drive frequencies other than the default frequency. At the default frequency, the

distinguishability of the ground state and first excited state is maximized, whereas

using the adapted frequencies aims at optimizing various distances between different

pairs of qudit states.

In the work this chapter is based on, we propose and evaluate improvements of the

measurement scheme of transmon qudit states by enhancing their distinguishability.

To optimize the readout, we determine the measurement errors from the assignment

matrix whose entries denote the probability to classify a measurement outcome to

a state |i⟩ even if state |j⟩ was prepared. This assignment matrix is calculated

using qudit-state dependent resonator steady-state amplitudes obtained from a model

describing the readout of a transmon qudit by driving a coupled resonator. The

default measurement schedule of most superconducting quantum hardware consists

of a single-tone drive applied to the readout resonator. The frequency of the tone

is chosen to maximally separate the ground and first excited states. The strategies

we propose are based on modified readout resonator drive frequencies that take into

account the separation of all qudit states. These strategies include a single-frequency

as well as a multifrequency readout scheme. For a ququart, viz., the four lowest states

of a qudit, we compare the proposed strategies in simulation and show that depending

on hardware parameters, both strategies can be beneficial. We furthermore compare

the model to a measurement of the drive-frequency-dependent resonator states on a

current IBM Quantum device.

This chapter is organized as follows. After describing the level scheme of a typical

IBM transmon qudit in Sec. 4.2, we present our model of a transmon qudit coupled to

a harmonic readout resonator in Sec. 4.3. In Sec. 4.4, the mean-field model describing

the readout sequence is discussed. Based on this model, we calculate the readout

drive-frequency-dependent assignment errors between multiple states that in some

limits can be expressed analytically. In Sec. 4.5, we analyze both proposed readout

schemes that aim to minimize these errors. In Sec. 4.6, before we compare the data
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that we generated on current IBM Quantum hardware to the readout model and

strategies discussed earlier, we present calibrations of relevant qudit gates. To improve

the state preparation procedure, we propose to add two-photon transitions to the

universal gate set of qudit gates [Fischer et al. (2023)] and show that this will reduce

the execution time of certain qudit circuits and the duration of X-gate calibrations.

4.2 Transmon Energy Levels

To estimate resonance frequencies for various transitions of a transmon qudit, we

numerically compute the energy levels of its Hamiltonian [Koch et al. (2007), Vool

and Devoret (2017)],

HT = 4EC

∑

n

(n− ng)
2 |n⟩⟨n| − EJ

2

∑

n

(|n⟩⟨n+ 1|+ |n+ 1⟩⟨n|) , (4.2.1)

depending on the offset charge ng, the charging energy EC , and the Josephson energy

EJ . The relevant parameter is the ratio of the two energy scales EJ/EC . The sorted

eigenvalues En(ng) are shifted such that E0(0) = 0. Using ℏ = 1 here and in the rest

of the chapter, we define the average transition frequency ωi,j between |i⟩ and |j⟩ of
both configurations ng = 0, 1/2 as

ωi,j =
Ej(0) + Ej(1/2)− Ei(0)− Ei(1/2)

2(j − i)
, (4.2.2)

and the frequency difference ∆ωi,j as

∆ωi,j =
Ej(0)− Ei(0)− Ej(1/2) + Ei(1/2)

j − i
. (4.2.3)

The anharmonicity αj and the energy dispersion ϵj of the transmon qudit are defined

by

αj = ωj,j+1 − ωj−1,j , (4.2.4)

ϵj = Ej(0)− Ej(1/2) . (4.2.5)

We numerically obtain the fundamental parameter EJ/EC of a specific IBM Quantum

backend by demanding that the qubit frequency ω0,1 and anharmonicity α1 reported

by the device match the values calculated using the equations above. In Fig. 4.1(a),

we plot the dependence of En on ng for the five lowest states. The values of the

frequency difference vary from ∆ω0,1/2π = 25.1 kHz to ∆ω3,4/2π = −142MHz. In

Fig. 4.1(b), the values ϵ3 for a number of IBM Quantum devices are displayed. For

large ϵj compared to ωj,j+1, the Wigner function of the state |j⟩ effectively is smeared

out in phase space since both configurations ng = 0, 1/2 exhibit different resonance

frequencies.
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Figure 4.1: Transmon spectra. (a) Numerical prediction of the energy levels En(ng) of
ibm lagos Q4 (July 7, 2023) based on Eq. (4.2.1) and EJ/EC ≈ 45.6. The transition
frequencies ωi,j are displayed in units of (2π)GHz. (b) Overview of the qubit resonance
frequency ω0,1 and anharmonicity α1 of the IBM Quantum devices listed in the legend. The
energy dispersion ϵ3 of the third excited state given in Eq. (4.2.5) follows from these device
specifications that were accessed on May 23, 2023. The labeled straight black lines correspond
to constant values of EJ/EC .

4.3 Transmon-Resonator System

The fundamental building blocks of a superconducting quantum computer are a

quantum anharmonic oscillator, i.e., the transmon qudit, coupled to a harmonic

oscillator, i.e., the readout resonator. Following the notation of [Koch et al. (2007)],

the Hamiltonian describing a transmon qudit and its readout resonator reads

Hq +Hr +Hint =
∑

j

ωj |j⟩⟨j|+ ωra
†a+

∑

j

gj,j+1(a
† |j⟩⟨j + 1|+ a |j + 1⟩⟨j|) ,

(4.3.1)

where ωj is the energy (see Sec. 4.2) of the bare qudit state |j⟩, ωr is the energy of

the readout resonator, and a(†) is its annihilation (creation) operator. The parameters

gj,j+1 denote generalized Jaynes-Cummings coupling strengths between the qudit

and the resonator. The approximation gj,j+1 = g
√
j + 1 used in [Blais et al. (2004)]

reduces the interaction Hamiltonian to g(a†b + ab†), where b(†) is the annihilation

(creation) operator of the transmon qudit. The qudit and resonator Hamiltonians Hq

and Hr denote two sets of commuting operators |i⟩⟨j| and a(†). Each set can be visually

interpreted as a block in the total Hamiltonian. The generalized Jaynes-Cummings

interaction couples both blocks.

In general, a Hamiltonian of interest can be defined by

H = H0 + λH1 + λV . (4.3.2)

Here, H0 and H1 are block diagonal in the subsystems, whereas V is block off diagonal.
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To find an effective block-diagonal Hamiltonian, i.e., eliminate the block off-diagonal

part V , the unitary transformation U = eS is applied to H,

Heff = UHU † = eSHe−S . (4.3.3)

Expanding the anti-Hermitian operator S = −S† as S =
∑∞

n=1 λ
nS(n), Heff can be

expressed as

Heff = H + [S,H] +
1

2
[S, [S,H]] + · · · =

∞∑

n=0

1

n!
[S,H](n) =

∞∑

n=0

λnH
(n)
eff , (4.3.4)

where [S,H](0) = H and

[S,H](n+1) =
[
S, [S,H](n)

]
. (4.3.5)

The lowest order H
(0)
eff = H0 is identical to the total Hamiltonian evaluated for λ = 0.

The first-order contribution reads H
(1)
eff = H1 + V +

[
S(1), H0

]
. To eliminate the

block off-diagonal V in this expression, we impose
[
S(1), H0

]
= −V . Since H0 is block

diagonal, S(1) has to be block off diagonal. As a consequence,
[
S(1), V

]
is block diagonal.

The second-order contribution reads H
(2)
eff = 1

2

[
S(1), V

]
+
[
S(1), H1

]
+
[
S(2), H0

]
, and

imposing
[
S(2), H0

]
= −

[
S(1), H1

]
guarantees the second order to be block diagonal.

The second-order contribution to the effective block-diagonal Hamiltonian is then

given by

H
(2)
eff =

1

2

[
S(1), V

]
. (4.3.6)

We choose a superposition of all operators appearing in V as an ansatz for S(1).

To compute the effective Hamiltonian of the Jaynes-Cummings interaction, we start

with identifying the block-diagonal parts H0 = Hq +Hr and H1 = Hd as well as the

block off-diagonal parts V = Hint of Eq. (4.3.1). The ansatz for S(1) consists of a

superposition of all operators appearing in V ,

S(1) =
∑

j

(
Cja

† |j⟩⟨j + 1| − C∗
j a |j + 1⟩⟨j|

)
. (4.3.7)

The coefficients Cj are defined implicitly by the previously mentioned equation

[S(1), H0] = −V ,

Cj =
gj,j+1

ωj − ωj+1 + ωr
. (4.3.8)

Replacing Cj in Eq. (4.3.7) by this expression and using the definition g−1,0 = 0 as
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well as the sign convention of [Koch et al. (2007), Blais et al. (2021)] leads to

H
(2)
eff =

1

2

[
S(1), V

]
=
∑

j

χj−1,j |j⟩⟨j|+
∑

j

χja
†a |j⟩⟨j| . (4.3.9)

Here, corrections to the qudit energy are

χj,j+1 =
g2j,j+1

ωj+1 − ωj − ωr
, (4.3.10)

and corrections to the qudit-state-dependent resonator energies or the resonator-state-

dependent qudit energies are

χj = χj−1,j − χj,j+1 =
g2j−1,j

ωj − ωj−1 − ωr
−

g2j,j+1

ωj+1 − ωj − ωr
. (4.3.11)

We have neglected terms proportional to (a2 |j + 2⟩⟨j|+H.c.). This is justified by the

possibility to interpret these terms as perturbations that are eliminated by a second

Schrieffer-Wolff transformation. This second transformation will lead to fourth-order

terms proportional to |j⟩⟨j|, a†a |j⟩⟨j|, (a†a)2 |j⟩⟨j|, and also (a4 |j + 4⟩ ⟨j| + H.c.).

Importantly, for typical values of gj,j+1, ωj , and ωr, the coefficients of all these

terms are a factor of 104 smaller than the previous second-order contributions and

can therefore safely be neglected. In Eq. (4.3.9), we arrived at corrections to the

Hamiltonian that are diagonal in the qudit and resonator states. The shifts of the

qudit and resonator energies are

ω̃j = ωj + χj−1,j ,

ω̃r,j = ωr + χj . (4.3.12)

The resonance frequencies of the qudit transitions |i⟩ ↔ |j⟩ can be estimated to

ω̃i,j =
ω̃j − ω̃i

j − i
. (4.3.13)

The effective Hamiltonian of the transmon coupled to a readout resonator is

Heff =
∑

j

(ωj + χj−1,j + χja
†a) |j⟩⟨j|+ ωra

†a . (4.3.14)

The parameter ωj is the energy (see Sec. 4.2) of the bare qudit state |j⟩, ωr is the

energy of the readout resonator, and a(†) is its annihilation (creation) operator. The

second-order corrections χj−1,j and χj to the qudit and resonator energies, are defined

in Eqs. (4.3.10) and (4.3.11). Additionally, we describe a coherent driving of the

resonator at frequency ωd by [Blais et al. (2021)]

Hd =
Ω

2

(
eiωdt−iϕa+ e−iωdt+iϕa†

)
, (4.3.15)
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which enables the readout of qudit states.

4.4 Readout of Qudit States

The readout of a transmon qudit, in short, consists of driving the readout resonator

while recording the response signal. We model the time evolution of a general quantum

state ρ comprised of a qudit and its readout resonator by the following Lindblad

master equation:

d

dt
ρ = −i[Heff +Hd, ρ] + κD[a](ρ) , (4.4.1)

where D[L](ρ) = LρL† − (L†Lρ + ρL†L)/2 is the Lindblad dissipator and κ is the

decay rate of the resonator. Using the effective Hamiltonian given by Eq. (4.3.14)

and assuming the qudit to be in state |j⟩, we arrive at the equation of motion of the

mean-field amplitude A ≡ ⟨a⟩ = Tr[aρ]

d

dt
A = −i(ωr + χj)A− i

Ω

2
e−iωdt+iϕ − κ

2
A . (4.4.2)

The fact that A depends on the qudit state |j⟩ is used to discriminate different qudit

states. If the qudit is in a mixture or superposition of states, this measurement

procedure projects the qudit onto one of its Fock states [Blais et al. (2021)].

The general form of the complex value returned by an IBM Quantum device is

Ā =

T∫

0

dt k(t)A , (4.4.3)

where k(t) encodes the so-called kernel integration instructions, see meas kernel

[McKay et al. (2018)] in Qiskit [Qiskit contributors (2023)], and T is the total

duration of the measurement. The choice k(t) = exp(iωdt) corresponds to integrating

the measurement signal in the rotating frame of the drive, see Sec. 4.4.1, whereas the

choice k(t) = exp(iωmt) corresponds to a frame rotating at an arbitrary modulation

frequency ωm, see Sec. 4.4.2.

In the following, we mainly consider the offset charge configuration ng = 0. The

value of ng influences the transmon qudit energy spectrum, see Sec. 4.2(a). Note that

due to the significant dependence on ng of the third and higher excited states, their

corresponding readout-resonator states may be smeared out in phase space if charge

noise is present. In Fig. 4.1(b) we present an overview of the energy dispersion ϵ3
of the third excited state defined in Eq. (4.2.5) for several IBM Quantum devices.

Since ϵ3 decreases with increasing EJ/EC , qudits that lie in the upper-right region

are preferred in general.
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Figure 4.2: Theory prediction of the readout resonator amplitude. (a) Drive-frequency-
dependent phase-space positions Ad

j and Am
j of the coherent state of the resonator given the

qudit prepared in |j⟩, see Eqs. (4.4.4) and (4.4.9). For ωm = ωd, the trajectories of all states

Ad
j match, denoted by the black circle. The colored lines correspond to Am

j for ωm = ω
(0,1)
d,0 .

Crosses indicate the positions at ωd = ωm where both models match, Ad
j = Am

j . (b), (c)
Error measures ξj and ξ in the frame of ωd and ωm respectively, see Eqs. (4.5.5) and (4.5.6).
Following Secs. 4.2 and 4.3, for these plots, we determine EJ/EC by the qubit parameters
ω0,1 and α1 from ibm lagos Q4 (July 7, 2023). Moreover, we choose g/2π = 100MHz,
Ω/2π = 100MHz, κ/2π = 5MHz, T = 0.35 µs, σj = 0.13Ω/κ, ϕ = 0, and ng = 0.

4.4.1 Rotating Frame of Drive

In this section, we will work in the rotating frame of the drive. Quantities in this frame

will be denoted by the superscript d. Since Eq. (4.4.2) is defined in the laboratory

frame, we choose k(t) = exp(iωdt) to transform the signal into the rotating frame of

the drive and obtain

Ād

T

κT≫1−→ −Ω

2

eiϕ

ωr + χj − ωd − iκ/2
≡ Ad

j . (4.4.4)

Here, Ad
j is the complex-valued steady-state amplitude of the resonator when the qudit

is in state |j⟩ and defines a coherent state
∣∣∣Ad

j

〉
. Its dependence on the resonator drive

frequency is presented in Fig. 4.2(a). Varying ωd, the steady-state amplitudes Ad
j of

the readout resonator move on a circle centered at Ac = −ieiϕΩ/2κ with diameter

Ω/κ. At resonance ω
(j)
d,0 = ωr + χj , the states reach the maximum amplitude 2Ac.

For qudit readout, it is important that the distance di,j = |Ad
i − Ad

j | between two

qudit-state-dependent resonator states is large. We can identify two regimes of how

the positions of the states in phase space depend on the readout drive frequency.

For a large resonator decay rate κ≫ |χi − χj |, all states are close to the position of

maximum amplitude within the same frequency range. In this case, di,j exhibits only

one maximum at

ω
(i,j)
d,0 = ωr +

χi + χj

2
, (4.4.5)

di,j

(
ω
(i,j)
d,0

)
=

2Ω|χi − χj |
(χi − χj)2 + κ2

. (4.4.6)
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Figure 4.3: Visualization of the different regimes of steady-state movement in the complex
plane of the readout-resonator amplitude. For a large resonator decay rate κ≫ |χi − χj |, all
states are close to the position of maximum amplitude within the same frequency range. For
a small resonator decay rate κ≪ |χi − χj |, the states hit the resonance maximum at distinct
frequencies.

In contrast, for a small resonator decay rate κ≪ |χi−χj |, the frequency ranges where

the state amplitudes Ad
j are close to the maximum amplitude do not match, i.e., Ad

j

hit the resonance maximum at distinct frequencies. A visualization is given in Fig. 4.3.

Here, two drive frequencies ωd = ω
(i,j)
d,± maximize the distance di,j ,

ω
(i,j)
d,± = ω

(i,j)
d,0 ± 1

2

√
(χi − χj)2 − κ2 , (4.4.7)

di,j

(
ω
(i,j)
d,±

)
=

Ω

κ
≡ dc , (4.4.8)

where dc denotes the diameter of the circle on which the states move. Thus, at ω
(i,j)
d,± ,

both states are located on opposite sides of the circle, which is the maximum separation

they can obtain.

If we set the drive frequency to ω
(i,j)
d,0 or ω

(i,j)
d,± , i.e., maximizing the distance between

state |i⟩ and |j⟩, the distance between other pairs of states is in general reduced and

hence not optimal for discrimination of these states. Therefore, in Sec. 4.5, we present

two measurement strategies to mitigate this issue.

4.4.2 General Rotating Frame

In a frame of a general rotation frequency ωm, i.e., choosing k(t) = exp(iωmt), the

state reached in the long-time limit κT ≫ 1 is time dependent,

Ām

T

κT≫1−→ ei((ωm−ωd)T/2)sinc ((ωd − ωm)T/2)Ad
j ≡ Am

j , (4.4.9)

where sinc(x) = sin(x)/x and the superscript m is used to denote quantities in this

frame. The difference between Eqs. (4.4.4) and (4.4.9) is an additional factor of sinc

peaking at ωd = ωm. These resonator-state amplitudes and their dependence on the

drive frequency ωd are also visualized in Fig. 4.2(a). The states Ad
j move on the black

circle with diameter Ω/κ, whereas the motion of the states Am
j follows a distorted
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circle (colored curves).

4.5 Measurement Strategies

In the previous section, we presented a model describing the readout on supercon-

ducting quantum hardware. The centers of the Wigner functions of the coherent

readout-resonator states when the qudit is in state |j⟩ are given by Aj . Due to intrinsic

quantum noise and hardware limitations, the possible readout-resonator states for each

qudit state overlap. This leads to potential misclassification and thus measurement

errors when reading out the qudit states.

In the following of this section, we propose two strategies for improving qudit

readout compared to the default measurement scheme that utilizes a single resonator

drive frequency that optimizes the classification of |0⟩ and |1⟩. The first strategy

consists of finding a single frequency that maximizes the distinguishability between

all d qudit Fock states. In the second strategy, we allow for multiple different drive

frequencies.

4.5.1 Assignment Matrix

To arrive at a measure of the distinguishability of states, we introduce the measurement

assignment matrix M [Bravyi et al. (2021)]. The qudit-state-dependent resonator

states are defined by their steady-state amplitude Aj . We assume their Wigner

functions to follow a two-dimensional Gaussian distribution,

G(z,Aj , σj) =
1

2πσ2j
exp

(
−|z −Aj |2

2σ2j

)
, (4.5.1)

centered at Aj with standard deviation σj larger than the intrinsic quantum noise.

The elements of M are given by

Mi,j =

∫
d2z G(z,Aj , σj)

∏

k ̸=i

Θi,k (4.5.2)

and define the probability to classify a measurement as state |i⟩ even if state |j⟩ was
prepared. The region corresponding to each state |i⟩ is defined by the maximum

likelihood estimator (MLE) leading to

Θi,k = Θ(G(z,Ai, σi)−G(z,Ak, σk)) , (4.5.3)

where Θ denotes the Heaviside function. For σj = σ (valid assumption for the hardware

setup studied later in this chapter, see the discussion about the distribution of σ

of Gaussian fits in the second paragraph of Sec. 4.6), the MLE is equivalent to the

minimum distance estimator (MDE) that implies

Θi,k = Θ(|z −Ak| − |z −Ai|) . (4.5.4)
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Using the MDE, a data point z is assigned to the region of state Ai if its Euclidean

distance to all of the other states Ak is larger. In contrast, using the MLE, a data

point z is assigned to the region of the state Ai that has the largest value of the

probability density at that point. For simplicity and since in our measurements all σj
are comparable, we choose the MDE throughout this chapter.

Ideally, Mi,j = δi,j , meaning perfect measurement: a measurement outcome is

assigned to |i⟩ only if |j⟩ was prepared. We define the error measures

ξj = 1−Mj,j , (4.5.5)

where ξj is the probability of misclassifying the qudit state |j⟩, and their mean ξ over

all d qudit states,

ξ =
1

d

d−1∑

j=0

ξj . (4.5.6)

The theoretical dependence of ξj and ξ on the readout resonator drive frequency is

shown in Figs. 4.2(b) and 4.2(c). The measurement errors ξj achieve their minima at

different readout resonator drive frequencies. If ωm ≠ ωd, the locations of the minima

cannot be distinguished as well as for ωm = ωd. In the current setup of IBM Quantum

hardware, the frequency ωm of the rotating frame cannot be changed. Therefore, the

difference between the frequency dependencies of all ξj is less pronounced.

Note that for setups where σj = σ and all qudit states lie on a circle centered at

Ac = xc + iyc, the assignment matrix Mi,j can be expressed in terms of Owen’s T

function, that allows for a fast numerical calculation. Examples of such setups are

qudit systems with ωm = ωd, see Sec. 4.4.1, or qutrit systems even with arbitrary ωm.

In the rotated coordinate system in which Ai and Ai+1 are aligned along the real axis

in phase space, Eq. (4.5.2) can be written as

Mi,j =
1

2πσ2

xc∫

−∞

dx

y(x)∫

−∞

dy exp

(
−(x− xj)

2

2σ2
− (y − yj)

2

2σ2

)

=
1

2
√
2πσ

xc∫

−∞

dx exp

(
−(x− xj)

2

2σ2

)(
1 + erf

(
yc − yj + ai(x− xc)√

2σ

))

=
1

4

(
1− erf

(
xj − xc√

2σ

))
+ T

(
xj − xc
σ

,−ai,
yc − yj + ai(xj − xc)

σ

)
, (4.5.7)

where y(x) = yc + ai(x− xc) and ai is the slope of the bisecting line between Ai and

Ai−1,

ai = −xi − xi−1

yi − yi−1
, (4.5.8)

see the visualization in Fig. 4.4. The variables xj and yj are the real and imaginary
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Figure 4.4: Visualization of the calculation of Mi,j using Owen’s T function. The area of
integration of Eq. (4.5.7) corresponds to the dark blue region of Ai. The Gaussian probability
distribution (illustrated by the gray circles) of the state |j⟩ that was prepared is located at
Aj .

part of Aj . The function T (h, a, b) is a generalized version of Owen’s T function,

T (h, a) = T (h, a, 0) [Owen (1956), Owen (1980)] and defined as

T (h, a, b) =
1

2
√
2π

∞∫

h

du exp

(
−u

2

2

)
erf

(
au+ b√

2

)
. (4.5.9)

It can be expressed by multiple standard Owen’s T functions,

T (h, a, b) =
1

4
erf

(
b√

2(1 + a2)

)(
1− erf

(
h√
2

))
+ T

(
b√

1 + a2
, a+

h(1 + a2)

b

)

+ T

(
h, a+

b

h

)
− T

(
b√

1 + a2
,
h
√
1 + a2

b

)
− T

(
h,

b

h
√
1 + a2

)
.

(4.5.10)

We used the standard definition of the error function, see Eq. (8.250.1) of [Gradshteyn

and Ryzhik (2015)],

erf(x) =
2√
π

x∫

0

du exp
(
−u2

)
. (4.5.11)

4.5.2 Finite Sampling

In experiments, measuring an unknown state |ψ⟩ =∑j cj |j⟩ in the Z basis is equivalent

to estimating its populations pj ≡ |cj |2 based on a set of N data points {zj}, also
called shots. For each shot, the total state is projected onto one of the d qudit states

|j⟩ with probability pj . Therefore, the total probability distribution of measuring one

shot at z given p⃗ = (pj) is a sum of all d Gaussians defined in Eq. (4.5.1) weighted

by pj . The measurement task can be understood as learning the parameters p⃗ of this
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multimodal probability distribution,

P (z|p⃗ ) =
d−1∑

j=0

pjG(z,Aj , σj) , (4.5.12)

where Aj and σj are obtained from a separate calibration measurement. Using the

normalization condition of p⃗,

pd−1 = 1−
d−2∑

j=0

pj , (4.5.13)

where pj ∈ [0, 1], the space of possible p⃗ can be mapped to a (d− 1)-simplex. Using

Bayesian inference, we define a recursion relation

P (j+1)(p⃗ ) =
P (zj |p⃗ )
P (zj)

P (j)(p⃗ ) , (4.5.14)

with

P (zj) =

∫
dd−1pP (zj |p⃗ )P (j)(p⃗ ) , (4.5.15)

between the estimated probability distribution (so-called prior) P (j)(p⃗ ) of the Gaussian

amplitudes p⃗ before and after receiving the jth data point zj , also called shot. Each

shot is drawn from the probability distribution P (zj |p⃗ ) defined in Eq. (4.5.12). After

obtaining N data points, the resulting probability distribution P (N)(p⃗ ) is given by

P (N)(p⃗ ) =

∏N−1
j=0 P (zj |p⃗ )
∏N−1

j=0 P (zj)
P (0)(p⃗ ) . (4.5.16)

The initial prior P (0)(p⃗ ) is chosen to be a uniform distribution.

If the width of the Gaussians is small compared to their distances, this method is

equivalent to the description given in the following. For simplicity, instead of using this

Bayesian ansatz of the probability distribution, each of the N shots is classified as one

of the d qudit states. The classification is based on the phase-space distance (MDE) to

the d qudit Fock states, whose positions have been calibrated before. The components

Nj of N⃗ equal the number of shots assigned to |j⟩. This procedure corresponds to

neglecting the actual position zj of this shot, i.e., its Gaussian weight G. Given Nj ,

the so-called posterior probability distribution P (N)(p⃗ ) for the qudit populations pj
for a perfect measurement is equal to

P (p⃗ |N⃗) = Dir(p⃗, N⃗) =
(N + d− 1)!
∏d−1

k=0Nk!

d−1∏

k=0

pNk
k , (4.5.17)

45



Chapter 4 Resolving Transmon Qudit States on IBM Quantum Hardware

with

d−1∑

j=0

pj = 1,

d−1∑

j=0

Nj = N, (4.5.18)

introducing the Dirichlet distribution Dir [Kotz et al. (2000)]. It is the so-called

conjugate prior of the multinomial distribution. The location of the maximum (also

called mode) with respect to pj is given by Nj/N , and its variances follow as

Var[pj ] =
(Nj + 1)/(N + d)[1− (Nj + 1)/(N + d)]

N + d+ 1
. (4.5.19)

Defining nj = Nj/N , for large N the variance of pj scales like nj(1− nj)/N .

We now consider the assignment matrix M , see Eq. (4.5.2), which describes mis-

classification errors. Using a Bayesian posterior ansatz, we find that the probability

distribution has to be modified to

P (p⃗ |N⃗) =
1

N Dir(Mp⃗, N⃗) (4.5.20)

where

N =

∫

Vp⃗

ddpDir(Mp⃗, N⃗) . (4.5.21)

The assignment matrix M reflects the fact that some shots are classified incorrectly

and maps proper states p⃗ from Vp⃗ (related to a (d−1)-simplex) to a subspace VMp⃗ ⊆ Vp⃗.

If N⃗/N ∈ VMp⃗, the location of the maximum (also called mode) can be computed

analytically,

p⃗mode =
1

N
M−1N⃗ . (4.5.22)

This result is similar to a common procedure known in Qiskit as “measurement

error mitigation”. Note that applying the inverse of M to N⃗/N /∈ VMp⃗ can lead

to negative components of p⃗mode /∈ Vp⃗. In Qiskit, this problem is circumvented by

approximating p⃗mode by the valid p⃗ ′ that is closest to N⃗ , see method least squares in

qiskit.utils.mitigation. filters.py [Qiskit contributors (2023)],

p⃗ ′ = argmin
p⃗

(
|N⃗/N −Mp⃗ |2

)
. (4.5.23)

Equation (4.5.23) is the estimate of the state populations p⃗ after measuring N⃗ shots.

We will use the uncertainty of these estimates, viz., the numerically calculated standard

deviations SD[pj ], to decide which of the proposed strategies performs best, i.e., exhibits

the smallest standard deviation.

46



4.5 Measurement Strategies

4.5.3 Comparison of Strategies

We consider two strategies that make use of either one or multiple drive frequencies.

In the default readout scheme of superconducting quantum hardware, measurement

pulses with a single drive frequency that maximizes the distinguishability between the

qubit states |0⟩ and |1⟩ are applied.

The first strategy we propose replaces the default frequency by the one that optimally

separates all qudit states in phase space simultaneously. Since, in general, the state |ψ⟩
that we want to measure is unknown, we suggest to optimize ξ defined in Eq. (4.5.6),

which is the average of the individual measurement errors ξj .

The second strategy uses N/d shots for each of the d different frequencies at which

individual states are most isolated, i.e., ξj are minimal. We will show that this strategy

is advantageous in cases when there is no single frequency at which all states are

separated well enough. Hardware parameters and the state to be measured determine

which of the two strategies outperforms the other.

To compare both strategies, we draw N = 1000 samples from the probability

distribution given by Eq. (4.5.12) for σj = σ and an equal-superposition state pj = 1/d.

The drive frequencies we use for (i) the single-drive strategy is the location of the

minimum of ξ and for (ii) the multifrequency strategy are the minima of ξj . Each

sample is classified using the MDE, see Eq. (4.5.4), i.e., by its Euclidean distance

to the nearest state |j⟩. The final probability distribution for the pj of the single-

frequency strategy is given in Eq. (4.5.20). The final probability distribution for the

multifrequency strategy is the normalized product of the term in Eq. (4.5.20) for each

measurement frequency ωk,

P (p⃗ |{n⃗k}) ∝
d−1∏

k=0

Dir(M(ωk)p⃗ |n⃗k) , (4.5.24)

where {n⃗k} is the list of counts of classified shots for the kth measurement frequency.

The standard deviation SD[pj ] is computed numerically from this distribution.

Figure 4.5(a) shows the dependence of the ratio of both averaged standard deviations,

SDs/m =
1

d

d−1∑

j=0

SDs/m[pj ] , (4.5.25)

on hardware parameters σj = σ and κ. The blue region corresponds to setups for

which the standard deviation SDs of pj using a single-drive frequency scheme is

smaller. In contrast, the red region corresponds to hardware configurations where it is

beneficial to measure at multiple frequencies, i.e., SDm of the multidrive frequency

scheme is smaller. The gray region indicates parameter values for which both standard

deviations exceed SDs/m ≥ 0.1. Since the expected values pj lie in [0, 1], this threshold

corresponds to an uncertainty of at least 10%.

The overall trend is that for small σ, i.e., strongly located Gaussians, the single-

frequency strategy performs at a similar, slightly better level than the multifrequency
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|1〉 0.2926± 0.0073

|2〉 0.307± 0.021

|3〉 0.317± 0.016

total 0.302± 0.017

median = 0.297

Figure 4.5: Comparison of measurement strategies. (a) Ratio of the standard deviation
SDm for the multifrequency strategy and the standard deviation SDs of the single-frequency
strategy applied to an equal-superposition state taking N = 1000 shots. The gray region
indicates where both standard deviations exceed SDs/m ≥ 0.1. The straight lines denote
constant values of σκ/Ω. We take the same qudit parameters as in Fig. 4.2 and choose
g/2π = 100MHz and Ω/2π = 100MHz. (b) Histogram of Gaussian widths σj for data
presented in Sec. 4.6. The distribution justifies the assumption σj = σ.

strategy. The multifrequency strategy is preferable for large σ, when the overlap of

the Gaussians would be too large using a single drive frequency. Intuitively, this is

expected since, for small κ and large σ, only one state is isolated from the others which

group together at the origin in phase space, see discussion of regimes κ ≶ |χj − χj+1|
in Sec. 4.4.1. We also added lines of constant relative uncertainty σκ/Ω. Along

these lines, the Gaussian widths σ are fixed in units of the diameter Ω/κ of the

circle on which the states move in the rotating frame of the drive. The solid line

corresponds to σ = 0.13Ω/κ chosen in Figs. 4.2(b) and 4.2(c), whereas the dashed line

approximately matches the threshold of SDs/m ≥ 0.1. Following the solid black line,

the standard deviation of the single-frequency strategy appears to exhibit a minimum

around κ/2π = 1 − 2MHz. For fixed σκ/Ω and small resonator decay rates κ, the

states move around the circle rather individually, whereas for large κ, the states move

as a group, see Sec. 4.4.1 and Fig. 4.3. The histogram shown in Fig. 4.5(b) is used to

justify the assumption σj = σ for the measurement data presented in Sec. 4.6.

4.6 Measurement on IBM Quantum Hardware

In this section, we will compare the model described in Sec. 4.3 to data obtained from

ibm lagos Q4 on July 7, 2023.

4.6.1 Preparation of Qudit States

We prepare the four lowest Fock states of an IBM Quantum transmon qudit, i.e., the

a so-called ququart studied in Sec. 4.6.2, by applying sequences of calibrated qudit X
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Figure 4.6: (a) Qudit resonator spectroscopy of transitions |i⟩ ↔ |j⟩. Colored markers
denote measured data and solid curves correspond to Gaussian fits. We plot each resonance
spectrum centered around the predicted transition frequency ω̃i,j , see Eq. (4.3.13), using
g/2π = 65MHz. (b) Rabi oscillations |i⟩ ↔ |j⟩ depending on the drive amplitude for fixed
pulse duration. We sweep the readout resonator drive amplitude while keeping all other
parameters of the drive fixed. For first-order qudit state transitions, we fit a sinusoidal
dependence on a linear function of the drive amplitude in the interval [0, 0.5], see the lines
connecting crosses and, respectively, diamonds. For second-order qudit state transitions, we
fit a sinusoidal dependence on a quadratic function of the drive amplitude in the interval
[0, 1], see the lines connecting dots and, respectively, triangles. The vertical dashed lines
indicate the locations of the first maxima obtained from the fits.

gates to the ground state |0⟩. For simplicity, we implement these X gates via Gaussian

pulses. For each pulse, we first calibrate its drive frequency ωd and second, its drive

amplitude Ωq.

The optimal drive frequency is obtained from a Gaussian fit to resonance measure-

ment data shown in Fig. 4.6(a), where we fix the pulse amplitude to an initial estimate.

First, the measured N = 2000 complex-valued shots per qudit drive frequency, using

the default readout pulse, are averaged. Second, these averages are rotated in the

complex plane such that their major principal axis is oriented along the real axis.

And third, the averages are projected onto the real axis which justifies the axis label

“rotated projected data”. For the spectroscopy measurements, in addition, we define

the origin of the ordinate of Fig. 4.6(a) to correspond to the initial state of the

analyzed transition and the maximum to the final state. Our estimated frequency ω̃i,j

is calculated by Eq. (4.3.13) using g/2π = 65MHz.

To obtain the initial estimate of the qudit drive amplitude, we define the rotation

angle θ of a resonant Rabi oscillation between states |j⟩ and |k⟩. Comparing both

sides of

exp(−iHd,efft) = exp

(
− i

2
θ(|j⟩⟨k|+ |k⟩⟨j|)

)
, (4.6.1)
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where the left-hand side is the time evolution of the effective drive Hamiltonian,

Hd,eff = Λ(j, k)(|j⟩⟨k|+ |k⟩⟨j|) . (4.6.2)

Therefore, the rotation angle θ depends on the effective Rabi frequency Λ(j, k) and

the pulse duration t. Starting with the Hamiltonian of a driven qudit in the rotating

frame of the drive, see [Blais et al. (2021)],

H = H0 + λV =
∑

j

(ω̃j − ωd) |j⟩⟨j|+ λ
Ωq

2

∑

j

√
j + 1(e−iϕ |j⟩⟨j + 1|+ eiϕ |j + 1⟩⟨j|) ,

(4.6.3)

for λ = 1, the rotation angle θ for Rabi oscillations between |j⟩ and |j + 1⟩ is given by

θ = tj,j+1Ω
(j,j+1)

√
j + 1 . (4.6.4)

In analogy to Sec. 4.3, we now perform a Schrieffer-Wolff transformation of the

Hamiltonian in Eq. (4.6.3). This method is used to predict the Rabi oscillation

frequencies of second-order transitions |j⟩ ↔ |j + 2⟩. For previous work on multiphoton

transitions, see, e.g., [Strauch et al. (2007), Danilin et al. (2018)]. An expansion in λ

leads to

H
(2)
d,eff = −

Ω2
q

8

∑

j

fj(e
−2iϕ |j⟩⟨j + 2|+ e2iϕ |j + 2⟩⟨j|) , (4.6.5)

where

fj =

√
(j + 1)(j + 2)(ω̃j+2 − 2ω̃j+1 + ω̃j)

(ω̃j+2 − ω̃j+1 − ωd)(ω̃j+1 − ω̃j − ωd)
. (4.6.6)

Note that these expressions only hold for ωd ̸= ω̃j+1 − ω̃j , i.e., drive pulses that are

not resonant with transitions between neighboring qudit levels |j⟩ ↔ |j + 1⟩. The

rotation angle for Rabi oscillations between non-neighboring states |j⟩ and |j + 2⟩ can
be computed using Eq. (4.6.5),

θ = tj,j+2

(
Ω(j,j+2)

)2

4
fj . (4.6.7)

Thus, the Rabi frequency of the |0⟩ ↔ |2⟩ transition scales quadratically with Ω(0,2).

Using Eqs. (4.6.4) and (4.6.7), the initial estimate for the π-pulse amplitudes Ω
(j,k)
π

can be related to the default X-gate amplitude Ω
(0,1)
π reported by the IBM Quantum
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backend,

Ω(j,j+1)
π =

Ω
(0,1)
π√
j + 1

, (4.6.8)

Ω(j,j+2)
π = 2

√
Ω
(0,1)
π t0,1
fjtj,j+2

. (4.6.9)

Here we used that all single-qudit operations are implemented within the same duration

tj,j+1 = t0,1.

After evaluating the resonance measurement, we continue to calibrate the X-

gate drive amplitude via Rabi oscillations, see Fig. 4.6(b). The data are rotated

and projected onto the major principal axis as described before for the spectroscopy

measurements. As shown in Eq. (4.6.5), the Rabi frequency for transitions |j⟩ ↔ |j + 2⟩
depends nonlinearly on the drive amplitude. Since these transitions are suppressed by

the small factor Ωqfj , we choose tj,j+2 = 2t0,1 such that Ω
(0,2)
π does not exceed the

limits of IBM Quantum software/hardware restrictions: the drive amplitude in the

arbitrary units chosen in Fig. 4.6(b) has to be an element of [−1, 1]. The π amplitude

of an X-gate pulse is identified with the location of the first maximum in Fig. 4.6(b),

indicated by a dashed line. For transitions between neighboring states, we fit a sine

dependence on a linear function of Ωq and, for second-order transitions, we fit a sine

dependence on a second-order polynomial of Ωq. Using those fits, any desired rotation

angle, e.g., π for an X gate or π/2 for a Hadamard gate, can be mapped back to a

corresponding pulse amplitude.

The sequence of calibrating drive frequency and amplitude described above can be

iterated several times to improve gate fidelity. Here, for simplicity, we consider only

one round of calibrations. To increase fidelity, we chose the initial value for Ω1,3 based

on prior test measurements.

Implementing gates in the |j⟩ ↔ |j + 2⟩ subspace results in two advantages. First,

our implementation of an X-gate Xj,j+2 between |j⟩ and |j + 2⟩ takes only twice the

single-qudit gate duration t0,1. In contrast, using single-qudit gates, Xj,j+2 consists

of three single-qudit operations Xj,j+1Xj+1,j+2Xj,j+1 with a total duration of 3t0,1.

Second, the calibration of the drive frequencies (amplitudes) for |0⟩ ↔ |1⟩ and |0⟩ ↔ |2⟩
are independent of each other and can therefore be combined into a single Qiskit

job (set of measurements submitted to an IBM Quantum device). In contrast, the

frequency calibration for the transition |1⟩ ↔ |2⟩ depends on the Rabi measurement

for the transition |0⟩ ↔ |1⟩. In total, we can perform our calibration procedure in four

Qiskit jobs:

1. drive frequency of X01 and X02,

2. drive amplitude of X01 and X02,

3. drive frequency of X12, X23, and X13,

4. drive amplitude of X12, X23, and X13.
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Figure 4.7: Measurement of ququart states on ibm lagos Q4 (July 7, 2023). (a) Drive-
frequency-dependent and qudit-state-dependent resonator amplitudes, the experimental
equivalent of Fig. 4.2(a). The colored dots are the measurement results of all N = 2000
shots for each prepared Fock state for the drive frequency ωd = ω0 = 7.2463GHz. The
black crosses mark the centers of their Gaussian fits and the black straight lines indicate the
boundaries of regions assigned to individual Fock states. These boundaries are constructed
using the minimum distance estimator, see Eq. (4.5.4). The colored curves (with white
shadows) correspond to the centers of Gaussian fits to the Fock states |j⟩. A video of this
panel is available at [Kehrer (2025)]. (b) Measurement errors ξj = 1 −Mj,j based on all
measured shots of the data presented in (a). Here, the elements Mi,j of the assignment
matrix equal the relative number of shots, Ni/N , that are classified as |i⟩ even if |j⟩ is
prepared. The horizontal gray line denotes the measurement error ξdef obtained using the
default measurement pulse. (c) Measurement errors ξj based on Gaussian fits to the data
presented in (a) and the assignment matrix M defined in Eq. (4.5.2). Using the centers and
average σ of Gaussian fits for each readout resonator drive frequency, see Fig. 4.5(b), we
calculate M numerically. The ξj shown in (b) are larger than those in (c) since they do
not only represent assignment errors, but also include additional errors such as qudit decay,
leakage, and imperfect state preparation. In both (b) and (c), the minimum of the average
assignment error ξ is smaller than ξdef obtained by the default pulse.

In contrast, the standard sequential calibration of single-qudit X gates would take six

jobs: two for each of the three single-qudit X gates between neighboring states.

4.6.2 Measurement of a Ququart

After calibration of the standard single-qudit gates X01, X12, and X23 as well as the

higher-order (two-photon) single-qudit gates X02 and X13, we compare the readout

model described in Sec. 4.3 to measurements executed on ibm lagos Q4 (July 7,

2023). In Fig. 4.7(a) we show the measurements of the four lowest Fock states for

various readout resonator drive frequencies. This plot is the experimental equivalent

of Fig. 4.2(a). A video of this panel is available at [Kehrer (2025)]7. For each Fock

state and for each readout resonator drive frequency, we take N = 2000 shots while

keeping the other drive parameters fixed at the default values. For ωd/2π = ω0/2π =

7.2463GHz, Fig. 4.7(a) shows all shots in the color of the prepared Fock state. This

value of ω0 is −5.5MHz off the default frequency reported by the IBM Quantum device.

Black crosses highlight the centers of the Gaussian fits. For other drive frequencies, we

7Direct link: https://tobias-kehrer.github.io/thesis/qudit measurement/ [Accessed: July 30, 2025]

52

https://tobias-kehrer.github.io/thesis/qudit_measurement/


4.6 Measurement on IBM Quantum Hardware

only plot the centers of the Gaussian fits as colored lines (with a white shadow). The

straight black lines denote the boundaries of regions (defined via MDE, see Eq. (4.5.4))

that are assigned to one Fock state.

We analyze the measurement errors in two ways. First, we define the elements Mi,j

by the relative number of shots, Ni/N , classified as |i⟩ even if |j⟩ is prepared. In

this way, M incorporates misclassification errors but also additional errors such as

imperfect qudit state preparation. From this matrix, we obtain the errors ξj , displayed

in Fig. 4.7(b). Second, we use the centers of the Gaussian fits for each qudit state and

for each value of the resonator drive frequency and a fixed value of σ to compute the

assignment matrix defined in Eq. (4.5.2). By examining these Gaussian fits, we find a

narrow distribution of the σ values: σ = (0.302± 0.017) (same arbitrary units as in

Fig. 4.7(a)), see Fig. 4.5(b). The resulting errors ξj are shown in Fig. 4.7(c). Here,

the ξj only represent errors that arise from misassignment of shots drawn from the

multi-Gaussian distribution, see Eqs. (4.5.1) and (4.5.2). Since real devices feature

other sources of error, e.g., qubit decay, leakage, and imperfect state preparation, the

values of ξj presented in Fig. 4.7(b) are larger than in Fig. 4.7(c).

Our model, visualized by the theory plots in Figs. 4.2(a) and 4.2(c), shows qualitative

agreement with the data presented in Figs. 4.7(a) and 4.7(c). In both Figs. 4.7(b)

and 4.7(c), the horizontal gray line ξdef denotes the average assignment error of the

four lowest Fock states using the default readout pulse and should be compared with

the solid black line ξ. The corresponding data were taken from Rabi calibration

measurements, similar to Fig. 4.6(b), at the drive amplitude that is closest to the

fitted optimum.

We find a dependence of the measurement errors ξj on the readout resonator

frequency as expected. The data presented in Figs. 4.7(b) and 4.7(c) suggest that

the default measurement frequency is not ideal to separate all four qudit states

simultaneously. However, the minima appear at only slightly different positions. Note

that the difference in positions is small due to IBM Quantum software/hardware

limitations: ωm cannot be set to its ideal value ωm = ωd, see Sec. 4.4.2. We expect

the impact of varying the readout resonator drive frequency to be much higher if it is

possible to analyze all data in the rotating frame of the drive, compare Figs. 4.2(b)

and 4.2(c).

In this chapter, we focused on the analysis of only four qudit states since the readout

of higher excited states beyond |3⟩ becomes difficult for several reasons. Higher-excited

states are more sensitive to charge noise, see Fig. 4.1(a). Since χj depends on the qudit

spectrum ωj , charge noise leads to ambiguous steady-state amplitudes. In addition,

finding a single drive frequency that properly separates all qudit states becomes more

difficult with an increasing number of qudit states. For example, for the IBM Quantum

device that we utilized in this chapter, we estimate χ1 < χ4 < χ2 which indicates that

the steady-state amplitude corresponding to |4⟩ lies between |1⟩ and |2⟩. We expect

that the more states are involved, the better the performance of a multifrequency

strategy in comparison to a single-frequency strategy given a small κ ≪ |χi − χj |,
cf. Fig. 4.5. Examples for multifrequency readout for d = 8 and d = 12 are [Wang
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et al. (2025), Champion et al. (2025)]. Here, EJ/EC reaches values up to 325.

4.7 Conclusion

We have presented a model that describes phase-space measurement data of qudit

states on superconducting quantum hardware. Our model qualitatively matches

the data that we generated on a current IBM Quantum device. For qudit-state

preparation, we employ higher-order X gates between |j⟩ and |j + 2⟩. This scheme

leads to a reduction of the execution time of qudit quantum circuits as well as of

the duration of X-gate calibrations. Based on our model, we have compared the

performance of two measurement strategies, a single-frequency and a multifrequency

scheme, in simulations. For each strategy, we have identified the regime in hardware

parameter space where it is optimal. The multifrequency strategy is superior when

the qudit-state-dependent resonator states overlap significantly.

To use the full potential of both strategies, it is necessary to adjust the modulation

frequency ωm of the device. This is currently not possible on IBM Quantum hardware.

Despite these software and hardware restrictions, we still find predicted differences

in the frequency locations of the minima of the individual measurement errors ξj
and an improvement over the measurement error ξdef using the default measurement

pulse. We expect a better performance of the strategies for setups that operate in the

rotating frame of the drive ωm = ωd.

In the future, adaptive measurement schemes that change the drive frequency from

shot to shot or between bunches of shots may be possible. This can lead to a further

improvement of transmon qudit measurements.

The results and figures of this chapter have been published in parts in [Kehrer et al.

(2024a)].
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Chapter 5

Simulating Effective Gain by

Mirroring Native Decay Using Echo

Sequences

This chapter is based on preliminary and unpublished results obtained in a collaboration

with T. Nadolny.

5.1 Motivation

In the current noisy-intermediate-scale quantum (NISQ) era [Preskill (2018)], available

quantum computers are still far away from exceeding qubit numbers of many thousands

that are of sufficient quality such that millions of logical gates can be executed.

Hopefully, in the near future, we will understand what “far away” truly means. In the

meantime, before achieving fault-tolerant universal quantum computing, we might

focus on using quantum computing platforms as quantum simulators [Feynman (1982),

Johnson et al. (2014), Altman et al. (2021)], in the spirit of classical analog computing.

Taking IBM Quantum [IBM Quantum. (2025)] as an example, the former pulse-level

access [Alexander et al. (2020)], which unfortunately has been removed in April 20258,

allowed users to program custom microwave-pulse schedules to control qubits in a

powerful and diverse fashion.

A quantum computer is built to perform environmentally isolated unitary time

evolutions of its quantum system. On NISQ-era quantum devices, however, native

qubit decay and dephasing does exist. Unsurprisingly, this noise can be used to

simulate an open system that exhibits a decay and dephasing rate identical to the

one of the hardware. The quantum simulation of open quantum systems is an active

field [Barreiro et al. (2011), Kropf et al. (2016), Chen et al. (2018), Garćıa-Pérez et al.

(2020), Del Re et al. (2020)]. In [Rost et al. (2020), Tolunay et al. (2023), Sun et al.

(2024)], native decay is used to generate nontrivial mixed states. In these papers,

echo sequences are used to mirror the native decay into an effective gain that leads

to a fully mixed state. Echo sequences are essential in (nuclear) magnetic resonance

8https://www.ibm.com/quantum/blog/qiskit-2-0-release-summary [Accessed: July 30, 2025]
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Sequences

imaging [Hahn (1950), Hennig et al. (1986), Haase et al. (2011)] and are related to

Ramsey interference [Ramsey (1950)].

In this chapter, we will understand the mirroring of native decay to effective gain in

a detailed way. By introducing asymmetries in the echo sequence, the effective gain

can be different from the resulting effective damping and lead to different mixed states

than the ones that have been presented before.

The chapter is structured as follows. In Sec. 5.2, we present the spin-1/2 toy model

including incoherent processes we want to simulate using the echo sequences. In

Sec. 5.3, we introduce the symmetric echo sequence and in Sec. 5.4 the asymmetric

echo sequence.

5.2 Model

In general, we want to simulate a nonunitary time evolution, e.g., incoherent gain and

damping in addition to unitary evolution. Natively, loss is present on arguably any

quantum computation platform. A special case of Lindblad master equations that

we would like to simulate are related to the study of quantum synchronization (see

Ch. 7), discussed in the second part of this thesis. Preferably, we want to simulate a

coherent drive and detuning in combination with incoherent gain and damping.

Let us start with two-level systems, i.e., qubits. In the following, we want to model

the Lindblad master equation without drive,

ρ̇ = Lmodel(ρ) =− i

2
[∆Z, ρ] +K+D[σ+]ρ+K−D[σ−]ρ+KzD[Z]ρ , (5.2.1)

where K+ and K− are the gain and damping rates, Kz is the dephasing rate, and X,

Y , and Z are the Pauli matrices. Furthermore, we use σ+ = |1⟩⟨0| and σ− = |0⟩⟨1|.
The corresponding evolution of ρ(0) for a duration 2T results in

ρmodel
00 (T ) =

K− − e−2(K−+K+)T (K− − (K− +K+)ρ
(0)
00 )

K− +K+
, (5.2.2)

ρmodel
01 (T ) = ρ

(0)
01 e

−(K−+K++4Kz+2i∆)T , (5.2.3)

where ρij = ⟨i| ρ |j⟩. In particular, the steady state

ρmodel
00 (T → ∞) =

K−
K− +K+

, (5.2.4)

is mixed and the coherences ρmodel
01 decay exponentially with rate K− +K+ + 4Kz.

The native Lindblad master equation of an idling qubit,

ρ̇ = L1(ρ) = − i

2
[δZ, ρ] + k−D[σ−]ρ , (5.2.5)

consists of a native damping with rate k− and a detuning δ that is approximately

constant during one time evolution [Ristè et al. (2013)]. In the quantum computing
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community, one such time evolution is called a “shot”. The evolution of an initial state

ρ(0) by Eq. (5.2.5) for a duration t reads

ρ
(1)
00 (t) = 1− e−k−t(1− ρ

(0)
00 ) , (5.2.6)

ρ
(1)
01 (t) = ρ

(0)
01 e

−(iδ+k−/2)t . (5.2.7)

Averaging over multiple shots, i.e., randomly drawn detunings δ that are normal

distributed, leads to a Gaussian decay of coherences,

ρ̄
(1)
01 (t) =

ρ
(0)
01√
2πσ

∞∫

−∞

dδ e−(δ−δ̄)2/2σ2
e−(iδ+k−/2)t = ρ

(0)
01 e

−(iδ̄+k−/2)t−σ2t2/2 . (5.2.8)

Here we used Eq. (2.326.3) of [Gradshteyn and Ryzhik (2015)]. The resulting coherences

oscillate at the mean detuning δ̄ and decay both exponentially and Gaussian.

5.3 Symmetric Echo Sequence

Our echo building block consists of two X gates that are nested within three evolutions

with L1. Using LX(ρ) = XρX, we define the evolution of one building block as the

concatencation L1 ◦ LX ◦ L1 ◦ LX ◦ L1. The first (right) and last (left) L1 are applied

for a duration T/2 and the central L1 is applied for a duration T . For the first and last

L1, we set the detuning to δ+∆, and for the central L1, we set the detuning to δ−∆.

In this way, the random δ part is canceled by the echo but the engineered ∆ remains

and can be used for quantum simulation purposes. The X gates are assumed to be

implemented on timescales significantly smaller than T . For a number nb of these

echo blocks, i.e., an even number 2nb of X gates, we obtain the iterative expressions

ρ
(nb)
00 (T ) =1− e−k−T/2 + e−3k−T/2 − e−2k−T + e−2k−Tρ

(nb−1)
00 (T ) , (5.3.1)

ρ
(nb)
01 (T ) =e−(k−+4kz+i2∆)Tρ

(nb−1)
01 (T ) . (5.3.2)

These recursions can be solved using the initial conditions ρ
(0)
00 (0) = ρ

(0)
00 and ρ

(0)
01 (0) =

ρ
(0)
01 ,

ρ
(nb)
00 (T ) =1− e−2nbk−T (1− ρ

(0)
00 )− e−k−T/2 1− e−2nbk−T

1 + e−k−T

=
(
1− e−2nbk−T

)(
1− 1

2 cosh(k−T/2)

)
+ e−2nbk−Tρ

(0)
00 , (5.3.3)

ρ
(nb)
01 (T ) =e−2nb(k−+4kz+i2∆)Tρ

(0)
01 . (5.3.4)
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Figure 5.1: Time evolution of the symmetric echo sequence defined in Eq. (5.3.3). The colored
solid zigzag curves correspond to the time evolution L1 between two X gates that correspond
to the jumps, see Eq. (5.2.5). Each color represents one echo block. The dashed curve denotes
the native decay ρ00(t) = 1− e−k−t. The dotted curve denotes the effective time evolution of
one echo block, see Eq. (5.3.7). The gray horizontal line corresponds to the steady state. (a)
Small decay durations k−T = 0.2. (b) Large decay durations k−T = 4.

For many repetitions of these echo blocks, the resulting state is given by

ρ∞00(T ) = ρ
(nb→∞)
00 (T ) = 1− 1

2 cosh(k−T/2)
, (5.3.5)

ρ∞01(T ) = ρ
(nb→∞)
01 (T ) = 0 . (5.3.6)

Note that ρ∞00(T ) ∈ [0.5, 1]. In the limit k−T ≫ 1 leading to ρ∞00(T ) = 1, the delay

between two consecutive X gates is so long such that the state decays completely. In

the limit k−T ≪ 1 leading to ρ∞00(T ) = 0.5, the state only decays marginally between

two consecutive X gates such that eventually the maximally mixed state is reached.

Time evolutions are shown in Fig. 5.1. The colored solid curves correspond to the

time evolution described by Eq. (5.2.5): one color per echo block. The jumps reflect

the effects of the X gates. The dashed curve shows the native decay ρ00(t) = 1− e−k−t.

The dotted curve corresponds to the effective time evolution generated by the echo,

ρblock00 (t) =
(
1− e−k−t

)(
1− 1

2 cosh(k−T/2)

)
+ e−k−tρ

(0)
00 , (5.3.7)

matching with the actual time evolution after each echo block.

Let us compare the steady state generated by the echo defined in Eqs. (5.3.3)

and (5.3.4) with the result of the Lindblad master equation in Eq. (5.2.1) that describes

gain and damping given in Eqs. (5.2.2) and (5.2.3). The off-diagonal components

restrict the gain and damping rates to K− +K+ + 4Kz = k− + 4kz, effectively fixing

K+. A Taylor expansion of the difference between ρ(nb)(T ) after nb echo blocks and

the model ρmodel(2nbT ) in k−T is used to fix the values of Kz and K−. Demanding

vanishing first order,

0 =

(
1− 2

K− + 4ρ
(0)
00 (Kz − kz)

k−

)
nbk−t , (5.3.8)
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Figure 5.2: Error of symmetric echo sequence. (a) Difference between echo sequence consisting
of nb echo blocks, see Eq. (5.3.3), and ρmodel

00 (t→ ∞) = 1/2. The solid curves denote contour
lines and the dashed curve indicates the local minima of the error at given k−T . (b) The
dashed curve corresponds to the one in panel (a) and the solid curve is the value of the error
at this dashed curve. The two dotted lines correspond to n−1

b and n−2
b .

fixes Kz. Furthermore, demanding the resulting second order,

0 = (2ρ
(0)
00 − 1)

k− − 2K−

2k−ρ
(0)
00

n2b(k−T )
2 , (5.3.9)

to vanish implies K− = k−/2 and Kz = kz, leading to K+ = k−/2. The remaining

expression reads

ρ
(nb)
00 (T )− ρmodel

00 (2nbT ) =
nb(k−T )

3

8
+O

(
(k−T )

4
)
. (5.3.10)

Thus, the error of approximating the master equation Eq. (5.2.1) by the echo sequence

is linear in nb and of third order in k−T . Moreover, the echo sequence turns the native

decay into both effective damping and gain.

The more relevant error measure is the difference between the echo and the steady

state to be simulated. The steady state ρmodel
00 (t → ∞) = 1/2 for equal K− = K+

differs from ρ∞00 to second order in k−T ,

ρ∞00 =
1

2
+

(k−T )
2

16
+O

(
(k−T )

4
)
. (5.3.11)

The error, i.e., difference between ρmodel
00 (t→ ∞) = 1/2 and the state at the end of an

echo sequence of nb echo blocks is shown in Fig. 5.2(a). For a given decay rate k−
of the qubit, there exists an optimal relation between T and nb at which the error is

minimal, see the dashed curve in Figs. 5.2(a) and 5.2(b). For nb ≈ 103, this minimal

error scales approximately like n−2
b .

5.4 Asymmetric Echo Sequence

Using the symmetric echo sequence presented in the previous section, the effective

gain and loss rates are equal K− = K+ = k−/2. We are interested in generating other

steady states than ρ00 = 1/2. One way to engineer the ratio between the rates is
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Figure 5.3: Time evolution of the asymmetric echo sequence defined in Eq. (5.4.1) for
k−T = 0.2. The dashed curve denotes the native decay ρ00(t) = 1− e−k−t. The dotted curve
denotes the effective time evolution of one echo block. The gray horizontal line corresponds
to the steady state. (a) Negative shift τ = −0.3T leading to smaller steady-state ρ00. (b)
Positive shift τ = 0.3T leading to larger steady-state ρ00.

to modify the individual durations of the L1 evolutions in our echo sequence. We

introduce a shift τ that changes the durations t/2 → (t+ τ)/2 of the first and last L1,

and the duration t→ t− τ of the central L1. The asymmetric echo block, note the

tilde, reads

ρ̃
(nb)
00 (T, τ) = e−2nbk−Tρ

(0)
00 +

(
1− sinh(k−(T − τ)/2)

2 cosh(k−T/2) sinh(k−T/2)

)
(1− e−2nbk−T ) ,

(5.4.1)

ρ̃
(nb)
01 (T, τ) = e−2nb(k−+4kz+2i(∆+δτ/T ))Tρ

(0)
01 . (5.4.2)

The structure of the result is quite similar to the solution for the symmetric echo

in Eqs. (5.3.3) and (5.3.4). For τ = 0, the sinh terms cancel. Note that due to the

asymmetry, the native detuning δ is not canceled completely which results in Gaussian

damping of the coherences, see Eq. (5.2.8).

In Fig. 5.3, we present time evolutions of two asymmetric echo sequences. The

influence of the sign of τ on the effective gain and damping rates can be understood

intuitively. The evolutions of L1 for a duration (T + τ)/2 take place after an even

number of X gates, i.e., ideally identity. If their duration is increased, the native

decay is converted to an even larger effective decay. Vice versa, if the duration T − τ

of the L1 evolutions that take place after an even number of X gates is increased, i.e.,

negative τ < 0, the native decay is converted into a larger effective gain.

Similar to the symmetric echo, we can compute the difference between the asymmet-

ric echo and the model solution Eq. (5.2.2). The simulated detuning equals ∆ + δτ/T

and the off-diagonals of the state fixK−+K++4Kz = k−+4kz as before. The first and

second order of the Taylor expansion of the difference between the asymmetric echo and

the model in k−T and k−τ vanish if K+ = k−(1− τ/T )/2 and K− = k−(1 + τ/T )/2.

The remaining term is again of third order,

ρ̃
(nb)
00 (T, τ)− ρmodel

00 (2nbT ) =
nb
24

(k−T )
3
( τ
T

+ 1
)( τ

T
− 1
)( τ

T
− 3
)
+O

(
(k−T )

4
)
.

(5.4.3)
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Figure 5.4: Error of asymmetric echo sequence. (a) Difference between echo sequence consisting
of nb echo blocks and ρmodel

00 (t→ ∞) = (1 + τ/T )/2 at the optimal k−T for a given τ . The
solid curves denote contour lines and the dash-dotted line indicates τ = (1− 2/

√
3)T , i.e.,

the maximum deviation in Eq. (5.4.3). (b) The black (gray) dashed curve corresponds to
the optimal k−T that minimizes the difference between echo sequence and (1 + τ/T )/2 for
τ = −0.3T (τ = 0.3T ). The black (gray) solid curve represents the value of the error at the
corresponding dashed curve. The two dotted lines correspond to n−1

b and n−2
b .

The maximum deviation for τ ∈ [−T, T ] is achieved for τ/T = 1− 2/
√
3. Using this

asymmetric echo, the effective damping and gain rates can be tuned to distinct values.

The resulting steady state ground-state population can be tuned within the interval

[0, 1] and is approximately linear for small k−T and k−τ ,

ρ∞00 =
1

2

(
1 +

τ

T

)
+
( τ
T

+ 1
)( τ

T
− 1
)( τ

T
− 3
) (k−T )

2

48
+O

(
(k−T )

4
)
. (5.4.4)

We plot the difference between the asymmetric echo sequence consisting of nb echo

blocks and ρmodel
00 (t→ ∞) = (1 + τ/T )/2 in Fig. 5.4(a). For each value of τ and nb,

only the error at the optimal k−T is shown, i.e., the minimal error for a fixed value of

τ and nb. In Fig. 5.4(b), the optimal k−T and error are shown for τ/T = −0.3, 0.3.

No significant difference between both cases can be found.

5.5 Conclusion

In this chapter, we have learned how echo sequences can be used to generate mixed

states of qubits, i.e., spin-1/2. These echo sequences that consist of alternating decay

periods and X gates map native damping to both effective damping and gain of equal

magnitude. This can be used to simulate simple open quantum systems on quantum

hardware. However, the resulting effective gain and damping rates still depend on the

actual hardware.

We have shown that by making the echo sequence asymmetric in time, the ratio of

the resulting effective gain and damping rates can be changed. Thus, mixed states of

arbitrary Z expectation values can be prepared. The generation of nontrivial steady

states in combination with the simulation of open quantum systems is relevant for

realizing quantum synchronization in experiments. For a detailed presentation of

quantum synchronization see the second part of this thesis, e.g., Ch. 7.

In this regard, the simulation of spin-1 models is of special interest. It might be
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promising to study the echo sequences presented here for (transmon) qutrits in the

future. In this case, the native loss manifests mainly as a sequential decay of higher-

excited states into neighboring lower-excited states, see [Fischer et al. (2022)]. Since

higher-excited states often exhibit faster decay, they could be useful for simulating

effective gain and damping faster than the native rates. Echo sequences making use

of standard qudit X gates Xj,j+1 operating between neighboring states as well as

two-photon gates Xj,j+2, see Sec. 4.6.1, might lead to the preparation of useful steady

states. Later on, one might study models consisting of multilevel qudits.
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Chapter 6

Classical Synchronization

Synchronization, which Christiaan Huyguens in 1665 called“la sympathie des horologes”

(french for “the sympathy of clocks”), see letter no. 1335 of [Huygens (1893)], can

be defined as the alignment of features of oscillators with either external signals or

other oscillators. Examples for these features are the frequency of oscillation and the

phase of oscillation. For modern views on Huygen’s clocks see [Oliveira and Melo

(2015), Willms et al. (2017)]. In the last century, synchronization became a vivid

field of research by bringing together, e.g., biology [Buck (1938), Winfree (1967)],

laser physics [Stover and Steier (1966)], biochemistry/medicine [Schäfer et al. (1998),

Laurent and Kellershohn (1999), Glass (2001), Enjieu Kadji et al. (2007), Feillet et al.

(2014), Goldbeter and Yan (2022)], civil engineering [Strogatz et al. (2005), Rohden

et al. (2012), Taher et al. (2019)], and social sciences [Hong and Strogatz (2011a),

Hong and Strogatz (2011b)]. Several books on nonlinear dynamics [Pikovsky et al.

(2001), Strogatz (2003), Balanov et al. (2008)] but also life sciences [Wang (2022)]

feature synchronization.

About a decade ago, another avenue of synchronization emerged: quantum synchro-

nization [Lee and Sadeghpour (2013)]. Here, people try to identify unique quantum

features of synchronization of quantum oscillators. Starting in Ch. 7, quantum syn-

chronization will be the main topic of this second part of the thesis. In this chapter,

we will review the main aspects of classical synchronization that we will later use as a

reference for studies of quantum setups.

6.1 Kuramoto Model

Thinking about a model of clocks, naively, one could start with assigning a single scalar,

i.e., a phase of oscillation, to each clock. One ‘tick’ corresponds to a 2π evolution

of this phase and the corresponding frequency of oscillation is defined as the inverse

duration between two ticks. However, a physical clock is often realized as an oscillator

with nonvanishing amplitude and therefore more than one degree of freedom. In this

section, we will discuss synchronization of oscillators of fixed amplitude before moving

on to amplitude oscillators in the subsequent sections. In [Kuramoto (1975)], Yoshiki

Kuramoto proposed a model of synchronization consisting of phase oscillators, i.e.,
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Figure 6.1: Kuramoto model for K > 0. (a) Schematics of a two-oscillator Kuramoto model.
The blue curve depicts the right hand side of Eq. (6.1.2), the orange dashed line corresponds
to the value of the frequency difference ∆. The black dot (circle) highlights the location of
the stable (unstable) fixed point of ϕ̇AB = 0. The arrows indicate the time evolution of the
phase difference. (b) Phase diagram averaged over 50 realizations of N = 10, 102, 103, 104

oscillators after a duration tδω = 100. The width of each ribbon corresponds to the respective
standard deviation. The black dashed curve is the formal solution in the N → ∞ limit, see
Eq. (6.1.9). The inset shows the |R| = N−1/2 relation (gray line) at K = 0, see Eq. (6.1.12).

oscillators that are described by a phase of oscillation only. A broad review of various

modifications of the Kuramoto model can be found in [Acebrón et al. (2005)]. This

section is based on Ch. 13 of [Strogatz (2024)].

The Kuramoto model is described by the following set of first order nonlinear

differential equations

ϕ̇j = ωj +
K

N

N∑

i=1

sin(ϕi − ϕj) , (6.1.1)

where j ∈ [1, N ] and N is the number of oscillators that are all-to-all coupled with

strength K The jth oscillator is characterized by a phase of oscillation ϕj ∈ [−π, π]
and a frequency ωj . In general, the frequencies ωj are drawn from a distribution G(ω).

If K > 0, the coupling defined above is attractive and leads to synchronization of the

phases of the oscillators. Focusing on only two oscillators A and B, we can rewrite

Eq. (6.1.1) in terms of their phase difference ϕAB = ϕA − ϕB,

ϕ̇AB = ϕ̇A − ϕ̇B = ωA − ωB −K sin(ϕA − ϕB) = ∆−K sin(ϕAB) . (6.1.2)

In Fig. 6.1(a), this equation of motion of the two-oscillator Kuramoto model is

visualized. The black dot (circle) highlights the location of the stable (unstable) fixed

point of ϕ̇AB = 0. The arrows indicate the time evolution of the phase difference: to the

right if ϕ̇AB > 0 and to the left if ϕ̇AB < 0. In the presence of the frequency detuning

∆, two oscillators lock their relative phase to a single value ϕAB = arcsin(∆/K). For

|∆/K| ≪ 1, this value is close to zero. If |∆/K| > 1, the oscillators do not lock their

phase since no fixed point of ϕ̇AB = 0 exists. They rather oscillate monotonically with

varying frequency.

The dynamics of a macroscopic number of oscillators is richer. The equation of

motion Eq. (6.1.1) can be rewritten in a more elegant way using the complex order
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parameter

R = |R|eiΦ =
1

N

N∑

j=1

eiϕj . (6.1.3)

This order parameter is the average of the complex phase factors of the oscillators

implying |R| ∈ [0, 1]. It can be interpreted as the mean field of the oscillators. If the N

phases ϕj are identical, the magnitude of R is one. If the phases are distributed equally,

the magnitude of R is zero. Therefore, |R| acts as a measure of phase synchronization.

Interestingly, this order parameter appears natively in Eq. (6.1.1),

ϕ̇j = ωj +
K

N

N∑

i=1

Im[eiϕie−iϕj ] = ωj +K|R| Im[eiΦe−iϕj ] = ωj +K|R| sin(Φ− ϕj) .

(6.1.4)

Thus, the all-to-all coupling of oscillators can be understood as a coupling of each

individual oscillator to the mean field R.

The distribution G(ω) of frequencies has to be fixed to perform simulations. Here,

we choose a Gaussian distribution. Moving to a rotating frame, i.e., transforming all

phases by a linear shift proportional to the average frequency ω̄,

ϕj → ϕj + ω̄t , (6.1.5)

Φ → Φ+ ω̄t , (6.1.6)

the mean of the Gaussian distribution can effectively be chosen to be zero. Furthermore,

by rescaling time with respect to the Gaussian width δω, we can effectively choose

G(ω) to have unit variance. In Fig. 6.1(b), we present the average of the order

parameter |R| for N = 10, 102, 103, 104 oscillators over 50 realizations initialized with a

uniform distribution of phases. The width of each ribbon corresponds to the respective

standard deviation. The larger the number N of oscillators, the smaller the standard

deviation and the sharper the kink at K/δ = 2
√
2/π ≈ 1.596, see the discussion below

Eq. (6.1.9). The black dashed curve in Fig. 6.1(b) corresponds to the formal solution

of R(K) in the limit N → ∞. This solution will be given in the following.

Assuming K > 0 and that |R| is constant in time for large N , the oscillators with

|ωj | < K|R| lock to a phase value given by ωj = K|R| sin(ϕj). The expectation value

of the phase factor eiϕj = cos(ϕj) + i sin(ϕj) over all frequencies can be split into a

symmetric cos and antisymmetric sin part. Since for locked oscillators ωj and sin(ϕj)

are both antisymmetric in ωj whereas G(ωj) is symmetric in ωj , the sin part of the

phase factor expectation value vanishes. In the rotating frame where the average

frequency is zero, the average locking angle is also zero, i.e., Φ = 0. Therefore, the
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remaining term of expectation value of the phase factor eiϕj is

|R| =
K|R|∫

−K|R|

eiϕj(ωj)G(ωj)dωj =

K|R|∫

−K|R|

cos(ϕj(ωj))G(ωj)dωj , (6.1.7)

and can be rewritten using ωj = K|R| sin(ϕj),

|R| = K|R|
π/2∫

−π/2

cos2(ϕj)G(K|R| sin(ϕj))dϕj . (6.1.8)

In [Strogatz (2024)], it is shown that the nonlocked oscillators do not contribute to

this expectation value due to the symmetry of both G(ωj) and their density function

that depends on ϕj and ωj . Inserting G(ω) = e−ω2/2/
√
2π in Eq. (6.1.8), the following

implicit equation, also called self-consistency equation, for |R(K)| ≠ 0 is obtained,

1 =
K

2
e−K2|R|2/4

√
π

2

(
I0

(
K2|R|2

4

)
+ I1

(
K2|R|2

4

))
, (6.1.9)

where Iν is the modified Bessel function of the first kind. This function, see Eq. (8.406.1)

of [Gradshteyn and Ryzhik (2015)],

Iν(z) = e−iπν/2Jν(e
iπ/2z) (6.1.10)

can be expressed by the Bessel function of the first kind, see Eq. (8.402) of [Gradshteyn

and Ryzhik (2015)],

Jν(z) =
zν

2ν

∞∑

k=0

(−1)k
z2k

22kk!Γ(ν + k + 1)
. (6.1.11)

Using I0(0) = 1 and I1(0) = 0, the critical value Kc = 2
√

2/π ≈ 1.596 at which the

transition from |R| = 0 to |R| ≠ 0 occurs can be extracted from Eq. (6.1.8) analytically.

At K = 0, the system exhibits trivial dynamics: each oscillator oscillates with its

frequency ωj . For a uniform distribution of initial phases, the square of the magnitude

|R|2 = R∗R of the order parameter R has the following expectation value,

1

N2(2π)N

∫
dϕ1· · ·

∫
dϕN

N∑

i,j=1

ei(ϕj−ϕi) =
1

N
. (6.1.12)

Only the N terms ei(ϕj−ϕi) = 1 where ϕi = ϕj survive the integrals over each ϕj . The

result of each of these terms after integration over all ϕj yields (2π)N . In the inset of

Fig. 6.1(b), this prediction |R| = N−1/2 is compared to the results of the simulation.

This study sets the basics of synchronization at the level of phase oscillators. What

happens if we add a second degree of freedom, i.e., an amplitude, and what is the
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connection between phase oscillators and amplitude oscillators? An answer to the

second question is already hidden in this section: interpret the order parameter

R = |R|eiΦ defined in Eq. (6.1.3), which is based on many phase oscillators, as an

oscillator that exhibits an amplitude |R| ∈ [0, 1], a phase Φ, and oscillates with the

mean frequency of G(ω). The connection between the order parameter and an actual

amplitude oscillator has been presented in [Ott and Antonsen (2008), Pikovsky and

Rosenblum (2015)].

6.2 Limit Cycles

This section on limit cycles, the fundamental building blocks of describing synchroniza-

tion of amplitude oscillators, is based on Chs. 7 and 8 of [Strogatz (2024)] and Ch. 7

of [Pikovsky et al. (2001)]. A limit-cycle oscillator is an oscillator whose phase space

hosts a limit cycle. In some sense, the Kuramoto model implicitly consists of limit-

cycle oscillators that all exhibit a time-independent (and maybe even equal) radius.

But what is a limit cycle? A limit cycle is an isolated, closed, and one-dimensional

trajectory in the phase space of an oscillator. The adjective isolated refers to the

non-existence of other closed trajectories in its neighborhood. Closed, on the other

hand, can be rephrased as: we can find an angle-like S1 (1-sphere) parametrization

of the limit cycle, which will be called the phase (of oscillation). For example, this

definition of a limit cycle excludes: (i) orbits of a harmonic oscillator, since they are

dense in phase space, or (ii) the strange Lorenz attractor since even if it lives in a

bounded subset of its phase space, it is not closed. Often in this thesis, the term ‘limit

cycle’ will be used as a synonym for ‘limit-cycle oscillator’.

Intuitively, the closedness can be achieved by making a single orbit either stable/at-

tracting, unstable/repulsive, or both. A class of systems that feature a unique stable

limit cycle is the Liénard system [Liénard (1928), Perko (2001), Leonov and Kuznetsov

(2013)] defined by the second-order differential equation

d2x

dt
+ f(x)

dx

dt
+ g(x) = 0 . (6.2.1)

This equation can be reduced to the following set of first-order differential equations,

dx

dt
= ẋ = y , (6.2.2)

dy

dt
= ẏ = −f(x)y − g(x) . (6.2.3)

This Liénard system hosts a stable limit cycle if the continuously differentiable functions

f(x) = f(−x) and g(x) = −g(−x) satisfy:

(1) g(x) > 0 for x > 0,

(2) F (x) =
x∫
0

f(y)dy has exactly one zero at x = x0 > 0,
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Figure 6.2: Phase portraits of the van der Pol oscillator for various values of µ. The gray
arrows correspond to the vector field of the equations of motion, see Eqs. (6.2.2) and (6.2.3).
The black curve marks the limit cycle to which every trajectory converges.

(3) F (x) < 0 for 0 < x < x0,

(4) dF
dx (x) = f(x) ≥ 0 for x ≥ x0,

(5) F (x) → ∞ for x→ ∞,

see [Perko (2001)] for a proof.

Bifurcations are, e.g., changes in the number or stability properties of fixed points

or stabilized closed orbits in phase space depending on the value of a particular tuning

parameter. Examples in 2D are the saddle-node bifurcation, pitchfork bifurcations,

and the Hopf bifurcation. The saddle-node bifurcation describes the existence of a

saddle and fixed point above a critical value of the parameter and the coalescence

of both at the critical value. Below this critical value, no fixed point occurs. The

supercritical (subcritical) pitchfork bifurcation describes the existence of a single stable

(unstable) fixed point below (above) a critical value of the parameter. Above (below)

this critical value this fixed point becomes unstable (stable) and is accompanied by

two symmetrically distributed stable (unstable) fixed points. All three fixed points

coalesce at the critical value. The supercritical Hopf bifurcation is the change of a

stable spiral into an unstable spiral that is enclosed by a limit cycle. The subcritical

Hopf bifurcation describes the transition of a stable fixed point surrounded by an

unstable limit cycle that itself is surrounded by a stable limit cycle below a critical

value of the tuning parameter to an unstable fixed point that is surrounded by a

stable limit cycle. The unstable limit cycle and the stable fixed point coalesce at the

critical value. In this latter case, hysteresis occurs. An overview of different types of

bifurcation is given in [Chia et al. (2025)].

6.2.1 Van der Pol Oscillator

A famous example that exhibits a limit cycle is the van der Pol (vdP) oscillator [Pol

(1920), Pol (1927)]. It is a special case of a Liénard system where f(x) = µ(x2 − 1)

and g(x) = x. Note that originally in [Pol (1927)], rather f(x) = 3µ1x
2 − µ2 has

been considered. Since F (x) = µx(x2 − 3)/3 has a single positive zero at x0 =
√
3,

the vdP oscillator exhibits a stable limit cycle. Limit cycles of the vdP oscillator for
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various values of µ are shown in Fig. 6.2. For small µ, the limit cycle looks like a

stabilized orbit of the harmonic oscillator, whereas for large µ the limit cycle appears

to be quite distorted. In the chapter on quantum synchronization, see Ch. 7, we

will often talk about the “quantum van der Pol” oscillator. As discussed in [Chia

et al. (2020), Ben Arosh et al. (2021)], that model is rather the quantum analogue of

the Stuart-Landau oscillator [Stuart (1960), Landau (1965)], described in the next

section. By adding a drive term with strength Ω and performing a rotating-wave

approximation in the rotating frame of the drive, the equation of motion of the van

der Pol oscillator exhibits the same form as the one of the Stuart-Landau oscillator.

Using the complex variable z = x+ iy, we obtain an approximate equation of motion

for the van der Pol oscillator in the rotating frame of its drive,

ż ≈ −iΩ− i∆z +
µ

2
z − µ

8
|z|2z . (6.2.4)

Here, ∆ is the detuning between the oscillator and the drive.

6.2.2 Stuart-Landau Oscillator

As mentioned in the previous section, the Stuart-Landau oscillator can be interpreted

as an approximation of the van der Pol oscillator. In the rotating frame of an external

drive of strength Ω > 0, the Stuart-Landau oscillator is defined by the first-order

differential equation

dz

dt
= ż = −iΩ− i∆z +

γ1
2
z − γ2|z|2z , (6.2.5)

for the complex amplitude z = reiϕ. The detuning between the eigenfrequency of the

oscillator and the frequency drive is ∆ = ω0 − ωd, the gain rate is denoted by γ1, and

the damping rate is denoted by γ2. Note that we recover the approximation of the van

der Pol oscillator for γ1 = µ and γ2 = µ/8. For Ω = 0, the Stuart-Landau oscillator

exhibits a U(1) symmetry: invariance of Eq. (6.2.5) under the time-independent

transformation z → zeiθ. Therefore, it is often convenient to study the equation of

motion of the radius and phase separately. Both equations are obtained in an elegant

way by extracting the amplitude and phase part of ż = ṙeiϕ + ireiϕϕ̇ Eq. (6.2.5),

ṙ = Re[że−iϕ] = r
(γ1
2

− γ2r
2
)
− Ωsin(ϕ) , (6.2.6)

ϕ̇ = Im[ż/z] = −∆− Ω

r
cos(ϕ) . (6.2.7)

If Ω = 0, the steady-state value of the radius can be read off Eq. (6.2.6): the ratio of

the gain and damping rates γ1 and γ2 determine r0 =
√
γ1/2γ2. Intuitively, the linear

gain leads to an exponential increase of the radius. However, the nonlinear damping

that vanishes for small radii will eventually cancel the gain at a certain value of the

radius. Since there is only a single positive value at which both effects cancel, a stable

limit cycle is formed. For trajectories starting below r0, the gain wins such that they
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Figure 6.3: Time evolutions of Adler’s equation Eq. (6.2.7) for constant radius r. (a), (b) For
r|∆| < Ω, the phase (blue curve) converges to a fixed point ϕ = − arccos(−r∆/Ω) that is
indicated by the dashed black line. (c), (d) For r|∆| > Ω, the phase (blue curve) oscillates
continuously with a mean frequency νA (orange line) defined in Eq. (6.2.9).

are pushed toward to the limit cycle. For trajectories starting above r0, the damping

wins such that they are pulled toward to the limit cycle.

If Ω ̸= 0, the equation of motion of the phase, Eq. (6.2.7), can be viewed as a

modified version of Adler’s equation [Adler (1946)] that is basically the equation of

motion of the two-oscillator Kuramoto model, see Eq. (6.1.2). Here, modified refers to

sin ↔ cos.

Let us consider the case of a constant radius. Here, an analytical solution of the

time evolution of the phase can be found. For ϕ(0) = 0,

ϕ(t) = −2 arctan

(
∆+Ω/r

νA
tan(tνA/2)

)
, (6.2.8)

where

νA =
√
r2∆2 − Ω2/r . (6.2.9)

In Fig. 6.3, time evolutions are shown. Note that for νA to be real, r|∆| > Ω must

hold which leads to oscillating solutions. For r|∆| < Ω, the identity tan iz = i tanh z

can be used to realize that solutions decay to a fixed point ϕ = − arccos(−r∆/Ω).
Since tan is π-periodic, the mean frequency of Eq. (6.2.8) is νA. The fact that the

equations of motion of the oscillator are defined in the rotating frame of the drive,

the observed frequency of the oscillator is the difference between the actual frequency

of the oscillator and the drive frequency ωd. Thus, if the phase of the oscillator is

constant in time, the oscillator aligns its frequency to the one of the drive. This effect

is also called frequency synchronization. Furthermore, if the phase of the oscillator is

fixed to a particular value, phase synchronization occurs. Both terms will be discussed

in the following.

6.3 Frequency Synchronization

In the previous section, the analytical solution of the phase of a Stuart-Landau

oscillator for a constant radius r was presented showing frequency synchronization
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iteration steps were computed. (a) Arnold tongues of the mode locking measure ∂ν̄/∂a. For
various intervals of a in which this derivative is zero, the circle map exhibits mode locking.
White regions correspond to the plateaus in (b). (b) Mode locking measure ∂ν̄/∂a for ε = 1.
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exhibits mode locking, the bifurcation diagram shows 2π/ν̄ accumulation points between the
sequence φn jumps.
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Figure 6.5: Visualization of m-cycles for ε = 1 of the circle map defined in Eq. (6.3.1).
The colored curves correspond to an m-fold application of the circle map φn+m(φn) at
different values of a. The black line corresponds to φn+0 = φn. The dots indicate where
φn+m(φn) = φn and |∂φn+m/∂φn| < 1, i.e., the values of some accumulation points shown in
Fig. 6.4(c).

for r|∆| < Ω, where ∆ is the detuning between the oscillator and an external drive of

strength Ω. Here, we will simulate both the equations of motion for the radius and the

phase to study frequency synchronization of the Stuart-Landau oscillator. So-called

Arnold tongues named after Vladimir Igorevich Arnol’d will appear. In the original

work [Arnol’d (1961)], the circle map

φn+1 = φn + a+ ε cos(φn) (6.3.1)

has been studied. This map can be seen as the discretized version of Eq. (6.2.7), where

the parameters a and ε are related to ∆ and Ω/r. Depending on a and ε, regions of

mode locking are identified in which the effective mean frequency

ν̄ = lim
n→∞

φn

n
(6.3.2)

is constant in a, see Figs. 6.4(a) and 6.4(b). Here, when ∂ν̄/∂a = 0, the sequence

of phases φn exhibits m = 2π/ν̄ accumulation points that in general are not equally
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Figure 6.6: Arnold tongues of the Stuart-Landau oscillator. (a) Final value of the radius r at
tγ1 = 100. Striped regions indicate time dependence of the radius. (b) Standard deviation of
the normalized complex amplitudes z/|z|. Small values indicate static phases and high values
indicate oscillating solutions. In both panels, the dashed red curves correspond to Eq. (6.3.6),
which is linear for small ∆: Ω = ∆

√
γ1/2γ2.

spaced, see Figs. 6.4(c) and 6.5. These are so-called m-cycles. If ν̄ = 0, a single

accumulation point exists: a 1-cycle with φn = arccos(−a/ε). For another map

example, see the discussion of the logistic map in [Strogatz (2024)]. In Fig. 6.5, the

m-fold application of the circle map φn+m(φn) is shown as colorful curves. Dots

indicate phases for which φn+m(φn) = φn and |∂φn+m/∂φn| < 1 holds. These are

stable fixed points of the m-fold application of the circle map. Their values correspond

to the accumulation points that can be identified in Fig. 6.4(c).

In the field of (quantum) synchronization, similar looking triangular-like shapes

that indicate locking regimes are also called Arnold tongues, e.g., see Chs. 7 and 10.

In Fig. 6.6(a) the final value of the radius r is shown depending on ∆ and Ω. The

regions above the dashed red curves correspond to time-independent radii while the

striped region below the dashed red curves indicate solution with oscillating radius.

A better quantity to identify oscillations is the standard deviation of z/|z| shown in

Fig. 6.6(b). Here, modulations of the radius are excluded. For both small ∆ and Ω,

the separatrix between static and oscillating solutions follows Ω = ∆
√
γ1/2γ2. For

larger values of the drive strength, the amplitude of the oscillator deviates significantly

from r0 =
√
γ1/2γ2 leading to a change in the ratio Ω/∆. To obtain an approximate

expression for the separatrix between static and oscillating solutions, we perform a

perturbation expansion of Eqs. (6.2.6) and (6.2.7) about r = r0, cf. Ch. 8 of [Pikovsky

and Rosenblum (2015)]. Let r = r0 + ϵr(1) with ϵ = Ω/γ1 ≪ 1. Solving Eq. (6.2.6) to

first order in ϵ yields r(1) = − sin(ϕ). Using this result, Eq. (6.2.7) can be approximated
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to first order in ϵ as

ϕ̇ = −∆− Ω

√
2γ2
γ1

cos(ϕ)− Ω2 γ2
γ21

sin(2ϕ) . (6.3.3)

The last term shifts the location of the minimum of ϕ̇ to

ϕ ≈
√
(γ31 + 16γ2Ω2)−

√
γ31

4
√
2γ2Ω

≈ Ω

r0γ1
. (6.3.4)

At this value of the phase ϕ, its equation of motion

ϕ̇ ≈ −∆− Ω

r0
−
√

2γ32
γ71

Ω3 , (6.3.5)

vanishes for

Ω ≈ γ
7/6
1

2(3γ21)
1/3 − (9∆ +

√
24γ21 + 81∆2)2/3

√
2γ232/3(9∆ +

√
24γ21 + 81∆2)1/3

. (6.3.6)

This expression is visualized by the dashed red curves in Fig. 6.6.

Another way of identifying oscillating solutions is to compute the spectrum

S(ω) = 1√
2π

∫

R

z(t)e−iωtdt (6.3.7)

of z. If z(t) = reiω0t, the spectrum exhibits a single peak at ω = ω0. In Fig. 6.7,

spectra of the Stuart-Landau oscillator are presented together with the approximation

νA defined in Eq. (6.2.9) evaluated for a fixed radius r = 0. The most dominant

maxima of the spectra lie at −sign(∆)νA (blue curves) and correspond to the mean

frequency of the solution of Adler’s equation, see Eq. (6.2.8) and Figs. 6.3(c) and 6.3(d).

Higher-frequency contributions of this solution are visible as less dominant maxima of

the spectra at positive integer multiples of −sign(∆)νA (blue curves). The maxima at

sign(∆)νA (orange curves) originate from the oscillation of the radii. The simplistic

75



Chapter 6 Classical Synchronization

example r = r0 + δr cos(νAt) has two frequency contributions at ±νA. For small drive

strengths, see Figs. 6.7(a) and 6.7(b), the approximation νA seems to be valid. For

small drive strengths, however, see Figs. 6.7(c) and 6.7(d), the observed frequencies

deviate from νA. For small detunings, a jump from zero to nonzero frequencies occur.

The region of frequency locking is larger for oscillators with smaller radius (larger γ2).

6.4 Phase Synchronization

In the last section, we saw that the Stuart-Landau oscillator exhibits regimes in which

the observed frequency of oscillation in the rotating frame of an external drive is zero,

i.e., the oscillator locks its frequency to the one of the drive. Outside this region, both

radius and phase start to oscillate, see Figs. 6.6 and 6.7. To lowest order, the frequency

of oscillation can be approximated by νA defined in Eq. (6.2.9). In this section, we

will focus on the region in which frequency locking occurs. In particular, we want to

answer the question: to which values does the phase of the oscillator lock? The locking

of the phase of an oscillator to a particular value is called phase synchronization. We

directly start with the equation of motion after a first perturbation expansion step,

i.e., Eq. (6.3.3). For small drive strengths, the steady state of the phase to leading

order in the drive strength is given by ϕ = − arccos(−r∆/Ω). For vanishing detuning

∆ = 0, the Stuart-Landau oscillator locks to ϕ = −π/2. Note, that this value depends

on the phase of the complex drive amplitude Ω: in general, the oscillator locks to

ϕ = arg(Ω) − π/2. Furthermore, at ∆ = 0, the slope ∂ϕ/∂∆ = −r/Ω increases for

oscillators with a larger radius. For larger drive strengths Ω > r0γ1, Eq. (6.3.3) exhibits

two new stable fixed points close to the now unstable fixed point ϕ = −π/2. However,
this perturbation expansion is invalid for values as large as Ω > r0γ1. Studying the

next order of correction, r = r0 + ϵr(1) + ϵ2r(2) with

r(2) =
3

2r0
sin2(ϕ) , (6.4.1)

that leads to

ϕ̇ = −∆− Ω

√
2γ2
γ1

cos(ϕ)− Ω2 γ2
γ21

sin(2ϕ)− Ω3 5γ22
2r0γ31

sin(2ϕ) sin(ϕ) , (6.4.2)

these new fixed points disappear again. Numerical simulations presented in Fig. 6.8

show only one stable fixed point of the phase. In Figs. 6.8(b) and 6.8(c), the thin red

curves correspond to the steady-state solution ϕ = − arccos(−r0∆/Ω) of Eq. (6.2.7)
and the thick blue curves correspond to the steady-state solution of Eq. (6.4.2). For

small drive strengths, see Fig. 6.8(b), and for large drive strengths, see Fig. 6.8(c),

both approximations are good predictions of the numerically achieved values of the

phase. Here, for small detuning, the red curve seems to be a better approximation

than the blue one and for large detuning vice versa. Especially, for large detuning,

their domains (regions of phase locking) and slopes at ∆ = 0 are different. Note that

phase locking implies frequency locking. In general, the opposite is not true.
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6.5 Multiple Limit-Cycle Oscillators

So far, we have discussed the synchronization of individual limit cycle oscillators in

the presence of an external drive. Now, we want to replace the drive, that can be

interpreted as a perfectly stabilized oscillator, by other interacting oscillators. Let us

start with two Stuart-Landau oscillators that are coupled

żA = −iωAzA +
γA1
2
zA − γA2 |zA|2zA − igABzB , (6.5.1)

żB = −iωBzB +
γB1
2
zB − γB2 |zB|2zB − igABzA . (6.5.2)

Here, ωj are the eigenfrequencies of the oscillators with complex amplitude zj and

gAB is the coupling strength. This coupling is reciprocal, meaning that the coupling

of A to B is as strong as the coupling from B to A. We will break this symmetry

in Ch. 9, where we discuss the publication [Kehrer and Bruder (2025)]. There, the

nonreciprocal interactions result in various active states in the classical model. As

exemplary references, see [Lotka (1925), Volterra (1926), Fruchart et al. (2021)].

Similar to Sec. 6.2.2, the equations of motion of both oscillators are split into

amplitude and phase parts, zj = rje
iϕj ,

ṙj = Re[żje
−iϕj ] = rj

(
γj1
2

− γj2r
2
j

)
− gABri sin(ϕj − ϕi) , (6.5.3)

ϕ̇ = Im[żj/zj ] = −ωj − gAB

ri
rj

cos(ϕj − ϕi) , (6.5.4)

with i, j = A,B and i ̸= j. Due to the U(1) symmetry of Eqs. (6.5.1) and (6.5.2),

i.e., invariance under the time-independent transformation zj → zje
iθ, the equations

of motion depend on the phase difference ϕAB = ϕA − ϕB and not on the individual
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phases. Thus, let us define the equation of motion of ϕAB, also called relative phase,

ϕ̇AB = −∆− gAB

(
rB
rA

− rA
rB

)
cos(ϕAB) , (6.5.5)

where ∆ = ωA−ωB . This equation looks similar to the equation of motion of a driven

Stuart-Landau oscillator, Eq. (6.2.7), where the coupling gAB together with the radii

takes the role of the drive strength Ω. In general, the gain and damping rates of the

oscillators are different and lead to steady-state amplitudes
√
γj1/2γ

j
2. Furthermore,

the relative phase locks to a single value. However, if the rates are chosen to be

equal, the coupling term in Eq. (6.5.5) vanishes resulting in the absence of phase

locking to a single value. This so-called synchronization blockade that is observed

in quantum systems [Lee and Sadeghpour (2013), Roulet and Bruder (2018b)] and

will be discussed later in Secs. 7.1.4 and 7.2.2 as well as Chs. 8 to 10, already shows

up here for classical oscillators. In contrast to the suppression of phase locking to

a single value, a second-order coupling survives that induces bistable locking, as we

will see below. We have to take a closer look at the equations of motion and perform

a perturbation expansion about the steady-state amplitudes rj =
√
γj1/2γ

j
2 + ϵr

(1)
j ,

where ϵ = gAB/γ
A
1 and

r
(1)
A = −

√
γB1
2γB2

sin(ϕAB) = −
√
γA2
γB2

(
γB1
γA1

)3/2

r
(1)
B . (6.5.6)

Inserting this correction in Eq. (6.5.5), the equation of motion of the relative phase

becomes

ϕ̇AB =−∆− gAB

√
γA1 γ

B
1

γA2 γ
B
2

(
γA2
γA1

− γB2
γB1

)
cos(ϕAB)

− g2AB

2

(
1

γA1
+

1

γB1
+

γA1 γ
B
2

γA2 (γ
B
1 )2

+
γA2 γ

B
1

(γA1 )
2γB2

)
sin(2ϕAB) . (6.5.7)

If the cos term vanishes and the sin term remains, the steady state exhibits two

possible values of ϕAB. In contrast to phase locking, this feature is called bistable

locking, meaning that ϕAB can lock to two values with equal probability. To gain

insights about the blockades, the number of free parameters has to be reduced. This

can be done in different ways.

6.5.1 Equal Rate Ratios

The first simplification one can choose is to fix the ratio between gain and damping rate

of both oscillators γA1 /γ
A
2 = γB1 /γ

B
2 = λ. This choice of rates leads to the vanishing of

the cos term in Eq. (6.5.7), naively speaking, since the lowest-order steady-state radii
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rj =
√
λ/2 are equal. The remaining equation is

ϕ̇AB =−∆− g2AB

γA1 + γB1
γA1 γ

B
1

sin(2ϕAB) , (6.5.8)

and exhibits two stable solutions ϕAB, π + ϕAB = − arcsin
(
γA1 γ

B
1 ∆/(γA1 + γB1 )g2AB

)
/2

for |∆| < g2AB(γ
A
1 + γB1 )/γ

A
1 γ

B
1 . Note that the value of the steady-state phase does

not depend on λ.

6.5.2 Identical Oscillators

The next choice we often call the case of ‘identical oscillators’. Here, we choose

the same gain rate and the same damping rate for every oscillator: γA1 = γB1 and

γA2 = γB2 . Similar to the previous section about equal rate ratios, the remaining terms

of Eq. (6.5.7) are

ϕ̇AB =−∆− g2AB

2

γA1
sin(2ϕAB) . (6.5.9)

This equation can be obtained by setting γA1 = γB1 in Eq. (6.5.8) and also exhibits

two stable solutions ϕAB, π + ϕAB = − arcsin
(
γA1 ∆/2g

2
AB

)
/2 for |∆| < 2g2AB/γ

A
1 .

6.5.3 Almost Identical Oscillators

In Eq. (6.5.5), we saw that if the oscillators have different gain and damping rates, the

relative phase locks to a single value. In contrast, if the oscillators have identical rates

or the ratio of gain versus damping is identical, the synchronization blockade and

bistable locking occurs, see Eqs. (6.5.8) and (6.5.9). A remaining question is: when

does the transition from locking to bistable locking occur? In Ch. 9, we will answer

this question for quantum van der Pol oscillators.

To identify the transition in the classical case, let us choose different oscillators

with rates γA1 = γB1 and γA2 ̸= γB2 . There is one free parameter γB2 /γ
A
2 left that can

be used to tune between phase locking and bistable locking. For ∆ = 0, ϕAB =

±π/2 are fixed points. If gAB < γA1

√
γA2 γ

B
2 |γA2 − γB2 |/(γA2 + γB2 )

2, these two are

the only fixed points of which ϕAB = (−)π/2 is stable for γB2 > γA2 (γB2 < γA2 ).

If gAB > γA1

√
γA2 γ

B
2 |γA2 − γB2 |/(γA2 + γB2 )

2 two new fixed points ϕAB, π − ϕAB =

− arcsin

(
γA1

√
γA2 γ

B
2 (γA2 − γB2 )/(γA2 + γB2 )2

)
emerge in the vicinity of the stable one

of ϕAB = ±π/2. In Fig. 6.9(a), the approximation Eq. (6.5.7) is shown. The histogram

of final values of the relative phase after a duration of tγA1 = 500 of numerical

simulations of 20 random initializations per gAB leads to a similar bifurcation around

the predicted value of gAB, see Fig. 6.9(b). A special Arnold tongue is presented in

Fig. 6.9(c). Here three regions can be distinguished. For large detuning ∆ (checkered

colorful region), the oscillators do not synchronize such that their relative phase takes

every possible value. For small detuning ∆ and large coupling (checkered two-colored
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Figure 6.9: Phase locking of two Stuart-Landau oscillators with γA1 = γB1 and γB2 /γ
A
2 = 1.5.

(a) Plot of ϕ̇AB based on Eq. (6.5.7), i.e., pitchfork bifurcation mentioned in Sec. 6.2. The
arrows indicate the flow direction of time evolutions of the relative phase, i.e., they point
toward stable fixed points. The color is scaled linear in the interval [−10−3, 10−3] and
logarithmic elsewhere. (b) Histogram for each value of gAB of final values of the relative
phase after a duration of tγA1 = 500 of numerical simulations of 20 random initializations
with 200 bins in ϕ. (c) Arnold tongue based on the final values of the relative phase after
a duration of tγA1 = 500. Each pixel corresponds to a random initialization. The dashed
black line in panels (a), (b), and (c) corresponds to the approximation of the onset of bistable

locking gAB = γA1
√
γA2 γ

B
2 |γA2 − γB2 |/(γA2 + γB2 )2. (d), (e), (f) Time evolutions for ∆ = 0.15γA1

and gAB/γ
A
1 = 0.1, 0.2, 0.4 (from left to right), i.e., examples of each of the three regions in

panel (c). All examples are time dependent, whereas in panel (e) and (f), the relative phase
ϕAB is time independent: (bistable) locking of the relative phase.

region), the oscillators do synchronize and their relative phase takes two possible

values, i.e., see the discussion about bistable locking in the previous paragraphs. Since

γB2 /γ
B
1 = 1.5 ̸= 1, there exists a third region (smooth strips) in which only one value

of the relative phase is attained.

Time evolutions for ∆ = 0.2γA1 and gAB/γ
A
1 = 0.1, 0.2, 0.4 (from left to right), i.e.,

for each of the three regions, are presented in Figs. 6.9(d) to 6.9(f). All examples

are time-dependent solutions. The solutions in Figs. 6.9(e) and 6.9(f) exhibit time-

independent radii and relative phases but time-dependent individual phases ϕA and

ϕB. Such states are called traveling-wave states. Note that in general, the two steady-

state values of the relative phase depend on the complex phase of the coupling gAB:

ϕAB = arg(gAB), arg(gAB) + π. Here, we chose arg(gAB) = 0. A different choice

arg(gAB) = −π/2 is discussed in Ch. 9.

Since the solutions are time-dependent, we want to know more about the oscillation

frequencies. Using Eq. (6.3.7), we obtain the spectra Sj(ωj) of the oscillators and

show them in Figs. 6.10(a) and 6.10(b). The spectrum of the relative phase shown in
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Figure 6.10: Spectra of two Stuart-Landau oscillators with γA1 = γB1 and γB2 /γ
A
2 = 1.5

averaged over 20 random realizations within tγA1 ∈ [500, 1000]. The three columns of this
figure correspond to horizontal line cuts of Fig. 6.9(c). (a) Spectra |SA(ωA)| of oscillator
A. The gray line indicates ωA = −∆/2. (a) Spectra |SB(ωB)| of oscillator B. The gray
line indicates ωB = ∆/2. The dotted curve in both panels (a) and (b) corresponds to
ωj =

√
g2AB + (∆/2)2. For the definition of the spectrum for a single oscillator see Eq. (6.3.7).

(c) Spectra |SAB(ωAB)| of the relative phase ϕAB , see Eq. (6.5.10). The gray line corresponds
to ωAB = −∆.

Fig. 6.10(c) is defined by

SAB(ωAB) =
1√
2π

∫

R

zA(t)z
∗
B(t)e

−iωABtdt . (6.5.10)

The three columns of Fig. 6.10 correspond to horizontal line cuts of Fig. 6.9(c). The

first column of Fig. 6.10 shows two regions. For small |∆|, both oscillators exhibit the

same frequency, i.e., ωAB = 0. For large |∆|, the observed frequency of oscillator A (B)

is ωA = −∆/2 (ωB = ∆/2), i.e., ωAB = ∆. In the remaining two columns of Fig. 6.10

three regions can be identified. For small |∆|, two oscillation frequencies for both

oscillators are visible, i.e., bistable locking of frequency and phase. However, since

ωAB = 0, the oscillators always choose identical frequencies ωj ≈
√
g2AB + (∆/2)2.

Moreover, the value of the relative phase is correlated with the sign of the observed

frequency: ϕAB = 0 ↔ ωAB < 0 and ϕAB = π ↔ ωAB > 0. This is the reason, why

we often consider bistable phase locking as an indicator for traveling-wave states. For

a bit larger |∆|, only one frequency to which both oscillators lock is visible. This
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region corresponds to the smooth stripes in Fig. 6.9(c). For a large |∆|, the observed

frequency of oscillator A (B) is ωA = −∆/2 (ωB = ∆/2), i.e., ωAB = ∆. Even if this

seems to be a simple model of two amplitude oscillators, interesting active states with

locking of frequency and relative phase emerge. Similar results are obtained for two

groups of active quantum spins in [Nadolny et al. (2025a)].

In Ch. 9, we will study similar classical oscillators and their quantum analogues.

There, the interactions are nonreciprocal and can be tuned to be unidirectional. Besides

traveling waves, other active states will occur. For a thorough study of nonreciprocal

phase transitions see [Fruchart et al. (2021)] and its supplemental material.

In Ch. 10, we will discuss oscillators whose phase space hosts multiple limit cycles

and study their quantum analogues. These can be imagined intuitively by realizing

multiple fixed points in Liénard systems defined in Eq. (6.2.1), where f(x) is a highly-

nonlinear function or by replacing the quadratic dependence on r in Eq. (6.2.6) by a

suitable higher-order polynomial.

Bistable locking, e.g., two possible steady-state values of the relative phase of two

oscillators, as presented on the previous pages, can also be generated by higher-order

coupling terms. For żA = −ig2z
∗
Az

2
B, the resulting term for the equation of motion of

the phase is ϕ̇A = −g2r2B cos(2ϕAB). An example for bistable locking of a single driven

oscillator is a so-called squeezing drive ż = −iΩ2z
∗ that leads to ϕ̇ = −Ω2 cos(2ϕ). In

these cases, bistable locking occurs natively and not in a perturbative sense. Most often

in (quantum) synchornization, linear interactions are considered as native. Therefore,

bistable locking will occur in perturbation expansions and thus as an indicator for

synchronization blockades.

In this section, we discussed the interplay of only two oscillators. For examples

of studies on networks of oscillators see [Choe et al. (2010), Heinrich et al. (2011),

Luccioli et al. (2012), Tumash et al. (2017)].

6.6 Swarmalators

When we discussed multiple coupled oscillators in the previous sections, we did not

think about the physical implementation of the coupling: the oscillators only had

internal degrees of freedom that were interacting with the ones of other oscillators. In

reality, the coupling might be mediated by, e.g., springs or the Coulomb interaction.

Remembering Huygens’ clocks, the interaction might also be induced by friction. Most

of these interactions can be interpreted as position-dependent forces or stemming from

some position-dependent potential. So why not considering oscillators that move in

space? This section serves as an outlook and inspiration for future work but is not

relevant for the core of the following chapters.

By the work “Oscillators that synch and swarm” [O’Keeffe et al. (2017)], a new

avenue in the field of synchronization and active matter was established: swarmalators.

This section is based on [O’Keeffe et al. (2017)] and [Hughes (2024)].

The basic idea is to combine swarming [Couzin (2007), Sumpter (2010)] and phase

synchronization. This is done by assigning a internal degree of freedom, i.e., a phase
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of oscillation ϕ, to agents that move in a two-dimensional space x⃗ ∈ R2. These

swarmalators obey the following equations of motion [O’Keeffe et al. (2017)],

˙⃗xj = v⃗j +
1

N

N∑

i ̸=j

(
x⃗i − x⃗j
|x⃗i − x⃗j |

(A+ J cos(ϕi − ϕj))−B
x⃗i − x⃗j
|x⃗i − x⃗j |2

)
, (6.6.1)

ϕ̇j = ωj +
K

N

N∑

i ̸=j

sin(ϕi − ϕj)

|x⃗i − x⃗j |
. (6.6.2)

The vector x⃗j denotes the 2D position and v⃗j the self-propulsion velocities of the jth

swarmalator. The phase ϕj is the phase of the jth swarmalator that couples to the

other swarmalators in a Kuramoto-like fashion with a distance-dependent strength

K/|x⃗i − x⃗j |. Similar to the Kuramoto model, ωj are the eigenfrequencies of the

swarmalators. The first coupling term of Eq. (6.6.1) is always attractive for A > J > 0

and distance independent, whereas the second coupling term is always repulsive for

B > 0 and decreases with distance. The larger J , the larger is the feedback of phase

(anti)alignment on the attraction between swarmalators.

By setting v⃗j = v⃗, we can go to the center of mass frame and subtract
∑

j
˙⃗xj/N = v⃗

for the equations of motion: equivalent to v⃗j → 0. Similarly, we go to a rotating

frame that is rotating at the mean frequency. If identical oscillators ωj = ω are

considered, it is equivalent to set ωj → 0. Rescaling space and time to unitless

quantities, i.e., x⃗ → ξx⃗ and t → τt, leads to ˙⃗x → ˙⃗xξ/τ . Therefore, we can replace

Kτ/ξ and Jτ/ξ by new unitless quantities K and J too. Furthermore, for simplicity,

we set Aτ/ξ = Bτ/ξ2 = 1.

In the remaining parameter space (K,J), a phase diagram with beautiful steady

states emerges, see Fig. 1 of [O’Keeffe et al. (2017)]. Representatives of each class

of steady states are shown in Fig. 6.11, where each column corresponds to one state.

Here, N = 100 are simulated for a duration of t = 1000. A video of this figure is

available at [Kehrer (2025)]9. To characterize the different classes of steady states, the

Kuramoto order parameter R defined in Eq. (6.1.3) is used as well as another order

parameter W ,

W = |W |eiΨ =

{
W+ for |W+| > |W−| ,
W− for |W+| < |W−| ,

(6.6.3)

where

W± =
1

N

N∑

j=1

ei(φj±ϕj) . (6.6.4)

The value of |R| ∈ [0, 1] quantifies the level of phase synchronization among the

swarmalators. The value of |W±| ∈ [0, 1] indicates the (anti)correlation between the

phase ϕj and the azimuthal angle φj of a swarmalator, i.e., the (anti)correlation

9Direct link: https://tobias-kehrer.github.io/thesis/swarmalators/ [Accessed: July 26, 2025]
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Figure 6.11: Classes of steady states of N = 100 swarmalators after a duration of t = 1000.
The top row shows the steady states in 2D position space where the color corresponds to
ϕj −Ψ, i.e., the phase of each swarmalator subtracted by the complex phase of the order
parameter W defined in Eq. (6.6.3). The order parameter R is the Kuramoto model order
parameter defined in Eq. (6.1.3). The second row shows the correlation between the phase
ϕj − Ψ of the swarmalators and their azimuthal angle φj . (a) Static Asynch (StA) for
(K,J) = (−0.8, 0.2). (b) Active Phase Wave (ActPW) for (K,J) = (−0.8, 1). (c) Splintered
Phase Wave (SpPW) for (K, J) = (−0.1, 1). (d) Static Phase Wave (StPW) for (K, J) = (0, 1).
(e) Static Synch (StS) for (K,J) = (0.1, 0.2). A video of this figure is available at [Kehrer
(2025)].

between the internal degree of freedom and the position in space. For K < 0 the

swarmalators want to antialign their phases ϕj . If additionally K ≲ −1.2J , the

resulting steady state exhibits both small |R| and |W |, i.e., antialignment of phases

and no correlation between ϕj and φj : Static Aysnch (StA) for (K,J) = (−0.8, 0.2) in

Fig. 6.11(a). If −1.2J ≲ K ≲ −0.35J , the swarmalators are actively moving and align

on a ring where the phase shows (anti)correlation with the azimuthal angle: Active

Phase Wave (ActPW) for (K,J) = (−0.8, 1) in Fig. 6.11(b). If −0.35J ≲ K < 0,

the swarmalators arrange themselves into groups of approximately equal phase. In

the groups that are aligned on a ring, the swarmalators are actively moving and

exhibit (anti)correlation between ϕj and φj : Splintered Phase Wave (SpPW) for

(K,J) = (−0.1, 1) in Fig. 6.11(c). If K = 0, no phase dynamics take place and the

swarmalators arrange themselves in a ring that shows high (anti)correlation between

ϕj and φj : Static Phase Wave (StPW) for (K,J) = (0, 1) in Fig. 6.11(d). If K > 0,

the swarmalators want to align their phases ϕj resulting in a large value of |R|: Static
Synch (StS) for (K,J) = (0.1, 0.2) in Fig. 6.11(d). Since they arrange themselves in

one group centered at the origin, |W | is very small.

Several extensions of this model exist, e.g., swarmalators in 1D [O’Keeffe and Hong

(2022)] and 3D [O’Keeffe et al. (2017)], more internal degrees of freedom [Yadav
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Figure 6.12: Overview of effects due to the pseudo force λ (preliminary data). (a) Minimum
(dashed) and maximum (solid) distance of swarmalators from the center for several steady
states. The black line corresponds to 1/

√
λ. (b) Order parameter |W | defined in Eq. (6.6.3).

(c) Top row: steady states for (K,J) = (−0.1, 1) and λ = 102.7, 102.8 (left to right). Bottom
row: corresponding spatial Fourier transformations defined in Eq. (6.6.5). (d) Number of
groups in SpPW steady states. The gray line indicates the minimum of one group. The data
shown in (a), (b), and (d) are averaged over 31 random initializations.

et al. (2024)], and delayed interactions [Blum et al. (2024)]. In [Lizarraga and Aguiar

(2020)], a term F cos(ωst− ϕj)/|x⃗0 − x⃗j | is added to ϕ̇j and acts as an external seed

for frequency and phase synchronization. This force natively only modifies the phase

dynamics, however, due to the backaction of phase synchronization on the spatial

attraction in Eq. (6.6.1), swarmalators that synchronize with the seed move closer to

x⃗0. In the yet-unpublished work presented in [Hughes (2024)], we add a pseudo-force

term λ(x⃗0 − x⃗j) to ˙⃗xj . In [Fetecau et al. (2011)], a linear attraction ∝ x⃗i − x⃗j between

members of a swarm is considered, which leads to a ∝ 1/
√
1 + J scaling of the disk

radius of the StS state. As demonstrated in [O’Keeffe et al. (2017)], in this case, the

inner and outer radii of StPW increase for larger J . In our pseudo-force extension

model, a preliminary analysis shows: the radii of StS and StA, the inner and outer radii

of StPW, SpPW, and ActPW as well as the number of groups in SpPW decrease for

increasing λ, see Figs. 6.12(a) and 6.12(d). Furthermore, for K < 0, the states ActPW,

SpPW, and StPW transition to StA for large enough values of λ, see Figs. 6.12(b) and

6.12(c). Inspired by the usage of the term “crystal” for StS and StA in [O’Keeffe et al.

(2017)], we defined another indicator F that is based on the spatial Fourier transform,

F(k⃗) =
1

N

N∑

j=1

e−i⃗kx⃗j . (6.6.5)

If the swarmalators align themselves in a highly symmetric pattern, only few spatial

frequencies appear in the spectrum. The more order, the fewer spatial frequencies

with larger local maxima in the spectrum, see Fig. 6.12(c).

With the combination of spatial swarming and phase synchronization, i.e., swarmala-

tors, I would like to conclude this chapter on synchronization of classical oscillators.

In the next chapter, the quantum analogue of synchronization will be introduced.
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Chapter 7

Quantum Synchronization

Succeeding the previous chapter on classical synchronization – from the Kuramoto

model over the Stuart-Landau oscillator to swarmalators – we now focus on the main

topic of this second part of the thesis: quantum synchronization. This relatively young

field took off by considering quantized self-sustained oscillators in [Lee and Sadeghpour

(2013)] even if the term “quantum synchronization” has been introduced earlier in

[Zhirov and Shepelyansky (2006)]. The model that is also one of the protagonists of

this thesis, called the quantum van der Pol oscillator, became the standard example of

quantum synchronization. As mentioned at the end of Sec. 6.2.1, the quantum van der

Pol oscillator is rather the quantum analogue of the classical Stuart-Landau oscillator.

However, in this thesis, we will stick to the widely used terminology “quantum van der

Pol” while keeping in mind the maybe more adequate term “quantum Stuart-Landau”.

The quantum van der Pol oscillator will be discussed in Sec. 7.1.2. The following

paragraph is based on the introductions of the publications [Kehrer et al. (2024b),

Kehrer and Bruder (2025), Kehrer et al. (2025)].

Over the years, many different types of quantum oscillators have been studied.

Examples are harmonic-oscillator-like (infinite-level) oscillators [Ludwig and Mar-

quardt (2013), Lee and Sadeghpour (2013), Lörch et al. (2014), Walter et al. (2015),

Davis-Tilley and Armour (2016), Weiss et al. (2017), Amitai et al. (2017), Es’haqi-Sani

et al. (2020), Chia et al. (2020), Ben Arosh et al. (2021), Wächtler and Platero (2023)]

and spin-like (few-level) models [Roulet and Bruder (2018a), Cabot et al. (2019),

Parra-López and Bergli (2020), Cabot et al. (2021)]. Also many-body scenarios have

been considered [Manzano et al. (2013), Xu et al. (2014), Zhu et al. (2015), Roth

and Hammerer (2016), Nadolny et al. (2025a)]. These scenarios have in common that

incoherent gain and damping stabilize a particular steady state. In addition to stabi-

lization, these states have to feature a free phase which is ideally uniformly distributed,

i.e., the oscillator does not exhibit phase preference. To realize synchronization, this

symmetry is broken and a particular value or multiple discrete values of the phase

are preferred. In contrast to classical synchronization, where phase locking is often

equal to Dirac-δ-like probability distributions, the term “phase locking” in quantum

synchronization is used when the probability distribution of the phase exhibits a global

maximum. We say “the quantum oscillator locks to ϕ0” when the synchronization

measure of the phase exhibits a global maximum at ϕ0. In a similar way, multi-stable
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locking occurs when the global maximum is degenerate, i.e., multiple local maxima of

identical value coincide with the global maximum.

One starting point in a top-down approach to quantum synchronization is to

canonically quantize classical limit cycle systems [Chia et al. (2020), Ben Arosh et al.

(2021), Chia et al. (2025)] and study the resulting system in the quantum limit of

few excitations. Some unique quantum features are related to entanglement [Giorgi

et al. (2012), Mari et al. (2013), Lee et al. (2014), Ameri et al. (2015), Yin et al.

(2017), Roulet and Bruder (2018b), He et al. (2024)] or interference [Roulet and Bruder

(2018a), Roulet and Bruder (2018b)] and manifest in the unexpected occurrence or

suppression of frequency locking [Walter et al. (2014), Lörch et al. (2016)] and phase

locking [Lörch et al. (2017), Roulet and Bruder (2018a)]. In particular, the suppression

of classical synchronization is called a synchronization blockade, see Ch. 6. In quantum

analogues of limit-cycle oscillators, blockades [Solanki et al. (2023)] are observed

in similar but also different cases. Examples of unique quantum blockades are the

quantum interference blockade of a driven spin-1 [Roulet and Bruder (2018a)] and the

energy quantization blockade [Lörch et al. (2017)].

Quantum synchronization is also studied in more exotic scenarios like chimera states

[Bastidas et al. (2015), Viennot and Aubourg (2016)], nonlinear interactions [Thomas

and Senthilvelan (2022)], and nonlinear driving [Sonar et al. (2018)]. Furthermore,

quantum synchronization is in some aspects related to quantum sensing [Vaidya et al.

(2025)], quantum thermodynamics [Jaseem et al. (2020b), Solanki et al. (2022), Aifer

et al. (2024)], and time-crystals [Hajdušek et al. (2022), Buča et al. (2022), Solanki

et al. (2024)].

First steps toward experimental realization have been taken on several platforms

including cold atoms [Laskar et al. (2020)], nuclear spins [Krithika et al. (2022)],

trapped-ions [Behrle et al. (2023), Zhang et al. (2023)], and superconducting circuits

[Koppenhöfer et al. (2020), Tao et al. (2025)].

In the following sections, the fundamental aspects of quantum synchronization of

infinite-level and few-level oscillators will be presented. This serves as a preparation

for Chs. 8 to 10 where the publications [Kehrer et al. (2024b), Kehrer and Bruder

(2025), Kehrer et al. (2025)] will be presented.

7.1 Infinite-Level Quantum Oscillators

The standard example of a quantum limit-cycle oscillator is based on the quantum

harmonic oscillator. A key property of the classical harmonic oscillator is that its phase

space exhibits an infinite number of closed orbits. To obtain a stabilized quantum

limit cycle, gain and damping terms, e.g., incoherent Lindbladian jump processes,

have to be introduced. Once such a limit cycle is prepared, it can be synchronized to

external quantum signals or other quantum limit cycles.
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7.1.1 Synchronization Measures

A crucial aspect of quantum synchronization is the definition of suitable synchronization

measures. Various types of measures have been considered in the literature. Some

of them are constructed by projections onto particular states [Barak and Ben-Aryeh

(2005), Hush et al. (2015), Weiss et al. (2016), Roulet and Bruder (2018a)], others are

based on entanglement [Ameri et al. (2015)] or distances in phase space [Mari et al.

(2013)]. In the following, a selection of common measures that quantify synchronization

is presented. These are in some sense measures of localization in phase space. To

get an intuition for the features of the different measures of synchronization, let us

evaluate them for coherent states
∣∣α = reiϕ

〉
defined in Eq. (2.4.4). Using (∆a)2 =

⟨a2⟩−⟨a⟩2 = 0, the variance of position X = (a†+a)/2 and momentum P = i(a†−a)/2
operators

(∆X)2 = ⟨X2⟩ − ⟨X⟩2 = 1

4
(α∗2 + α2 + ⟨a†a+ aa†⟩ − α∗2 − α2 − 2αα∗) =

1

4
,

(7.1.1)

(∆P )2 = ⟨P 2⟩ − ⟨P ⟩2 = 1

4
(−α∗2 − α2 + ⟨a†a+ aa†⟩+ α∗2 + α2 − 2αα∗) =

1

4
,

(7.1.2)

reduces to the simple equation ∆X = ∆P = 1/2. The Gaussian width of a coherent

state |α⟩ in phase space is constant. Therefore, the variance (∆ϕ)2 of the phase

ϕ = arg(α) = arctan(⟨P ⟩/⟨X⟩) , (7.1.3)

that is approximated by

(∆ϕ)2 =

(
∂ϕ

∂⟨X⟩∆X
)2

+

(
∂ϕ

∂⟨P ⟩∆P
)2

=
1

2|α|2 , (7.1.4)

is decreasing for increasing |α|. This means that a coherent state |α⟩ is more phase

localized than |β⟩ if |α| > |β|. Intuitively, one can rephrase it as: since the noise

in position and momentum is constant, for larger |α|, a smaller fraction of the

circumference at r = |α| is covered by the Gaussian blob of the coherent state.

The computationally simple measure

S′ =
⟨a⟩√
⟨a†a⟩

, (7.1.5)

presented in [Weiss et al. (2016)], effectively measures the ‘coherent-stateness’ of a state.

Evaluated for coherent states, it reduces to the complex phase factor S′ = α/|α| = eiϕ.

The fact that it is not depending on |α| results in the issue that a coherent state

infinitesimally close to the origin (|α| ≪ 1) is assigned to the same level of phase

localization as a coherent state far away from the origin (|α| ≫ 1). This, however,

contradicts the intuition gained by Eq. (7.1.4).
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Another measure P1, which will be used in Chs. 9 and 10 that are based on [Kehrer

and Bruder (2025), Kehrer et al. (2025)], is defined as the projection of the density

matrix ρ onto phase states [Barak and Ben-Aryeh (2005), Hush et al. (2015)],

|ϕ⟩ = 1√
2π

∞∑

n=0

einϕ |n⟩ , (7.1.6)

where |n⟩ are Fock basis states. This measure,

P1(ϕ) = ⟨ϕ| ρ |ϕ⟩ − 1

2π
=

1

2π

∞∑

n,m=0

ei(m−n)ϕ ⟨n| ρ |m⟩ − 1

2π
, (7.1.7)

can be interpreted as the deviation of the probability distribution ⟨ϕ| ρ |ϕ⟩ of the phase
ϕ from a uniform distribution. It can be rewritten in terms of constant k = m− n,

P1(ϕ) =
1

2π

∞∑

k=1

∞∑

n=0

(eikϕ ⟨n| ρ |n+ k⟩+ e−ikϕ ⟨n+ k| ρ |n⟩) . (7.1.8)

The sum over n covers all matrix elements that lie on the kth off-diagonal. The

contribution for m− n = 0 reduces to Tr[ρ]/2π = 1/2π and cancels the second term

in Eq. (7.1.7). In [Kehrer and Bruder (2025)] presented in Ch. 9, the remaining

expectation values in Eq. (7.1.8) are identified as expectation values of an operator.

For coherent states
∣∣α = reiϕ0

〉
, the synchronization measure P1 can be approximated

in the following two limits

P1(ϕ)
|α|≪1
≈ |α|

π
cos(ϕ0 − ϕ) , (7.1.9)

P1(ϕ)
|α|≫1
≈ 1

2π

∞∑

k=−∞
eik(ϕ0−ϕ) − 1

2π
= δ(ϕ0 − ϕ)− 1

2π
. (7.1.10)

States are expected to show no synchronization if their phase noise covers a majority

of 2π, e.g., coherent states that are close to the origin. Thus, it is not surprising that

for coherent states close to the origin the first moment of P1 dominates. In contrast,

for |α| ≫ 1, the phase distribution P1 diverges at ϕ0 in the sense of a Dirac δ. To

understand the scaling of the maximum of P1 for large |α|, we compute its derivative

with respect to r at ϕ = ϕ0. We use

∂r

(
e−r2rk+2n

)
= e−r2rk+2n−1(k + 2n− 2r2) , (7.1.11)

to obtain

∂rP1(ϕ0) =
e−r2

2πr

∞∑

k=1

∞∑

n=0

rk+2n(k + 2n− 2r2)

n!
√
(n+ 1) . . . (n+ k)

+ H.c. . (7.1.12)

We find numerical indications supporting ∂rP1(ϕ0)
r≫1≈

√
2/π. The measure P1 and

90



7.1 Infinite-Level Quantum Oscillators

−1.0 −0.5 0.0 0.5 1.0
φ/π

−0.002

0.000

0.002

(a)

P1

|α| cos(φ)/π

Q̃

|α| cos(φ)/2
√
π

0 1 2 3
|α|

0.0

0.5

1.0

1.5

2.0
(b)

S′

max(P1)

max(Q̃)

〈ã〉

Figure 7.1: Comparison of synchronization measures for coherent states |α⟩. (a) Measures of
states close to the origin, α = 0.01, are dominated by their first momentum (dashed lines).
(b) Large-|α| scaling of quantum synchronization measures.

its approximation given in Eq. (7.1.9) are shown in Fig. 7.1(a). The dependence of S′,

the maximum of P1, and ⟨α| ã |α⟩ on |α| is presented in Fig. 7.1(b).

Another widely used measure is the Husimi Q function defined in Eq. (2.4.13) as a

projection of a state ρ onto coherent states. A phase synchronization measure can be

obtained by integrating out the radial part of the coherent states

∣∣∣α = reiϕ
〉
= e−r2/2

∞∑

n=0

rn√
n!
einϕ |n⟩ , (7.1.13)

note the differences to Eq. (7.1.6). The phase synchronization measure Q̃(ϕ) is given

by

Q̃(ϕ) =
1

π

∞∫

0

dr r
〈
α = reiϕ

∣∣∣ ρ
∣∣∣α = reiϕ

〉
− 1

2π

=
1

π

∞∫

0

dr e−r2
∞∑

n,m=0

rn+m+1

√
n!m!

ei(m−n)ϕ ⟨n| ρ |m⟩ − 1

2π

=
1

2π

∞∑

n,m=0

Γ
(
n+m
2 + 1

)
√
n!m!

ei(m−n)ϕ ⟨n| ρ |m⟩ − 1

2π
. (7.1.14)

In the last step we used Eq. (3.326.2) of [Gradshteyn and Ryzhik (2015)]. Similar to

Eq. (7.1.8), Q̃ can be expressed in terms of equal m− n = k,

Q̃(ϕ) =
1

2π

∞∑

k=1

∞∑

n=0

Γ
(
n+ k

2 + 1
)

√
Γ(n+ 1)Γ(n+ k + 1)

eikϕ ⟨n| ρ |n+ k⟩+H.c. . (7.1.15)
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Figure 7.2: Quantum van der Pol steady states for Ω = 0, see Eq. (7.1.17). (a), (b) Wigner
functions for γ2/γ1 = 0.2, 1 (from left to right). The dashed rings correspond to the mean-field
prediction of the radius

√
γ1/2γ2. (c) Expectation value

√
⟨a†a⟩ evaluated for the steady

state (blue curve) and the quantum limit ρq (dotted curve) defined in Eq. (7.1.23), compared
to the mean-field prediction (dashed line).

For coherent states close to the origin, Q̃ reduces to

Q̃(ϕ)
|α|≪1
≈ |α|

2
√
π
cos(ϕ0 − ϕ) . (7.1.16)

We compare Q̃ with P1 in Fig. 7.1.

7.1.2 Standard Quantum van der Pol Oscillator

The standard example of quantum synchronization, the quantum van der Pol oscillator

was introduced in [Lee and Sadeghpour (2013)]. In the case of the classical Stuart-

Landau oscillator, the infinite number of closed orbits in phase space of the harmonic

oscillator is reduced to one by nonlinearities in the equation of motion, i.e., gain and

damping. In the quantum case, these gain and damping terms are defined as Lindblad

jump operators. This and the following two sections is based on [Lee and Sadeghpour

(2013)].

The gain corresponds to incoherent single-phonon gain L = a† and the damping

originates from two-phonon loss L = a2. The total Lindblad master equation reads

d

dt
ρ = ρ̇ = −i[H, ρ] + γ1D[a†](ρ) + γ2D[a2](ρ) , (7.1.17)

where a common Hamiltonian

H = ∆a†a+Ka†2a2 +Ωa† +Ω∗a (7.1.18)

contains a coherent drive term of strength Ω, a detuning ∆, or a Kerr nonlinearity K.

In Fig. 7.2, Wigner functions of two choices of γ2/γ1 are shown.

The corresponding mean-field equation is obtained from the Heisenberg equation of
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motion

d

dt
a = −i∆a− 2iKa†a2 − iΩ +

γ1
2
a− γ2a

†a2 , (7.1.19)

by performing a cumulant expansion of the expectation value to lowest order,

d

dt
⟨a⟩ ≈ −i∆⟨a⟩ − 2iK|⟨a⟩|2⟨a⟩ − iΩ +

γ1
2
⟨a⟩ − γ2|⟨a⟩|2⟨a⟩ . (7.1.20)

To gain intuition of this equation of motion, it is useful to set ⟨a⟩ = reiϕ in order to

split the amplitude part,

ṙ = Re

[
e−iϕ d

dt
⟨a⟩
]
= r

(γ1
2

− γ2r
2
)
− |Ω| sin(ϕ− arg(Ω)) , (7.1.21)

from the phase part,

ϕ̇ = Im

[
1

⟨a⟩
d

dt
⟨a⟩
]
= −∆− 2Kr2 − |Ω|

r
cos(ϕ− arg(Ω)) . (7.1.22)

For vanishing drive strength Ω = 0, the radial equation of motion is solved by

r0 =
√
γ1/2γ2. The larger the gain or the smaller the damping, the larger the amplitude

of the resulting limit cycle, see Fig. 7.2(c). In the quantum limit λ = γ1/γ2 ≪ 1, the

Taylor expansion of the steady state for Ω = 0 reads

ρq ≈
(
3

2
− 5

9
λ+

31

52
λ2
)
|0⟩⟨0|+

(
1

3
+

2

9
λ− 25

52
λ2
)
|1⟩⟨1|

+

(
λ

3
− 5

18
λ2
)
|2⟩⟨2|+ λ2

6
|3⟩⟨3| . (7.1.23)

The dotted curve in Fig. 7.2(c) corresponds to the radius
√
Tr[a†aρq] ≈ (3 + 4λ −

5λ2)/3
√
3 of the ring-like state evaluated in the quantum limit.

7.1.3 Quantum Synchronization of the Standard Quantum van der Pol

Oscillator

In this section, we will present the synchronization of a single driven quantum van

der Pol oscillator to an external coherent drive. In Fig. 7.3, we show the steady-

state Wigner functions of a driven oscillator for ∆ = K = 0. From left to right we

increase the order n of the drive term Ω(a†n + an) from n = 1 to n = 4. A squeezing

drive n = 2 has been studied as an improvement of quantum synchronization [Sonar

et al. (2018)] and also in the context of time crystals [Cabot et al. (2024)]. The

number of local maxima in the Wigner function corresponds to n. Their locations are

ϕk = n arg(Ω)− π/2n+ k2π/n with k ∈ Z.
Considering a standard coherent drive as studied in [Lee and Sadeghpour (2013)], the

quantum analogue of an Arnold tongue presented in Fig. 6.6 is shown in Fig. 7.4. The

first row corresponds to varying detuning ∆ at K = 0 and the second row corresponds
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Figure 7.3: Wigner functions of a quantum van der Pol oscillator locking to a coherent drive
Ω(a†n + an) with n = 1, 2, 3, 4 (from left to right for ∆ = K = 0 and γ2 = 0.5γ1). (a), (b)
Ω = 0.1. (c), (d) Ω = 0.05. The dashed rings correspond to the mean-field prediction of the
radius

√
γ1/2γ2. The number of local maxima corresponds to the order n of the drive.

−0.2 0.0 0.2
∆/γ1

0.00

0.05

0.10

0.15

0.20

Ω
/
γ

1

(a)

γ2/γ1 = 1.0

−0.2 0.0 0.2
∆/γ1

(b)

γ2/γ1 = 0.5

−0.2 0.0 0.2
∆/γ1

−1.0

−0.5

0.0

φ
/
π

(c)

Ω/γ1 = 0.2

γ2/γ1

1.0

0.5

−0.1 0.0 0.1
K/γ1

0.00

0.05

0.10

0.15

0.20

Ω
/
γ

1

(d)

−0.1 0.0 0.1
K/γ1

(e)

−0.1 0.0 0.1
K/γ1

−1.0

−0.5

0.0

φ
/
π

(f)
γ2/γ1

1.0

0.5

0.00

0.05

0.10
max(P1)

0.00

0.05

0.10
max(P1)

Figure 7.4: Phase locking of a coherently driven standard quantum van der Pol oscillator. In
the top row we set K = 0 and in the bottom row we set ∆ = 0. (a), (b), (d), (e) Maximum of
P1 showing Arnold tongues, see Fig. 6.6. (c), (f) The solid curves correspond to the argmax
of P1 and the dotted curves to the mean-field prediction, see Eq. (7.1.22). The black curves
denote contour lines at half the maximum value of the color scale.

to varying Kerr nonlinearity K at ∆ = 0. The mean-field steady-state solution of the

phase is based on Eq. (7.1.22). For real-valued drive strengths Ω,

ϕMF = − arccos

(
−r∆+ 2r3K

Ω

)
, (7.1.24)

solves ϕ̇ = 0. This solution corresponds to the dotted lines in Figs. 7.4(c) and 7.4(f).
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Figure 7.5: Frequency pulling of a coherently driven standard quantum van der Pol oscillator
for γ2 = γ1. The blue dots correspond to the location of the frequency maxima of S, see
Eq. (7.1.27). (a) No influence of the drive on the oscillator frequency ω. (b) Frequency of the
oscillator pulled toward ω = 0 for small ∆. The solid curve corresponds to the classical case
ω = −νA, see Eq. (6.2.9). The black line indicates ω = −∆.

At ∆ = K = 0, the slope of ϕMF depending on both ∆ and K increases with r,

∂ϕMF

∂∆
= − r

Ω
, (7.1.25)

∂ϕMF

∂K
= −2r3

Ω
. (7.1.26)

This same qualitative behavior is found in the full quantum case (solid curves in

Figs. 7.4(c) and 7.4(f)): the phase of the driven oscillator reacts stronger to detuning

∆ and Kerr nonlinearity K for a larger radius of the limit cycle. Furthermore, for limit

cycles with larger radii, the same value of max(P1), see black curves in Fig. 7.4, is

achieved for a smaller drive strength: larger limit cycles show stronger synchronization

due to smaller relevance of noise.

In [Walter et al. (2014)], the spectra

S(ω) = lim
t→∞

∞∫

−∞

dτ ⟨a†(t+ τ)a(τ)⟩eiωτ , (7.1.27)

based on two-time correlations of driven quantum van der Pol oscillators have been

studied. The frequency locking in the quantum case is much weaker than in the

classical case shown in Fig. 6.7. Two examples for Ω/γ1 = 0.1, 1 for the choice

γ2 = γ1 are presented in Fig. 7.5. In Fig. 7.5(a), no frequency locking plateau is

visible compared to the one of the classical solution (solid curve). Only for larger drive

strength considered in Fig. 7.5(b), the frequency of the quantum van der Pol is pulled

toward ω = 0 for small detunings. Remarkably, even if the frequency of the quantum

oscillator is not altered drastically, phase synchronization is visible.

Intuitively speaking, in several aspects, the quantum van der Pol oscillator behaves

similar to a classical Stuart-Landau oscillator with noise, e.g., sharp edges in Arnold

tongues or spectra are smoothed out in the quantum case. True quantum features of

synchronization are hard to find.
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7.1.4 Quantum Synchronization of Two Standard Quantum van der Pol

Oscillators

In the previous section, the reaction of a quantum van der Pol oscillator to an external

drive has been presented. Such an external drive can be interpreted as another

oscillator with fixed dynamics: there is no backaction from the oscillator to the drive.

In this section, we consider two coherently coupled oscillators A and B with backaction,

see [Lee and Sadeghpour (2013)]. Their Lindblad master equation

ρ̇ = −i[H, ρ] +
∑

j=A,B

(γj1D[a†](ρ) + γj2D[a2](ρ)) (7.1.28)

features the Hamiltonian

H =
∑

j=A,B

∆ja
†
jaj + gAB(e

iϕa†AaB + e−iϕaAa
†
B) . (7.1.29)

As before, the corresponding mean-field equations are obtained from the Heisenberg

equations of motion of a = aA and b = aB,

d

dt
a = −i∆Aa− igABe

iϕb+
γA1
2
a− γA2 a

†a2 , (7.1.30)

d

dt
b = −i∆Bb− igABe

−iϕa+
γB1
2
b− γB2 b

†b2 , (7.1.31)

by performing a cumulant expansion of the expectation value to lowest order,

d

dt
⟨a⟩ ≈ −i∆A⟨a⟩ − igABe

iϕ⟨b⟩+ γA1
2
⟨a⟩ − γA2 |⟨a⟩|2⟨a⟩ , (7.1.32)

d

dt
⟨b⟩ ≈ −i∆B⟨b⟩ − igABe

−iϕ⟨a⟩+ γB1
2
⟨b⟩ − γB2 |⟨b⟩|2⟨b⟩ . (7.1.33)

For ϕ = 0, by setting ⟨aj⟩ = rje
iϕj , we split the amplitude part,

ṙj = Re

[
e−iϕj

d

dt
⟨aj⟩

]
= rj

(
γj1
2

− γj2r
2
j

)
+ gABri sin(ϕi − ϕj) , (7.1.34)

from the phase part,

ϕ̇ = Im

[
1

⟨aj⟩
d

dt
⟨aj⟩

]
= −∆j − gAB

ri
rj

cos(ϕi − ϕj) . (7.1.35)

Here, i, j ∈ {A,B} and i ̸= j. This model exhibits a U(1) symmetry, i.e., invariance

under the transformation aj → aje
iθ. Therefore, an interesting quantity is the relative

phase ϕAB = ϕA − ϕB between the oscillators. Its dynamics are given by

ϕ̇AB = −δ + gAB

r2A − r2B
rArB

cos(ϕAB) , (7.1.36)
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Figure 7.6: Regions of the quantum synchronization blockade for g = γB1 , and γB2 = 2.5γB1 .
In all panels, P2 is shown and maxima in ϕAB are indicated by dash-dotted lines. (a) Two
standard limit cycles with fixed γA1 = γB1 , i.e., different mean-field radii. (b) Two standard
limit cycles with fixed γA2 = 2.5γA1 , i.e., identical mean-field radii. The color scale is linear in
the interval [−10−3, 10−3] and logarithmic elsewhere.

where δ = ∆A −∆B. The equation of motion of the relative phase Eq. (7.1.36) is

identical to the one of two classical Stuart-Landau oscillators defined in Eq. (6.5.5).

Therefore, the synchronization blockade and bistable phase locking that we saw in

Sec. 6.5.3 also shows up here.

The phase distribution measure P2(ϕAB) of the relative phase of two oscillators, see

[Hush et al. (2015)], reads

P2(ϕAB) =

2π∫

0

dϕB ⟨ϕAB + ϕB, ϕB| ρ |ϕAB + ϕB, ϕB⟩ −
1

2π
. (7.1.37)

This measure is based on the projection of a state ρ onto tensor products of phase

states. Similar to P1 defined in Eq. (7.1.7), a uniform distribution of the relative

phases is subtracted by the second term in Eq. (7.1.37). Bistable phase locking in

the quantum case is defined in analogy to phase locking: if two local maxima of

P2 of equal height coincide with the global maximum, bistable locking to these two

values occurs. In Fig. 7.6(a), we fix both γA1 = γB1 and γB2 = 2.5γA1 . Depending on

the ratio γA2 /γ
B
2 of the damping rates, the mean-field radii of the limit cycles differ

and the synchronization measure P2(ϕAB) of the relative phase exhibits one or two

maxima. If there are two maxima at a given value of the ratio γA2 /γ
B
2 , the quantum

synchronization blockade (bistable locking) occurs.

Another scenario is presented in Fig. 7.6(b). Here, both ratios γA2 /γ
A
1 = γB2 /γ

B
1 = 2.5

are fixed and lead to identical mean-field radii independent of the value of ratio γA2 /γ
B
2 .

Therefore, in the classical model presented in Sec. 6.5.1, bistable locking to ϕAB = 0, π

is independent of γA2 /γ
B
2 , i.e., both oscillators are permanently in the blockade regime.

However, in the quantum model, the values of ϕAB vary and the blockade disappears

above a particular value of γA2 /γ
B
2 . This preliminary result is a good candidate for
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Figure 7.7: Wigner functions of the quantum limit-cycle oscillator stabilized by Lindblad
jump operators L = a†3 and L = a4, see Eq. (7.1.38). (a), (b) No drive Ω = 0. (c) Phase
locking to a coherent drive Ω = 5γ3. The dashed white circles correspond to the mean-field
predictions

√
3γ3/4γ4.

another quantum feature of synchronization. Future studies might describe potential

interferences of coherences that lead to the blockade, similar to Sec. 7.2.2.

A unique quantum feature of synchronization has been described in [Lörch et al.

(2017)]: the energy quantization blockade. In the case of two coherently coupled

anharmonic oscillators, interaction and therefore synchronization can be enhanced by

a certain amount of detuning between the oscillators. Due to the quantized energy

that can be transferred between the oscillators and the anharmonic level structure,

the detuned case has larger overlap between energy transitions than the nondetuned

case. This contradicts the classical intuition that synchronization is maximized on

resonance.

7.1.5 Quantum van der Pol Oscillator with Higher-Order Gain and Damping

In Ch. 10, the work published in [Kehrer et al. (2025)] will be presented. In that work,

higher-order gain and damping channels are considered. In this section, let us take a

brief look at a limit cycle that is stabilized by the Lindblad jump operators L = a†3

and L = a4,

ρ̇ = −i[∆a†a+Ka†2a2 +Ω(a† + a), ρ] + γ3D[a†3](ρ) + γ4D[a4](ρ) . (7.1.38)

The corresponding mean-field equations of the amplitude and phase are

ṙ = r5
(
3γ3
2

− 2γ4r
2

)
− Ωsin(ϕ) , (7.1.39)

ϕ̇ = −∆− 2Kr2 − Ω

r
cos(ϕ) . (7.1.40)

The mean-filed prediction of the steady-state radius of the limit cycle is
√
3γ3/4γ4,

corresponding to the dashed white circles in Fig. 7.7. The steady state in the quantum
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Figure 7.8: Phase locking of a coherently driven modified quantum van der Pol oscillator, see
Eq. (7.1.38). In the top row we set K = 0 and in the bottom row we set ∆ = 0. (a), (b), (d),
(e) Maximum of P1 showing Arnold tongues, see Fig. 6.6. (c), (f) The solid curves correspond
to the argmax of P1 and the dotted curves to the mean-field prediction, see Eq. (7.1.40). The
black curves denote contour lines at 0.01.

limit λ = γ3/γ4 ≪ 1 has several contributions,

ρq ≈
(
5

7
− 1145

588
λ

)
|0⟩⟨0|+

(
5

28
+

1265

1176
λ

)
|1⟩⟨1|+

(
1

14
+

253

588
λ

)
|2⟩⟨2|

+

(
1

28
+

253

1176
λ

)
|3⟩⟨3|+ 5λ

28
|4⟩⟨4|+ λ

28
|5⟩⟨5|+ λ

84
|6⟩⟨6| . (7.1.41)

Its limit-cycle radius
√
Tr[a†aρq] ≈

√
3/7 + 695λ/56

√
21 is slightly larger than the

one of the standard quantum van der Pol oscillator.

This oscillator exhibits different phase locking behavior, presented in Fig. 7.8, in

comparison to the standard quantum van der Pol oscillator, shown in Fig. 7.4. The

smaller limit cycle reacts stronger to detuning ∆ than the larger limit cycle, see

Fig. 7.8(c). Moreover, the larger limit cycle needs to be driven with a larger Ω to

achieve the same value of synchronization P1: the smaller limit cycle synchronizes

stronger. These findings will become relevant in Ch. 10 but need to be studied in

more detail separately.

7.2 Spin Oscillators

In the previous sections, quantum synchronization was studied in some sort of a

top-down approach: the classical Stuart-Landau oscillator has been quantized in a

canonical way. The resulting quantum van der Pol oscillator is then taken to the
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quantum limit. In this limit, the quantum van der Pol oscillator and its modification

incorporating third-order gain and fourth-order damping consists of only two and four

levels, respectively. Outside this quantum limit, the number of significantly populated

levels grows rather rapidly and the quantum model does not show a substantial

distinction from a noisy classical model. The energy quantization blockade [Lörch

et al. (2017)], a unique quantum feature of synchronization, has been found in a case

where only few levels are populated.

Another approach to quantum synchronization is to go bottom-up: consider native

few-level systems, i.e., spins. Spin oscillators are few-level quantum oscillators that are

expected to show more genuine quantum effects of synchronization than infinite-level

oscillators discussed in Sec. 7.1. Similar to the quantum van der Pol oscillator, one can

interpret a large-spin-s system as an ‘almost-infinite-level oscillator’ with truncated

Fock space where 2s+ 1 is the maximum Fock number [Kato and Nakao (2024)]. The

creation and annihilation operators a† and a are replaced by spin ladder operators S+

and S− using a Holstein-Primakoff transformation [Holstein and Primakoff (1940)].

Other scenarios involving different gain and damping terms have been considered

[Roulet and Bruder (2018a), Koppenhöfer and Roulet (2019), Parra-López and Bergli

(2020), Tan et al. (2022)]. In general, as in the previous section, incoherent gain and

damping stabilize particular states. These stabilized states are limit-cycle states if

they exhibit a free phase of oscillation that can be locked to an external drive or other

spin oscillators.

7.2.1 Synchronization Measure

The free phase of oscillation of a limit-cycle state for spin oscillators is defined by

projection onto the so-called spin coherent states |θ, ϕ⟩. These states are generated by

spin rotations of the extremal spin state |s,ms = s⟩. Since SU(2) is three-dimensional,

i.e., it has three group elements, we can interpret these rotations as an analogy to

SO(3) rotations of the spin vector (Sx, Sy, Sz). This way of defining angles is identical

to the definition of the polar angles θ and azimuthal angles ϕ in spherical coordinates.

Spin coherent states can be expressed by the (small) Wigner D matrix [Wigner (1959)],

|θ, ϕ⟩ = e−iϕSz
e−iθSy |s, s⟩ =

∑

n

e−inϕdsn,s(θ) |s, n⟩ , (7.2.1)

|θ, ϕ⟩⟨θ, ϕ| =
∑

n,m

ei(m−n)ϕdsn,s(θ)d
s
m,s(θ) |s, n⟩⟨s,m| , (7.2.2)

where dsn,m

dsn,m(θ) =
√
(s+ n)!(s− n)!(s+m)!(s−m)!

×
smax∑

r=smin

(−1)n−m+r cos
(
θ
2

)2s+m−n−2r
sin
(
θ
2

)n−m+2r

(s+m− r)!r!(n−m+ r)!(s− n− r)!
, (7.2.3)

100



7.2 Spin Oscillators

smin = max(0,m − n), and smax = min(s +m, s − n). The relevant entries are the

ones for m = s leading to smin = smax = s− n and

dsn,s(θ) =

√
(2s)!

(s+ n)!(s− n)!
cos

(
θ

2

)s+n

sin

(
θ

2

)s−n

. (7.2.4)

In this thesis, we use the measure of quantum synchronization for single spin-s

oscillators introduced in [Roulet and Bruder (2018a)],

S1(ϕ) =

π∫

0

dθ sin(θ)Q(θ, ϕ, ρ)− 1

2π
, (7.2.5)

where

Q(θ, ϕ, ρ) =
2s+ 1

4π
⟨θ, ϕ| ρ |θ, ϕ⟩ (7.2.6)

is the Husimi Q function of ρ with respect to spin coherent states. One can interpret S1
as the difference between a proper probability distribution and a uniform distribution,

see the −1/2π term in Eq. (7.2.5). The proper probability distribution only depends

on the azimuthal angle ϕ since the polar angle θ has been integrated out. Using

Eq. (7.2.1), we can express Eq. (7.2.6) as

Q(θ, ϕ, ρ) =
2s+ 1

4π

∑

n,m

ei(n−m)ϕdsn,s(θ)d
s
m,s(θ)ρn,m . (7.2.7)

The integration over θ in Eq. (7.2.5) can be mapped to Eq. (3.621.5) of [Gradshteyn

and Ryzhik (2015)],

π∫

0

dθ sin(θ) cos

(
θ

2

)n

sin

(
θ

2

)m

= 2
Γ
(
1 + n

2

)
Γ
(
1 + m

2

)

Γ
(
2 + n+m

2

) , (7.2.8)

where Γ(z) is the Gamma function

Γ(z) =

∞∫

0

dt e−ttz−1 , (7.2.9)

see Eq. (8.310.1) of [Gradshteyn and Ryzhik (2015)]. Using this expression, we simplify

S1 to [Tan et al. (2022)],

S1(ϕ) =
∑

n,m

csn,m(ϕ)ρn,m , (7.2.10)
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where

csn,m(ϕ) =ei(n−m)ϕ 2s+ 1

4π

π∫

0

dθ sin(θ)dsn,s(θ)d
s
m,s(θ)

=
ei(n−m)ϕ

2π

Γ
(
1 + s+ n+m

2

)
Γ
(
1 + s− n+m

2

)
√

(s+ n)!(s− n)!(s+m)!(s−m)!
. (7.2.11)

In [Kehrer et al. (2024b)] presented in Ch. 8, an operator cs(ϕ) is defined such that

S1 can be rewritten as an expectation value of this operator. With this trick, the

synchronization measure becomes more interpretable and faster to compute.

The definition of the synchronization measure in Eq. (7.2.5) can be generalized

to systems consisting of N spin-s oscillators by considering tensor products of spin

coherent states, see [Roulet and Bruder (2018b)],

SN (ϕ⃗ ) =

π∫

0

dθ1 sin(θ1)· · ·
π∫

0

dθN sin(θN )Q(θ⃗, ϕ⃗, ρ)− 1

(2π)N
, (7.2.12)

where

Q(θ⃗, ϕ⃗, ρ) =

(
2s+ 1

4π

)N 〈
θ⃗, ϕ⃗
∣∣∣ ρ
∣∣∣θ⃗, ϕ⃗

〉
, (7.2.13)

and

∣∣∣θ⃗, ϕ⃗
〉
=

N⊗

j=1

exp(−iϕjS
z) exp(−iθjS

y) |s, s⟩ . (7.2.14)

In the synchronization measure SN , each polar angle θj is integrated out such that

only the azimuthal angle information remains. Due to particular symmetries in a

model, synchronization will be found in the distribution of a subset of coordinates ϕj ,

e.g., relative phases ϕi − ϕj . In these cases, a synchronization measure can be defined

by integrating out the irrelevant combinations of ϕj .

7.2.2 Spin-1

There has been work published on quantum synchronization of spin-1/2 oscillators,

e.g., [Zhirov and Shepelyansky (2008), Cabot et al. (2019), Parra-López and Bergli

(2020)]. However, here, we will focus on models consisting of spins 1. This section is

based on [Roulet and Bruder (2018a), Roulet and Bruder (2018b)]. The first scenario

that is considered when studying quantum synchronization of a particular model

is the coupling to an external coherent drive. This drive can be interpreted as an

oscillator whose dynamics are fixed, i.e., there is no backaction from the free oscillator

to the drive. In a spin model, a coherent drive is described by Hd = Ω(S+ + S−)/2,

where S± =
√
2(|±1⟩⟨0|+ |0⟩⟨∓1|) are the ladder operators and Ω is the real-valued
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Figure 7.9: Quantum synchronization of spins 1. (a) Schematics of gain, damping, and drive
of a spin-1 oscillator, see Eq. (7.2.15). (b) Synchronization measure S1(ϕ) for γd = 1.5γg.
The gray line denotes the switch from a single maximum to two maxima at approximately
Ω = 3π|γd − γg|/32. (c) Synchronization measure S2(ϕAB) for γAd = 1.5γAg , γ

B
d = 2γAg ,

and γBg = γAg . The gray line denotes the switch from a single maximum to two maxima at

approximately gAB = 9π2|γAd + γBg − γAg − γBd |/256. In panels (b) and (c), the color is scaled
linear in the interval [−10−3, 10−3] and logarithmic elsewhere.

drive strength. Since in this section only s = 1 is considered, we will abbreviate

|s = 1,ms⟩ = |ms⟩.
In the setup considered in [Roulet and Bruder (2018a), Roulet and Bruder (2018b)],

the stabilized limit-cycle state is the central spin state |0⟩. The gain (damping) process

is described by the Lindblad jump operator L = S+Sz (L = S−Sz). The Sz operator

ensures that there is no excitation from |0⟩ → |1⟩ and no deexcitation from |0⟩ → |−1⟩,
see Fig. 7.9(a). The total Lindblad master equation in the rotating frame of the drive

reads

d

dt
ρ = ρ̇ = −i[∆Sz +Hd, ρ] +

γg
2
D[S+Sz](ρ) +

γd
2
D[S−Sz](ρ) . (7.2.15)

An analytical expression for the steady state ρ̇ = 0 exists but is quite lengthy. Using

the definition

N1 =γdγg(γ
2
d + 4∆2)(γ2g + 4∆2)((γd + γg)

2 + 16∆2) + 32(γd + γg)
2Ω6

+ 4(γd + γg)
2((2γd + γg)(γd + 2γg) + 20∆2)Ω4

+ 4γdγg(γ
2
d + γdγg + γ2g + 4∆2)((γd + γg)

2 + 16∆2)Ω2 , (7.2.16)

the expectation values of Sz, S+, and S+2 can be reduced to

⟨Sz⟩N1 =2(γ2g − γ2d)((γd + γg)
2 + 16∆2)(γdγg + 2Ω2)Ω2 , (7.2.17)

⟨S+⟩N1 =2(γd − γg)Ω
(
γdγg((γd + γg)

2 + 16∆2)(2i∆ + γg)(2∆− iγd)

+ 4i(γd + γg)(γd + γg + 8i∆)Ω4
)
, (7.2.18)

⟨S+2⟩N1 =4Ω2
(
γdγg((γd + γg)

2 + 16∆2)(2i∆ + γg)(2i∆ + γd) + 4(γd + γg)
2Ω4

+ 4γdγg(γd + γg)(γd + γg + 4i∆)Ω2
)
. (7.2.19)
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Note that both ⟨Sz⟩ and ⟨S+⟩ vanish for equal rates γg = γd. In the quantum

synchronization regime of small drive strengths and detunings Ω,∆ ≪ γd, γg, the

density matrix reads

ρ ≈




2Ω2

γ2
d

−
√
2(iγd+2∆)Ω

γ2
d

2Ω2

γdγg√
2(iγd−2∆)Ω

γ2
d

1− 2Ω2

γ2
d

− 2Ω2

γ2
g

√
2(iγg+2∆)Ω

γ2
g

2Ω2

γdγg

√
2(−iγg+2∆)Ω

γ2
g

2Ω2

γ2
g


 , (7.2.20)

and the expectation values of Sz, S+, and S+2 are

⟨Sz⟩ ≈ 2
γ2g − γ2d
γ2dγ

2
g

Ω2 , (7.2.21)

⟨S+⟩ ≈ 2
(γd − γg)(2(γd + γg)∆− iγdγg)

γ2dγ
2
g

Ω , (7.2.22)

⟨S+2⟩ ≈ 4Ω2

γdγg
. (7.2.23)

The synchronization measure for this approximation yields

S1(ϕ) ≈ 3(γd − γg)
γdγg sin(ϕ) + 2(γd + γg)∆ cos(ϕ)

8γ2dγ
2
g

Ω+
Ω2 cos(2ϕ)

πγdγg
. (7.2.24)

This equation shows that the terms proportional to Ω lead to phase locking to (i)

ϕ = arctan(γdγg/2(γd + γg)∆) , (7.2.25)

for ∆ > 0 and γg < γd or ∆ < 0 and γg > γd and to phase locking to (ii)

ϕ = π + arctan(γdγg/2(γd + γg)∆) , (7.2.26)

for ∆ > 0 and γg > γd or ∆ < 0 and γg < γd.

In contrast, the term proportional to Ω2 in Eq. (7.2.24) leads to bistable locking of

the oscillator to ϕ = 0, π. Therefore, for small Ω, the phase of the oscillator locks to

a single value and if Ω is larger than a critical value, bistable phase locking occurs.

For ∆ = 0 the critical value is Ω = 3π|γd − γg|/32, see the gray line in Fig. 7.9(b).

Similarly, if γd = γg, any value of Ω will lead to bistable locking to ϕ = 0, π. This

bistable locking is called the quantum synchronization blockade or to be more precise

the quantum interference blockade and will be relevant in Ch. 8. The terms in S1
proportional to Ω originate form different coherences |±1⟩⟨0| and |0⟩⟨±1|. If γd = γg,

these coherences interfere destructively, i.e., the pairs |1⟩⟨0| and |0⟩⟨−1| as well as

|−1⟩⟨0| and |0⟩⟨1| have the same absolute value but opposite sign. Similar to the

energy quantization blockade [Lörch et al. (2017)], this is a genuine quantum effect of

synchronization: a single driven spin-1 oscillator exhibits a synchronization blockade

(bistable locking) due to quantum interference. Note that neither classical cases nor
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quantum van der Pol oscillators exhibit this type of blockade. For other examples of

blockades see Secs. 6.2.1 and 7.1.4.

The original definition of phase synchronization in Ch. 6 requires a small drive

strength such that the driven oscillator exhibits a phase preference without a significant

distortion of its limit-cycle state. Significant in this case means that the population

changes, e.g., ⟨Sz⟩, are proportional to Ω2 and therefore subleading order. Whether

bistable locking should be considered a (quantum) synchronization effect or not is

debatable, since it is of the same order as the population changes. In this thesis, such

higher-order effects are considered a part of (quantum) synchronization while keeping

in mind the original definition.

In a system consisting of two coherently coupled spins 1 A and B [Roulet and

Bruder (2018b)], the measure

S2(ϕAB) =

2π∫

0

dϕB S2(ϕAB + ϕB, ϕB) , (7.2.27)

is employed to determine the distribution of the relative phase ϕAB = ϕA−ϕB between

the two oscillators. Here, the Lindblad master equation in the rotating frame of the

drive reads

ρ̇ = − i

2
[gABS

+
AS

−
B +H.c., ρ] +

∑

j=A,B

(
γjg
2
D[S+

j S
z
j ](ρ) +

γjd
2
D[S−

j S
z
j ](ρ)

)
, (7.2.28)

where gAB is the coherent coupling strength, S±
j and Sz

j are spin operators that act

on the jth oscillator, and γjg and γjd are the gain and damping rates of oscillator j.

The steady state for gAB = 0 is ρ(0) = |0, 0⟩⟨0, 0|. Due to the U(1) symmetry of the

model, i.e., invariance under the transformation S+
j → S+

j e
iθ, only the relative phase

between the oscillators is relevant.

Similar to the single driven spin, an analytical expression of the steady state exists

but is too lengthy to be shown here. In the quantum synchronization regime of small

coupling gAB ≪ γjg , γ
j
d, the synchronization measure evaluated for the perturbation

expansion of the steady state reads

S2(ϕAB) = gAB

9π

64

γAd + γBg − γAg − γBd
(γAd + γBg )(γAg + γBd )

sin(ϕAB) + g2AB

cos(2ϕAB)

π(γAd + γBg )(γAg + γBd )
.

(7.2.29)

Similar to Eq. (7.2.24), the term linear in gAB leads to phase locking to ϕAB = π/2

(ϕAB = −π/2) if γAd + γBg > γAg + γBd (γAd + γBg < γAg + γBd ) and the term proportional

to g2AB leads to bistable locking to ϕAB = 0, π. Two maxima of S2 in Eq. (7.2.29)

exist if gAB > 9π2|γAd + γBg − γAg − γBd |/256, see the gray line in Fig. 7.9(c). If

γAd + γBg = γAg + γBd , the pairs of coherences |1,−1⟩⟨0, 0| and |0, 0⟩⟨−1, 1| as well as

|−1, 1⟩⟨0, 0| and |0, 0⟩⟨1,−1| that form the term linear in gAB exhibit the identical
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Chapter 7 Quantum Synchronization

absolute value but opposite sign and therefore cancel. In this case, the two spin

oscillators are in the synchronization blockade, similar to quantum vdP oscillators

Sec. 7.1.2. Here, for spins 1, we can understand the blockade in more detail, i.e., as

the destructive interference of coherences.

There are different choices of rates that lead to the vanishing of the term linear in

gAB , i.e., vanishing locking to a single value of the phase. The first, second, and third

choice that we know from classical vdP oscillators are: (i) γAg = γBg and γAd = γBd ,

called identical oscillators, (ii) γAg /γ
A
d = γBg /γ

B
d = λ, called equal rate ratios, and (iii)

γAd = γBd = γBd = γ, called equal rates. Another choice that is available in this spin

setup are so-called inverted rates γAg = γBd and γAd = γBg [Roulet and Bruder (2018b)].

In Ch. 8, we will study cases in which two blockades occur. First, for two coherently

coupled spins 1, we consider the blockade between the drive and one of the oscillators

and the blockade between both oscillators. Second, for a chain of three coherently

coupled spins 1, we consider the two blockades between neighboring spins. We will

find that in some parameter regime quantum synchronization through the blockades

of indirectly coupled oscillators exists, i.e., without lifting the blockades.

7.3 Many Quantum Oscillators

An interesting research direction is to go beyond two-oscillator models, i.e., the study

of networks of quantum oscillators in contrast to classical oscillators [Kuramoto (1984),

Acebrón et al. (2005), Ott and Antonsen (2008)]. Already in [Lee and Sadeghpour

(2013)], the mean-field equations of the model have been analyzed in the limit of

an infinite number of identical all-to-all connected oscillators. A transition between

synchronized and unsynchronized states is found. In [Nadolny and Bruder (2023)],

the question whether quantum effects of synchronization survive in large groups of

limit-cycle oscillators is answered affirmatively. In the setups of (i) a single driven and

(ii) two reactively coupled large groups of anharmonic spin-1 oscillators, macroscopic

manifestations of the quantum interference blockade [Roulet and Bruder (2018a)]

and the energy quantization blockade [Lörch et al. (2017)] are found. Considering

a specific connectivity, e.g., topological networks [Wanjura et al. (2020), Wächtler

et al. (2020), Sone et al. (2022)], the enhancement of robustness of synchronization is

studied [Wächtler and Platero (2023), Wächtler and Moore (2024)]. In macroscopic

networks, the relation between frustration and quantum synchronization has been

touched [Ha and Kim (2019), Karpat et al. (2020)].

Another direction is the one of active quantum matter. First steps toward describing

self-propelled quantum objects powered by environmental energy have been taken

[Yamagishi et al. (2024), Antonov et al. (2025), Penner et al. (2025)]. A precursor of

spatially active quantum matter are active oscillatory states, e.g., quantum analogues

of traveling-wave states [Fruchart et al. (2021)] found in coupled groups of spins

[Nadolny et al. (2025a), Nadolny et al. (2025b)] and coupled quantum van der Pol

oscillators [Kehrer and Bruder (2025)]. The latter example will be presented in detail

in Ch. 9.
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Chapter 8

Quantum Synchronization of Spin-1

Oscillators in the Presence of

Interference Blockades

This chapter is based on the results published in:

T. Kehrer, T. Nadolny, and C. Bruder,

Quantum synchronization through the interference blockade,

Physical Review A 110, 042203 (2024)

8.1 Motivation

As described in the previous chapter, in the last decade, there has been a lot of

activity in the study of synchronization in quantum systems. A three-level quantum

system in which one of the three states is stabilized by incoherent gain and damping

processes has been established as a minimal quantum limit-cycle oscillator [Roulet and

Bruder (2018a)]. Subject to an external drive, this spin-1 oscillator aligns its phase of

oscillation with the one of the drive. The magnitude of this so-called 1:1 phase locking

is proportional to the drive strength. In this chapter, we will use the term n:1 phase

locking if the probability distribution of the phase of an oscillator exhibits n maxima

that corresponds to multistable locking. If the gain and damping rates are equal, an

interference blockade emerges leading to a complete suppression of 1:1 phase locking.

In this case, the oscillator tends to align its phase in one of two positions: in phase or

opposite the phase of the drive. This corresponds to 2:1 phase locking which could be

called passing by the blockades. A similar effect is observed for the synchronization of

two identical coupled spins 1, i.e., the absence of 1:1 phase locking and the presence

of 2:1 phase locking [Roulet and Bruder (2018b), Koppenhöfer and Roulet (2019)].

Interference blockades [Solanki et al. (2023)] are not the only type of blockades that

have been studied in systems of quantum oscillators, for another example see [Lörch

et al. (2017)].

In this chapter, we first consider a drive applied to one of two coherently coupled
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Figure 8.1: Schematics of the models. (a) Each minimal quantum limit-cycle oscillator labeled
A, B, and C consists of three spin-1 states |−1⟩, |0⟩, and |1⟩. It is subject to two independent
gain and damping processes with rates γjg and γjd that incoherently drive the population
toward the state |0⟩. (b) Two spins A and B are coherently coupled with strength gAB , see
Sec. 8.3. Spin A is furthermore driven by an external drive with strength ΩA. (c) Chain of
three coupled spins without external drive, see Sec. 8.4. The insets in (b) and (c) qualitatively
show the resulting (bistable) phase locking of the spins. Due to blockades (red brick walls),
1:1 phase locking vanishes. Solid arcs denote second-order effects leading to 2:1 phase locking
passing by blockades. Dashed arcs denote fourth-order effects leading to 1:1 and 2:1 phase
locking between not directly coupled elements through the blockades.

spin-1 oscillators. In the parameter regime of equal gain and damping rates, see

Fig. 8.1(b), both spins are blockaded: there is no 1:1 phase locking of the driven spin

to the drive as well as no 1:1 phase locking between both spins. They both align in

and out of phase corresponding to 2:1 phase locking. Remarkably, the undriven spin

does exhibit 1:1 phase locking to the external drive. In other words, the undriven

oscillator synchronizes to the external drive through both (drive-spin and spin-spin)

interference blockades without lifting them. The locking strength is linear in the drive

strength and of third order in the coupling strength. The second system that we study

is a chain of three coupled spin-1 oscillators. An unexpected 1:1 phase locking, in

analogy to the two-spin case, is found between the first and last spin, see Fig. 8.1(c).

However, the central spin mediating this locking is itself not 1:1 phase locked to any

of the two other spins.

This chapter is structured as follows. In Sec. 8.2, we define the Lindblad master

equation of our systems and the measure of quantum synchronization we will use. In

Sec. 8.3, we study the behavior of two spin-1 oscillators in and outside the interference

blockades. In Sec. 8.4, we analyze a system of three coupled spins 1. We discuss

entanglement measures in Sec. 8.5.
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8.2 Model and Quantum Synchronization Measure

We consider models of coupled spin-1 oscillators subject to gain and damping processes,

visualized in Fig. 8.1. The systems are described by the following Lindblad master

equation

d

dt
ρ = ρ̇ = L(ρ) = −i[H, ρ] +

∑

j

Lj(ρ) , (8.2.1)

Lj(ρ) =
γjg
2
D[S+

j S
z
j ](ρ) +

γjd
2
D[S−

j S
z
j ](ρ) , (8.2.2)

where the Hamiltonian H that encodes a coherent drive and spin-spin interactions

will be specified later in Eqs. (8.3.1) and (8.4.1). Both incoherent gain and damping

processes are combined in the Liouvillian Lj and provide limit-cycle stabilization of

the jth spin, see the black wavy arrows in Fig. 8.1(a). The gain and damping rates

of the jth spin are denoted by γjg and γjd and we choose Sz = |1⟩⟨1| − |−1⟩⟨−1| and
S± =

√
2(|±1⟩⟨0| + |0⟩⟨∓1|) as defined in Sec. 2.2. We use the standard notation

D[L](ρ) = LρL† − (L†Lρ+ ρL†L)/2. The steady state for H = 0 is the product state

ρ(0) = |0, 0⟩⟨0, 0|.
A previous work shows that quantum synchronization of a single spin-1 oscillator to

an external resonant drive is observed if γjg ≠ γjd [Roulet and Bruder (2018a)]. For two

resonant spin-1 oscillators, quantum synchronization occurs if γid+γ
j
g ≠ γig+γ

j
d [Roulet

and Bruder (2018b)]. In those works, quantum synchronization is defined as an effect

that is linear in the drive strength or the interaction strength, respectively. If the rate

conditions mentioned above are violated, only higher-order synchronization can be

observed, i.e., the system is in the quantum interference synchronization blockade, see

also Sec. 7.2.2.

A variety of measures to quantify the degree of quantum synchronization has

been proposed in the literature [Ludwig and Marquardt (2013), Hush et al. (2015),

Weiss et al. (2016), Roulet and Bruder (2018a)]. For N spin-1 oscillators, we choose

the synchronization measure SN (ϕ⃗ ) defined in [Roulet and Bruder (2018b)] and

Eq. (7.2.12),

SN (ϕ⃗ ) =

(
3

4π

)N
π∫

0

dθ1 sin(θ1) · · · ×
π∫

0

dθN sin(θN )
〈
θ⃗, ϕ⃗
∣∣∣ ρ
∣∣∣θ⃗, ϕ⃗

〉
− 1

(2π)N
, (8.2.3)

where

∣∣∣θ⃗, ϕ⃗
〉
=

N⊗

j=1

exp(−iϕjS
z) exp(−iθjS

y) |1, 1⟩ . (8.2.4)

This measure is a probability distribution of phases ϕj of each oscillator j that are

defined by projections of the density matrix to spin coherent states
∣∣∣θ⃗, ϕ⃗

〉
, where

|s,ms⟩ = |1, 1⟩ is the extremal spin-1 state. Using SN , we will calculate probability
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distributions of relative phase angles as marginals by integrating over global phases, see,

e.g., Eq. (8.2.14). If the synchronization measure is flat, there is no phase preference,

i.e., no synchronization in the system. Maxima of SN are related to locking of the

oscillator phases. In Eq. (7.2.10), we saw that the synchronization measure of one

spin-s oscillator can be written as

S1(ϕ) =
∑

n,m

csn,m(ϕ)ρn,m , (8.2.5)

where [Tan et al. (2022)]

csn,m(ϕ) =
ei(n−m)ϕ

2π

Γ
(
1 + s+ n+m

2

)
Γ
(
1 + s− n+m

2

)
√
(s+ n)!(s− n)!(s+m)!(s−m)!

. (8.2.6)

Here, we interpret csn,m(ϕ) as the components of an operator cs(ϕ). For spin-1/2 and

spin-1 oscillators, we find explicit expressions for cs(ϕ),

c1/2(ϕ) =
1

2π
+

1

8

(
eiϕS+ + e−iϕS−

)
, (8.2.7)

c1(ϕ) =
1

2π
+

(
3eiϕ

32
S+ +

ei2ϕ

8π
(S+)2 +H.c.

)
. (8.2.8)

For larger spins, the expression of cs becomes more complex, e.g., c3/2(ϕ) features

terms of the form (S+)2S− and S−(S+)2. Due to the tensor-product structure of SN ,

we can express Eq. (7.2.12) in a compact way,

SN (ϕ⃗ ) = Tr


ρ

N⊗

j=1

cs(ϕj)


− 1

(2π)N
=

〈
N⊗

j=1

cs(ϕj)

〉
− 1

(2π)N
. (8.2.9)

In this chapter, we are interested in up to three spin-1 oscillators. Combining

Eqs. (8.2.8) and (8.2.9), for a single spin 1, we obtain

S1(ϕ) =

〈
3

32
eiϕS+ +

ei2ϕ

8π
S+2 +H.c.

〉
, (8.2.10)

and for a system consisting of two spins 1,

S2(ϕAB) =

2π∫

0

dϕB S2(ϕAB + ϕB, ϕB)

=

〈
9π

512
eiϕABS+

AS
−
B +

ei2ϕAB

32π
(S+

AS
−
B )

2 +H.c.

〉
, (8.2.11)

where ϕAB = ϕA −ϕB is the relative phase between oscillator A and B. Note that the

coefficients of Eq. (8.2.11), 9π/512 = 2π(3/32)2 and 1/32π = 2π/(8π)2, are related

to squares of the coefficients of Eq. (8.2.10), where the additional factor of 2π arises
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from the integration over ϕB. Similarly, for three spins, we define

S3(ϕAB, ϕBC) =

2π∫

0

dϕB S3(ϕAB + ϕB, ϕB, ϕB − ϕBC) , (8.2.12)

S3(ϕAB, ϕCA) =

2π∫

0

dϕA S3(ϕA, ϕA − ϕAB, ϕCA + ϕA) . (8.2.13)

The structure of Eq. (8.2.10), i.e., S1 consists of terms ∝ eikϕS+k, allows us to express

the Fourier transform of SN as expectation values of powers of the spin-1 ladder

operators S+
j . In particular, we find that the phase distributions can be written as

S1(ϕj) = 2(m
(1)
j cos(ϕj) +m

(2)
j cos(2ϕj)) ,

S2(ϕij) =

2π∫

0

dϕS2(ϕij + ϕ, ϕ) = 2(m
(1)
ij cos(ϕij) +m

(2)
ij cos(2ϕij)) , (8.2.14)

where ϕij = ϕi − ϕj is the relative phase of two oscillators i and j. Here, we define

the moments

m
(n)
j = ⟨S+n

j ⟩ ×
{

3
32 n = 1 ,
1
8π n = 2 ,

(8.2.15)

m
(n)
ij = ⟨(S+

i S
−
j )

n⟩ ×
{

9π
512 n = 1 ,
1

32π n = 2 ,
(8.2.16)

where the label n corresponds to n:1 phase locking and equals the number of maxima in

the synchronization measure. Thus, these moments are linked to the Fourier coefficients

of the phase distributions and we will use them to quantify synchronization.

8.3 Two Spins and an External Drive

In this section, we consider two coherently coupled spins 1 labeled A and B. A

resonant coherent drive with strength ΩA acts on spin A, see Fig. 8.1(b). The system

is described by Eq. (8.2.1) with the Hamiltonian in the rotating frame of the drive

H =
ΩA

2
S+
A +

gAB

2
S+
AS

−
B +H.c. , (8.3.1)

where gAB denotes the strength of the coherent coupling. We choose both ΩA and

gAB to be positive. Note that both spins are assumed to be in resonance with the

coherent drive, i.e., the frequency of the external drive is chosen to match exactly the

level spacing of the spins.
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8.3.1 In the Interference Blockade

To study two spins 1 in the quantum interference synchronization blockade, we set the

gain and damping rates γAg = γAd = γBg = γBd = γ to be equal. In the case of ΩA = 0,

we obtain

ρss =

(
1− 8g2AB

8g2AB + γ2

)
ρ(0) +

32g2AB

32g2AB + 4γ2
ρ(∞) − i

gABγ

16g2AB + 2γ2
[S+

AS
−
B +H.c., ρ(0)] ,

(8.3.2)

where

ρ(∞) =
1

8

∑

J=1,2

∑

M=−1,1

|J,M⟩c ⟨J,M |c +
1

4

∑

J=0,2

|J, 0⟩c ⟨J, 0|c =
1

32
(S+

AS
−
B + S−

AS
+
B )

2

(8.3.3)

is the state in the limit gAB ≫ γ. It is diagonal in the combined spin basis |J,M⟩c
of two spins 1. We now consider a drive that acts on spin A as a small perturbation.

This results in the following leading-order contributions in ΩA/γ to the first moment

of the synchronization measure of the undriven spin B

m
(1)
B ≈ 3

4

g3ABΩA(64g
4
AB + 348g2ABγ

2 + 135γ4)

(8g2AB + γ2)(4g2AB + 9γ2)(16g4AB + 72g2ABγ
2 + 9γ4)

gAB≫γ
≈ 3ΩA

32gAB

gAB≪γ
≈ 5g3ABΩA

4γ4
, (8.3.4)

as well as to the second moment

m
(2)
B ≈ 3

2π

g2ABΩ
2
A

(g2AB + γ2)(4g2AB + γ2)

× 96g8AB + 656g6ABγ
2 + 518g4ABγ

4 + 108g2ABγ
6 + 81γ8

(8g2AB + γ2)(4g2AB + 9γ2)(16g4AB + 72g2ABγ
2 + 9γ4)

gAB≫γ
≈ 9Ω2

A

128πg2AB

gAB≪γ
≈ 3g2ABΩ

2
A

2πγ4
. (8.3.5)

The undriven spin B exhibits a 1:1 phase locking to the drive with a magnitude that to

leading order is linear in ΩA/γ, for both large and small gAB/γ. The second moment

of the combined synchronization measure for both spins up to second order in ΩA/γ
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is proportional to

m
(2)
AB ≈ 1

8π

g2AB

8g2AB + γ2

(
1− Ω2

A(848g
6
AB + 4600g4ABγ

2 + 1905g2ABγ
4 + 702γ6)

(8g2AB + γ2)(4g2AB + 9γ2)(16g4AB + 72g2ABγ
2 + 9γ4)

)

gAB≫γ
≈ 1

64π
− 53Ω2

A + 4γ2

2048πg2AB

gAB≪γ
≈ g2AB

8πγ2

(
1− 26Ω2

A + 24g2AB

3γ4

)
. (8.3.6)

Analogously, for a vanishing spin-spin interaction strength gAB = 0, we obtain

ρss =

(
1− 8Ω2

A

8Ω2
A + γ2

)
ρ(0) − Ω2

A

8Ω2
A + γ2

[S+
A + S−

A , ρ
(0)]2 − i

ΩAγ

8Ω2
A + γ2

[S+
A + S−

A , ρ
(0)] ,

(8.3.7)

leading to the following contribution to the second moment of the synchronization

measure of the driven spin A up to second order in gAB/γ,

m
(2)
A ≈ 1

2π

Ω2
A

8Ω2
A + γ2

(
1− g2AB(448Ω

4
A + 456Ω2

Aγ
2 + 189γ2)

(8Ω2
A + γ2)(16Ω4

A + 30Ω2
Aγ

2 + 9γ4)

)

ΩA≫γ≈ 1

16π
− 28g2AB + γ2

128πΩ2
A

ΩA≪γ≈ Ω2
A

2πγ2

(
1− 21g2AB + 8Ω2

A

γ4

)
. (8.3.8)

Note that for equal gain and damping rates, the first moment m
(1)
A of the synchroniza-

tion measure of the single spin A and m
(1)
AB of the combined synchronization measure

vanish, i.e., the system exhibits two quantum interference blockades.

In conclusion, we expand the steady state ρss =
∑∞

n=0 ϵ
nρ(n) of Eq. (8.2.1) in powers

of ϵ for the small Hamiltonian ϵH of Eq. (8.3.1). The terms ρ(n) obey

∑

j

Lj(ρ
(n+1)) = i[H, ρ(n)] . (8.3.9)

The synchronization measures up to a combined fourth order in ΩA/γ and gAB/γ are

S2(ϕAB) ≈
g2AB

πγ2
cos(2ϕAB)

(
1

4
− 2

g2AB

γ2
− 13

6

Ω2
A

γ2

)
, (8.3.10)

S1(ϕA) ≈
Ω2
A

πγ2
cos(2ϕA)

(
1− 21

g2AB

γ2
− 8

Ω2
A

γ2

)
, (8.3.11)

S1(ϕB) ≈
5g3ABΩA

2γ4
cos(ϕB) +

3g2ABΩ
2
A

πγ4
cos(2ϕB) . (8.3.12)

In this regime of equal gain and damping rates there is no cos(ϕA) and cos(ϕAB)

contribution since both m
(1)
A and m

(1)
AB vanish. This is a consequence of the (drive-spin
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and spin-spin) interference blockades that persist for arbitrary drive and coupling

strengths: no 1:1 phase locking of spin A to the drive and no 1:1 phase locking between

spins A and B. However, the synchronization measure S1(ϕB) in Eq. (8.3.12) features

cos(ϕB). Hence, there is an effective first-order ∝ ΩA 1:1 phase locking of the undriven

spin-1 oscillator to the drive. This 1:1 phase locking is surprising, since spin A does

not distinguish between the phase of the drive and its polar opposite as well as spin B

does not distinguish between in and out of phase locking to spin A. We refer to this

as synchronization through the interference blockade. It is mediated by a third-order

∝ g3AB spin-spin interaction as we will explain in more detail below. The second term

in Eq. (8.3.12) denotes 2:1 phase locking of spin B.

In the synchronization regime where both ΩA and gAB are small compared to γ,

the single-maximum 1:1 phase locking of the undriven spin B to the drive is a small

fourth-order effect. However, there is neither 1:1 phase locking of oscillator A to the

drive nor between oscillators A and B at any order in ΩA and gAB. Both the phase

distribution of oscillator A and the distribution of the relative phase of oscillators A

and B do not allow to distinguish between the phase angle of the drive and its polar

opposite. For any ΩA and gAB, only the phase distribution of oscillator B uniquely

reflects the phase of the drive.

This behavior can be traced back to the destructive interference of various coherences

that build up. In short, even if spin A does not show 1:1 phase locking to the drive,

the phase of the drive is nevertheless imprinted in the coherences of the full density

matrix. Therefore, spin B can exhibit 1:1 phase locking. The contributions of the

coherences to the first moment of the synchronization measure of spin A cancel but

not for spin B.

For a detailed explanation, we note that the choice of equal gain and damping

rates introduces a symmetry: the master equation defined in Eq. (8.2.1) with the

Hamiltonian Eq. (8.3.1) is invariant under the transformation that effectively exchanges

the states |j⟩ ↔ |−j⟩,

S±
j → ZS±

j Z† = S∓
j , S

z
j → ZSz

jZ† = −Sz
j , (8.3.13)

where

Z = exp(iπ(Sx
A + Sx

B)), S
x
j = (S+

j + S−
j )/2 . (8.3.14)

We find L(ZρZ†) = ZL(ρ)Z†, which implies ρss = ZρssZ†. Using the invariance of

the steady state under the symmetry transformation defined in Eq. (8.3.13), it follows

that ⟨S+
A ⟩ = ⟨S−

A ⟩ and ⟨S+
AS

−
B ⟩ = ⟨S−

AS
+
B ⟩, hence m

(1)
A ∝ ⟨S+

A ⟩ and m
(1)
AB ∝ ⟨S+

AS
−
B ⟩

are real. Since the master equation Eq. (8.2.1) only consists of real parameters and

ρ(0) is real, even orders ρ(2n) of the perturbation expansion of the steady state are

real and odd orders ρ(2n+1) are purely imaginary, see Eq. (8.3.9). At least up to a

combined fourth order in ΩA and gAB, both m
(1)
A and m

(1)
AB only depend on ρ(2n+1),

so they must be purely imaginary. Taking into account the symmetry arguments from

above, they must vanish in the interference blockade: the individual coherences do
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Figure 8.2: Synchronization measures S1 and S2, see Eqs. (8.2.3) and (8.2.14), for γjd = γjd = γ,
ΩA/γ = 0.1, and gAB/γ = 0.15. (b) Combined synchronization measure S2(ϕA, ϕB). (a),(d)
Single synchronization measures S1(ϕA) and S1(ϕB) as marginals of (b). (c) Combined
synchronization measure S2(ϕAB). Both S2(ϕAB) and S1(ϕA) exhibit two maxima, whereas
S1(ϕB) of the undriven spin in panel (a) is characterized by only one maximum.

not vanish but they interfere destructively, ⟨|1⟩⟨0| ⊗ 1⟩ = −⟨|0⟩⟨−1| ⊗ 1⟩, implying

⟨S+
A ⟩ = 0.

Spin A can be intuitively interpreted as an effective drive acting on spin B mediated

by the spin-spin coupling. Because of the additional coupling, m
(1)
B depends on ρ(2n),

and is therefore real. Thus, the above arguments that explain the interference blockade

of spin A do not apply, and spin B is able to synchronize to the external drive. For

m
(1)
B , only the terms of order gABΩA interfere destructively but terms of order g3ABΩA

survive which we discuss in more detail in Sec. 8.3.2.

In Fig. 8.2, we plot the individual synchronization measures S1(ϕA) and S1(ϕB)

as well as the combined measures S2(ϕA, ϕB) and S2(ϕAB = ϕA − ϕB), that are

defined in Sec. 8.2, evaluated for the numerically exact steady state of Eq. (8.2.1). As

expected from Eqs. (8.3.10) to (8.3.12), both S1(ϕA) and S2(ϕAB) show two maxima,

see Figs. 8.2(c) and 8.2(d). These two distributions imply that spin A locks with two

preferred phases to the drive and spin B locks with two preferred phases to spin A.

Therefore, one could naively conclude that spin B also exhibits two maxima in its phase

distribution. However, this is not true in general. Figure 8.2(b) shows that the maxima

of the combined quantum synchronization measure lie at (ϕA, ϕB) ∈ {(0, 0), (π, 0)},
leading to the single maximum of S1(ϕB), see Fig. 8.2(a).

In Fig. 8.3, we show moments that reflect the synchronization behavior, see

Eqs. (8.2.15) and (8.2.16), for various drive and coupling strengths. As predicted by

Eqs. (8.3.10) to (8.3.12), S1(ϕB) exhibits a first moment, see Fig. 8.3(c). In contrast,

the first moment vanishes for S1(ϕA) and S2(ϕAB), see Figs. 8.3(a) and 8.3(b). All
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Figure 8.3: Synchronization in detail. (a)–(f) First (n = 1) and second (n = 2) moments
indicating one and two maxima in the corresponding synchronization measures. The white
curves are contour lines of the moments at 5×10−4. (g) Ratio of the second and first moment

of spin B. The black curve indicates |m(2)
B /m

(1)
B | = 1 and the gray dashed lines denote the

corresponding theoretical prediction ΩA = 5πgAB/6 based on Eq. (8.3.12). (h) Maximum
change of state populations, see Eq. (8.3.15).

synchronization measures show a two-maxima contribution, see Figs. 8.3(d) to 8.3(f).

In Fig. 8.3(g), we plot the ratio of the second and first moment of the undriven

spin B indicating that S1(ϕB) exhibits predominantly two maxima if ΩA ≫ gAB

and one maximum if ΩA ≪ gAB. In Fig. 8.3(h), we show the maximum change in

populations between the numerically obtained density matrix ρss and a reference state

ρ = ρ(0) = |0, 0⟩⟨0, 0| [Koppenhöfer and Roulet (2019)]

pmax(ρ) = max
n

∣∣ρssn,n − ρn,n
∣∣ . (8.3.15)

It can be used to identify the regime of synchronization in which the limit-cycle state

is only weakly perturbed, i.e., pmax ≲ 0.1, which we find to be gAB,ΩA ≲ 0.1γ. In this

region, the fourth-order approximation agrees with the numerical results presented in

Figs. 8.3(a) to 8.3(g). Moreover, entanglement measures are small below gAB/γ ≲ 0.1,

see Sec. 8.5. The relation between quantum synchronization and entanglement has been

studied for, e.g., spins [Roulet and Bruder (2018b), Chepelianskii and Shepelyansky

(2024)] and harmonic oscillators [Mari et al. (2013), Lee et al. (2014), Garg et al.

(2023)].

Note that if the gain and damping rates are chosen such that only one of either a

drive-spin or a spin-spin interference blockade exists, this blockade does not persist

up to large drive and coupling strengths: the drive-spin blockade is lifted by the

spin-spin interaction and vice versa. Since in these cases m
(1)
A and m

(1)
AB are not zero,

it is not surprising that also m
(1)
B is not zero. Only when imposing both blockades

simultaneously by equal gain and damping rates for all spins, as described in this
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section, the blockades persist.

8.3.2 Outside the Interference Blockade

In the previous section, synchronization is blockaded perfectly. We now discuss the

behavior of the two-spin system for inverted gain and damping rates γAg = γBd = γg

and γAd = γBg = γd close to the blockade. Here, both m
(1)
A and m

(1)
AB do not vanish.

Considering the drive that acts on spin A as a small perturbation leads to the following

leading-order contributions in ΩA/γ,

m
(1)
A =i

3ΩA

16

γg − γd
γgγd

(
1− 4g2AB

(γ2g + 4γgγd + γ2d)

γ2gγ
2
d

+O
(
g4AB

γ4d

))
, (8.3.16)

m
(1)
B =

3ΩAgAB

8γgγd

(
(γd − γg)

2

γgγd
+O

(
g4AB

γ4d

)

+ g2AB

320γ3gγ
3
d + 23(γ4gγ

2
d + γ2gγ

4
d)− 32(γ6g + γ6d)− 106(γ5gγd + γgγ

5
d)

3γ3gγ
3
d(2γg + γd)(γg + 2γd)

)
.

(8.3.17)

The first moment of the combined synchronization measure,

m
(1)
AB =

i9πgAB(

from |0,1⟩⟨1,0|︷ ︸︸ ︷
2(γd − γg)g

2
ABγgγd+

from |−1,0⟩⟨0,−1|︷ ︸︸ ︷
2(γd − γg)g

2
ABγgγd)/256

32g6AB + γ3gγ
3
d + 4g4AB(2γ

2
g + 7γgγd + 2γ2d) + g2ABγgγd(4γ

2
g + 5γgγd + 4γ2d)

×
(4g2AB + γgγd)(

from |0,0⟩⟨1,−1|︷ ︸︸ ︷
(g2AB + γ2g )γd−

from |−1,1⟩⟨0,0|︷ ︸︸ ︷
(g2AB + γ2d)γg)

32g6AB + γ3gγ
3
d + 4g4AB(2γ

2
g + 7γgγd + 2γ2d) + g2ABγgγd(4γ

2
g + 5γgγd + 4γ2d)

=
i9πgAB(γd − γg)(4g

4
AB + g2ABγgγd − γ2gγ

2
d)/256

32g6AB + γ3gγ
3
d + 4g4AB(2γ

2
g + 7γgγd + 2γ2d) + g2ABγgγd(4γ

2
g + 5γgγd + 4γ2d)

,

(8.3.18)

is approximately constant in ΩA/γ. The known interference blockades for m
(1)
A , m

(1)
AB,

and the leading order of m
(1)
B arise for γg = γd, see [Roulet and Bruder (2018a), Roulet

and Bruder (2018b)] and Sec. 8.3.1. Note that the absolute values of the first moments

m
(1)
A , m

(1)
B , and m

(1)
AB are invariant under the exchange of the gain and damping

rates. The contributions of the coherences |i, j⟩⟨k, l| to m(1)
AB are highlighted in the

first line of Eq. (8.3.18). Terms originating from both |0, 1⟩⟨1, 0| and |−1, 0⟩⟨0,−1|
vanish individually, whereas terms proportional to |0, 0⟩⟨1,−1| and |−1, 1⟩⟨0, 0| cancel
in this interference blockade. For m

(1)
B , the coherences |0,−1⟩⟨0, 0| and |0, 0⟩⟨0, 1|

cancel with the coherences |−1, 0⟩⟨−1, 1| and |1,−1⟩⟨1, 0|. Note that contributions to

m
(1)
B of order g3ABΩA and higher do not vanish for equal gain and damping rates, see

Sec. 8.3.1. There, additional coherences |1, 0⟩⟨1, 1| and |−1,−1⟩⟨−1, 0| appear. The

remaining terms of m
(1)
B in the interference blockade can be interpreted as first-order
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Figure 8.4: Synchronization of two spins 1 for inverted rates γAg = γBd = γg and γAd = γBg =
γd. (a), (b) First moments of the individual and combined synchronization measures for
ΩA/(γg+γd) = 10−3 and gAB/(γg+γd) = 0.05, 0.5 (from top to bottom). The inset highlights
the region close to the interference blockade γg = γd. (c), (d) Ratio of the first moments of
spin A and B. The gray line corresponds to Eq. (8.3.19). (e), (f) Maximum change of state
populations, see Eq. (8.3.15).

synchronization ∝ ΩA of the undriven spin B to the drive that acts on spin A mediated

by a third-order spin-spin interaction ∝ g3AB.

We show m
(1)
A , m

(1)
B , and m

(1)
AB in Fig. 8.4. Whenever γg ≠ γd, the symmetry

defined by Eq. (8.3.13) is broken and the interference blockades disappear such that

1:1 drive-spin and spin-spin phase locking exist. Nevertheless, there is a regime in

which |m(1)
A | < |m(1)

B |, see Fig. 8.4(d). Its width can be estimated by expanding the

ratio of the first moments of spin A and spin B to first order in γg/γd − 1. This

expansion can be used to approximatively solve |m(1)
A /m

(1)
B | = 1 by

γg
γd

= 1± 20g3AB

3γ3d
+O(g5AB/γ

5
d) ≈ 1± 160g3AB

3(γg + γd)3
. (8.3.19)

The region in which the undriven spin B exhibits a stronger 1:1 phase locking to the

drive than the driven spin A has an approximate width ∝ g3AB/γ
3
d in terms of the

ratio of gain and damping rates γg/γd.

In addition to the interference blockade, i.e., vanishing m
(1)
A and m

(1)
AB , between spin

A and its drive as well as between both spins we find another synchronization blockade

that is induced by the coupling. This new and additional blockade appears at zeros of

m
(1)
AB and m

(1)
A for values of γg/γd depending on gAB. The solution of m

(1)
AB = 0 for

gAB, γg ≪ γd can be obtained analytically,

γg
γd

=
1

2
(1 +

√
17)

g2AB

γ2d
≈ 1

2
(1 +

√
17)

g2AB

(γg + γd)2
. (8.3.20)
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Figure 8.5: Synchronization measures S2 and S3, for γ
j
g = γjd = γ and gAB = gBC = 0.12γ. (b),

(c) Combined measures S3 for three coupled spin-1 oscillators, see Eqs. (8.2.12) and (8.2.13).
(a), (d), (e) Combined measures S2 for pairs of two spins 1, see Eq. (8.2.14). Even if both
S2(ϕAB) and S2(ϕBC) exhibit two maxima, S2(ϕCA) only shows one maximum.

The approximate solution of m
(1)
A = 0 is obtained for (a) small γg ≪ γd and for (b)

both small gAB, γg ≪ γd,

gAB

γg + γd

(a)
≈ 1.323 , (8.3.21)

γg
γd

(b)
≈ 2√

1 +
√
10

gAB

γg + γd
, (8.3.22)

see Fig. 8.4(c). In the interference blockade γg = γd = γ, contributions to m
(1)
AB

originating from both |0, 1⟩⟨1, 0| and |−1, 0⟩⟨0,−1| vanish individually up to first order

in ΩA/γ, whereas terms proportional to |0, 0⟩⟨1,−1| and |−1, 1⟩⟨0, 0| cancel. In the

coupling-induced blockade, these coherences cancel collectively.

The coupling-induced blockades occur for rather large coupling strengths for which

the steady state of the system deviates significantly from ρ(0). In the regime gAB ≳
γg+γd one obtains pmax(ρ

(∞)) ≲ 0.1, i.e., the steady state is close to ρ(∞), see Fig. 8.4.

8.4 Three Undriven Spins

We now consider a chain of three undriven coupled spin-1 oscillators labeled A, B,

and C,

H =
gAB

2
S+
AS

−
B +

gBC

2
S+
BS

−
C +H.c. , (8.4.1)
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Figure 8.6: Synchronization in detail. (a)–(f) First (n = 1) and second (n = 2) moments
indicating one and two maxima in the corresponding synchronization measures. The white

curves are contour lines of the moments at 5× 10−4. (g) Ratio |m(2)
CA/m

(1)
CA| < 1 of the second

and first moment of the combined measure S2(ϕCA) of spins A and C. (h) Maximum change
of a state populations, see Eq. (8.3.15).

where gAB (gBC) is the coupling strength between spins A and B (B and C). Similar

to Sec. 8.3.1, all gain and damping rates are set equal to γjg = γjd = γ. In Fig. 8.5,

we show both synchronization measures S3(ϕAB, ϕBC) and S3(ϕAB, ϕCA) evaluated

for the numerically exact steady state of Eq. (8.2.1) for three spins. These measures

are defined in Eqs. (8.2.12) and (8.2.13). Moreover, we present the synchronization

measures S2 between all three pairs of spins as marginals. As expected, S2(ϕAB)

and S2(ϕBC) of both pairs of coupled spins exhibit two maxima due to the quantum

interference synchronization blockade, see Figs. 8.5(a) and 8.5(d). However, similar to

the single-maximum locking of the undriven spin B in Fig. 8.2(a), the synchronization

measure between the spins A and C that are not directly coupled exhibits a single

maximum in the phase difference ϕCA, see Fig. 8.5(e). This contradicts the naive

expectation that if S2(ϕAB) and S2(ϕBC) exhibit two maxima, S2(ϕCA) will also exhibit

two maxima. In fact, the synchronization measures S3(ϕAB, ϕBC) and S3(ϕAB, ϕCA)

exhibit maxima at (ϕAB, ϕBC , ϕCA) ∈ {(0, 0, 0), (π, π, 0)} revealing the true locking

behavior: the phases of neighboring spins are either aligned or anti-aligned.

In analogy to Fig. 8.3, we display relevant moments of the three-spin system in

Fig. 8.6. Figures 8.6(a) and 8.6(b) show vanishing 1:1 phase locking between directly

coupled spins. In contrast, Fig. 8.6(c) shows 1:1 phase locking between the spins A

and C that are not directly coupled. Similar to what was found for the undriven

spin B discussed in Sec. 8.3, the quantum synchronization measure between the

uncoupled spins A and C exhibits both non-vanishing first and second moments. All

synchronization measures exhibit a two-maxima contribution, see Figs. 8.6(d) to 8.6(f).

Interestingly, in contrast to the setup of two spin-1 oscillators, Fig. 8.6(g) shows that

the first moment always dominates, i.e., |m(2)
CA| < |m(1)

CA|. For gAB, gBC ≲ 0.1γ, the
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maximum change of state populations pmax ≲ 0.1 is small, see Fig. 8.6(h).

8.5 Entanglement Measures

In this final section of this chapter, we look at entanglement measures for both cases

described in Secs. 8.3 and 8.4: (i) two coherently coupled spin-1 oscillators, one of

which is driven, and (ii) a chain of three coherently coupled spin-1 oscillators. We

compute correlations

C
(n)
ij =

COV
(n)
ij√

COV
(n)
ii COV

(n)
jj

, (8.5.1)

COV
(n)
ij = ⟨(S−

i S
+
j )

n⟩ − ⟨S−n
i ⟩⟨S+n

j ⟩ , (8.5.2)

and entanglement measures

Iij = S(ρi) + S(ρj)− S(ρij) , (8.5.3)

Nj(ρ) =
||ρTj ||1 − 1

2
=
∑

k

|λk| − λk
2

, (8.5.4)

where Iij is the quantum mutual information, S(ρ) is the von Neumann entropy, and

Nj is the negativity. The eigenvalues of ρTj are denoted by λk, where Tj indicates

the partial transpose that only acts on subsystem j. Note that in a two-partite

system, ρTA and ρTB = (ρTA)T have the same eigenvalues and therefore NA = NB.

For quantum systems of dimensions larger than 2 × 3, a necessary condition of

separability is zero negativity [Peres (1996), Horodecki et al. (1996)]. Therefore,

Nj > 0 implies entanglement. For mixed states, both entanglement and classical

correlations contribute to the quantum mutual information Iij .

We want to highlight the following features of correlations between both spins in the

two-spin setup. In Figs. 8.7(b) and 8.7(c), both IAB and NA exhibit a local maximum

between 0.1γ < gAB < γ and below the gray dashed line that indicates the theoretical

prediction ΩA = 5πgAB/6 of |m(2)
B /m

(1)
B | = 1. In this region, the first moment m

(1)
B

of the synchronization measure of spin B is larger than the second moment m
(2)
B ,

indicating 1:1 phase locking, and pmax(ρ
(0)) exhibits a strong change, see Figs. 8.3(g)

and 8.3(h). Therefore, the phase locking through the blockades corresponds to stronger

correlations between the spins. Comparing all three panels Figs. 8.7(a) to 8.7(c), in

this system, the mutual information IAB appears to be a combination of correlations,

e.g., C
(2)
AB, and entanglement.

In Figs. 8.7(d) to 8.7(l), we present the correlations, quantum mutual information,

and negativity between pairs of spin-1 oscillators in the three-spin case. We define Nij

as the negativity of spin i evaluated for the reduced density matrix of the subsystem

of spin i and j. The correlations, mutual information, and negativity of subsystem

AB (BC) exhibit similar qualitative features, e.g., a local maximum of Iij and Nij
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Figure 8.7: Correlation measures for two spins 1 (a)–(c) and three spins 1 (d)–(l). (a)

Correlations C
(2)
AB related to Figs. 8.3(d) to 8.3(f), see Eq. (8.5.2). (b) Quantum mutual

information of spin A and B defined in Eq. (8.5.3). (c) Negativity of spin A, see Eq. (8.5.4).

The gray dashed line denotes the theoretical prediction ΩA = 5πgAB/6 of |m(2)
B /m

(1)
B | = 1,

see Fig. 8.3. (d)–(f) Correlations related to Figs. 8.6(d) to 8.6(f). (g)–(i) Quantum mutual
information of pairs of spins. (j)–(l) Negativity Nij of spin i evaluated for the reduced density
matrix of the subsystem of spin i and j. The black curves are contour lines at 0.01. All
measures are evaluated for the steady state of the Lindblad master equation.

between 0.1γ < gAB (gBC) < γ, like in the two-spin case. The measures of subsystem

CA exhibit local maxima at 0.1γ < gAB, gBC < γ. Here, qualitatively, the measures

of the other two subsystems overlap.

8.6 Conclusion

In this chapter, we have analyzed setups of two and three coupled spin-1 oscillators

in the parameter regime of equal gain and damping rates. In the case of three spins

1, this choice of rates leads to (spin-spin) quantum interference blockades between

all coupled oscillators. In the case of two spins, a drive acting on spin A results in a

second type of a (drive-spin) quantum interference blockade. Both blockades persist

for arbitrarily large drive and coupling strengths.

In the two-spin setup, the blockades manifest themselves in the form of vanishing

first moments of (i) the quantum synchronization measure of spin A as well as of

(ii) the combined synchronization measure of both spins. Spin A synchronizes with

equal probability in and out of phase with the drive with a magnitude proportional to

the square of the drive strength ΩA. Similarly, spin B locks in and out of phase to

spin A with a magnitude proportional to the square of the coupling strength g. The

naive expectation that spin B will therefore also lock with two preferred phases to the

drive fails in general: the undriven spin B exhibits a 1:1 phase locking to the drive
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through both blockades without lifting them. The magnitude of this 1:1 phase locking

is proportional to g3ABΩA corresponding to a first-order locking to the drive mediated

by a third-order spin-spin interaction. Remarkably, the driven spin A exhibits no 1:1

phase locking. If the parameters are chosen such that only one of either a drive-spin or

a spin-spin interference blockade exists, this blockade does not persist up to large drive

and coupling strengths. The drive-spin blockade is lifted by the spin-spin interaction

and vice versa. Only when imposing both blockades simultaneously by equal gain

and damping rates for all spins, the blockades persist. The quantum synchronization

effect described here is not observed for two quantum van der Pol oscillators since

these oscillators do not exhibit the drive-spin blockade. Thus, the blockade between

the oscillators is lifted by the drive, see Sec. 9.3. In the next chapter, we will study

quantum synchronization between two quantum van der Pol oscillators, one of which

is driven.

In a three-spin chain, the combined quantum synchronization measures of both

pairs of directly coupled spins exhibit two maxima. However, similar to the two-spin

case discussed in the previous paragraph, we observe a 1:1 phase locking behavior

between the two not directly coupled spins A and C. Analogously, this locking exists

without lifting the quantum interference blockades in the other two subsystems AB

and BC.

Quantum synchronization thus provides a rich set of interesting features. Even for

systems whose building blocks are the simplest possible quantum limit-cycle oscillators,

unexpected properties arise like the locking of two not directly coupled spins mediated

by an intermediate spin that is itself not locked. An intriguing question for the future

is the study of the competition of single-maximum (indirect coupling) and two-maxima

locking (direct coupling) in geometrically frustrated configurations of spin-1 oscillators.

Another future research topic is to study quantum synchronization in a chain of three

identical quantum van der Pol oscillators. Since in this case two blockades between

both pairs of coupled oscillators exist, a similar effect of synchronization through the

blockades might be observed.

The results and figures of this chapter have been published in parts in [Kehrer et al.

(2024b)].
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Chapter 9

Quantum Synchronization of

Nonreciprocally Coupled Quantum

van der Pol Oscillators

This chapter is based on the results published in:

T. Kehrer and C. Bruder,

Quantum synchronization blockade induced by nonreciprocal coupling,

Physical Review A 112, 012223 (2025)

9.1 Motivation

In 1687, Newton’s laws of motion have been published. The third law reads:

“Lex III: Actioni contrariam semper & æqualem esse reactionem: sive corporum

duorum actiones in se mutuo semper esse æquales & in partes dirigi.” [Newton (1687)]

(latin for “Law III: To every Action there is always opposed an equal Reaction: or

the mutual actions of two bodies upon each other are always equal, and directed to

contrary parts.” [Newton (1729)]).

In this sentence, so-called reciprocal interactions are described. In contrast, interac-

tions between two agents A and B are called nonreciprocal if the response of A to an

action of B differs from the response of B to an action of A. Nonreciprocal interactions

can only appear in nonequilibrium systems [Ivlev et al. (2015)]. In particular, in

active matter, i.e., systems composed of active agents [Ramaswamy (2010), Schweitzer

(2019)], nonreciprocal interactions have been intensively studied in classical models.

Prime examples of such active states are the so-called traveling-wave states. In nonre-

ciprocal models like the Lotka-Volterra predator-prey model [Lotka (1920), Volterra

(1926), Bacaër (2011)] these states are associated to two different agents, one of which

(predator) is hunting the other (prey). More recently, phase transitions [Fruchart

et al. (2021)] and frustration [Hanai (2024)] in systems of nonreciprocal oscillators
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Figure 9.1: Schematic overview of two coherently and dissipatively coupled, driven oscillators
A and B. (a) Each oscillator is subject to single-phonon gain and two-phonon loss. The
coherent coupling gABe

iϕ is denoted by a solid double arrow and the dissipative coupling g̃
by a wavy double arrow. An external drive ΩA represented by a solid arrow is applied to
A. The solid (dashed) arc visualizes (bistable) locking between the oscillators. The insets
are qualitative plots of the combined synchronization measure P2, an effective probability
distribution of the relative phase ϕAB. (b) Schematic regions labeled by the steady-state
values of ϕAB at which P2 exhibits a maximum. Each corner/arrow head corresponds to
the regime in which this parameter is large compared to the others. Dashed lines indicate
approximate transitions.

have been investigated. First steps toward nonreciprocity in quantum systems have

been taken, e.g., in non-Hermitian quantum mechanics [Hatano and Nelson (1996)],

cascaded networks [Roth and Hammerer (2016), Lorenzo et al. (2022)], and topological

networks [Wanjura et al. (2020), Wächtler and Platero (2023)]. Lately, investiga-

tions of the effects of nonreciprocal interactions on quantum synchronization have

started [Nadolny et al. (2025a)].

In this chapter, we consider systems of two coupled quantum limit-cycle oscillators

and study the interplay of three competing quantum synchronization mechanisms:

phase locking, antiphase locking, and bistable locking. These three effects are induced

by an external coherent drive that acts on one of the two quantum oscillators as

well as by a coherent and dissipative coupling that yield an effective nonreciprocal

interaction between the oscillators. The two couplings can be tuned such that the

nonreciprocal interaction even becomes unidirectional [Metelmann and Clerk (2015)].

A schematic overview of the phase-locking regimes is presented in Fig. 9.1. To quantify

quantum synchronization, we employ a common measure. We show that the effective

interaction leads to synchronization blockades. One blockade occurs between the

undriven oscillator and the external drive in the unidirectional case when oscillator A

does not influence oscillator B. The second blockade occurs between both oscillators

when the effective interaction is close to being unidirectional. A mean-field analysis

reproduces this behavior. To understand this blockade in the quantum case, we make

use of the quantum synchronization measure evaluated for a perturbation expansion

of the steady state.

This chapter is structured as follows. In Sec. 9.2, we introduce the Lindblad master

equation which describes the gain and damping processes that stabilize the quantum
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limit cycles and define suitable quantum synchronization measures. We start our

analysis by considering two coherently coupled oscillators, one of which is driven

externally, in Sec. 9.3. Then, we introduce a dissipative coupling and study its effect

both in the absence and in the presence of the external drive in Sec. 9.4. After studying

frequency synchronization in Sec. 9.5 we simulate quantum trajectories in Sec. 9.6. In

Sec. 9.7, we analyze the blockades induced by the nonreciprocal interactions. In the

last section, Sec. 9.8, we compare the phase diagram of our quantum model to the

ones of classical analogues that are defined by the corresponding mean-field equations.

9.2 Model and Quantum Synchronization Measure

We consider two limit-cycle oscillators A and B, stabilized by single-phonon gain at

rate γjg and two-phonon damping at rate γjd [Lee and Sadeghpour (2013)],

d

dt
ρ = ρ̇ = L(ρ) = −i[H, ρ] + L̃(ρ) , (9.2.1)

L̃(ρ) =
γAg
2
D[a†](ρ) +

γBg
2
D[b†](ρ) +

γAd
2
D[a2](ρ) +

γBd
2
D[b2](ρ) . (9.2.2)

The operators a(†) = a
(†)
A and b(†) = a

(†)
B denote the annihilation (creation) operators of

system A and B. The Hamiltonian H will be defined in the individual sections below

and contains coherent drive and coupling terms. Later, we will introduce an additional

dissipative coupling between both oscillators to create an effective unidirectional

coupling. A schematic overview of the system is given in Fig. 9.1.

To study quantum synchronization phenomena in this model, we have to choose

an appropriate quantitative measure of synchronization. In previous works, several

measures have been defined [Ludwig and Marquardt (2013), Ameri et al. (2015), Hush

et al. (2015), Weiss et al. (2016), Roulet and Bruder (2018a), Jaseem et al. (2020a)]. In

the present study, we will follow [Hush et al. (2015), Weiss et al. (2016)] and consider

effective probability distributions of phases of quantum oscillators. These distributions

are based on the phase states [Barak and Ben-Aryeh (2005)], see also Eq. (7.1.6),

|ϕ⟩ = 1√
2π

∞∑

n=0

einϕ |n⟩ . (9.2.3)

For a single oscillator, the measure P1 is given by

P1(ϕ) = ⟨ϕ| ρ |ϕ⟩ − 1

2π
=

1

2π

∞∑

n,m=0

ei(m−n)ϕρn,m − 1

2π

=
1

2π

∞∑

k=1

∞∑

n=0

(eikϕρn,n+k + e−ikϕρn+k,n) , (9.2.4)

where ρn,m = ⟨n| ρ |m⟩. The sum over n in the last line of Eq. (9.2.4) covers all matrix

elements that lie on the kth off-diagonal. The contribution for m − n = 0 reduces
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to Tr[ρ]/2π = 1/2π and cancels the second term in the first row of Eq. (9.2.4). The

remaining matrix elements ρn+k,n = Tr
[
ãkρ
]
and ρn,n+k = Tr

[
ã†kρ

]
in Eq. (9.2.4) are

identified as expectation values of an operator ã,

ã =
∞∑

n=0

|n⟩⟨n+ 1| , ãk =
∞∑

n=0

|n⟩⟨n+ k| , (9.2.5)

which is related to the Susskind-Glogower operator [Susskind and Glogower (1964)].

Therefore, this synchronization measure can be rewritten in a compact form,

P1(ϕ) = Tr[p(ϕ)ρ]− 1

2π
= ⟨p(ϕ)⟩ − 1

2π
=

1

2π

∞∑

k=1

e−ikϕ⟨ãk⟩+H.c. , (9.2.6)

where

p(ϕ) =
1

2π
1+

1

2π

∞∑

k=1

(e−ikϕãk +H.c.) (9.2.7)

is similar to Eqs. (8.2.7) and (8.2.8). The moments of P1,

m(n) =

2π∫

0

dϕP1(ϕ)e
inϕ = ⟨ãn⟩ , (9.2.8)

that are linked to the discrete Fourier transformation of the phase distribution, are

expectation values of powers of ã. In Ch. 8, we have seen that moments are very

useful for classifying different types of phase locking since they quantify the weight of

the n-maxima term in the phase distribution. Therefore, they can be used to identify

switches between e.g., phase locking and bistable phase locking.

In the following paragraphs, we want to gain a better understanding of the operator

ã. As an introductory example, let us study the expectation value of ã for an oscillator

in a coherent state |α⟩,

⟨α| ãk |α⟩ = e−|α|2
∞∑

n,m,j=0

α∗nαm

√
n!m!

⟨n|j⟩ ⟨j + k|m⟩ = e−|α|2
∞∑

n=0

α∗nαn+k

√
n!(n+ k)!

= αk e−|α|2
∞∑

n=0

|α|2n
n!
√
(n+ 1) . . . (n+ k)

. (9.2.9)

Without the square root in the denominator, the series in Eq. (9.2.9) would equal the

exponential function of |α|2. The expression for coherent states close to the origin,

i.e., in the limit |α| ≪ 1, follows directly from a Taylor expansion,

⟨α| ãk |α⟩
|α|≪1
≈ αk

√
k!
. (9.2.10)

In this limit, ã effectively becomes a phase operator that measures the phase of a
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coherent state. In contrast to S′ = ⟨a⟩/
√

⟨a†a⟩, see Eq. (7.1.5), the expectation value

⟨α| ãk |α⟩ vanishes for coherent states located at the origin that are considered to show

no form of quantum synchronization, i.e., no phase preference.

The limit of large |α| ≫ 1 is more subtle. From the inequality

e|α|
2 − 1

|α|2 =

∞∑

n=0

|α|2n
n!(n+ 1)

≤
∞∑

n=0

|α|2n
n!
√
n+ 1

≤
∞∑

n=0

|α|2n
n!

= e|α|
2
, (9.2.11)

one can naively guess that the expression in the center scales like ∝ e|α|
2
/|α|. For

large |α| ≫ 1, terms of small n become less relevant. Using Stirling’s approximation

of the Gamma function Γ(n+ 1) = n!, see Eq. (8.327.2) of [Gradshteyn and Ryzhik

(2015)],

Γ(n+ 1)
n≫1≈

√
2πn

(n
e

)n
, (9.2.12)

we see that

lim
n→∞

Γ
(
n+ k

2 + 1
)

Γ(n+ 1)
√
(n+ 1) . . . (n+ k)

= lim
n→∞

(
n+ k

2

)n+ k
2

nne
k
2n

k
2

= lim
n→∞

e
k
2

(
1 + k

2n

)n+ k
2

= 1 .

(9.2.13)

Therefore, the denominator in the last line of Eq. (9.2.9) can be replaced by Γ(n+

k/2 + 1),

⟨α| ãk |α⟩
|α|≫1
≈ αk e−|α|2

∞∑

n=0

|α|2n
Γ
(
n+ k

2 + 1
) =

(
α

|α|

)k

, (9.2.14)

where in the last step the index shift n → n − k/2 was used. Thus, for coherent

states, the absolute value of ⟨α| ãk |α⟩ is upper bounded by S′. In conclusion, ⟨α| ã |α⟩
measures the phase of coherent states. For large |α| ≫ 1, it is similar to S′ and for

small |α| ≪ 1 it vanishes linearly in α which is a more adequate behavior than S′.

Similar to Eq. (8.2.9), for a system containing N quantum oscillators, we consider

the following synchronization measure,

PN (ϕ⃗ ) =
〈
ϕ⃗
∣∣∣ ρ
∣∣∣ϕ⃗
〉
− 1

(2π)N
=

〈
N⊗

j=1

p(ϕj)

〉
− 1

(2π)N
, (9.2.15)

that is based on tensor products of phase states

∣∣∣ϕ⃗
〉
=

N⊗

j=1

|ϕj⟩ . (9.2.16)

In Eq. (9.2.15), this measure is rewritten as tensor products of p(ϕj) defined in

Eq. (9.2.7). Therefore, PN contains terms with various combinations of e−ikϕj ãkj and
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their Hermitian conjugates that act on the jth oscillator. Thus, the moments of the

phase distributions PN are given by expectation values of products of ã
(†)kj
j .

The phase distribution measure P2(ϕAB) of the relative phase ϕAB = ϕA − ϕB of

two oscillators reads

P2(ϕAB) =

2π∫

0

dϕB P2(ϕAB + ϕB, ϕB) =
1

2π

∞∑

k=1

e−ikϕAB ⟨(ãAã
†
B)

k⟩+H.c. , (9.2.17)

similar to Eq. (8.2.11). Due to the operator structure of PN mentioned above, we can

define the moments of these phase distributions for individual phases ϕj and relative

phases ϕij as

m
(n)
j = ⟨ãnj ⟩ , (9.2.18)

m
(n)
ij = ⟨(ãi ã

†
j)

n⟩ . (9.2.19)

9.3 Coherently Coupled Oscillators

In previous work [Lee and Sadeghpour (2013)], two distinct cases have been studied: (i)

a single driven limit-cycle oscillator and (ii) two coherently coupled identical limit-cycle

oscillators, i.e, with gain and damping rates γAg = γBg and γAd = γBd but γAg ̸= γAd .

The single oscillator locks to the phase of the external drive with a phase shift of

−π/2. Note that in the context of quantum synchronization the existence of a single

maximum of the synchronization measure at ϕ0 is referred to as ‘phase locking to ϕ0’,

i.e., this maximum does not need to be infinitely sharp. The two coherently coupled

oscillators were found to be in the quantum synchronization blockade and exhibit

bistable phase locking. These two cases are the harmonic-oscillator-like analogues of

[Roulet and Bruder (2018a), Roulet and Bruder (2018b)], see also Sec. 7.2.2.

Here, we first consider the combination of both cases, i.e., two coherently coupled

identical limit-cycle oscillators, one of which is driven externally. The spin-1 equivalent

is discussed in the previous chapter. In the majority of the following sections, all gain

and damping rates are set to be equal γAd = γBd = γAg = γBg = γ. For this choice, the

oscillators are in the blockade and neither in the classical limit γjd ≪ γjg nor in the

quantum limit γjd ≫ γjg . The system is described by Eq. (9.2.1) and the Hamiltonian

H =
ΩA

2
a† +

gAB

2
eiϕa†b+H.c. . (9.3.1)

In the original description of the synchronization behavior of identical quantum limit-

cycle oscillators [Lee and Sadeghpour (2013)], two separate locking mechanisms can

be identified. First, a driven oscillator A tends to align its phase to the one of the

external drive plus a shift of −π/2. In the limit where another coupled oscillator

B identifies the driven oscillator A as an effective drive, the relative phase between

both oscillators will be ϕAB = ϕA − ϕB = ϕ+ π/2. The parameter ϕ is the complex

phase of the coherent coupling between A and B, defined in Eq. (9.3.1). Second, the
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Figure 9.2: Probability distribution of the relative phase of two identical oscillators for
ϕ = −π/2 and g̃ = 0. (a) Fixed interaction strength gAB = 0.1γ. The dash-dotted black curve
denotes the maxima of P2. (b) P2(0) as a function of gAB . The dotted black curve denotes
the transition from two maxima to one maximum. In both panels (a) and (b), the color is
scaled linear in the interval [−10−4, 10−4] and logarithmic elsewhere. The dashed black curves

indicate where m
(2)
AB = 0 and the solid black curves indicate where |m(1)

AB| = |m(2)
AB|. (c)–(e)

First moments of the phase distributions P1(ϕA), P1(ϕB), and P1(ϕAB) showing lifting of
the blockade.

probability distribution of the relative phase for two coherently coupled undriven

oscillators will exhibit two maxima at different values ϕAB = ϕ, ϕ + π. Therefore,

these two locking mechanisms compete in the following sense: depending on the ratio

of drive strength and coupling strength, the combined synchronization measure either

exhibits one maximum or two maxima.

In Fig. 9.2, the transition from two maxima to one maximum of the combined

synchronization measure for ϕ = −π/2 is visualized. For small drive strengths, P2

exhibits two maxima at ϕAB = ±π/2 that merge into a single maximum at ϕAB = 0

for a sufficiently large drive strength. In Fig. 9.2(a) the dash-dotted black curve

highlights local maxima of P2, whereas in Fig. 9.2(b), the dotted curve indicates the

point of transition from two maxima to one maximum. The maxima merge at values

of ΩA between the dashed black line where m
(2)
AB = 0 and the solid black line that

indicates |m(1)
AB| = |m(2)

AB|. In Figs. 9.2(c) to 9.2(e), the non-vanishing first moments of

P1(ϕA), P1(ϕB), and P1(ϕAB) are shown. An analogue of the drive-spin blockade of

Ch. 8 does not exist for quantum van der Pol oscillators. Therefore, m
(1)
A is not zero

here. Moreover, the blockade between both oscillators m
(1)
AB = 0 only exists for small

drive strengths, i.e., it is lifted by the drive. The effect that single blockades are lifted

by another interaction has been mentioned in Sec. 8.3.1 for spin-1 oscillators.

131



Chapter 9 Quantum Synchronization of Nonreciprocally Coupled Quantum van der

Pol Oscillators

9.4 Coherently and Dissipatively Coupled Oscillators

We now add a dissipative coupling g̃D[a+ b](ρ) between the two oscillators to the

Lindblad master equation Eq. (9.2.1). This dissipative coupling can be realized by

introducing an auxiliary rapidly decaying cavity [Metelmann and Clerk (2015)], see

Sec. 2.3.2. The Lindblad master equation of the full three-oscillator model reads

ρ̇ =− i

[
ΩA

2
a† +

gAB

2
eiϕa†b+

g

2
(b†c+ c†a) + H.c., ρ

]
+
κ

2
D[c](ρ)

+
γAg
2
D[a†](ρ) +

γBg
2
D[b†](ρ) +

γAd
2
D[a2](ρ) +

γBd
2
D[b2](ρ) . (9.4.1)

Like in the previous section, the two quantum van der Pol oscillators that are denoted

by the annihilation operators a and b are coherently coupled with strength gAB and

phase ϕ. Their gain and damping rates are defined as γjg and γjd. Oscillator A is

driven by an external drive ΩA. Furthermore, both oscillators are coherently coupled

with strength g to a rapidly decaying cavity that is characterized by the operator c.

The decay rate κ of the cavity is significantly larger than any other timescale of the

system.

The Heisenberg equation of motion of the cavity operator c reads

d

dt
c = −i

g

2
(a+ b)− κ

4
c . (9.4.2)

For κ ≫ γjd, γ
j
g we can assume that the cavity reaches its steady state much faster

than oscillator A and B. Therefore, we replace c → −2i(a + b)g/κ obtained from

Eq. (9.4.2) with dc/dt = 0 in Eq. (9.4.1) leading to

g

2
(b†c+ c†a) + H.c.→ 0 , (9.4.3)

κ

2
D[c](ρ) → 2

g2

κ
D[a+ b](ρ) . (9.4.4)

In this limit, the system can be described effectively by two quantum van der Pol

oscillators interacting dissipatively. The resulting Heisenberg equations of motion are

d

dt
a = −i

ΩA

2
1− igABe

iϕ + g̃

2
b+

γAg − 2g̃

4
a− γAd

2
a†a2 , (9.4.5)

d

dt
b = − igABe

−iϕ + g̃

2
a+

γBg − 2g̃

4
b− γBd

2
b†b2 . (9.4.6)

A cumulant expansion to lowest order yields the mean-field equations

⟨ȧ⟩ = −i
ΩA

2
− igABe

iϕ + g̃

2
⟨b⟩+

γAg − 2g̃ − 2γAd |⟨a⟩|2
4

⟨a⟩ , (9.4.7)

⟨ḃ⟩ = − igABe
−iϕ + g̃

2
⟨a⟩+

γBg − 2g̃ − 2γBd |⟨b⟩|2
4

⟨b⟩ . (9.4.8)
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The coupling between A and B depends on the two possible directions

geffA⇀B = −igABe
−iϕ − g̃ , (9.4.9)

geffA↽B = −igABe
iϕ − g̃ , (9.4.10)

and becomes unidirectional for gAB = g̃ and ϕ = ±π/2. The influence of oscillator

B on A (A on B) vanishes for gAB = g̃ and ϕ = (−)π/2, i.e., the effective coupling

becomes unidirectional.

The equations of motion of the amplitude and phase of the oscillators are obtained

by using ⟨aj⟩ = rje
iϕj ,

ṙA =− ΩA

2
sin(ϕA) +

γAg − 2g̃

4
rA − γAd

2
r3A − rB

2
(gAB sin(ϕAB − ϕ) + g̃ cos(ϕAB)) ,

(9.4.11)

ṙB =
γBg − 2g̃

4
rB − γBd

2
r3B +

rA
2
(gAB sin(ϕAB − ϕ)− g̃ cos(ϕAB)) , (9.4.12)

as well as

ϕ̇A =− ΩA

2rA
cos(ϕA)−

rB
2rA

(gAB cos(ϕAB − ϕ)− g̃ sin(ϕAB)) , (9.4.13)

ϕ̇B =− rA
2rB

(gAB cos(ϕAB − ϕ) + g̃ sin(ϕAB)) (9.4.14)

The dynamics of the relative phase obey

ϕ̇AB =− ΩA

2rA
cos(ϕA) +

g̃

2

(
rA
rB

+
rB
rA

)
sin(ϕAB) +

gAB

2

(
rA
rB

− rB
rA

)
cos(ϕAB − ϕ) .

(9.4.15)

9.4.1 No External Drive

In [Walter et al. (2015)], it has been shown that two dissipatively coupled quantum

limit-cycle oscillators lock to a relative phase ϕAB = π. This synchronization behavior

is different to the one induced by a coherent coupling with complex phase ϕ = −π/2,
see Sec. 9.3. In Fig. 9.3(a), we present the combined synchronization measure for a

fixed coherent coupling strength, whereas in Fig. 9.3(b), we vary both the coherent and

dissipative coupling strengths to study the transition between both locking mechanisms

at ΩA = 0. For increasing gAB at fixed g̃, four consecutive changes occur that are

shown in Fig. 9.3(b): the effective coupling becomes unidirectional (solid gray line),

the second moment vanishes m
(2)
AB = 0 (dashed black curve), the two maxima of

the combined synchronization measure originally at ϕAB = ±π/2 turn into a single

maximum at ϕAB = π (dotted black curve), and the first and second moment become

equal |m(1)
AB| = |m(2)

AB| (solid black curve). Counterintuitively, the second moment

does not vanish when the effective coupling becomes unidirectional; this feature

will be studied in more detail in Sec. 9.7. For small gAB, we recognize that the
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Figure 9.3: Combined synchronization measure P2 for ϕ = −π/2 and ΩA = 0. (a) Fixed
interaction strength gAB = 0.3γ. The dash-dotted black curves denote the maxima of P2. (b)
P2(π) as a function of gAB . Here, the dotted curve denotes the transition from two maxima to
one maximum of P2. In both panels, the solid gray lines denote g̃ = gAB . The dashed black

curves indicate where m
(2)
AB = 0 and the solid black curves indicate where |m(1)

AB| = |m(2)
AB|.

The color is scaled linear in the interval [−10−4, 10−4] and logarithmic elsewhere.

boundary between one and two locking phases follows the scaling g̃ ∝ g2AB/γ. This

behavior is reproduced by the mean-field approximation presented in the following.

The perturbative solution of the steady-state radii

rj = r
(0)
j + ϵr

(1)
j =

√√√√ γjg

2γjd
+ ϵr

(1)
j , (9.4.16)

for ΩA = 0 reads

ϵr
(1)
A =− g̃

γAg
(r

(0)
A + r

(0)
B cos(ϕAB))−

gAB

γAg
r
(0)
B sin(ϕAB − ϕ) , (9.4.17)

ϵr
(1)
B =− g̃

γBg
(r

(0)
B + r

(0)
A cos(ϕAB)) +

gAB

γBg
r
(0)
A sin(ϕAB − ϕ) . (9.4.18)

For equal rates γAg = γBg = γAd = γBd = γ, this leads to

ϕ̇AB =g̃ sin(ϕAB)−
g2AB

γ
sin(2(ϕAB − ϕ)) . (9.4.19)

If g̃ ≫ g2AB/γ, a single stable solution ϕAB = π exists. If g̃ ≪ g2AB/γ, the system

experiences bistable locking to ϕAB = ϕ, ϕ+ π. For ϕ = ±π/2, there are two stable

solutions ϕAB = ± arccos
(
−g̃γ/2g2AB

)
if g̃ < 2g2AB/γ and there is a single stable

solution ϕAB = π if g̃ > 2g2AB/γ.

In the configuration of vanishing drive strength, the system exhibits several symme-

tries. First, a global U(1) symmetry, i.e., the invariance of the Liouvillian L under

the transformation aj → eiθaj . The interaction term a†b → e−iθa†eiθb = a†b as
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well as the Lindblad dissipators D[L] → D[eikθL] = |eikθ|D[L] = D[L] are indepen-

dently invariant under this transformation. Second, for ϕ = 0, π, the Liouvillian is

invariant under the transformation a → eiϕb, b → e−iϕa. Here, eiϕa†b + e−iϕab† →
eiϕe−iϕb†e−iϕa+ e−iϕeiϕa†eiϕb = eiϕa†b+ e−iϕab† as well as D[L] are invariant. Note

that a + b → eiϕ(a + e−2iϕb) = eiϕ(a + b) for ϕ = 0, π. Third, for ϕ = ±π/2, the
Liouvillian is real L = L∗ which implies that the steady state ρ0 = ρ∗0 is also real.

Following [Fruchart et al. (2021), Nadolny et al. (2025a)], this invariance can be

interpreted as a generalized PT symmetry. In our setup, this symmetry is defined

as the invariance under the consecutive transformations a↔ b and gAB → −gAB. In

other words, if the oscillators are exchanged, we arrive again at the same physics if

the sign of gAB is flipped too.

9.4.2 With External Drive

Here, we consider all three parameters ΩA, gAB , and g̃ to be nonzero. There are three

competing synchronization effects: First, as described in Sec. 9.3, the external drive

defines a preferred phase to which oscillator A locks with a phase shift of −π/2. If
the coherent coupling with complex phase ϕ is small compared to the drive, it leads

to a locking of oscillator B such that the relative phase results in ϕAB = ϕ + π/2.

Second, the coherent coupling itself leads to a bistable locking of the relative phase to

ϕAB = ϕ, ϕ+ π. Third, the dissipative coupling induces locking to ϕAB = π.

Two cuts through the three-dimensional phase diagram at ΩA = 0.2γ and ΩA = 0.5γ

are presented in Figs. 9.4(a) and 9.4(b). Three regions of the maxima ±ϕmax of P2

can be identified. First, the bottom left corner corresponds to a dominant drive

where the ratio between g̃ and gAB determines the relative phase ϕAB, i.e., 0 or π as

explained in the beginning of this section and visualized in Fig. 9.1. Second, in the

bottom right corner, in which the coherent coupling gAB dominates, the combined

synchronization measure experiences two maxima at ϕAB = ±π/2. Third, in the

top left corner, where the dissipative coupling dominates, the relative phase reaches

ϕAB = π. Figures 9.4(c) and 9.4(d) show the combined synchronization measure along

two line cuts in Fig. 9.4(b) where Fig. 9.4(c) corresponds to the dashed gray line and

Fig. 9.4(d) corresponds to the solid gray line. In Fig. 9.4(e) we present the line cut

shown in Fig. 9.4(d) as well as a fit of a model for ϕmax. This model is defined as the

maximum of Pm,

Pm(ϕAB) =

(
u1
gABΩ

2
A

γ3
− u3

g̃

γ

)
cos(ϕAB) +

u2g̃
2 − u4g

2
AB

γ2
cos(2ϕAB) , (9.4.20)

with ui > 0. The parameter u1 (u3) corresponds to a maximum at 0 (π) and the

parameter u2 (u4) corresponds to maxima at 0 and π (at ±π/2). The powers of the

parameters in Pm were obtained by a perturbation expansion of the steady state in

the parameters gAB, g̃, and ΩA with respect to the equal gain and damping rates

γjd = γjg = γ. For each of the two cosine terms in Eq. (9.4.20), we only consider

the leading order of each parameter up to a combined third order. Since in this
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Figure 9.4: Visualization of different regimes of phase locking. The maxima of the combined
synchronization measure P2 are located at ±ϕmax. (a) ΩA = 0.2γ. (b) ΩA = 0.5γ. The
dashed gray line indicates the line cut at gAB = 10−0.4γ shown in (c) and the solid gray line
indicates the line cut at g̃ = 0.01γ shown in (d). (c), (d) Combined synchronization measures
along line cuts highlighted in (b). The dash-dotted black curves highlight the maxima of P2.
The thin light blue curve corresponds to a fit of the maximum of Eq. (9.4.20) to data of (d).
(e) The thick blue curve corresponds to the line cut in (b) indicated by the solid gray line, i.e.,
the dash-dotted black curves in (d). The inset shows a zoom to the step-like change of ϕmax.

calculation we truncate the Fock space at a finite occupation number, the values of uj
cannot be obtained. To get a rough estimate of these values, we fit the maximum of

Pm to Fig. 9.4(e) at g̃/γ = 0.01. The fit (u1, u2, u3) ≈ (11, 6.0, 8.8)u4 shows a good

match with the numerical data for gAB ≪ γ. Note that this simple model is only

suitable for small g̃ and gAB . For large gAB/γ, the transition of ϕmax from 0 to π/2 is

captured qualitatively. The linear dependence g̃ ∝ gAB for which the second moment

in Eq. (9.4.20) vanishes, see the dashed black curve in Fig. 9.3(b), appears to be valid

even slightly above gAB = γ. Moreover, for ΩA = 0, the equality of the first and

second moment in Eq. (9.4.20) follows g̃ ∝ g2AB/γ for small parameter values up to

slightly above gAB = γ, see the solid black curve in Fig. 9.3(b). For g̃ = 0, the equality

of the first and second moment implies ΩA ∝ √
gAB for small parameter values up to

slightly below gAB = γ, see Fig. 9.2.
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9.5 Frequency Synchronization

Another perspective on these synchronization phenomena is provided by the study

of frequency synchronization. In contrast to before, where we studied the phase

synchronization of oscillators, we now compute their oscillation frequencies. The power

spectrum

Sij...(ω) = lim
t→∞

∞∫

−∞

dτ Cij...(t, τ)e
iωτ , (9.5.1)

is the Fourier transform of the two-time correlations

CAA(t, τ) = ⟨a†(t+ τ)a(t)⟩ , (9.5.2)

CBB(t, τ) = ⟨b†(t+ τ)b(t)⟩ , (9.5.3)

CABAB(t, τ) = ⟨b†(t+ τ)a(t+ τ)a†(t)b(t)⟩ , (9.5.4)

in the steady-state limit t→ ∞. To approximate SAA and SBB , we rewrite the Heisen-

berg equations of motion for ΩA = 0 of the τ -dependent operators as dv⃗/dτ =Mv⃗

where

M ≈ 1

4

(
γAg − 2g̃ − 4γAd nA 2(igABe

−iϕ − g̃)

2(igABe
iϕ − g̃) γBg − 2g̃ − 4γBd nB

)
, (9.5.5)

v⃗ = (⟨a†(t+ τ)a(t)⟩, ⟨b†(t+ τ)a(t)⟩) , (9.5.6)

and nj = ⟨a†j(t + τ)aj(t + τ)⟩. Here, we approximate ⟨a†2(t + τ)a(t + τ)a(t)⟩ ≈
2⟨a†(t+ τ)a(t+ τ)⟩⟨a†(t+ τ)a(t)⟩ using a cumulant expansion of second order and

the fact that in the limit t→ ∞, i.e., evaluating the expectation values in the steady

state, ⟨a(†)n(t+ τ)⟩ = ⟨a(†)n(t)⟩ = 0. For equal rates γjg = γjd = γ, the two eigenvalues

λ± of M read

λ± =
1

4
(γ(1− 2nA − 2nB)− 2g̃)± 1

2

√
g̃2 − g2AB + (nA − nB)2γ2 . (9.5.7)

For nA ≈ nB, we can approximate the imaginary part of λ± by

ω± = Im[λ±] ≈ ±
√
g2AB − g̃2/2 . (9.5.8)

The correlations CAA(t, τ) and CBB(t, τ) effectively measure the time evolution of

the phases of the individual oscillators A and B. The correlation CABAB(t, τ) is used

to obtain the time evolution of the relative phase between both oscillators. Fourier

transforms of these three correlations can be used to distinguish between static and

active steady states. In Figs. 9.5(a) to 9.5(f), we present SAA(ωA), SBB(ωB), and

SABAB(ωAB) for fixed g̃ = 0.01γ as a function of gAB. The dashed curves denote the

approximation ω± and the dotted curves in Figs. 9.5(e) and 9.5(f) denote 2ω±. For

ΩA = 0.5γ (bottom row), the individual spectra SAA and SBB exhibit an additional
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Figure 9.5: Power spectra defined in Eq. (9.5.1) for g̃ = 0.01γ as well as ΩA = 0 (top row) and
ΩA = 0.5γ (bottom row). (a)–(d) The white dashed curves correspond to ω± of Eq. (9.5.8).
(e), (f) The white dotted curves correspond to 2ω± and the arrow in (f) points at a local
maximum that is close to ω±. (g), (h) Location of maxima of SAA. The black dotted curve
in (g) equals the one in Fig. 9.3(b) and indicates the transition between a single maximum
and two maxima in P2.

local maximum at ωj = 0 (j = A,B) that fades out for gAB ≫ g̃. This maximum

corresponds to the possibility that the oscillators lock to the frequency of the drive.

In Fig. 9.5(f) a local maximum at ω± is visible (black arrow) which can be interpreted

as follows: one of the oscillators locks to the drive while the other one is oscillating at

frequency ω±. Similar situations will be discussed for classical oscillators in Sec. 9.8.1.

We show the location of the maxima of SAA in Figs. 9.5(g) and 9.5(h). The dotted

curve in Fig. 9.5(g) is identical to the one in Fig. 9.3(b) and indicates the transition

between a single maximum and two maxima in P2. Below this curve, the relative

phase between the oscillators locks to ϕAB ≈ ±π/2. This region of bistable phase

locking partially overlaps with the region of frequency locking to nonvanishing ωj

while the spectrum of the relative frequency has a dominating maximum at ωAB = 0.

This partial overlap may be related to the fact that quantum states lock their phase

and frequency only probabilistically: therefore, both effects can occur independently.

In classical systems, states that exhibit a vanishing relative frequency also exhibit

locking of their relative phase. States that feature both frequency locking to ωj ̸= 0

and a vanishing relative frequency ωAB = 0 simultaneously are known as traveling-

wave states. We will present exemplary time evolutions of such states and the phase

diagram of the mean-field equations of multiple such oscillators in Sec. 9.8. Moreover,

in Sec. 9.6, quantum trajectories of two coherently coupled and undriven oscillators

that exhibit antiphase locking and traveling waves are shown.

The relation between phase and frequency locking of traveling-wave states is also

analyzed in systems of nonreciprocally coupled groups of multiple spins 1/2 [Nadolny

et al. (2025a)].
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Figure 9.6: Quantum trajectories of two coherently coupled oscillators corresponding to
Fig. 9.3. We set ΩA = 0 and g̃ = 0.01γ. (a) Antiphase locking to ϕAB ≈ π for gAB = 0.1γ.
(b) Bistable phase locking to ϕAB ≈ ±π/2 for gAB = 2γ. In the upper row, the complex
phases are unwrapped: the difference between subsequent values never exceeds ±π due to
added shifts of ±2π.

9.6 Quantum Trajectories

In addition to the steady-state analysis of the density matrix presented in Fig. 9.3, we

simulate individual quantum trajectories. Following [Wiseman and Milburn (2009)],

the stochastic quantum master equation reads

dρm =− i[H, ρm]dt+ L̃(ρm)dt+ g̃D[a+ b](ρm)dt

+
√
g̃[(a+ b− Tr[(a+ b)ρm])ρm +H.c.]dW , (9.6.1)

where the first line describes the deterministic part with H = gABe
iϕa†b/2+H.c. and L̃

is defined in Eq. (9.2.2). In the second line, the stochastic part with Wiener increment

dW originates from the dissipative interaction g̃D[a+ b]. As described in Sec. 9.4, this

interaction is mediated by a lossy cavity. Monitoring the signal leaking out of this

cavity leads to insights about the expectation value ⟨a+ b⟩ that carries information

about the relative phase ϕAB. The density matrix ρm is the state conditioned on the

outcome of a measurement of ⟨a + b⟩. Numerically, we compute various operator

expectation values using ρm. For the case ΩA = 0, we study the first moments m
(1)
j of

the individual operators as well as the first moment of the combined synchronization

measure m
(2)
AB. Their complex argument effectively corresponds to ϕj and ϕAB and is

shown in Fig. 9.6 for g̃ = 0.01γ. For gAB = 0.1γ the relative phase locks to ϕAB ≈ π,

whereas for gAB = 2γ, bistable locking to ϕAB ≈ ±π/2 occurs. In Fig. 9.6(b), one can

furthermore identify the traveling-wave character, i.e., linearly increasing/decreasing

phases ϕj , as well as a correlation between the signs of ϕ̇j and ϕAB. The quantum

trajectories presented in Fig. 9.6 should be compared with the steady-state analysis

shown in Figs. 9.3(b) and 9.5(g).

The quantum trajectories of the three cases along the gray line at g̃ = 0.01γ in

Fig. 9.4(b) are presented in Fig. 9.7. The drive locks at least one of the oscillators

close to ϕj ≈ −π/2. Therefore, (from left to right in Fig. 9.7) (i) antiphase locking
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Figure 9.7: Quantum trajectories of two coherently coupled oscillators corresponding to
Fig. 9.4(b). We set ΩA = 0.5γ and g̃ = 0.01γ. (a) Antiphase locking to ϕAB ≈ π for
gAB = 0.01γ. (b) Phase locking to ϕAB ≈ 0 for gAB = 0.1γ. (c) Both phase locking to
ϕAB ≈ 0 and bistable phase locking to ϕAB ≈ ±π/2 for gAB = 2γ can be identified, depending

on which moment m
(n)
AB is studied.

to ϕAB ≈ π, (ii) phase locking to ϕAB ≈ 0, and (iii) bistable phase locking to

ϕAB ≈ ±π/2 are not that prominent. Moreover, in the regime of bistable phase

locking, see Fig. 9.7(c), due to the drive, the first moment m
(1)
AB does not vanish. Thus,

bistable locking can only be identified by analyzing the second moment m
(2)
AB. Here,

drive-induced phase locking and bistable locking coexist which we have already seen

in Fig. 9.5(f).

The bistable locking of the relative phase and the corresponding traveling-wave

states have two configurations: ϕAB ≈ ±π/2 corresponding to ϕ̇AB ≷ 0. Due to

quantum fluctuations, the oscillators can switch between these configurations. In

classical scenarios of two groups A and B [Fruchart et al. (2021)] as well as for two

groups of many spins 1/2 [Nadolny et al. (2025a)], the switching rate depends on

the number of agents in one group. For large numbers of agents, the switching is

suppressed leading to a so-called nonreciprocal phase transition. In the sense of a

finite-component phase transition [Hwang and Plenio (2016), Puebla et al. (2017),

Hwang et al. (2018)], we consider the radius of an oscillator to be analogous to the

number of agents in one group. The dependence of the number of switches on the

radius of identical oscillators γAg = γBg and γAd = γBd is presented in Fig. 9.8. Depending

on the overall noise strength that increases with both γAg and γAd , the number of

jumps between the two configurations can increase or decrease with the theoretical

radius
√
γAg /2γ

A
g and the measured radius ⟨a†a⟩: in Fig. 9.8, the red (purple) crosses

correspond to varying γAg /γ
A
d (γAd /γ

A
g ).
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Figure 9.8: Dependence of switching rate for identical oscillators γAg = γBg and γAd = γBd
without external drive ΩA = 0. (a), (c) Few switches for γAg = 0.1γAd . (b), (d) More switches
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fixed g̃ = 0.1γAg and gAB = 2γAg (purple).

9.7 Blockades

If the first-order contribution to the synchronization measure of the relative phase

of two coupled oscillators vanishes and the second-order contribution remains, the

oscillators are in the so-called synchronization blockade. Here, since m
(1)
AB = 0, bistable

locking of their relative phase corresponding to m
(2)
AB (see the previous sections) is the

leading order. This bistable locking can be interpreted to be mediated by an effective

second-order interaction, see Eq. (9.4.19). Intuitively, information is carried back and

forth between both oscillators. Therefore, we would expect the second moment m
(2)
AB

to vanish when at least one of the effective couplings geffA⇀B or geffA↽B of Eqs. (9.4.9)

and (9.4.10) vanishes: at ϕ = ±π/2 and g̃ = gAB. However, this is not the case. In

Fig. 9.9(a), we show the second moment of the combined synchronization measure

P2. The two zeros of m
(2)
AB at ϕ = ±π/2 can be approximated by the dashed gray line

that denotes g̃ = gAB/
√
6. This approximation is based on Eq. (9.4.20), where the

powers were obtained by a perturbation expansion up to third order in gAB, g̃, and

ΩA. The prefactors were extracted from a fit of the maximum of Pm to numerical

data presented in Fig. 9.4(e).

In Fig. 9.9(b), we show the dependence of the zero of m
(2)
AB on the ratio γAg /γ

A
d .

Small values of this ratio correspond to the quantum limit, i.e., small radii of the

quantum limit cycle meaning small amplitudes of the oscillator. We expand the steady

state of identical oscillators with different gain and damping rates γAg = γBg and

γAd = γBd up to second order in g̃/γAd and gAB/γ
A
d . This leads to an approximation of

the value of g̃ at which the second moment of the combined synchronization measure
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vanishes: for γAg ≪ γAd ,

g̃ ≈
√

3

5

(
1−

3γAg

40γAd
(12 + 5

√
3)

)
gAB . (9.7.1)

This approximation is shown in Fig. 9.9(b) as the dotted curve.

More insights into the quantum synchronization mechanisms of unidirectional

coupling are obtained by considering an external drive acting on oscillator A. In

Fig. 9.10, we show the first two moments of P2(ϕAB) and P1(ϕB). For ϕ = −π/2 and

g̃ = gAB, the effective coupling geffA⇀B from oscillator A to B is zero, see Eq. (9.4.9).

Therefore, naively, the influence of the drive on the undriven oscillator B vanishes.

The zero in Fig. 9.10(b) confirms this prediction. This effect can be understood since

the Heisenberg equation of motion for b is independent of a,

d

dt
b =

γBg − 2g̃

4
b− γBd

2
b†b2 , (9.7.2)

see Eq. (9.4.6). Analogously, Eq. (9.7.2) is invariant under the U(1) transformation

b→ eiθb such that oscillator B shows no phase preference. However, the relative phase

between A and B as well as the phase of A is locked. These effects can be understood

intuitively by imagining a quantum trajectory of these unidirectionally interacting

oscillators. Oscillator B evolves independently from A, but A is influenced by (the

random jumps of) B. Thus, the relative phase ϕAB is locked even if ϕB is not. In this

way, B can be interpreted as an additional noise source acting on A.

At fixed gAB, ϕ = −π/2, and ΩA ̸= 0, increasing g̃ leads to switches from locking

(ϕAB = 0) to bistable locking and back to locking (ϕAB = π), see Fig. 9.4(c). At some

value close to g̃ = 5gABΩ
2
A/4, indicated by the dashed line in Fig. 9.10(a), the relative

phase between both oscillators exhibits bistable locking even if both phases lock to

a single value individually. This approximation is obtained from Eq. (9.4.20). In
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comparison to Fig. 9.9(b), the minima of the second momentm
(2)
AB shown in Fig. 9.10(c)

lie at different values of g̃: in the presence of the external drive the symmetry between

ϕ = −π/2 and ϕ = π/2 is broken.

A perturbation expansion of the first and second moment of the synchronization

measure of the undriven oscillator B to leading order in gAB, g̃, and ΩA yields

m
(1)
B = u5

ig̃ − e−iϕgAB

γ2
ΩA , (9.7.3)

m
(2)
B = −(iu6g̃ + u7e

−iϕgAB)
ig̃ − e−iϕgAB

γ4
Ω2
A . (9.7.4)

Both equations suggest a zero at g̃ = gAB and ϕ = −π/2. Within this approximation,

the second zero in Fig. 9.10(d) can be explained by opposite signs of u6 and u7.

9.8 Classical Analogue

In this section, as a comparison to the phase diagram of the relative phase between

the two quantum oscillators shown in Fig. 9.4(b), we will discuss the phase diagrams

of the classical analogues of two and three quantum oscillators.

9.8.1 Two Oscillators

The phase diagrams of the relative phase between two quantum oscillators in the

mean-field limit are obtained from Eqs. (9.4.7) and (9.4.8). These equations have
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Figure 9.11: Two oscillators without external drive ΩA = 0 described by Eqs. (9.4.7) and (9.4.8).
(a) Phase diagram where each color denotes a different phase. The dashed black curve
corresponds to the approximate phase boundary between locking and bistable locking, see
Eq. (9.8.1). (b) Spectrum SAA(ωA) for g̃ = 0.7γAd (location of symbols in (a)). The dashed
white curve corresponds to ω± defined in Eq. (9.5.8). In the regime of modulated traveling-
wave states, i.e., the example presented in (d), several maxima exist. Panels (c) to (e) show
the time evolutions of one phase each corresponding to the symbol next to the panel label.
The values of gAB and g̃ equal the coordinates of the respective symbol in (a). (c) Phase
locking to ϕAB = π. (d) Modulated traveling-wave states: varying amplitudes and oscillating
relative phase around ϕAB ≈ ±π/2. (e) Traveling-wave states: constantly increasing phases
with fixed ϕAB ≈ ±π/2. A list of rules and thresholds for each class of steady states is given
in Sec. 9.8.3.

been studied in the context of exceptional points [Weis et al. (2023)]. The phase

diagram for ΩA = 0 is presented in Fig. 9.11(a). As in the previous sections, we

consider identical oscillators γAg = γBg and γAd = γBd as well as ϕ = −π/2. To avoid

vanishing linear gain that would lead to both oscillators collapsing to zero amplitude,

we fix γAg − 2g̃ = γAd . We identify the following regimes: (i) phase locking to ϕAB = π,

(ii) phase locking to ϕAB = 0, (iii) traveling-wave states with ϕAB ≈ ±π/2, and (iv)

modulated traveling-wave states. If gAB = 0 and g̃ > 0, both oscillators want to lock

to the other oscillator with ϕAB = π. For small gAB ̸= 0 we expect bistable locking

for g̃ smaller than 2g2AB/γ
A
g , see Eq. (9.4.19), resulting in the boundary

g̃ =
√
g2AB + (γAd /4)

2 − γAd
4
. (9.8.1)

This boundary corresponds to the dashed black curve in Fig. 9.11(a). The especially

interesting so-called (modulated) traveling-wave states are identified by bistable lock-

ing of their relative phase and monotonic growing phases of oscillation. Traveling

waves exhibit fixed amplitudes and modulated traveling waves exhibit varying am-

plitudes. Such active states have been studied in the context of nonreciprocal phase

transitions [Fruchart et al. (2021), Hanai (2024), Nadolny et al. (2025a)]. The spectra
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Figure 9.12: Two oscillators with external drive ΩA = 0.5γAg described by Eqs. (9.4.7)
and (9.4.8). (a) Phase diagram where each color denotes a different phase. White pixels
were not assigned any phase. The gray line denotes g̃ = gAB. (b) Spectrum SAA(ωA) for
g̃ = 0.7γAd (location of upper symbols in (a)). The dashed white curves indicate ω± and
2ω± defined in Eq. (9.5.8). Panels (c) to (e) show the time evolutions of one phase each
corresponding to the symbol next to the panel label. The values of gAB and g̃ equal the
coordinates of the respective symbol in (a). (c) Phase locking to ϕA = ϕB = −π/2. (d)
Wobble motion: varying amplitudes and oscillating phases around ϕAB ≈ ±π/2. (e) Partial
traveling-wave states: constantly increasing ϕA, oscillating ϕB around −π/2. The yellow
phase (top left) corresponds to phase locking to ϕAB = π, similar to Fig. 9.11(c), where
for g̃ > gAB (g̃ < gAB) ϕA = −π/2 (ϕA = π/2). The darker orange phase (center right)
hosts modulated traveling-wave states, similar to Fig. 9.11(d). Videos of time evolutions are
provided in [Kehrer (2025)]. A list of rules and thresholds for each class of steady states is
given in Sec. 9.8.3.

of oscillators in such states show maxima at nonvanishing frequencies, see Fig. 9.11(b).

Note that in the regime of modulated traveling waves, maxima at frequencies lower

than the expected oscillation frequency appear. These are very likely related to the

modulation frequencies of the variation of the amplitude and oscillation frequency.

More classes of steady states are found for nonvanishing drive strength ΩA. The

phase diagram of two oscillators for ΩA = 0.5γAd is shown in Fig. 9.12(a). Here, in

addition to the regions of (i) locking to ϕAB = π (yellow, top left) and (ii) modulated

traveling-wave states (darker orange, center right) known from Fig. 9.11, we find: (iii)

locking to ϕA = ϕB = −π/2, (iv) wobble motion, and (v) partial traveling-wave states.

The wobble motion is identified by varying phases ϕj within an interval smaller than

2π as well as varying amplitude, see Fig. 9.12(d). Our definition of the wobble motion

also includes states that are assigned to the so-called swap phase discussed in [Fruchart

et al. (2021)]. In the swap phase, the oscillators are aligned on a line and periodically

switch between a static ϕj and ϕj + π. To distinguish between the wobble motion and
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traveling waves, we use the following order parameter

Sori,j =
1

τ

T+τ∫

T

dt sign(Im[⟨ȧj⟩⟨aj⟩∗]) . (9.8.2)

The integrand measures the orientation of rotation which is averaged over a time

interval τ when the steady state is reached (TγAd ≫ 1). If the state switches between

clockwise and counterclockwise rotation, i.e., varying phase around fixed values (wobble

motion), |Sori,j | will be small. However, if a state does not change its orientation of

rotation, |Sori,j | will be close to unity. This is the case for (modulated) traveling waves.

In Fig. 9.12(e), we present an example trajectory of partial traveling-wave states.

Here, only oscillator A performs full rotations (|Sori,A| ≈ 1), whereas oscillator B is

still in a wobble motion (Sori,A ≈ 0). Remarkably, in this phase and for this choice of

nonreciprocal coupling (ϕ = −π/2), the undriven oscillator B is more localized to the

phase ϕB ≈ −π/2 induced by the drive than the driven oscillator which is rotating

monotonically. A similar behavior is found in the spectra of the quantum oscillators

in Figs. 9.5(b) and 9.5(d), where the peak at ωA = 0 is less dominant than the peak

at ωB = 0, and the quantum trajectories shown in Fig. 9.7(c). In [Kehrer (2025)]10,

we provide videos of time evolutions for each phase that are shown in Figs. 9.12(c) to

9.12(e).

9.8.2 Three Oscillators

We also consider the next more complex system consisting of three oscillators. In

Fig. 9.13(a), we present the phase diagram of an open chain of oscillators that obey

⟨ȧj⟩ =
γjg − 2g̃ − 2γjd|⟨aj⟩|2

4
⟨aj⟩ −

Gj,j+1

2
⟨aj+1⟩ −

Gj,j−1

2
⟨aj−1⟩ . (9.8.3)

Here, we set γjd = γAd and fix γjg − 2g̃ = γAd . The couplings

Gj,j+1 = Gj,(j+1)mod 3 = g̃ + g− , (9.8.4)

Gj,j−1 = Gj,(j−1)mod 3 = g̃ − g− , (9.8.5)

are chosen identical for each oscillator and g− corresponds to igABe
iϕ and ϕ = −π/2.

In the open chain, GC,A = GA,C = 0 vanish. The phase diagram of the open chain

is rich: (i) phase locking to ∆ϕj = ϕj − ϕj+1 = π, (ii) phase locking to ∆ϕj = 0, (iii)

traveling waves, (iv) modulated traveling waves, (v) wobble motion, and (vi) both

wobble motion and traveling waves. To distinguish states performing the wobble

motion and fully rotating traveling-wave states, in addition to Sori,j , we employ the

10Direct link: https://tobias-kehrer.github.io/thesis/two classical nonrecip/ [Accessed: July 26, 2025]
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Figure 9.13: Open chain of three oscillators described by Eq. (9.8.3). (a) Phase diagram
where each color denotes a different phase. White pixels were not assigned any phase. Panels
(b) to (g) show the time evolutions of one phase each corresponding to the symbol next to
the panel label. The values of g− and g̃ equal the coordinates of the respective symbol in
(a). (b) Phase locking to ∆ϕj = ϕj − ϕj+1 = π. (c) Wobble motion: varying amplitudes
and oscillating phases around ∆ϕj ≈ π. (d) Both wobble motion (c) and traveling-wave
states (f) exist. (e) Modulated traveling-wave states: varying amplitudes and oscillating
phases around ∆ϕj ≈ ±2π/3. (f) Traveling-wave states: constantly increasing phases with
fixed ∆ϕj ≈ ±2π/3. (g) Phase locking to ∆ϕj = 0. Videos of time evolutions are provided
in [Kehrer (2025)]. A list of rules and thresholds for each class of steady states is given in
Sec. 9.8.3.

following order parameter

Srot,j =

∣∣∣∣∣∣
1

τ

T+τ∫

T

dt eiϕj

∣∣∣∣∣∣
. (9.8.6)

It is the magnitude of a time average of the complex phase factors when the steady

state is reached (TγAd ≫ 1). The order parameter Srot,j reaches values close to zero

for fully rotating (modulated) traveling-wave states, values close to one for static

states, and values in between for states performing a wobble motion. For each pixel in

Fig. 9.13(a), we generate time evolutions of 100 random initial states ⟨aj⟩ = exp(iϕj)

that are drawn from a uniform distribution over the interval ϕj ∈ [0, 2π]. In [Kehrer

(2025)]11, we provide videos of time evolutions for each phase that are shown in

Figs. 9.13(b) to 9.13(g).

9.8.3 Order Parameter Thresholds

Here, we list the thresholds and rules to identify the different classes of steady states

shown in Figs. 9.11 to 9.13. Other order parameters are: (i) SDϕ, the standard

11Direct link: https://tobias-kehrer.github.io/thesis/three classical nonrecip/ [Accessed: July 26,
2025]
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deviation of the oscillator phases over time, (ii) SDa, the standard deviation of

the oscillator amplitudes over time. Both order parameters were averaged over all

oscillators. The rules for both two-oscillator cases presented in Sec. 9.8.1 are listed in

Tab. 9.1.

class without drive with drive

static ϕA and ϕB SDϕ < 1 Srot,A > 0.99 ∧ Srot,B > 0.99

traveling wave SDϕ > 1 ∧ SDa < 0.01 -

modulated traveling wave SDϕ > 1 ∧ SDa > 0.01 |Sori,A| > 0.9 ∧ |Sori,B| > 0.9

∧Srot,A < 0.99

partial traveling wave - |Sori,A| > 0.9 ∧ |Sori,B| < 0.9

∧Srot,A < 0.99

wobble motion - |Sori,A| < 0.9 ∧ |Sori,B| < 0.9

∧Srot,A < 0.99

Table 9.1: Order parameter rules for two oscillators corresponding to Figs. 9.11 and 9.12.

To distinguish steady states in the three-oscillator case presented in Sec. 9.8.2, we

generate time evolutions of 100 random initializations. Out of these time evolutions, a

histogram of |Sori,A + Sori,B| with 40 bins in the range [0, 1] is obtained: Shist,k, where

k ∈ [1, 40] corresponds to the kth bin. The rules for the three-oscillator case presented

in Sec. 9.8.2 are listed in Tab. 9.2.

class rules

static ϕA and ϕB SDa < 10−3 ∧ Shist,40 > 0

traveling wave SDa < 10−3 ∧ Shist,1 > 99

modulated traveling wave SDa > 10−3 ∧ Shist,1 > 99

wobble motion SDa > 10−3 ∧ SDϕ > 0.1

∧Shist,1 = 0

wobble motion and traveling waves 0 < Shist,1 < 100

Table 9.2: Order parameter rules for three oscillators corresponding to Fig. 9.13.

9.9 Conclusion

We have investigated the interplay of three phase-locking mechanisms of two quan-

tum limit-cycle oscillators induced by an external drive, a coherent coupling, and

a dissipative coupling leading to three different steady-state configurations. In this

setup, the effective nonreciprocal interaction can be tuned to be unidirectional. For

increasing nonreciprocity at zero drive strength, the following sequence of events

occurs: (i) interaction terms in the mean-field equations become unidirectional, (ii)
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the second moment of the combined quantum synchronization measure vanishes, (iii) a

switch from phase locking to bistable locking occurs, and (iv) the first and second mo-

ment of the combined quantum synchronization measure become equal. Interestingly,

unidirectionality does not coincide with the switch from locking to bistable locking.

Varying all three interaction parameters of the model, i.e., the drive strength of

an external signal acting on one of the two oscillators, the magnitude of a coherent

coupling, and the strength of a dissipative interaction, we have shown that the steady-

state value of the relative phase between the oscillators can be tuned. Making use

of the quantum synchronization measure evaluated for a perturbation expansion

of the steady state in the three parameters drive strength, coherent coupling, and

dissipative interaction, we have qualitatively explained the transitions between the

three regimes of phase localization. This perturbation expansion has been used to

identify magnitude minima of the second moment of the synchronization measure

of the relative phase. Moreover, regions of bistable locking partially overlap with

regions in which two-time correlations exhibit a periodic time dependence similar to

traveling-wave states. Such traveling-wave states have also been found as steady-state

solutions of the mean-field approximation of the master equation of the quantum

system. For two and three noreciprocally coupled oscillators in the mean-field limit,

we have found highly nontrivial active states by defining suitable order parameters.

Nonreciprocity in (open) quantum systems and their classical analogues is a rapidly

emerging field in nonlinear quantum physics. Future research directions include the

study of (frustrated) networks of N ≥ 3 quantum oscillators as well as their (potentially

existing) nonreciprocal phase transitions. Their classical analogues exhibit rich phase

diagrams too. Future studies might focus, e.g., on the comparison of open and closed

chains or on the dependence of the phase diagram on the number of oscillators.

The results and figures of this chapter have been published in parts in [Kehrer and

Bruder (2025)].
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Chapter 10

Quantum Synchronization of

Oscillators Hosting Multiple Limit

Cycles

This chapter is based on the results published in:

T. Kehrer, C. Bruder, and P. Solanki,

Quantum Synchronization of Twin Limit-Cycle Oscillators,

Physical Review Letters 135, 063601 (2025)

10.1 Motivation

All studies of classical and quantum synchronization presented in the previous chapters

consider oscillators that host a single limit cycle. While classical systems with multiple

limit cycles and distinct basins of attraction, known as Liénard systems [Liénard

(1928), Perko (2001), Leonov and Kuznetsov (2013)], have been investigated in detail,

synchronization in their quantum analogue has not yet been studied before [Kehrer

et al. (2025)]. Their amplitude dynamics can be described by an effective potential

V (r), see Fig. 10.1(a), where the number of limit cycles is given by the number of

local minima. Depending on the initial state, the system converges to one of the limit

cycles unless acted on by a noise source that is strong enough to induce switching

events.

While there has been an increasing interest in quantum systems featuring multiple

separate limit cycles [Marquardt et al. (2006), Wu et al. (2013), Bhattacharyya et

al. (2021), Ruby and Lakshmanan (2024), Kumar et al. (2024), Chia et al. (2025)],

their synchronization properties have not been studied before [Kehrer et al. (2025)].

In this chapter, we introduce a quantum Liénard system where two limit cycles

coexist in a single steady state regardless of the initial conditions and investigate

their synchronization behavior. We call this system a twin limit cycle (TLC): it is

characterized by a double ring-like structure in phase space as sketched in Fig. 10.1(b).

The location of the minima (maxima) of the effective potential of the corresponding
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Figure 10.1: Illustration of a system with two limit cycles. (a) Sketch of the effective potential
V (r) of a classical Liénard system featuring two basins of attraction separated at rc. (b)
Wigner function of a twin limit cycle, a quantum Liénard system with ⟨a⟩ = reiϕ. The dashed
(dotted) rings with radii r1 and r2 (rc) correspond to the local minima (maximum) of the
effective potential obtained from the mean-field equations of motion, see Eq. (10.2.6).

classical Liénard system is indicated by the dashed (dotted) rings. Our setup can be

extended to host multiple limit cycles. We examine the synchronization of a single

TLC under an external coherent drive and find that the limit cycles exhibit different

locking behaviors. Furthermore, for two coupled identical TLCs, both synchronization

and blockade effects coexist, an apparent paradoxical interplay unattainable with

standard limit cycles. To distinguish the contributions of individual limit cycles of a

TLC, we define new finer measures of quantum synchronization. Finally, we outline

an experimental setup to implement our model.

This chapter is structured as follows. First, we define the quantum TLC oscillator

in Sec. 10.2. Second, in Sec. 10.3, we study the mean-field equations as classical

oscillators that host twin limit cycles before considering a single driven TLC oscillator

in Sec. 10.4. The complex synchronization between two TLCs is presented in Sec. 10.5.

We suggest experimental realizations in Sec. 10.6.

10.2 Model

In the first sections of this chapter, we consider a coherently driven anharmonic

quantum oscillator subject to incoherent first and third-order pumping, along with

second and fourth-order damping. These dissipative processes stabilize two concentric

limit cycles, see Fig. 10.1(b). The dynamics in the rotating frame of the drive is

described by the master equation

ρ̇ = L(ρ) =− i[H0 +Hd, ρ] + γ1D[a†](ρ) + γ2D[a2](ρ) + γ3D[a†3](ρ) + γ4D[a4](ρ) ,

(10.2.1)

where D[L](ρ) = LρL† − (L†Lρ+ ρL†L)/2 is the Lindblad dissipator, H0 = ∆a†a +

Ka†2a2, Hd = Ω(a+ a†), and a (a†) denote the annihilation (creation) operators of

the oscillator. The detuning between the TLC and the drive is denoted by ∆, K

parametrizes the Kerr nonlinearity, and Ω denotes the strength of the drive. The rates

γj correspond to incoherent gain (odd j) and damping (even j). For γ3 = γ4 = 0, the
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model simplifies to the paradigmatic quantum van der Pol oscillator with a single

limit cycle. Additional incoherent processes of higher order, D[a†n](ρ) and D[am](ρ),

with n (m) being odd (even), can be included to obtain multiple limit cycles.

We obtain the Heisenberg equation of motion of the annihilation operator using

Eq. (10.2.1),

d

dt
a = −iΩ− i∆a− i2Ka†a2 +

∑

j=1,3

γj
j

2
aja†(j−1) −

∑

j=2,4

γj
j

2
a†(j−1)aj . (10.2.2)

We begin by examining the semiclassical limit to obtain an approximation to the

steady state of the quantum system. The mean-field equation of the effective classical

Liénard model can be derived by performing a cumulant expansion to first order

˙⟨a⟩ = −iΩ− i∆⟨a⟩ − i2K|⟨a⟩|2⟨a⟩+ ⟨a⟩
(
γ1
2

− γ2|⟨a⟩|2 +
3γ3
2

|⟨a⟩|4 − 2γ4|⟨a⟩|6
)
.

(10.2.3)

Setting ⟨a⟩ = reiϕ, the mean-field equation can be split into equations of motion of

the amplitude r and the phase ϕ,

ṙ =r

(
γ1
2

− γ2r
2 +

3γ3
2
r4 − 2γ4r

6

)
− Ωsin(ϕ) , (10.2.4)

ϕ̇ =−∆− 2Kr2 − Ω

r
cos(ϕ) . (10.2.5)

Since we are interested in the case of two stable limit cycles, we choose γj such that

the right-hand side of Eq. (10.2.4) exhibits three real zeros r1 < rc < r2 at vanishing

drive Ω = 0,

ṙ =r(r21 − r2)(r2c − r2)(r22 − r2)2γ4 ≡ −∂rV (r) . (10.2.6)

Here, r1 and r2 are the stable solutions, and rc is the unstable solution of the mean-field

equations, and V (r) is the effective potential, see Fig. 10.1(a). In a classical system,

rc separates the two basins of attraction. An initial state with r < rc (r > rc) will

therefore converge to r1 (r2).

To explore the corresponding quantum TLC, we examine the Wigner function

associated with the steady state of Eq. (10.2.1). The Wigner function exhibits two

coexisting concentric limit cycles, as illustrated in Fig. 10.1(b), regardless of the

initial state. In this figure, the dashed and dotted rings represent the stable and

unstable solutions of the classical mean-field equation for the oscillator amplitude,

respectively, as defined in Eq. (10.2.6). The radius of the outer ring aligns closely with

the mean-field prediction r2, while the inner ring shows a notable deviation from r1.

In a classical Liénard system of two limit cycles, both basins of attraction are

separated at rc. However, if extrinsic noise is added, trajectories can cross this

boundary. In the language of the effective potential shown in Fig. 10.1(a), noise-

induced jumps in r have to overcome the potential barriers ∆Vj to “tunnel” between
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Figure 10.2: Values of real-valued solutions to Eq. (10.2.6) for γ2 = 2.5γ1. The black lines
indicate γ3 = 1.04γ1 and γ4 = 0.096γ1, the values that will be used in the quantum case.

both limit cycles. In our quantum setup, the steady state is a combination of two

distinct quantum limit cycles. Considering quantum trajectories, the system tunnels

between the two limit cycles due to inherent quantum noise, see Sec. 10.4.3 for a

detailed discussion.

10.3 Classical Multi-Limit-Cycle Oscillators

Before we study synchronization of quantum TLC oscillators, we want to focus on

their classical analogue in the form of their mean-field equations, see Eq. (10.2.3).

Already this classical version of such multi-limit-cycle oscillators is showing interesting

features presented in the following. Intuitively, it is not surprising that in complex

systems like living matter oscillators with multiple limit cycles have been found, e.g.,

[Laurent and Kellershohn (1999), Enjieu Kadji et al. (2007), Feillet et al. (2014),

Goldbeter and Yan (2022)].

The mean-field equations shown in Eqs. (10.2.5) and (10.2.6) can be interpreted

as a modified Stuart-Landau oscillator that features higher-order gain and damping

leading to multiple stabilized limit cycles. The parameters γ3 and γ4 are the rates

of additional nonlinear gain and damping terms. Depending on their value, up to

two stable radii are possible, see Fig. 10.2. Example trajectories and spectra of

several random initializations of a classical TLC are shown in Fig. 10.3. The range of

detuning |∆| < Ω/r in which frequency locking occurs depends on the value of the

drive strength Ω and the radius r of the limit cycle, see Eq. (10.2.5). Therefore, this

range is different for both limit cycles. The three cases in which frequency locking

occurs for (i) both limit cycles, (ii) only the outer limit cycle, and (iii) no limit cycle,

are presented in Figs. 10.3(a) to 10.3(c). In the spectra, contributions from both limit

cycles at the frequencies νA(∆,Ω, r) defined in Eq. (6.2.9) are visible. In Figs. 10.3(d)

to 10.3(f), 20 random realizations for different detunings at Ω = 0.1γ1 are shown.

For ∆ = 0.02γ1, both limit cycles are frequency-locked and lock to ϕ ≈ −π/2. For

∆ = 0.15γ1, only the inner limit cycle is locked and for ∆ = 0.5γ1, none of the limit

cycles is locked. Furthermore, states in the attractor of the inner limit cycle exhibit

modulations of their radii. The peaks in the spectra Figs. 10.4(b) and 10.4(c) at
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Figure 10.3: Frequency locking of a classical TLC for γ2 = 2.5γ1, γ3 = 1.04γ1, and γ4 = 0.096γ1.
(a), (b), (c) Spectra for drive strengths Ω/γ1 = 0, 0.1, 0.2 (from left to right) averaged over
100 random initializations. The blue dashed (orange dotted) curves correspond to the
approximation ω =

√
∆2 − Ω2/r2 defined in Eq. (6.2.9) for the inner (outer) limit cycle with

radius r1 (r2). (d), (e), (f) Time evolutions of 20 random initializations (gray dots) for drive
strength Ω = 0.1γ1 and for detunings ∆/γ1 = 0.02, 0.15, 0.5 (from left to right), corresponding
to the three red lines in panel (b). Two evolutions are highlighted in blue (inner limit cycle)
and orange (outer limit cycle). Depending on the value of ∆ either both limit cycles lock
their frequency to the one of the drive, only the inner limit cycle, or no limit cycle.

ω = nνA > 0 correspond to the varying radius of trajectories of the inner limit cycle,

see Fig. 10.4(f). The spectra of the radius oscillations exhibit maxima at integer

multiples of ±νA.

We now consider Gaussian noise with standard deviation σ that induces jumps

between both attractors. Following [Fruchart et al. (2021)], the expected number of

jumps in a fixed time interval is proportional to the inverse tunneling time

njumps ∝ exp
(
−∆V/σ2

)
, (10.3.1)

where ∆V is the barrier of the effective potential V , see Fig. 10.1(a). The larger

the noise, the more jumps occur in a fixed time interval, see Figs. 10.4(c) to 10.4(f).

In the time evolutions, the correlation between the amplitude of the oscillator and

phase locking, as described in the previous paragraph, is visible. If the state is close

to r1, the phase ϕ is locked. In contrast, if the state is close to r2, no phase locking

occurs. For increasing noise, the spectra in Figs. 10.4(a) and 10.4(b) are smoothed and

higher-frequency peaks that correspond to the fluctuations of the oscillation frequency,

see Eq. (6.2.8), disappear.
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Figure 10.4: Frequency locking of a classical TLC with noise for γ2 = 2.5γ1, γ3 = 1.04γ1, and
γ4 = 0.096γ1. (a), (b) Spectra for drive strength Ω = 0.1γ1 and detunings ∆/γ1 = 0.15, 0.25
(from left to right) averaged over 100 random initializations. The blue dashed (orange dotted)
lines correspond to the approximation defined in Eq. (6.2.9) for the inner (outer) limit cycle
with radius r1 (r2). (c) Number of jumps njumps that occur in a time interval of duration
1000/γ1 with standard deviations obtained from averaging over 100 realizations. The red
curve corresponds to a fit of Eq. (10.3.1). The larger the noise σ, the more jumps occur. (d),
(e), (f) Time evolutions of 10 random initializations (overlapping transparent gray dots) for
drive strength Ω = 0.1γ1, detuning ∆ = 0.15γ1, and for noises σ/

√
γ1 = 0.01, 0.2, 0.3 (from

left to right), corresponding to the three red lines in panel (a). One evolution is highlighted
in red.

10.4 One Driven Twin Limit Cycle

We now focus on the synchronization properties of the corresponding quantum Liénard

system. First, we discuss phase locking of a TLC to an external drive.

10.4.1 Phase Synchronization

In Fig. 10.5(a), we present the Wigner function corresponding to the steady state

of a driven TLC, which exhibits phase localization near ϕ = arg(⟨a⟩) = arg(Ω) −
π/2 = −π/2 indicating the synchronization of both limit cycles to the external

drive. To characterize and quantify the amount of synchronization, we define a

phase localization measure. Various measures of quantum synchronization have been

proposed in the literature [Barak and Ben-Aryeh (2005), Ludwig and Marquardt

(2013), Hush et al. (2015), Weiss et al. (2016), Roulet and Bruder (2018a), Jaseem

et al. (2020a)]. In this work, we use the synchronization measure based on phase

states |ϕ⟩ = ∑∞
n=0 e

inϕ |n⟩ /
√
2π [Barak and Ben-Aryeh (2005)] where |n⟩ are Fock

states. Identical to Eq. (9.2.6),

P1(ϕ) = ⟨ϕ| ρ |ϕ⟩ − 1

2π
=

1

2π

∞∑

k=1

e−ikϕ⟨ãk⟩+H.c. , (10.4.1)
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Figure 10.5: Drive-induced phase locking of a TLC. (a) Wigner function for Ω = 8γ1
and ∆ = K = 0 showing phase localization of both limit cycles, i.e., a maximum at
ϕ = arg(⟨a⟩) = arg(Ω) − π/2 = −π/2. Here, dashed (dotted) rings correspond to stable
(unstable) solutions of the mean-field equations of the undriven limit cycles, see Eq. (10.2.6).
The solid orange curves are contour lines at 0.0225. Note the power-law color scale. In panels
(b) and (c), solid curves denote the maximum of Pα

1 with α ∈ {in, out}, dashed curves denote
arg(⟨ãα⟩). Varying ∆ and K, the inner limit cycle exhibits a larger phase shift than the
outer one. This is opposite to the behavior of a standard quantum van der Pol oscillator, see
Sec. 7.1.3. Here, Ω = 0.25γ1 for both (b) K = 0 and (c) ∆ = 0. The dissipation rates for all
panels are γ2 = 2.5γ1, γ3 = 1.04γ1, and γ4 = 0.096γ1.

where the operator powers ãk =
∑∞

n=0 |n⟩⟨n+ k| capture information about the

coherence generation and phase localization. This measure can be interpreted as a

probability distribution of phases ϕ from which a uniform distribution is subtracted.

If a state shows no phase preference, this measure will be flat and equal to zero. For

phase-locked oscillators, a single maximum will appear. Two maxima will be visible

for oscillators that exhibit bistable phase locking.

To resolve the phase information of the two limit cycles individually, we define

truncated operators ãα, with α ∈ {in, out}, as

ãin =

nc−1∑

n=0

|n⟩⟨n+ 1| , ãout =

∞∑

n=nc

|n⟩⟨n+ 1| . (10.4.2)

These are an approximation of operators that only act on the respective subspace of

each ring. The cutoff Fock number nc is chosen to be the integer closest to r2c . We

use powers of these ãα to define the phase distributions P in
1 of the inner and P out

1 of

the outer ring of a TLC,

Pα
1 (ϕ) =

1

2π⟨Iα⟩
∞∑

k=1

e−ikϕ⟨ãkα⟩+H.c. , (10.4.3)
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Figure 10.6: Arnold tongues of a driven TLC using Pα
1 defined in Eq. (10.4.3). (a), (b) ∆ = 0.

(c), (d) K = 0. The black curves are contour lines at 5. The dissipation rates for all panels
are γ2 = 2.5γ1, γ3 = 1.04γ1, and γ4 = 0.096γ1. Compare this plot to Figs. 7.4 and 7.8.

where α ∈ {in, out}. Here Iα represents the unit matrix in the subspace α,

I in =

nc∑

n=0

|n⟩⟨n| , Iout =
∞∑

n=nc+1

|n⟩⟨n| , (10.4.4)

and is used to properly normalize the phase distribution.

We use the measure Pα
1 to characterize the synchronization properties of the two

limit cycles. In Figs. 10.5(b) and 10.5(c), the locking phase angle of a driven TLC is

shown for fixed drive strength Ω = 0.25γ1, varying detuning ∆, and Kerr nonlinearity

K. Remarkably, for nonzero ∆ and K, each limit cycle locks to a distinct phase.

Notably, the inner limit cycle responds more strongly to the external drive compared

to the outer limit cycle. This deviates from the steady state solution of the mean-field

Eq. (10.2.5), which predicts a stronger phase sensitivity of the outer limit cycle. The

slopes of the solution ϕmax for ϕ̇ = 0 at ∆ = K = 0,

∂∆ϕmax = − r

Ω
, (10.4.5)

∂Kϕmax = −2r3

Ω
, (10.4.6)

reveal that the value of the locked phase depends stronger on both ∆ and K for

larger radii. This feature is consistent with standard single-limit-cycle oscillators with

γ3 = γ4 = 0, see Sec. 7.1.3. The higher-order gain and damping channels lead to

features that are unique to TLCs. The overlap of the inner and outer limit cycles

of a TLC leads to tunneling and leakage of information between them. This is a

qualitatively different behavior compared with the classical analogue following the

mean-field equations. Note that quantum limit cycles stabilized by third-order gain and

fourth-order damping, see Sec. 7.1.5, that exhibit smaller radii are reacting stronger

to detuning ∆ than the ones that exhibit larger radii.

We furthermore present Arnold tongues of the inner and outer limit cycles for varying

drive strength Ω versus ∆ and K in Fig. 10.6. To achieve the same value of Pα
1 , the

inner limit cycle needs to be driven with a stronger drive similar to the standard

quantum van der Pol oscillator presented in Fig. 7.4. This is the opposite behavior
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Figure 10.7: Frequency synchronization of a driven TLC with γ2 = 2.5γ1, γ3 = 1.04γ1, and
γ4 = 0.096γ1. (a), (b) Power spectra Sα(ω) for a weak drive Ω = 0.25γ1. The dashed white
line corresponds to ω = ∆. No frequency locking plateau visible. (c), (d) Normalized power
spectra Sα(ω)/Sα(0) corresponding to Ωγ1 = 0.25, 5 (from left to right) and ∆ = 0. The
power spectra are based on the truncated annihilation operators defined in Eq. (10.4.8) and
exhibit a peak at ω = 0 due to injection locking.

compared to quantum limit cycles stabilized by third-order gain and fourth-order

damping, see Fig. 7.8.

10.4.2 Frequency Synchronization

In addition to the locking of the two limit cycles of a driven TLC to distinct phases

shown in the previous section, we discuss their frequency synchronization below. To

analyze the frequency entrainment of the TLC, we utilize the power spectrum which

is defined as

Sα(ω) = lim
t→∞

∞∫

−∞

dτ⟨a†α(t+ τ)aα(t)⟩eiωτ , (10.4.7)

where α ∈ {in, out}. The power spectrum defined above is based on two-time correla-

tions of the truncated annihilation operators, which we define as

ain =

nc−1∑

n=0

√
n+ 1 |n⟩⟨n+ 1| , aout =

∞∑

n=nc

√
n+ 1 |n⟩⟨n+ 1| . (10.4.8)

Note the difference to Eq. (10.4.2), where the factor
√
n+ 1 is not included. The power

spectrum is well-defined for both limit cycles for small values of Ω. One such example

is shown in Fig. 10.7(c) where Ω = 0.25γ1 and ∆ = 0. However, no frequency locking

occurs when ∆ ̸= 0 for such smaller drive strength, see Figs. 10.7(a) and 10.7(b).

In regions of stronger drive, where a significant degree of phase synchronization is

observed, the spectrum of the inner limit cycles broadens considerably, as illustrated

in Fig. 10.7(d) for Ω = 8γ1. Such spectral broadening results from changes in the

population distribution within the inner limit cycle, shifting toward the critical radius

for higher Ω values. With a further increase in Ω, the population increasingly overlaps

with the outer limit cycle, expected to lead to further broadening of the power spectrum.

Therefore, the phase synchronization measure is more sensitive and applicable even at
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Figure 10.8: Quantum trajectories of the undriven TLC for ∆ = K = 0 and the rates that lead
to (r1, rc, r2) = (1, 4, 8): (γ2, γ3, γ4) ≈ (0.539, 0.0264, 2.44× 10−4)γ1. (a) Effective potential of
the mean-field equations along the radial direction, defined in Eq. (10.2.6). Here ∆V1 (∆V2) is
the potential difference between the stable minimum at r1 (r2) and the unstable maximum at
rc. The inset shows the minimum of V (r) at r1, see the dashed box in the top left. (b) Single
trajectory based on Monte Carlo simulation of Eq. (10.2.1). Jump probabilities between r1
and r2 are clearly asymmetric.

higher drive strengths for the TLC oscillators.

10.4.3 Quantum Trajectories

In this section, we briefly examine the coexistence of limit cycles by analyzing the

dynamics of a single quantum trajectory in a quantum Liénard system. In Fig. 10.8,

we choose the dissipation rates that lead to (r1, rc, r2) = (1, 4, 8): (γ2, γ3, γ4) ≈
(0.539, 0.0264, 2.44 × 10−4)γ1. The minima of V (r) are sufficiently separated to

facilitate the observation of the transition from one stable radius to the other due

to intrinsic quantum noise. As shown in Fig. 10.8(a), the noise has to overcome a

smaller potential difference, ∆V1, when transitioning from r1 to r2, in contrast to

the larger potential difference, ∆V2, for the reverse direction. This asymmetry in the

potential differences is evident in the time evolution of a single trajectory presented

in Fig. 10.8(b), where the system spends more time in the outer limit cycle at r2
compared to the inner limit cycle at r1. The density matrix of a steady-state can be

interpreted as the long-time average of many such quantum trajectories, which results

in the two-ring-like structures found in the corresponding Wigner function, similar to

Fig. 10.5(a).

10.5 Two Coupled Twin Limit Cycles

We now focus on the synchronization between two coherently coupled TLCs that are

depicted schematically in Fig. 10.9. Intuitively, we expect to find both locking and

bistable locking of the relative phase in this setup. We imagine synchronization to

occur between limit cycles of different radius and blockades to emerge between limit

cycles of equal radius. In other words, we expect the coexistence of synchronization

and blockade, two distinct scenarios described in Sec. 7.1.4. The dynamics of two
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Figure 10.9: Schematic representation of the phase locking behavior of two coherently coupled
TLCs. Limit cycles of unequal radius exhibit phase locking. In contrast, for limit cycles of
equal radius bistable phase locking is found.

TLCs are described by the Lindblad master equation

ρ̇ = −i[gABa
†
AaB +H.c., ρ] + LA(ρ) + LB(ρ) . (10.5.1)

Here, the first term is the coherent coupling between the two TLCs with strength

gAB. The Liouvillians Lj describe the independent dynamics of each TLC similar

to Eq. (10.2.1), where the operators aj act on oscillator j. In the following, we fix

ΩA = ΩB = 0, δ = ∆A −∆B, and K = KA = KB.

10.5.1 Phase Locking

Similar to Eq. (9.2.17), the phase distribution of two oscillators is obtained by projecting

the density matrix onto the tensor products of phase states |ϕA, ϕB⟩ and is defined as

P2(ϕAB) =

2π∫

0

dϕ ⟨ϕAB + ϕ, ϕ| ρ |ϕAB + ϕ, ϕ⟩ − 1

2π

=
1

2π

∞∑

k=1

e−ikϕAB ⟨(ãAã
†
B)

k⟩+H.c. . (10.5.2)

We integrate over the phase ϕ to obtain the synchronization measure for the relative

phase ϕAB = ϕA − ϕB. In analogy to Eq. (10.4.3), we define the combined phase

distribution Pα,β
2 of two TLCs as

Pα,β
2 (ϕAB) =

1

2π⟨Iα
AI

β
B⟩

∞∑

k=1

e−ikϕAB ⟨(ãA,αã
†
B,β)

k⟩+H.c. , (10.5.3)

where ãj,α and Iα
j are the truncated operators ãα and the unit operators Iα that act

on the jth oscillator. The measure above allows us to investigate the synchronization

between the limit cycles of both oscillators since (α, β) can take various combinations:
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Figure 10.10: Arnold tongues of two identical coupled twin limit cycles with rates γAj = γBj ,

γA2 = 2.5γA1 , γ
A
3 = 1.04γA1 , and γ

A
4 = 0.096γA1 for Ωj = 0 and nc = 2. (a)–(c) Maximum of

Pα,β
2 ×103 of Eq. (10.5.3) as a function of coupling strength gAB and detuning δ at K = 0. (d)

Maximum of the full synchronization measure P2 of Eq. (10.5.2) for K = 0. (e)–(g) Maximum

of Pα,β
2 × 103 as a function of gAB and Kerr nonlinearity K at δ = 0. (h) Maximum of the

full synchronization measure P2 of Eq. (10.5.2) for δ = 0. The black curves denote contour
lines at half the maximum value of the color scale. The red dots correspond to the example
plots shown in Fig. 10.11.

(in, in), (in, out), (out, in), and (out, out).

We now set the dissipation rates γAj = γBj equal, such that the radii of the inner

limit cycles of both TLCs are identical as well as the radii of the outer limit cycles.

In Figs. 10.10(a) to 10.10(d), we plot the maxima of the combined synchronization

measures Pα,β
2 and P2 as a function of gAB and δ for K = 0. For δ = 0 and K = 0,

both oscillators have the same frequencies, and hence, we expect a maximum amount

of synchronization. In these four panels, Arnold tongues centered at δ = 0 are visible.

The measure P in,in
2 even exhibits a local maximum. This fact can be interpreted as:

above gAB ≳ 5/γA1 , phase synchronization outside the perturbative regime is found,

see the clearly asymmetric Wigner function in Fig. 10.5(a).

In Figs. 10.10(e) to 10.10(h), we plot the maxima of the combined synchroniza-

tion measures Pα,β
2 and P2 as a function of gAB and K for δ = 0. Interestingly,

the synchronization measure for (α, β) = (in, in) and (α, β) = (out, out), shown in

Figs. 10.10(e) and 10.10(g), is highly suppressed around K = 0. This is a signature

of the synchronization blockade, where the contribution from the first-order locking

vanishes (⟨ãA,αã
†
B,α⟩ = 0) due to the cancellation of coherences. Only second-order

phase locking can be observed, as indicated by the two maxima in Fig. 10.11(a). This
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2 (ϕAB) × 103 (colored curves) and P2 (black

dash-dotted curve) corresponding to the red dots in Figs. 10.10(e) to 10.10(h) at gAB = 8γA1
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blockade can also be understood using the mean-field equations of Eq. (10.5.1),

ṙj =rj

(
γj1
2

− γj2r
2
j +

3γj3
2
r4j − 2γj4r

6
j

)
+ gABri sin(ϕi − ϕj)− Ωj sin(ϕj) , (10.5.4)

ϕ̇j =−∆j − 2Kjr
2
j − gAB

ri
rj

cos(ϕi − ϕj)−
Ωj

rj
cos(ϕj) , (10.5.5)

where i, j ∈ {A,B} and i ̸= j. The equation of motion of the relative phase for Ωj = 0

is

ϕ̇AB =− δ − 2K(r2A − r2B) + gAB

r2A − r2B
rArB

cos(ϕAB) , (10.5.6)

where the coupling term vanishes for limit cycles with equal radii. The limit cycles

with different radii exhibit an Arnold tongue, see Figs. 10.10(b) and 10.10(f), signifying

synchronization between the (in, out) limit cycles. Thus, both synchronization and

blockade effects occur simultaneously in the coupled identical TLC oscillators, a

behavior not known in classical analogues in the absence of noise. For our choice of

parameters nc = 2 and ãout ≈ ã, P out,out
2 shown in Fig. 10.10(g) behaves qualitatively

similar to the standard synchronization measure P2 defined in Eq. (10.5.2). The

existence of the blockade at K = 0 is therefore also confirmed by P2, see Fig. 10.10(h)

and Fig. 10.11(a).

The synchronization blockade is lifted for K ≠ 0 [Lörch et al. (2017)], as shown

in Figs. 10.10(e) and 10.10(g). For δ = 0 and K > 0 (K < 0) the relative phase of

both oscillators locks to ϕAB = π (ϕAB = 0), see Fig. 10.11(c). To understand this

behavior, we investigate the mean-field equations in more detail. We examine the

phase-locking behavior by expanding Eq. (10.5.6) about the radii r1 and r2 of the limit

cycles for the two cases: (i) equal radii rA, rB ≈ rα and (ii) different radii rA ≈ rα
and rB ≈ rβ, where j ∈ {A,B}, α, β ∈ {1, 2}, and α ̸= β. For equal radii, we choose
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rj = rα + rj,1gAB/γ1 + rj,2(gAB/γ1)
2,

rA,1 = − sin(ϕAB)

4rα(r2α − r2β)(r
2
α − r2c )

γ1
γ4

= −rB,1 , (10.5.7)

rA,2 = sin2(ϕAB)
9r2α(r

2
β + r2c )− 5r2βr

2
c − 13r4α

32r3α(r
2
α − r2β)

3(r2α − r2c )
3

γ21
γ24

= rB,2 . (10.5.8)

Note that since r1 < rc < r2, the product (r2α − r2β)(r
2
α − r2c ) > 0 in the denominators

is always positive. The resulting equation of motion of the relative phase ϕAB when

expanding both twin limit cycles about rα, see Figs. 10.10(e) and 10.10(g), reads

ϕ̇AB =− δ +
4gABKr

2
α sin(ϕAB)− g2AB sin(2ϕAB)

2r2α(r
2
α − r2β)(r

2
α − r2c )γ4

. (10.5.9)

If δ = K = 0, bistable locking to ϕAB = 0, π occurs, which corresponds to the

synchronization blockade due to the absence of first-order phase locking. Thus, the

system is in the synchronization blockade between the limit cycles of the same type

of the TLCs at K = 0. For δ = 0 and K > 0 (K < 0), the relative phase between

both inner or outer limit cycles locks to a single value ϕAB = π (ϕAB = 0). Thus, for

K ̸= 0, the blockade is lifted. In the case of equal radii, the mean-field prediction

coincides with the quantum results.

For different radii rA = rα + rA,1gAB/γ1 and rB = rβ + rB,1gAB/γ1, we obtain

rA,1 = − rβ sin(ϕAB)

4r2α(r
2
α − r2β)(r

2
α − r2c )

γ1
γ4
, (10.5.10)

rB,1 = − rα sin(ϕAB)

4r2β(r
2
α − r2β)(r

2
β − r2c )

γ1
γ4
. (10.5.11)

The equation of motion for the relative phase reads

ϕ̇AB =− δ − 2K(r2α − r2β) + gAB

r2α − r2β
r1r2

cos(ϕAB)

+ gABK
r21 + r22 − r2c

r1r2(r2c − r21)(r
2
2 − r2c )γ4

sin(ϕAB) . (10.5.12)

For δ = K = 0, these mean-field equations lead to locking to a single value of the

relative phase. In contrast to the quantum case, the relative phase in Eq. (10.5.12)

locks to ϕAB = −π/2 for (α, β) = (1, 2) ↔ (in, out) and to ϕAB = π/2 for (α, β) =

(2, 1) ↔ (out, in). Choosing δ = 0 and K > 0 (K < 0) in Eq. (10.5.12) leads to a

shift of the locking phase toward ϕAB = 0 (ϕAB = π). This shift contradicts the

quantum result too, see Fig. 10.11(c). In conclusion, the mean-field analysis performed

here is suitable to predict the locking of the relative phases of (i) equal limit cycles

(α, β) = (in, in), (out, out) of two coupled TLCs but fails to describe the locking of (ii)

different limit cycles (α, β) = (in, out), (out, in). An explanation might be that in the

quantum Liénard system, both limit cycles are not strictly separated like the basins of
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Figure 10.12: Mutual information I(ρα,β)× 103 for identical TLCs with δ = 0 and γAj = γBj .
(a)–(c) Evaluated for truncated density matrices ρα,β , see Eq. (10.5.14). (d) Evaluated for
the full density matrix ρ. The black curves denote contour lines at 0.1. The blockade at
K = 0 is not as prominent as in Pα,β

2 , see Fig. 10.10.

attraction in the classical analogue. Therefore, locking mechanisms of different pairs

of limit cycles of two TLC oscillators interplay.

10.5.2 Quantum Mutual Information

Another measure of quantum synchronization is the quantum mutual information

[Ameri et al. (2015)],

I(ρ) = S(ρA) + S(ρB)− S(ρ) , (10.5.13)

where S is the von Neumann entropy and ρj are reduced density matrices. For

mixed states, the quantum mutual information contains both classical and quantum

correlations. To quantify the correlation between different limit cycles of the TLC

oscillators, we truncate the density matrices as follows

ρα,β = Tr
[
Iα
AIβ

Bρ
]
. (10.5.14)

In Fig. 10.12, we show the mutual information for truncated density matrices as well

as the full density matrix. The behavior of the mutual information is qualitatively

similar to that of Pα,β
2 shown in Fig. 10.10. It exhibits a dip around the blockade

region at K = 0 for the limit cycles (in, in) and (out, out), although it does not vanish

completely. In contrast, the mutual information evaluated for the full density matrix

contains information about synchronization between different limit cycles and also

the blockade effect between similar limit cycles. Hence, the mutual information is not

reduced significantly around the blockade. Therefore, even if the mutual information

reflects the blockade at K = 0, it does not capture the blockade as much as Pα,β
2 .

10.5.3 Persistence of the Quantum Synchronization Blockade

In this section, we compare the stability of the synchronization blockade of coupled

TLCs with the one of standard limit cycles, i.e., the range of dissipation rates γAj for

which the blockade (bistable locking) persists. If there are two equally high maxima in

Pα,β
2 at a given value of the ratio γAj /γ

B
j , the blockade (bistable locking) occurs. In the
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Figure 10.13: Regions of the quantum synchronization blockade of two TLCs for gAB = γA1 ,
γA1 = γB1 , γB2 = 2.5γA1 , γ

B
3 = 1.04γA1 , and γ

B
4 = 0.096γA1 . In each column, only a single ratio

γAj /γ
B
j is varied. (a)–(c) P in,in

2 . (d)–(f) P out,out
2 . In all panels, maxima in ϕAB are denoted

by dash-dotted lines. The color scale is linear in the interval [−10−6, 10−6] and logarithmic
elsewhere.

mean-filed equations, the equality of the radii seem to be sufficient to lead to vanishing

interactions at K = 0, see Eq. (10.5.6). When coupling a standard limit-cycle oscillator

A to a TLC oscillator B and varying the ratio γA2 /γ
B
2 while keeping γBj fixed, no

blockade emerges between the standard limit cycle and neither of the limit cycles in

the TLC. Thus, to show the synchronization blockade effect between two quantum

oscillators, the states need to be identical and not only the radii of their limit cycles.

Naively, based on the mean-field equations, one could have guessed that when the

radius of the standard limit cycle matches one of the radii of the TLC a blockade

occurs.

In a system of two coupled TLC oscillators, we vary the rates γA2 , γ
A
3 , and γA4

individually by keeping γA1 = γB1 , γB2 = 2.5γA1 , γ
B
3 = 1.04γA1 , and γ

B
4 = 0.096γA1 fixed.

The resulting blockades are illustrated in Fig. 10.13 and exist in a narrower range of

γAj /γ
B
j ∈ [0.97, 1.03] compared to the system of two standard limit cycles presented in

Fig. 7.6(a). Thus, the blockade in a pair of TLCs is more susceptible to variations in

gain and damping rates than that of two standard limit cycles.

10.6 Experimental Realization

The effects discussed here can be potentially observed in a trapped-ion experiment

similar to [Behrle et al. (2023)] that demonstrated quantum synchronization of a

phonon laser to an external signal. The setup consists of a calcium and a beryllium

ion in a radio-frequency trap that share a common harmonic mode of motion which is
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Figure 10.14: Preliminary data showing that a multi-limit-cycle oscillator can be realized
by the nonlinear phonon-ion interaction described in Eq. (10.6.1). The parameters are
sBSB = −sRSB = 1, ΩBSB

0 = ΩRSB
0 = 0.1κ, ηBSB = 0.8, and ηRSB = 0.9. (a) Wigner function

and marginals of the final state of a time evolution of duration κt = 103 starting from a
coherent state |α = 2⟩. (b) Populations ρn,n of the final state. The curves correspond to the
heating ΩBSB

n,n+1 and cooling ΩRSB
n,n−1 sidebands, see Eq. (10.6.1). Populations of Fock numbers

n ≥ 19 are smaller than 10−4. A video of the time evolution can be found at [Kehrer (2025)].

denoted by the annihilation operator a. To realize nth-order gain (mth-order damping)

in the Lamb-Dicke regime, one has to implement a sideband heating (cooling) laser

that is detuned from a particular transition in the ion energy-level scheme [Leibfried

et al. (2003)]. If this detuning equals n (−m) times the energy of the harmonic mode

and assuming fast ion decay with respect to the timescales of the motion in the trap,

an effective jump operator L = a†n (L = am) is realized. For each dissipator in

Eq. (10.2.1), a distinct ion transition has to be chosen. Therefore, to realize the four

gain and damping channels of a TLC, two spin transitions per ion have to be driven

with one of the four red and blue sideband lasers each.

Alternatively, the setup can be operated outside Lamb-Dicke regime [Rojkov et al.

(2024)] making use of the higher-order contributions presented in Eq. (3.3.10) of

Sec. 3.3.2. Here, one internal transition (first sideband) for each heating and cooling is

driven. Both transitions decay at rate κ. The intrinsic nonlinearity of the phonon-ion

interaction leads to the stabilization of multiple limit cycles. We recall the equation

of the effective Rabi frequencies [Leibfried et al. (2003)],

Ωn,n+s = Ωn+s,n = Ω0| ⟨n+ s| eiη(a†+a) |n⟩ | = Ω0η
|s|e−η2/2

√
nmin!

nmax!
L|s|
nmin

(η2) ,

(10.6.1)

where

nmin = min(n, n+ s), nmax = max(n, n+ s) , (10.6.2)
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and L
|s|
n (x) are the generalized Laguerre polynomials, see Eq. (3.3.12). In Fig. 10.14,

preliminary data for the stabilization of a multi-limit-cycle state is shown for sBSB =

−sRSB = 1, ΩBSB
0 = ΩRSB

0 = 0.1κ, ηBSB = 0.8, and ηRSB = 0.9. For Fock states

|n⟩ for which ΩBSB
0 > ΩRSB

0 (ΩBSB
0 < ΩRSB

0 ), population is moved to higher (lower)

n. Therefore, state populations accumulate close to crossing points n∗ at which

ΩBSB
0 = ΩRSB

0 and when the heating dominates for slightly smaller Fock numbers

n ≲ n∗. The time evolution of duration κt = 103, starting from a coherent state

|α = 2⟩, results in a state whose Wigner function exhibits multiple local maxima along

the radial direction. A video of the time evolution can be found at [Kehrer (2025)]12.

More thorough studies of the various model parameters have to be performed in the

future.

10.7 Conclusion

We have presented a quantum Liénard system whose steady state hosts two coexisting

limit cycles. This is qualitatively different in the classical analogue without noise,

where the phase space of the oscillator splits in distinct basins of attraction for each

limit cycle. Due to the coexistence of both limit cycles, the quantum system exhibits

surprising synchronization behavior: coherently driving this quantum twin limit cycle

(TLC) oscillator, each of the two limit cycles locks to a distinct phase when the

oscillator is detuned from the drive or in the presence of a Kerr nonlinearity. Varying

the detuning or the Kerr nonlinearity, the inner limit cycle exhibits a larger phase

shift than the outer one. In contrast, the induced phase shift of a standard quantum

van der Pol oscillator increases monotonically with its radius. A pair of coherently

coupled identical TLC oscillators shows an apparent paradoxical effect: the relative

phase of two equal-sized limit cycles of oscillators A and B exhibits bistable locking,

i.e., the oscillators are in the quantum synchronization blockade. Simultaneously, two

limit cycles of different radius lock to a single value of the relative phase. Therefore,

in a pair of TLCs, both synchronization and blockade coexist within the same steady

state. Moreover, the range of the gain and damping rates in which the blockades exist

is smaller than in the case of standard quantum limit-cycle oscillators. In conclusion,

TLCs exhibit synchronization properties that differ in a qualitative way from those of

conventional limit cycle oscillators. They provide a foundation for exploring complex

collective dynamics and enable the understanding of quantum synchronization in more

general systems with multiple coexisting attractors.

Our setup can be extended by incorporating higher-order gain and damping channels,

leading to multiple local minima in the effective potential and, therefore, multiple

limit cycles. Another choice of dissipation channels that are more localized in Fock

space has been studied in [Rips et al. (2012)]. Employing such channels will lead to

multiple effective few-level limit cycles in Fock space centered at various Fock numbers.

Future directions also include the study of minimal examples, e.g., spin-2 oscillators

where both |±1⟩ are stabilized, as well as networks of TLCs. The study of classical

12Direkt link: https://tobias-kehrer.github.io/thesis/twin limit cycles/ [Accessed: July 26, 2025]
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10.7 Conclusion

multi-limit-cycle oscillators in the framework of synchronization and nonreciprocity

appears to be another path of research with rich physics. The analysis of multiple

limit cycles within a single quantum steady state opens a promising avenue within the

field of quantum synchronization with potential applications in quantum sensing and

entanglement generation.

The results and figures of this chapter have been published in parts in [Kehrer et al.

(2025)].
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Chapter 11

Conclusion and Outlook

In the recent years, impressive progress of quantum computing hardware has been

made. A precursor of fault-tolerant quantum computers are quantum simulators.

As an analogy, a fault-tolerant quantum computer can be used to perform quantum

simulations in a digital way whereas quantum simulators implement an analog simula-

tion of a quantum system. Including incoherent processes like gain and damping in

quantum simulation is of great interest. This thesis has presented contributions to

both hardware-oriented modeling of transmon qudits and theoretical studies of unique

quantum features of synchronization. Please consult the individual conclusions of each

chapter for a more detailed summary.

Part I: Quantum Computing on Superconducting Hardware

Summary

In the current noisy intermediate-scale quantum era, where fault-tolerant quantum

computing is not yet achieved, I believe studying quantum computing platforms as

a quantum simulator is the most promising avenue. Moreover, to unlock the full

potential of the physical implementation of a qubit, higher-excited qudit states of its

physical Hilbert space have to be taken into account.

In the example of a superconducting transmon qudit on IBM Quantum hardware,

in Ch. 4, we have presented a readout model that is used to compare the performance

of two proposed measurement strategies. The default strategy to measure two-

level qubit states is to maximize the distinguishability of both states. Applying

this strategy to qudits, i.e., multiple states, is in general not optimal since more

than two states have to be distinguished properly. One strategy we have proposed

operates, similar to the default strategy, at a single readout frequency that minimizes

the misclassification error of all relevant qudit states simultaneously. Moreover, we

have identified the parameter regime in which another strategy, i.e., combining the

outcomes of multiple measurements at distinct readout frequencies, outperforms the

single-frequency strategy. To prepare the Fock states of a ququart, i.e., the four lowest

eigenstates of a qudit, we have employed higher-order X gates by driving two-photon

transitions. One of the advantages of such gates is the speed-up of certain qudit
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operations.

In order to enable the simulation of open quantum systems, e.g., quantum syn-

chronization that has been discussed in the second part of this thesis, on quantum

computing hardware that is optimized to realize unitary time evolutions, we have

investigated a strategy to engineer an effective incoherent gain. The model that has

been presented in Ch. 5, makes use of echo-sequence-like gate operations combined

with decay periods to map the native decay to both effective gain and damping. By

making the echo sequence asymmetric in time, the ratio of the effective gain and

damping rates can be tuned.

In this first part of the thesis, we have improved the default readout of a transmon

qudit. Considering it as a noisy quantum computing platform, we have shown that

native decay can be used to simulate an effective incoherent gain.

Outlook

The readout model studied in Ch. 4 inspires other measurement schemes. Further

improvements of qudit state readout can potentially be achieved by an adaptive

measurement scheme in which the readout frequency is updated sequentially between

bunches of data in the spirit of Bayesian inference, e.g., see [Granade et al. (2017),

Garćıa-Pérez et al. (2021)]. Partial information about the quantum state that is gained

after a fraction of the measurement might be used to improve the distinguishability of

the following parts of the measurement. Other schemes based on adapting readout

frequencies might involve neural networks that have already been used for improved

readout [Quek et al. (2021), Wang et al. (2025)].

Similar to our implementation of two-photon transitions for higher-order X gates,

multiphoton transitions can be utilized to improve other gate operations, even two-

qubit gates [Roth et al. (2017), Li et al. (2024)]. Future research involves to identify

further feasible higher-order-gate extensions of the universal qudit gate set [Gottesman

(1999), Fischer et al. (2023)].

To improve the quantum simulation of open multilevel models, the echo-sequences

presented in Ch. 5 have to be extended to qudits. In the three-level qutrit case, new

transitions including two-photon processes can be used to generate mixed states by

effective incoherent gain. A question that will be worthwhile to answer is: which

effective gain and damping operators can be realized in qutrit or qudit models using

such echo-sequence-like gate operations? Moreover, the faster decay of higher excited

transmon states [Fischer et al. (2022)] can be used to engineer a speed-up mixed-state

preparation in comparison to using qubit states only.

Part II: Quantum Synchronization of Oscillating Systems

Summary

In the second part of this thesis, we have focused on one family of open quantum

systems we would like to implement on a quantum simulator: limit-cycle oscillators
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that show quantum synchronization. Here, gain and damping stabilize a limit-cycle

state that exhibits a free phase that can be synchronized to an external signal or the

phase of other oscillators.

In Ch. 8, using an efficient operator representation of the synchronization measure, we

have studied two scenarios of coherently coupled spin-1 oscillators: (i) two oscillators,

one of which is driven coherently, and (ii) a chain of three oscillators. Between

pairs of oscillators a synchronization blockade occurs that suppresses standard first-

order locking of the relative phase of these oscillators such that only second-order

bistable locking remains. Here, the pair of spins locks in and out of phase with each

other. Another synchronization blockade between the drive and the driven spin exists.

Surprisingly, the two spins at both ends of the three-oscillator chain synchronize

similar to the undriven spin in the two-oscillator case that synchronizes to the external

drive. Since the mentioned synchronization blockades between directly coupled spins

persist, i.e., they are not lifted, we refer to this effect as locking through the blockades.

A similar interplay of synchronization mechanisms leading to (i) standard locking

to a single value of the relative phase between two oscillators and (ii) bistable locking

has been presented in Ch. 9. Here, three interactions compete in a setup of two

harmonic-oscillator-like modes. A dissipative interaction between both oscillators

induces antiphase locking in contrast to a coherent coupling that nurtures bistable

phase locking. A coherent drive that acts on one of the oscillators leads to in-

phase or antiphase locking depending on the ratio of the dissipative and coherent

interaction strength. The resulting phase diagram as well as emerging synchronization

blockades have been understood by a perturbation expansion of the steady state.

Quantum analogues of traveling-wave states originating from an effective nonreciprocal

interaction have been identified by maxima in the Fourier transforms of two-time

correlations as well as by quantum trajectory simulations. The classical analogues

of two and three oscillators based on their mean-field equations feature many highly

nontrivial active states.

In the last publication discussed in Ch. 10 of this thesis, a new avenue of quantum

synchronization has been identified: the study of multi-limit-cycle oscillators, i.e.,

quantum Liénard systems. We have proposed a model whose steady state hosts two

coexisting limit cycles, which we call a “twin limit cycle”. In contrast, in its classical

analogue without noise, the phase space of the oscillator splits into two separated

basins of attraction, one for each limit cycle. Due to the coexistence in the quantum

case, surprising synchronization effects have been found. We have proposed refined

quantum synchronization measures to access the locking behavior of the individual

limit cycles. The individual limit cycles of a single coherently driven twin limit

cycle lock to distinct phases. Moreover, a pair of coherently coupled twin limit-cycle

oscillators exhibits both synchronization and synchronization blockades in the same

steady state.

In this second part of the thesis, we have identified unique quantum effects of

synchronization in both spin-1 and harmonic-oscillator-like models. Moreover, a

new direction, the quantum synchronization of multi-limit-cycle oscillators, has been
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initiated.

Outlook

In Ch. 8, we have introduced an operator expression of the common synchronization

measure for multiple spins. Answering the question which operator products contribute

to the measure for larger spins will improve the study of quantum synchronization

in these setups. The drive-spin blockade occurring in spin-1 models of quantum

synchronization has no counterpart in harmonic-oscillator-like models. However, an

inter-oscillator blockade exists in both cases. This raises the question whether quantum

synchronization through the blockades that has been presented in Ch. 8 also exists in

a chain of three harmonic-oscillator-like oscillators.

Another set of future topics is related to squeezing and its impact on quantum

synchronization [Sonar et al. (2018), Shen et al. (2023)]. In Figs. 7.3(c) and 7.3(d),

steady states of models including higher-order squeezing have been shown. The number

of visual maxima in the Wigner functions corresponds to the order of squeezing. What

are the implications of this higher-order squeezing for the synchronization of single

driven oscillators and coupled oscillators? There might be frustration effects emerging

when coupling a second-order squeezed oscillator with a third-order squeezed oscillator.

Moreover, higher-order squeezing of a limit-cycle state might be studied in the context

of multifurcations, i.e., generalized bifurcations [Strogatz (2024), Chia et al. (2025)].

The squeezing of twin limit cycles might also lead to interesting behavior if both

limit cycles react differently to the squeezing drive as they do for a standard coherent

drive. Can the limit cycles be significantly off-centered and what are the consequences

for defining phases of a limit cycle in the sense of the quantum asymptotic phase [Kato

and Nakao (2022), Kato and Nakao (2023)]? In analogy of a driven spin-1 oscillator

[Roulet and Bruder (2018a)] as the minimal example of a driven quantum oscillator

[Lee and Sadeghpour (2013)], what is the minimal example of a twin limit cycle? One

candidate is a spin-2 oscillator, where both states with magnetic quantum number

plus or minus one are stabilized. In this regard, interesting questions are: (i) what

are suitable synchronization measures to resolve the individual limit cycles, (ii) which

choices of Lindblad operators can be considered, and (iii) does a new class of blockades

between multi-limit-cycles and a coherent drive exist?

In general, one could choose different dissipators that stabilize multiple limit cycles

that exhibit better effective control parameters of the size and width of each limit

cycles than those presented in Ch. 10. One example is dissipators with a Lorentzian

distribution of gain and damping rates in Fock space discussed in [Rips et al. (2012),

Lörch et al. (2017)]. Adjusting the center position and width of two of such Lorentzian

gain and damping channels will likely lead to easier control of twin limit-cycle states.

The proposal of a physical implementation of multi-limit-cycles presented in Sec. 10.6

makes use of the highly nonlinear interaction between the internal degrees of freedom

of a trapped ion and its motional modes outside the Lamb-Dicke regime [Leibfried

et al. (2003)]. Moreover, the resulting state space of a related scenario in which both

gain and damping channels are engineered by blue and red sidebands driven on the
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same ion transition, see Sec. 3.3.2, can be explored in the context of dissipative phase

transitions [Minganti et al. (2023), Beaulieu et al. (2025)]. Does the combination of

both setups, i.e., each of two independent ion transitions is used to implement both

gain and damping, feature squeezed limit-cycle states?

Another topic besides squeezing is nonreciprocity [Fruchart et al. (2021)]. Taking the

setup described in Ch. 9 as an inspiration, i.e, coherent and dissipative coupling, are

there also active steady states of nonreciprocally coupled twin limit-cycles? Moving on

from two to many twin limit-cycle oscillators, it will be worthwhile to study networks

of many multi-limit-cycle oscillators. Since large quantum many-body systems are

difficult to simulate, one might start with their classical mean-field equations. Even

in this classical description, interesting nontrivial active states might be found, e.g.,

traveling-wave states where oscillators jump between stable amplitude configurations.

Classical multi-limit-cycles are known in biochemistry [Laurent and Kellershohn

(1999), Enjieu Kadji et al. (2007), Feillet et al. (2014), Goldbeter and Yan (2022)].

An arguably highly speculative question is whether quantum synchronization of multi-

limit-cycle oscillators has implications for quantum chemistry. Another exploratory

project is the investigation of a quantum analogue of swarmalators that have been

mentioned in Sec. 6.6 as quantum active matter. A simple scenario to start with might

consider two spins 1 that are coupled via a harmonic oscillator. Interpreting these

oscillators as ions in a common trap [Behrle et al. (2023)], the coupling-mediating

mode corresponds to their relative motion. Extending this setup to multiple spins and

oscillators in a 2D trap, a special case of quantum swarmalators would be realized.

More physical implementations of quantum synchronization than the ones mentioned

in Ch. 7 can be expected in the near future. Several platforms like superconducting

circuits [Grimm et al. (2020)] or trapped ions [Behrle et al. (2023)] offer promising

control. The development of new approaches to realizing quantum synchronization

can work in both directions: (i) new architectures might be needed to implement

known quantum limit cycles and (ii) hardware limitations and hardware features could

inspire new ways of limit-cycle-state stabilization.

177





Bibliography

Bibliography

J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, “The

Kuramoto model: A simple paradigm for synchronization phenomena”, Rev. Mod.

Phys. 77, 137–185 (2005).

R. Adler, “A Study of Locking Phenomena in Oscillators”, Proceedings of the IRE 34,

351–357 (1946).

M. Aifer, J. Thingna, and S. Deffner, “Energetic Cost for Speedy Synchronization in

Non-Hermitian Quantum Dynamics”, Phys. Rev. Lett. 133, 020401 (2024).

T. Alexander, N. Kanazawa, D. J. Egger, L. Capelluto, C. J. Wood, et al., “Qiskit

pulse: programming quantum computers through the cloud with pulses”, Quantum

Science and Technology 5, 044006 (2020).

E. Altman, K. R. Brown, G. Carleo, L. D. Carr, E. Demler, et al.,“Quantum Simulators:

Architectures and Opportunities”, PRX Quantum 2, 017003 (2021).

V. Ameri, M. Eghbali-Arani, A. Mari, A. Farace, F. Kheirandish, et al., “Mutual

information as an order parameter for quantum synchronization”, Phys. Rev. A

91, 012301 (2015).

E. Amitai, N. Lörch, A. Nunnenkamp, S. Walter, and C. Bruder, “Synchronization of

an optomechanical system to an external drive”, Phys. Rev. A 95, 053858 (2017).

A. P. Antonov, Y. Zheng, B. Liebchen, and H. Löwen, “Engineering active motion in
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E. Schrödinger, “Über das Verhältnis der Heisenberg-Born-Jordanschen Quanten-

mechanik zu der meinen”, Annalen der Physik 384, 734–756 (1926e).

F. Schwabl, Quantum Mechanics (Springer, Berlin Heidelberg New York, 2007).

F. Schweitzer, “An agent-based framework of active matter with applications in

biological and social systems”, European Journal of Physics 40, 014003 (2019).

Y. Shen, H. Y. Soh, W. Fan, and L.-C. Kwek, “Enhancing quantum synchronization

through homodyne measurement, noise, and squeezing”, Phys. Rev. E 108, 024204

(2023).

A. Shnirman, G. Schön, and Z. Hermon, “Quantum Manipulations of Small Josephson

Junctions”, Phys. Rev. Lett. 79, 2371–2374 (1997).

P. W. Shor, “Scheme for reducing decoherence in quantum computer memory”, Phys.

Rev. A 52, R2493–R2496 (1995).

P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete

Logarithms on a Quantum Computer”, SIAM Journal on Computing 26, 1484–

1509 (1997).

M. M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, et al., “Carbon nanotube

computer”, Nature 501, 526–530 (2013).

D. R. Simon, “On the Power of Quantum Computation”, SIAM Journal on Computing

26, 1474–1483 (1997).

S. Slussarenko and G. J. Pryde, “Photonic quantum information processing: A concise

review”, Applied Physics Reviews 6, 041303 (2019).
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G. M. Vaidya, S. B. Jäger, and A. Shankar, “Quantum synchronization and dissipative

quantum sensing”, Phys. Rev. A 111, 012410 (2025).

D. Viennot and L. Aubourg,“Quantum chimera states”, Physics Letters A 380, 678–683

(2016).

V. Volterra, “Fluctuations in the Abundance of a Species considered Mathematically1”,

Nature 118, 558–560 (1926).

U. Vool and M. Devoret, “Introduction to quantum electromagnetic circuits”, Interna-

tional Journal of Circuit Theory and Applications 45, 897–934 (2017).

M. te Vrugt and R. Wittkowski, “Metareview: a survey of active matter reviews”, The

European Physical Journal E 48, 12 (2025).
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