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Summary

About a century after the genesis of quantum mechanics, continuous development in
many directions of theory and engineering persists. Several open questions like the
quantum theory of gravity tested by macroscopic quantum states, the realization of a
fault-tolerant quantum computer, or the discovery of new unique quantum effects in
general remain to be answered. In this thesis, aspects of the latter two of these topics
are studied in more detail. The common ground on which they meet is the quantum
simulation of open quantum systems.

The first part of the thesis focuses on quantum computing. In particular, the
extension of the standard two-level bit-like qubit, on which standard quantum com-
puters rely, is studied: the qudit. Qudits are multilevel quantum systems whose larger
Hilbert space can provide advantages in quantum computation. To profit from the
additional degrees of freedom of a qudit, its individual states have to be properly
discriminated during readout. Two measurement strategies, based on a readout model
of a superconducting transmon qudit, are proposed and compared by their theoretical
performance. We implement the measurement of the four lowest eigenstates on state-
of-the-art quantum computing hardware and employ higher-order gate operations
realized as two-photon transitions. Moreover, we investigate a way of simulating open
quantum systems by engineering adjustable effective gain using echo-sequence-like
gate operations.

In the second part of this thesis, the quantum analogue of synchronization of oscilla-
tors, i.e., the alignment of features like frequency and phase, is studied. The building
blocks of quantum synchronization are limit-cycle states. These states are stabilized by
incoherent gain and damping and feature a free phase of oscillation that can be locked
to an external signal or to the phases of other limit-cycle oscillators. We investigate
spin-1 and harmonic-oscillator-like models by a refined operator representation of
common synchronization measures. In particular, we show that in a system of spins 1
synchronization through interference blockades, that suppress synchronization effects,
is possible. Furthermore, for harmonic-oscillator-like limit-cycle states, we find that
the interplay of three independent synchronization mechanisms leads to active states
induced by nonreciprocal interactions. The phase diagrams for both the quantum and
classical version are analyzed. Finally, a new avenue of quantum synchronization is
identified: quantum oscillators that host multiple limit cycles. Here, one phenomenon
is the coexistence of both the occurrence and the absence of quantum synchronization
in a single quantum state.

This thesis combines the theoretical study of new quantum features of synchroniza-
tion with proposals of potential realizations on quantum simulators and quantum
computers, especially, with a focus on superconducting transmon qudits and trapped
ions.
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Abbreviations and Symbols

A selection of relevant abbreviations and symbols used in this thesis is listed below.

Abbreviation Meaning Introduced in
MDE Maximum Distance Estimator Sec. 4.5.1
MLE Maximum Likelihood Estimator Sec. 4.5.1
NISQ Noisy Intermediate-Scale Quantum Ch. 4

qubit quantum bit Sec. 3.1.1
qudit quantum dit Sec. 3.1.1
TLC Twin Limit Cycle Sec. 10.1
vdP van der Pol Sec. 6.2.1
Symbol Meaning Defined in
af) annihilation (creation) operator Eq. (2.1.8)
I'(2) Gamma function Eq. (7.2.9)
C(lln> l-legged cat state Eq. (3.3.13)
o) coherent state Eq. (2.1.11)
D(p,s) generalized displacement operator Eq. (2.4.3)
DIL](p) Lindblad dissipator Eq. (2.3.16)
I, modified Bessel function of the first kind Eq. (6.1.10)
Jy Bessel function of the first kind Eq. (6.1.11)
Lk Laguerre polynomial Eq. (3.3.12)
Py Synchronization measures of N quantum vdP oscillators Eq. (9.2.15)
SN Synchronization measures of N spins Eq. (8.2.9)
S+ spin ladder operator Eq. (2.2.11)
SU(N) special unitary group Eq. (2.2.2)

bel






Chapter 1

Introduction

The year 2025 marks the 100th anniversary of the famous “Umdeutung” paper by
Werner Heisenberg [Heisenberg (1925)]. For this reason, on the 7th June of 2024, the
year 2025 was officially declared to be the International Year of Quantum Science and
Technology by the U.N. General Assembly following the resolution by the nation of
Ghana in May 2024 [UNESCO (2025)].

In the last century, quantum mechanics became one of the most relevant theories
not only for fundamental research but also for human daily life: it is the foundation of,
e.g., semiconductors [Bardeen and Brattain (1948)], solar cells [Chapin et al. (1954)],
atomic clocks [Essen and Parry (1955)], lasers [Maiman (1960)], light-emitting diodes
[Holonyak and Bevacqua (1962)], and medical imaging [Lauterbur (1973), Hounsfield
(2014)]. In return, these technological inventions like the computer or the laser became
essential tools for subsequent scientific research.

A selection of famous contributors to quantum mechanics besides Heisenberg are
Max Planck [Planck (1901)], Albert Einstein [Einstein (1905), Einstein (1917)], Niels
Bohr [Bohr (1913a), Bohr (1913b), Bohr (1913c¢)], Arnold Sommerfeld [Sommerfeld
(1916a), Sommerfeld (1916b)], Paul Dirac [Dirac and Fowler (1925), Dirac and Fowler
(1927)], De Broglie [De Broglie (1925)], and Erwin Schrédinger [Schrodinger (1926a),
Schrodinger (1926b), Schrodinger (1926¢), Schrodinger (1926d), Schrodinger (1926e)].
A historical overview of the early developments of quantum mechanics is presented in
[Duncan and Janssen (2019), Janssen and Duncan (2023)].

Another architect of quantum mechanics is John von Neumann, mainly known for
his contributions to classical computing [Neumann (1993)], who introduced the density-
matrix representation of ensembles of quantum systems in a Hilbert space formalism
[Neumann (1927a), Neumann (1927b), Neumann (1927¢)]. Considering von Neumann,
the “personification of the combination of computing and quantum mechanics”, as an
inspiration, we arrive at the first topic of this thesis: quantum computing. Innovative
suggestions to consider a quantum description of computers [Benioff (1980)] and to
utilize quantum systems as platforms for computation [Feynman (1982)] have been
made in the 1980s. Following these proposals, first prototypical problems were solved
by quantum algorithms [Deutsch and Penrose (1985), Deutsch and Jozsa (1992), Simon
(1997), Bernstein and Vazirani (1997)]. Subsequently, more practical algorithms like
Grover’s search algorithm [Grover (1996)] and Shor’s prime-factorization algorithm
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[Shor (1997)] have been published.

These quantum algorithms rely on fault-tolerant quantum computers that do not yet
exist. However, in the current noisy intermediate-scale quantum era [Preskill (2018)],
we have access to a variety of quantum computing platforms that are candidates for
future quantum computers. Examples of these platforms are superconducting circuits
[Blais et al. (2021)], trapped ions [Bruzewicz et al. (2019)], cold atoms and Rydberg
atoms [Saffman (2016)], electron spins in quantum dots [Burkard et al. (2023)],
magnetic racetracks [Zou et al. (2023)], photonic circuits [Slussarenko and Pryde
(2019)], and topological states [Nayak et al. (2008)]. In the last years, many quantum
computing companies focusing on hardware and/or software have been founded. One
of the early competitors with a substantial history in classical computing is IBM.
The evolution of the superconducting-qubit hardware of IBM Quantum involves an
increase in the number of qubits from 1 to 100+ [Kandala et al. (2017), Kim et al.
(2023), Miessen et al. (2024), Mandelbaum et al. (2024)] and a reduction of the error
rates of single and two-qubit gates to the orders O(1073) and O(10~%) [McKay et al.
(2023), IBM Quantum. (2025)]. Note that in 2022 a 433-qubit chip® and in 2023 a
1121-qubit chip? were released.

A common feature among many quantum computing platforms is that the qubit
Hilbert space is realized as a two-level subspace of a larger physical Hilbert space.
Quantum systems that exhibit d states are called qudits [Wang et al. (2020)]. In the
example of the transmon qudit [Koch et al. (2007)], an anharmonic superconducting
oscillator, the qubit is formed by the ground state and first excited state. The higher-
excited states of qudits can provide advantages in a passive way by improving, e.g.,
qubit readout [Elder et al. (2020)], the implementation of multiqubit gates [Fedorov
et al. (2012)], or qubit reset [Zeytinoglu et al. (2015), Egger et al. (2018)]. Moreover,
the full potential of qudits can be unleashed by taking advantage of higher-excited
states in an active way by, e.g., using them as ancillas [Fischer et al. (2022)], logical
states [Cervera-Lierta et al. (2022)], or for quantum simulation [Ciavarella et al. (2021),
Champion et al. (2025)]. One of the main limiting factors of superconducting qubits is
their readout [Dumas et al. (2024)]. The default readout scheme for qubits optimizes
the distinguishability between the qubit states. Since this scheme is not necessarily
optimal for distinguishing all qudit states, we propose different measurement strategies
based on a qudit readout model.

In the first part of this thesis, this project, together with the description of an
echo-sequence-like model that can be used to simulate effective gain and damping
on quantum hardware, will be discussed. Simulating open quantum systems, i.e.,
including incoherent processes like decay, on quantum hardware is of great interest
[Weimer et al. (2010), Barreiro et al. (2011)], especially on quantum computers [Sweke
et al. (2015), Schlimgen et al. (2021), Leppikangas et al. (2023)].

In the second part of this thesis, we will focus on open quantum systems. In

"https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-
Next-Generation-IBM-Quantum-System-Two [Accessed: August 10, 2025]
2https://www.ibm.com/quantum/blog/quantum-roadmap-2033 [Accessed: August 10, 2025]
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the scenarios we will present, gain and damping are essential to stabilize particular
quantum states that feature a free phase that can be synchronized. Synchronization,
i.e., the alignment of features of oscillators like their frequency and phase of oscillations,
has been initially studied in 1665 by Christiaan Huygues [Huygens (1893)] in the setup
of two coupled pendulum clocks. In many scientific domains like biology [Buck (1938)]
or civil engineering [Strogatz et al. (2005)], synchronization has been observed. In the
research domain called quantum synchronization, people usually aim at identifying
unique quantum effects of synchronization of quantum oscillators [Lee et al. (2014),
Lorch et al. (2017), Roulet and Bruder (2018b)]. In recent years, quantized classical
oscillators [Lee and Sadeghpour (2013)] (top-down approach) and inherently quantum
spin-like oscillators [Roulet and Bruder (2018a)] (bottom-up approach) have been
studied. Quantum synchronization is in some aspects related to quantum sensing
[Vaidya et al. (2025)], quantum thermodynamics [Jaseem et al. (2020b)], and time-
crystals [Hajdusek et al. (2022)].

In this second part, we will present publications on both spin-oscillator models
and harmonic-oscillator-like models. We will discuss the synchronization of indirectly
coupled spin-1 oscillators in the presence of synchronization blockades [Solanki et
al. (2023)] that simultaneously suppress synchronization of directly coupled spin-1
oscillators. Moreover, in a setup of two harmonic-oscillator-like oscillators, we will
consider an effective nonreciprocal interaction realized by coherent and dissipative
couplings and find, e.g., quantum analogues of traveling-wave states [Fruchart et al.
(2021)] that are related to active matter [Vrugt and Wittkowski (2025)].

Finally, we identify a new direction of quantum synchronization: multi-limit-cycle
oscillators. Here, multiple limit cycles coexist in the same steady state of a single
oscillator. We will present refined synchronization measures to access the locking
information of the individual limit cycles and discuss the basic quantum synchronization
features of a model that features two coexisting limit cycles. The study of multi-
limit-cycle oscillators provides a multitude of research possibilities by exploring how
well-known quantum synchronization effects manifest in this class of models as well as
by finding exclusive unique quantum features.

Overview

This thesis is structured as follows:

Chapter 2 We will start by a recap of the theoretical foundations of the building
blocks of most models considered in this thesis: the quantum harmonic oscillator and
spins. In addition to their unitary time evolution, we want to describe nonunitary
processes like decay and incoherent pumping of open quantum systems. Thus, we will
briefly derive the Lindblad master equation in the Born-Markov approximation.
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Part I: Quantum Computing on Superconducting Hardware

Chapter 3 In the first chapter of the first part of this thesis, we will introduce the
basic elements of universal quantum computing. We will build intuition for why
the universal gate set is universal by constructing approximations for noncommuting
rotations of states on the Bloch sphere around two linear independent axes. These
operations can be used to generate any unitary operator with a desired level of error.
After introducing the quantum circuit as the representation of the gate sequences of a
quantum algorithm, we will briefly learn how to use fault-tolerant quantum computers
as a digital quantum simulator.

A more promising way of using quantum hardware at the moment is analog quan-
tum simulation. We will understand the basic modeling aspects of superconducting
transmon qudits like their level structure and driving of (higher-order) transitions. In
contrast to the previously described qubits of standard universal quantum computing,
qudits feature more than two states.

The mathematical description of a second quantum platform, viz., trapped ions,
will be outlined. Trapped ions are often the prime candidate for implementing setups
considered in Chs. 8 to 10 in the second part of the thesis.

Chapter 4 In this chapter presenting the publication [Kehrer et al. (2024a)], we will
learn about the readout model of transmon qudits. In contrast to the standard readout
scheme for qubits that optimizes the discrimination of both qubit states, measurement
strategies for qudits have to provide sufficient distinguishability of multiple states
simultaneously. We will present two measurement strategies that are based on the
readout-drive-dependent model. The first one features a single readout frequency
whereas the second one splits the total number of measurement runs into experiments
at different readout frequencies. We will present actual data of a ququart implemented
on an IBM Quantum device. By the realization of two-photon transitions, higher-order
X gates are used to prepare the ququart states.

Chapter 5 Having learned how to improve the readout of qudit states, in this chapter,
we will study an echo-sequence-like model that mimics the simulation of effective
incoherent gain and damping on a quantum computer. Despite being designed for
unitary operations, state-of-the-art quantum computers still feature loss. On the
contrary, native decay can be viewed as a source for quantum simulation of open
quantum systems. We will present a sequence of operations involving gates and decay
periods that enables the generation of mixed states by the realization of tunable gain
and damping rates. Extending this model to qutrits will potentially be interesting
regarding the implementation of spin-1-like setups, e.g., the ones discussed in Ch. 8.



Part II: Quantum Synchronization of Oscillating Systems

Chapter 6 The second part of this thesis focuses on a particular family of open
quantum systems that we would like to implement on a quantum simulator of platforms
like the ones presented in Sec. 3.3 using methods that might have evolved from Ch. 5.
This family is called “quantum synchronization”. Its classical analogue has been
established in 1665 by Christiaan Huyguens. In this chapter, we will give a broad
overview of relevant models an their features that will be reference points for the studies
of quantum synchronization in Chs. 8 to 10. We will begin with the Kuramoto model
of phase oscillators, meaning oscillators that exhibit only one free parameter, viz. their
phase of oscillation. With this model, we will understand the basics of synchronization,
i.e., the alignment of oscillator properties like their frequency or phase of oscillation.
Next, we will define the building block of further models of synchronization: the
limit cycle. It is a stabilized, closed, and isolated trajectory in the phase space of
an oscillator that exhibits a phase and an amplitude. We will introduce the van
der Pol and the Stuart-Landau oscillator and begin to study frequency and phase
synchronization. Furthermore, we will understand synchronization blockades whose
quantum analogues will play a significant role in Chs. 8 to 10.

Chapter 7 After having established the tools for analyzing classical synchronization,
in this chapter, we will introduce quantum synchronization, the main topic of the
second part of this thesis. We will introduce two typical setups and their measures
of quantum synchronization that will be relevant for Chs. 9 and 10. The first one is
the harmonic-oscillator-like “quantum van der Pol” oscillator. For a single coherently
driven oscillator and for two coherently coupled oscillators, we will review the basic
synchronization effects. For the second setup, spin-1 oscillators that will be studied in
Ch. 8, we will recall similar basics of synchronization properties.

Chapter 8 In this chapter, in which the work published in [Kehrer et al. (2024b)] will
be discussed, two scenarios of coherently coupled spin-1 oscillators will be considered:
(i) two oscillators, one of which is driven, and (ii) a chain of three oscillators. Quantum
synchronization interference blockades, like the ones introduced in Sec. 7.2, between
pairs of coupled oscillators as well as between the driven spin and its coherent drive
exist. The surprising quantum feature is that even if both types of blockades persist,
the undriven spin synchronizes with the external drive as well as both spins at the
ends of the three-oscillator chain. We will define an operator representation of the
common synchronization measure that reduces its calculation complexity and increases
its interpretability.

Chapter 9 This chapter based on the publication [Kehrer and Bruder (2025)], will
present a phase diagram of three competing independent quantum synchronization
mechanisms. A coherent drive and a coherent coupling, that will be presented
individually in Sec. 7.1, will be combined together with a dissipative interaction in a
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model of two quantum van der Pol oscillators. Effective nonreciprocal interactions
arise and induce quantum analogues of traveling-wave states. We will see that tuning
these interactions to become unidirectional, a synchronization blockade between the
undriven oscillator and the coherent drive, that acts only on the other oscillator,
emerges. At the end of this chapter we will furthermore investigate the rich phase
diagrams of the classical analogues of two and three such oscillators and will show
examples of highly nontrivial active states.

Chapter 10 The last publication [Kehrer et al. (2025)] presented in this thesis will be
discussed in this chapter. We will consider a quantum Liénard system whose classical
analogue features two concentric limit cycles and call it a “twin limit cycle”. This creates
the avenue of quantum synchronization of multi-limit-cycle oscillators. We will provide
its foundations by showing the coexistence of quantum synchronization behavior in
the cases of a single coherently driven twin limit cycle and two coherently coupled
twin limit-cycle oscillators. By defining refined measures of quantum synchronization
we will be able to access the individual phase-locking information of the two limit
cycles of one oscillator. For both cases, we will find intriguing synchronization effects:
the limit cycles of the driven oscillator lock to distinct phases and the steady state of
the two-oscillator model features both synchronization and synchronization blockades.

Part III: Conclusion

Chapter 11 In the final chapter, we summarize the main findings presented in this
thesis and propose several directions of future research. By relating the thesis to other
works, further projects are identified.



Chapter 2

Theoretical Background

In this chapter, theoretical foundations that are relevant for both parts of this thesis
are presented.

2.1 Quantum Harmonic Oscillator

The harmonic oscillator is probably one of the most considered approximations in
physics. One reason might be the fact that in many domains of physics local minima
of potentials can be approximated by a quadratic function. Another reason might be
their simple analytical solutions. Moreover, it is the standard example of canonical
quantization leading to the quantum harmonic oscillator that is relevant for Chs. 4, 9
and 10. The following section is based on [Schwabl (2007)].

The classical harmonic oscillator is given by the Hamiltonian

P mw?

H=* 4+ — 3?2 2.1.1
om T 5 % ( )

which corresponds to the total energy of a nonrelativistic particle with momentum p,
position x, and mass m moving in a quadratic potential with curvature 92H/m = w?.
As canonical quantization, we understand replacing position and momentum by
quantum mechanical operators as well as replacing the Poisson bracket {x,p} =1 of
the classical system with the commutator [z, p] = xp — px = ih. The system can be

transformed into a different set of operators a and af,

h hmw
= T = 1 T —_
x Y (a"+a), p=1iy 5 (a' —a), (2.1.2)

called the annihilation and creation operators that obey [a,al] = 1. Using these

operators the Hamiltonian of the quantum harmonic oscillator reads
_I. 1
H = hw aa+§ . (2.1.3)

Here, eigenstates of the Hamiltonian are eigenstates of the number operator n = afa.
These states are called Fock states afa |n) = n|n) and obey (n|m) = 6,m, where 8,
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is the Kronecker delta. Using [n,a!] = a' and [n,a] = —a, the action of a and a on
these states can be derived,

na’ |n) = (a'n + [n,a']) |n) = (n+ a’|n) = (n+ ey n+ 1), (2.1.4)
na|n) = (a'n+[n,a)) n) = (n — Daln) = (n — ey |n — 1), (2.1.5)
(n|aa’|n) = (n+1| ey In+1) = (n| (a’a + 1) |n) = | =n+1, (2.1.6)
(n|a’aln) = (n—1|cheyIn — 1) = |ea|> = n, (2.1.7)

leading to ¢; = v/n + 1 and ¢2 = \/n. The Fock-state representation of both operators
is

Z\/n—l— |n + 1)}n|, a—zx/n—{— |n)n+1] . (2.1.8)

n=0 n=0

The eigenstates |a)3 of the annihilation operator a are also well known as coherent
states [Glauber (1963)]. Using a superposition of Fock states as an ansatz,

ala) =ale)=ad dyjn) = dpvnln—1)=> dppvnt1ln)=a) dyin),
n=0 n=0 n=0 n=0

(2.1.9)

results in a recursion relation d,+1v/n + 1 = d,« that is solved by d,, = dpa™/ Vnl.
The normalization

oo o0

a*ra™ |oe|™ ol?
(alay = > !do!2\/m<n]m):\do\2 > W:yozoy%,l F=1 (2.1.10)

n,m=0 n,m=0

is guaranteed by dy = e~ 1o*/2,

) = e~ lo /QZ—m . (2.1.11)

Remembering the relation between a and position and momentum operators, see
Eq. (2.1.2), we see that the real part of o can be related to position and the imaginary
part of o can be related to momentum,

zla) = \/ 2h Re[ lle), pla)y=vV2hmwlm[a]|a) . (2.1.12)

Moreover, the position and momentum expectation values of coherent states obey the
classical equations of motion. These states might therefore be interpreted as the “most
classical quantum states”.

In systems with multiple harmonic oscillators, annihilation operators of oscillator A,
B, C, ... are often denoted by a4 = a, ap = b, ac = ¢, .... Studying unitary time

3Note that the same symbol |-) as for Fock states is used even if & = n does not imply |a) = |n).
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evolutions, transforming between different reference frames is relevant. A transfor-
mation [¢) — U |¢), with U = exp(—iwalat), of a system given by a Hamiltonian H
leads to

d d : d
ihey W) = H[$) = ih (Ule)) = iU [¢) +ihU - |¢) = HU |9) (2.1.13)

and the effective Hamiltonian for |¢)
ih% |¢) = Hegr|¢) = UT(HU — ihU) |¢) = (UTHU — hwa'a) |¢) . (2.1.14)

Since U extracted the time evolution induced by Hy = fwa'a, the effective Hamiltonian
Hg for |¢) is missing exactly this term in comparison to H for |¢). This frame is also
called the “rotating frame”. Note that in the majority of the thesis i = 1 is chosen.

2.2 Spin

Another highly important quantum model are spins [Pauli (1925)] that will be consid-
ered in Ch. 8. A spin state |s, ms) is defined by its quantum numbers s € {5 |n € IN}
and mg = —s,—s + 1...,s. In contrast to the infinite-dimensional creation and
annihilation operators of the quantum harmonic oscillator, vector representations
(s,8 —1,...,—s) of spins are (2s + 1)-dimensional. Spin-s operators S’ correspond
to the (2s + 1)-dimensional representation of the su(2) Lie algebra elements. The
traceless Hermitian elements 7% of su(/N) [Duistermaat and Kolk (2000)],

su(N) = {T% € Le(CY,CN) | 7% = T and Tr[T9] = 0}, (2.2.1)
are the generators of the Lie group
SU(N) ={U € U(N) |det(U) =1}, (2.2.2)

called the special unitary group. Here, U = exp(i)_, z,T?) with 2, € R are elements
of a subset of the unitary group [Duistermaat and Kolk (2000)]

U(N) = {U e Le(CV, e | UTU =1}, (2.2.3)

where Lg(CY,C%) is the space of complex-linear maps CY — CV. The Spin-s
operators S7 obey*

[S%,87) =1 eijnSh. (2.2.4)
k

4Note that we neglect factors of A, i.e., we measure spin in multiples of A.
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Here,

1 for even permutations (i, j, k) of (z,y, z),
€ijk = { —1 for odd permutations (i, j, k) of (z,y, z), (2.2.5)

0 else,

is the Levi-Civita symbol. The spin operators are defined by their nonvanishing matrix
elements [Landau and Lifshitz (1977)]

1
(s,mg| S*|s,ms — 1) = (s,ms — 1| S* |s,ms) = 5\/(5 +ms)(s—ms+1), (2.2.6)

1
(s,ms| SY|s,ms — 1) = — (s,ms — 1| SY |s,ms) = 5\/(8 +mg)(s —ms+1), (2.2.7)
(s,ms| S*|s,ms) = ms. (2.2.8)

The quantum numbers mentioned in the beginning are the eigenvalues of the following
operators

S s,m) =Y 5% |s,my) = s(s + 1) |s,ms) | (2.2.9)
J
S% s, ms) = mg|s, ms) . (2.2.10)

Spin ladder operators are defined as S* = S* +iSY and raise and lower the m
quantum number,

SE |s,ms) = /(s Fms)(s £mg + 1) |s,ms + 1)
= Vs(s+ 1) —my(ms £ 1) |s,ms £ 1) . (2.2.11)

Since the m quantum number is bounded, St |s,s) = S~ |s, —s) = 0 and S*=(2s+1) =,

The smallest but somewhat trivial spin is s = 0 which has only one state ms = 0,
i.e., it is a scalar. Since here 52 |0,0) = 0, the spin vector has zero length and
57 = 0. Therefore, a spin-0 object does not define a particular reference frame in the
three-dimensional spin space, i.e., it is spherically symmetric.

2.2.1 Spin-1/2

The smallest half-integer spin is s = 1/2 which has two states ms = £1/2. The
most famous examples and applications are, e.g., electrons and qubits. The spin-1/2
operators

1(0 1 10 —i 1(1 0
xr — _ Y — — Z = — 2.2.12
5 2(1 0)’ S 2<i 0)’ S 2(0 —1)’ ( )

10



2.2 Spin

obey $72 = 1/4, Tr[1] = 2, and
1 i
S'S) = Zéij]l + %Zeiijk R (2.2.13)
k
: o 1 o i
Te[$7] =0, Tr[$'ST] = Soy, Tr|STSISH| = Jei. (2.2.14)
A spin-1/2 density matrix
1 L=

p= L+ (2.2.15)
exhibits three real-valued degrees of freedom 7 € R3. Purity, i.e., Tr[pQ] =1/2+
Tr [(ﬁs" )2} = (1+17|?)/2 = 1 is provided by unit length vectors 7. These 7 correspond

to states that lie on the so-called Bloch sphere. See Fig. 3.1 in the next chapter for a
visualization.

2.2.2 Spin-1

The next larger spin is s = 1 and has three states ms = —1,0, 1. Its spin operators
1 0 10 1 0 —-i 0 10 0
S*=—110 1|, SY=—71]1 0 —if|, S*=[0 0 0 |, (2.2.16)
V2 010 V2 0 i 0 00 —1

obey $73 = S7, Tr[1] = 3, and

Te[$7) =0, Te[$'87] = 265, Tx|S'STS%| = ieysn, Tr|S'SISMS!| = oy + Dby
(2.2.17)
The density matrix exhibits 32 — 1 = 8 (hermiticity and purity Tr[p] = 1) free

parameters that are restricted to guarantee positive semidefiniteness. One choice of
parameters are the expectation values of S7, §2, §%2, §*S¥ S§YS* and S*S<,

1 ﬁ—' Z”
p=gl+55+ %:nijsﬂ : (2.2.18)
where [Band and Park (1971)]
0 01 1 0 O
s~ o 0 o], s*=[0 -2 o], (2.2.19)
1 00 0 0 1
0 0 —i 1 0 -1 0 1 0 1 O
S¥=100 0], S¥=—1|1 0 i], =—1]1 -1
i 0 O V2 0 -1 0 V2 0 -1 O
(2.2.20)

11
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2.3 Open Quantum Systems

Unitary time evolution originates from a Hamiltonian H and the Schrodinger equation

. d
ih s ) = H ) (23.1)

where |¢) = U |¢pg) with U = exp(—iHt/h) solves the equation for time-independent H.
Some crucial features of unitary time evolutions are the preserving of norm, linearity,
and time reversibility. The last feature is a clear indication that the description of
nonreversible processes like decay is not included. In this section, which is based on
[Wiseman and Milburn (2009)], the quantum master equation of systems including
dissipative processes will be presented. This framework is highly relevant for the main
part of this thesis. In the following, we set i = 1.

2.3.1 Lindblad Master Equation

To move from unitary time evolution of “closed quantum systems” to nonunitary time
evolutions of “open quantum systems”, we start by breaking the total Hilbert space
apart in the system S of interest and its environment E. The aim is to consider the
environment as a large reservoir, i.e., not significantly influenced by state changes in
the system, that couples to the system. The unitary time evolution of the density
matrix of the total system is

d .
aptot = _1[HS + Hg + Hinta ptot] . (232)

Here, Hg and Hpg are the individual Hamiltonians of the system and its environment
and Hiyt describes the interaction between both. In the rotating frame of the free
Hamiltonians Hg + Hg,

proy = e HSTHEN p 4 ireel s TR (2.3.3)
the time evolution obeys
d L . .
7 Protint = —i[elHsHHE! o~ iHSHHE) ) — [V, prot.ins] (2.3.4)

Similar to Eq. (2.1.14), this unitary transformation of the density matrix leads to the
subtraction of —i[Hg + HE, ptot int) from Eq. (2.3.2). The formal solution

¢
Prot.int (t) = Prot,int (0) — i/dtl[v(tl); Prot.int (t1)] 5 (2.3.5)
0

12
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is used to find the equation of motion of the total system in the rotating frame by
inserting it back into Eq. (2.3.4),

Sypronine(®) = <AV, i 0] = [ AV, V(). prose(tr)]. (2:36)
0

In the so-called Born approximation, a system that is initialized in an uncorrelated
state

ptot,int(o) = pS,int(O) b2y pE’,int(O) ) (237)

is assumed to stay uncorrelated,

Prot,int (t) = pSint(t) ® pE,int(0), (2.3.8)

if the system-environment coupling is weak. In this case, the state of the large
environment is approximately unchanged when the system state evolves. The second
term in Eq. (2.3.6) still depends on the full solution of the system state. To turn
this equation into a local-in-time differential equation, we have to assume that the
integrand is small except around ¢; =~ t. This, together with replacing the lower time
limit by —oo is so-called Markov approximation,

¢

d

aptot,int(t) = _i[v(t)aptot,int(o)] - / dtl[v(t)7 [V(tl)aps,int(t) ® pE,int(O)H . (239)

—0o0

The Markov approximation is often interpreted as “the state does not have a memory”,
i.e., meaning the derivative of the state at time ¢ should not depend on the full history
of the previous state evolution.

The Hamiltonian of the environment, also called bath or reservoir, is now assumed
to be a collection of many harmonic oscillators,

Hp =" wblb,, (2.3.10)
k

where the annihilation operators by are commuting with each other [bj, bz] = Ojk

and the system annihilation operator [a, bg)] = 0. The coupling is set to the Jaynes-
Cummings type [Jaynes and Cummings (1963)]

Hine = > gr(al +a)(b], +b,) (2.3.11)
k

also called a dipole-dipole interaction. In the rotating frame of Hg + Hp, where
exp(iHgt)a exp(—iHgt) = ae™%s? is assumed, two options arise. Either the sum wg +
wg, of system and environment frequencies is large compared to their difference wg — wy
or vice versa. In the case wg + wy > wg — wg, in the rotating-wave approximation,

13
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the rapidly oscillating terms proportional to aby and al bz average to zero on smaller
time scales than the evolution of the system. The resulting terms of the interaction
Hamiltonian in the rotating frame are

V=" gr(albe i @emws)t 4 gpleilen—ws)ty (2.3.12)
k

To obtain an equation of motion for pg;nt, we have to take the partial trace over the
environment of Eq. (2.3.6). In the Born approximation, see Eq. (2.3.8), and initializing
the environment pg int(0) in the vacuum state, leads to

Spsinlt) =~ TV (E), psin(t) © prau(O)]

LﬂhﬂﬂmeMMmMM®mm@m
0

t

=— /dt1 Zg%e_i(“”“_wS)(t_tl)(aTapS,mt(tl) — aps’mt(tl)aT) +H.c..
0 k
(2.3.13)

Here, the terms in the first line vanish since Trg [bg) pE.int(0)] = 0. In the second line, we
additionally use TrE[b}prE7int(O)] = Tre(pp,mnt(0)bjbg] = 0 and Trg [b;r-pE7int(O)bk] =
k. The sum over k of the many coupling strengths g,?; weighted by the complex
phase factor e {@Wr=@s)(t=11) can be expected to be sharply located at ¢t ~ t; due to
destructive interference of the many phase factors for ¢t # t;. This motivates the
Markov approximation pgint(t1) = psint(t). The value of the ¢; integral over this
factor will feature a real part and an imaginary part,

¢
—i(wg—w - : K
- / dty Y gheines) =t po () & (1A— 5) psimt(). (2.3.14)
0 k
The final result back in the nonrotating frame is the well-known Lindblad master
equation
d d ) t
TS =P = —i[Hg + Aad'a, p] + kDla](p) . (2.3.15)

Here, the state p of the system is evolving under its Hamiltonian Hg and a correction
Aa'a and now additionally exhibits a decay with rate x described by the Lindblad
dissipator

D[L](p) = LpL' — %(LTL + pL'L). (2.3.16)

14
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The operators L are called Lindblad operators. Note that
DIL)(UpU") = UD[UTLU](p)U? (2.3.17)
and
DIAL](p) = [\2DIL](p) (2.3.18)

were used to go back from the rotating to the nonrotating frame.

In the above derivation of the Lindblad master equation, we used the fact that the
interaction Hamiltonian of Eq. (2.3.11) is of the form

Hine = > gr(l(a,a") + 1(a,a")) (b] + 1) , (2.3.19)
k

where [(a, a') transforms like exp(iHst)l(a,al) exp(—iHgt) = l(a, a’)e™ s such that
a rotating-wave approximation can be made, see Eq. (2.3.12). Similar to the case
l(a, aT) = a discussed above, the resulting Lindblad operator in the effective master
equation of the system, see Eq. (2.3.15), is L = I(a, a') and the Hamiltonian correction
is AL'L. In, e.g., Sec. 7.1.2 as well as Chs. 8 to 10, different choices of Lindblad
operators like L = a” and L = a!™ are considered.

Since in general D[L; + Lo|(p) # D[L1](p) + D[L2](p), the realization of multi-
ple Lindblad dissipation terms D[L;| requires independent baths, e.g., consider the
interaction Hamiltonian

J
Hig =Y > ge(LE+L,)(b] +1,) (2.3.20)
j=1 kEle

where J is the number of Lindblad dissipators and K; are the disjoint sets of bath-mode
indices.

2.3.2 Engineered Dissipation

In experiments, decay is almost always present. Despite its negative connotation,
it can be used to engineer particular Lindblad dissipators as presented below, see
[Poyatos et al. (1996)]. Consider the total master equation

d

3P = ~ilHs + Hint, p] + £Dlc(p) (2.3.21)

of a mode a of interest and a rapidly decaying mode ¢ (k > g,wg, where wg is the
energy scale of Hg), e.g., a lossy cavity or an ion transition starting from a short-lived
state. Both are coupled by the interaction Hamiltonian Hiy = gl(a,al)ct + H.c..
The time evolution of ¢ is given by the Heisenberg equation of motion [Wiseman and

15
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Milburn (2009)]

1
ic =ig[l(a,a"e" +1T(a,al)e, ] + & (CTCC - i(cfcc + ccTc)) = —igl(a,a’) — gc.

dt
(2.3.22)
If this mode is rapidly decaying in comparison to the time evolution of the system

mode a, it can be assumed to be in its steady state ¢ = 0 during the time evolution of
a. The steady state solution

¢ = —2i%1(a, a!) (2.3.23)
K
can be used to simplify the total time evolution of Eq. (2.3.21) to an effective time
evolution
d . g° ;
S o= ilHs,p) + 4L Dli(aah)(p), (2.3.24)

where Hiy, — 0 and Eq. (2.3.18) is used. This method can be used to realize the
Lindblad operators L = a™ and L = a!™ mentioned at the end of the previous section.

Moreover, coupling multiple modes a; of interest to the same lossy mode c leads to
a dissipative interaction, see [Metelmann and Clerk (2015)]. This is used in Ch. 9 to
engineer the collective decay of two modes: D]ay + ap|.

2.4 State Representations

To compress the information about a state p stored in its many degrees of freedom,
e.g., for visualization, a particular state representation with fewer or more accessible
degrees of freedom has to be chosen. An overview of common examples is given in
the following. This section is based on Chapters 3 and 4 of [Carmichael (1999)] and
Chapter 3 of [Gerry and Knight (2004)].

2.4.1 Glauber-Sudarshan P Representation

The Glauber-Sudarshan P representation is defined as a quasi probability distribution
of coherent states forming a density matrix

p= /d2a la)a| P(a, o), (2.4.1)
or vice versa,

Pla,a®) = ;/d%eﬁ*a—ﬂa* T[D(3,1)p], (2.4.2)

16



2.4 State Representations

where

D(B,s) = eﬁaffﬁ*a+8|/5\2/2 — e(sfl)\mz/?eﬁafefﬁ*a (2.4.3)

is a generalization of the standard displacement operator D(5) = D(/3,0). A coherent
state |a), see Eq. (2.1.11), can be generated by applying D(«) to the ground state,

— | . a” — | OLCLT
la) = ¢~ lz/QZﬁ\m = e710l*/2¢007 |0y = D(a) |0) . (2.4.4)
n=0 :

Further useful identities of the displacement operator are

D'(a) = D(—a), (2.4.5)
aD(a) = D(a)(a+ ), (2.4.6)
D(a)a’ = (af —o*)D(a), (2.4.7)
D(B) |a) = el =3/ 1 By . (2.4.8)

Given a Lindblad Master equation, that defines the time evolution of p, the corre-
sponding equation of motion of the state representation function P(«,a*,t) can be
obtained as follows. The creation and annihilation operators that act on |a)(«| can be
expressed by derivatives with respect to a and o using

dala)al = dae™1*F e 0)0]e*™®) = (af — a") a)a] , (2.4.9)
O || = D= (e 1272 10Y(0] € @) = | (a — @) . (2.4.10)

By inserting Eq. (2.4.1) in the Lindblad master equation, terms of the form
flaap = [ PaPla.a’,0f(ala) ool (2.4.11)
pa(al,a) = [ PaPla,a’.t)la)alglal,0), (2.4.12)

can be identified and replaced using Egs. (2.4.9) and (2.4.10). By partial integration,
the derivatives that act on |a)(«| can be moved to act on P(a, a*,t).

A state that exhibits negative values of its corresponding P is defined to be non-
classical.

2.4.2 Husimi Q Function

Another famous probability distribution is the Husimi @ function [Husimi (1940)]
which will be relevant in, e.g., Secs. 7.1.1 and 7.2.1 as well as Ch. 8. Its definition

Qa,a") = [ @5 nD(E, -1l = 1 [@se TP, 5)

- % (ol pla) | (2.4.13)

17
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note the similarity to Eq. (2.4.2), can be written as the projection of a state p
onto coherent states |«). The exponential in the second equation in the first line of
Eq. (2.4.13) can be interpreted as a Gaussian filter leading to smoothing of P. The
last line of Eq. (2.4.13) together with [d2a|a)a| = 71 shows that Q is a proper
probability distribution, i.e., normalized to one and nonnegative.

2.4.3 Wigner Function
Maybe the most famous quasi probability distribution is the Wigner function,

1 x . 2
Wiawa') = 5 [@8e7 5 TD(B0)] = > [ e P(5,57). (2404
™ 7r
Note the similarity to Eqgs. (2.4.2) and (2.4.13). It will be the standard function to
visualize states in this thesis.

As an example, the Wigner function of a coherent state,

2
W(a,a*) = Ze2lapl” (2.4.15)
T

is nonnegative. In contrast, the Wigner function of the Fock state |n),
2
W(a, o) = (=1)"= L0 (4]af?)e 2o (2.4.16)
T

where L0 is a Laguerre polynomial, see Eq. (3.3.12), features negative values. The
definition of nonclassical states given in Sec. 2.4.1 partially applies to the Wigner
function: if the Wigner function features negative values, the state is nonclassical.
An example for which the other direction is not true are squeezed states [Gerry and
Knight (2004)],

) = ¢ =™ gy (2.4.17)

with Wigner function

(2.4.18)

2

2 2e-2l¢l 4 1 262[¢]
W(a,a*) = = exp (_Re[a] © + Imfaf"e .
T

In comparison to Eq. (2.4.3), the squeezing operator can be interpreted as a general-
ization of the displacement operator to higher-orders of a. Squeezing of even higher
orders is visualized in Fig. 7.3.
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Chapter 3

Quantum Computing and Quantum
Simulation

In the 1980s, inspirational suggestions have been made to consider a quantum descrip-
tion of computers [Benioff (1980)], or vice versa, quantum systems as platforms for
computation [Feynman (1982)]. Shortly thereafter, a handful of elementary algorithms
[Deutsch and Penrose (1985), Deutsch and Jozsa (1992), Simon (1997), Bernstein and
Vazirani (1997)] as well as more advanced algorithms like Grover’s algorithm [Grover
(1996)] and Shor’s algorithm [Shor (1997)] have been published

3.1 Universal Quantum Computing

These quantum algorithms mentioned above, rely on quantum computation and
quantum information. The terms quantum computing and quantum computation
will be mostly used as synonyms, similar for quantum information and quantum
information processing. This section is based on [Nielsen and Chuang (2010)].

3.1.1 Qubits and Quantum Gates

The fundamental building block of a classical computer is a bit ¢ which can take two
values ¢ € {0,1}. Similarly, the fundamental building block of a quantum computer
and quantum information is called a quantum bit (qubit). It is a quantum mechanical
two-level system, i.e., a spin-1/2, whose states are most often defined as

0) ((1)) ) o (2) . (3.1.1)

The state space of an arbitrary pure qubit state ) = «|0) + 8 |1) with a, 8 € C is
limited due to the normalization condition

(W) = (@ (0] + B (U)(a|0) + B 1)) = |af* + B> = 1, (3.1.2)
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(o) 10)

(a) 10)

N

1) 1)
Figure 3.1: Bloch sphere state representations. (a) A pure state (red arrow) can be de-
scribed by two angles 6 and ¢. (b) Arbitrary rotations (purple circle) of |0) around 7* =
(cos(m/8),sin(m/8), cos(w/8)) (purple arrow with solid head), see Eq. (3.1.12), can be approxi-
mated by R*™. The dots correspond to R*" |0) for n = 0, 1,2,3,4,5,6. Note that R*5|0) # |0).
(c¢) Arbitrary rotations (green circle) of |0) around m* = (cos(w/8), — sin(7/8), cos(r/8))
(green arrow with solid head), see Eq. (3.1.13), can be approximated by (HR*H)™.

which is used to fix the magnitude of the coefficients. A common parametrization is
[) = cos(6/2)]0) + e sin(6/2) 1) , (3.1.3)

where 6 € [0, 7] and ¢ € [0,27]. The state can be visualized as a three-dimensional
real-valued vector connecting the origin with a point on the so-called Bloch sphere of
unit radius, see Fig. 3.1(a).

In the qubit Hilbert space, arbitrary transformations that preserve the norm of the
state are described by unitary SU(2) operators

U = eexp <—;ﬁ6’> = e cos (’Z’) 1 —iel” Sin(‘Z‘) i&’, (3.1.4)

7]

where & is the vector of Pauli matrices

o = X = [1)(0] + [0)(1] ¢ <(1) é) , (3.1.5)

oY = Y = 1[1X0] — i |O)1| > (? :)1> , (3.1.6)

0% = 7 = |0)0| — [1X1] < ((1) _01> | (3.1.7)

The unitary operator in Eq. (3.1.4) can be interpreted as a SO(3) rotation of states on
the Bloch sphere with angle |7i| around the axis 7/|7|. Rotations around the individual
axes are defined as

RX(6) :exp<;¢X>, RY () = exp<;¢y>, RZ(6) :exp<;¢Z>. (3.1.8)
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3.1 Universal Quantum Computing

On actual quantum hardware, not all of these operations, called “gates” like in
classical computing, have to implemented physically. For example, since RZ can
be realized virtually [McKay et al. (2017)], a rotation around the z-axis can be
realized effectively by a fixed rotation around the z-axis, i.e., the Hardamard gate
H=(X+2)/V2=—iRZ(r/2)RX (r/2)RZ(r/2), and virtual rotations around the

RX(0) = HRZ(0)H . (3.1.9)

In general, the less gates that need to be calibrated the better. However, this approach
of replacing a single parametrized gate by a sequence of few calibrated gates is only
preferable if the few gates have low error. An alternative way of expressing the general
single-qubit gate U of Eq. (3.1.4) using the elementary rotations defined in Eq. (3.1.8)
is

U =¢e"RZ(¢)RY (0)RZ(v) = €"RZ(¢ + 7/2)RX (0)RZ (v — 7/2) . (3.1.10)

Other relevant gates are the S and T gate that obey Z = S? = T4,

10 1 0
S = <0 i), T = (o eim) : (3.1.11)

Using only 7" and H gates, a rotation around 7*/|7i*|, where
1" = (cos(m/8),sin(w/8), cos(m/8)), (3.1.12)

by an irrational rotation angle 6*, that is implicitly defined by cos(6*/2) = cos?(/8),
can be realized by the gate R* = THT H. Since 30* /7 ~ 1.046657, R* almost matches
—il, i.e., since 0* is irrational, an integer multiple of rotations R* do not come back to
the initial starting point, see Fig. 3.1(b). Thus, this small discrepancy leads to the fact
that R*" can approximate any rotation around the axis 7*/|7*|. Since furthermore
HR*H corresponds to a rotation around a linearly independent axis m*/|m*|, where

m* = (cos(m/8), —sin(n/8), cos(n/8)) , (3.1.13)

see Fig. 3.1(c), an arbitrary single-qubit gate can be realized by only using 7" and H
gates,

U=R™(HR*H)"R" (3.1.14)

The exponents k; have to be chosen such that U approximates the desired gate up
to the required accuracy. In conclusion, if a quantum computer can apply a large
number of gates efficiently enough, only two gates (T" and H) have to be implemented
physically to realize any single-qubit operation!

In a useful algorithm, more than one qubit is needed. Quantum states of n qubits,
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a so-called register, are defined by tensor products

Gn—1Gn—2 - - - q190) = gn—1),,_1 @ [@n—2),, 2 ® - @ [q1); @ |q0)g <> |2) . (3.1.15)

The symbol |qj>j denotes that the jth qubit is in state ¢; € {0,1}. Sometimes,
the index j that indicates the difference between multiqubit and single-qubit states
as well as ® are omitted. Here, we use the standard convention of binary number
representation z = Z?:_ol ¢;j27 such that the multiqubit state can be written as |z).

A fundamental two-qubit gate is the CNOT gate,

CNOT(1,0) [q1); @ |g0)g = la1); ® |a1 © qo)g - (3.1.16)
CNOT(0,1) [g1); ® lg0) = lg1 © g0); ® |q0)g (3.1.17)

where the first index corresponds to the control qubit and the second index to the
target qubit. Here, @ denotes a cyclical addition,

71D qo = (qo +q1) mod 2. (3.1.18)

Therefore, if the control qubit is in state |0);, then the target qubit state remains
unchanged. If the control qubit is in state |1),, then an X gate is applied to the target
state, i.e., X |qj>j = lg; ® 1>j. Note that this conditional behavior of applying an
X gate on the target qubit or not does not involve a measurement. If the control
qubit is in a superposition, the total state will also be in a superposition, e.g., for the
maximally entangled Bell state

|Boo) = CNOT(1,0)(H [0);) @ [0), = (|00) + [11))/v2. (3.1.19)
Here, entanglement is quantified by the von Neumann entropy [Neumann (1927¢)]

S(Tijlp]) = — Te[Tr;[p] In(Tr;[o)] = = > Aeln(Ar) , (3.1.20)
k

where )y, are the eigenvalues of the state reduced density matrix Tr;[p]. The partial
trace Tr; traces out only states of qubit j.

The H, S, and CNOT gate are elements of the so-called Clifford group. Together
with the T' gate, they form a set of universal quantum gates, meaning any unitary two-
qubit operation can be represented as a sequence of these gates. Note the redundancy
S = T?. Furthermore, an n-qubit unitary operator can be decomposed into sequences
of two-qubit unitaries [Barenco et al. (1995)].

3.1.2 Quantum Algorithms

Using the universal gate set {H, S, CNOT, T}, any n-qubit unitary operation can be
constructed. In general, quantum algorithms consist of sequences of many gates and
are presented in a circuit diagram. The standard readout method is to measure every
qubit in the Z basis at the end of the circuit. Here, the final state 1)) = Ucircuit |O>®” =
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3.1 Universal Quantum Computing

Ucircuit [0),,_1 ® - - ® |0), will be projected onto possible outcomes ¢,—_1...¢qy with
the probability | {g,_1 ... qo|w) |*>. Here, we will look at some basic example circuits.
The visualizations of the quantum circuits shown below are generated using QISKIT
[Javadi-Abhari et al. (2024)].

The previously mentioned Bell state |Byg) is generated by the circuit

qo : b—

B ———

Each qubit in the register has its own timeline of gates that are applied to it and
is initialize to |0). The “time” (order of operations) flows from left to right, i.e., the
opposite direction of matrix multiplication. Single-qubit gates appear as boxes and
multiqubit gates are connected to all qubit lines they are applied to. The CNOT gate
is connected to the line of the control qubit with a solid dot and to the line of the
target qubit with the @ symbol, see Eq. (3.1.18). A solid (empty) dot means that the
rest of the gate operation is active if the control qubit is in state |1) (|0)). Another
important two-qubit gate is the SWAP gate

qo * —%— qo :

q1: —*%— Q@1 —b <,

Fany
N>

which can be constructed using three CNOTs. It swaps the state of the two connected
qubits. Multiple swaps can be used to virtually move qubits around in the register
such that two-qubit gates between distant qubits can be executed.

An example for a three-qubit gate is the Toffoli gate

qgo: —e— qo:

(TH
qr: —e— Q1 @—E
@ —p- @ —{H}4 H

Here, an X gate is applied to the last qubit if both gy and ¢; are in the state |1). Note

that 7T = T3Z. Interestingly, applying an X gate to g after the Toffoli gate, the
classical NAND gate g2 = —(qo A ¢q1) is realized. The NAND gate is the universal gate
of classical computing [Mano and Ciletti (2013)], i.e., it can be used to implement any
logical operation and therefore any algorithm. Thus, any classical algorithm can be
implemented on a quantum computer.

The arguably most famous quantum algorithm is the Shor algorithm [Shor (1997)]. It
can be used to speed up prime factorization, whose difficulty is essential for the security
of RSA encryption [Rivest et al. (1978)], from exponential scaling to polynomial scaling.
A detailed description can be found in Ch. 5 of [Nielsen and Chuang (2010)].

Another important class of gate sequences are error correction codes that provide
protection against certain errors. Famous examples are the Shor code [Shor (1995)], the
toric code [Kitaev (1997)], the color code [Bombin and Martin-Delgado (2006), Bombin
and Martin-Delgado (2007)], low-density parity-check codes [Gottesman (2014)], the
binomial code [Michael et al. (2016)], and the cat code [Ofek et al. (2016)].
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3.2 Digital Quantum Simulation

A perfectly operating quantum computer can be used to simulate the unitary time
evolution of a quantum system. The Suzuki-Trotter decomposition [Trotter (1959),
Suzuki (1976)] can be used to split the time evolution of a Hamiltonian H =}, H;
into products of time evolutions of its constituents H;. The unitaries describing the
time evolutions of these constituents can be represented by quantum gates. The
approximation can be performed in various orders of the small time step At [Nielsen
and Chuang (2010)]

e—i(H0+H1)At — e—iHoAte—iHlAt + O(At2) — e—iHoAt/Qe—iHlAte—iHoAt/Q + O(At3)
(3.2.1)

The higher-order approximations can be interpreted as analogies to classical higher-
order integration algorithms like the Runge-Kutta methods [Runge (1895), Kutta
(1901)]. An example where such a decomposition has been used to simulate the
effective time evolution of a spin-1 is presented in [Koppenhofer et al. (2020)].

3.3 Quantum Computing Hardware

So far, we discussed the theoretical and abstract form of quantum computing and
quantum gates. In this section, the focus will be on the physical implementation of
qubits and gate operations. Similar to the various platforms of classical computing,
e.g., silicon, spintronics [Wolf et al. (2006)], and carbon nanotubes [Shulaker et al.
(2013)]), there exists a variety of platforms that are candidates for quantum computers.
Examples include superconducting circuits [Blais et al. (2021)], trapped ions [Bruzewicz
et al. (2019)], cold atoms and Rydberg atoms [Saffman (2016)], electron spins in
quantum dots [Burkard et al. (2023)], and photonic circuits [Bourassa et al. (2021)].
In the following, the superconducting transmon [Koch et al. (2007)] and trapped ions
[Leibfried et al. (2003)] will be presented in more detail.

As we will see below, physical implementations of two-level qubits often feature
many more quantum states. A system with d available computational states is called
a qudit. The higher-excited states of qudits can provide advantages in many ways,
e.g., see the works [Fedorov et al. (2012), Zeytinoglu et al. (2015), Egger et al. (2018),
Elder et al. (2020)] or the review [Wang et al. (2020)].

3.3.1 Transmon Qudits

The superconducting circuits subgroup of quantum computing platforms itself is a zoo
of different materials and architectures. Examples include the charge qubit [Shnirman
et al. (1997)], fluxonium [Manucharyan et al. (2009)], the phase qubit [Martinis et al.
(2002)], the Xmon [Barends et al. (2013)], and the blochnium [Pechenezhskiy et al.
(2020)]. Reviews of superconducting architechtures are [Makhlin et al. (2001), Krantz
et al. (2019)]. Several companies including IBM, Google, IQM, and Rigetti are building
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Figure 3.2: Schematic potentials of quantum oscillators and lower-excited Fock states.
(a) Quantum harmonic oscillator, see Egs. (3.3.1) and (3.3.3). (b) Quantum anhar-
monic oscillator, see Eq. (3.3.4). (c) False-colored scanning electron microscope (up-
per) and scanning transmission electron microscope (lower) images of an Al-AlO,-Al
Josephson junction. Adapted from [Willsch et al. (2024)] and used under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

commercial superconducting quantum computers. The following is based on [Blais
et al. (2021)].

The arguably most famous quantum model is the quantum harmonic oscillator,
see Sec. 2.1. A well-known example in classical electronics is the LC oscillator, an
electronic circuit consisting of a coil with inductance L and a capacitor with capacitance
C. The eigenfrequency of this resonator is w, = 1/ VLC and the Hamiltonian reads

2 2 2
Hpc = ;2—0 ;I)—L = ?—C + %wfqﬂ. (3.3.1)
Here, @ is the charge stored on the capacitor and ® is the magnetic flux in the
inductance. The right-hand side can be identified as the electronic analogue of the
mechanical harmonic oscillator where C' corresponds to a mass m, ) to a momentum
p, and ® to a position x. Therefore, the canonical quantization procedure in this case
corresponds to the following choice of creation and annihilation operators

= ,/zjc(aua), Q:i,/hwzf‘c(af—a), (3.3.2)

1
Hpo = hw, <aTa + 5) . (3.3.3)

leading to

Eigenstates of this Hamiltonian are Fock states |n), with afa|n) = n|n). Energy
differences between neighboring states |n) and |n 4 1) are constant hw,, see Fig. 3.2(a).
In Sec. 3.1, we saw that quantum computers should feature two quantum states that
are perfectly addressable in the sense of quantum gate operations. However, since
the energy spacing of the quantum harmonic oscillator is constant, a drive that is in
resonance with the |0) <> |1) transition will also drive all other transitions of the form
) 1 +1).
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This problem can be solved by introducing anharmonicity. One possibility is to
replace the standard inductance with a Josephson junction [Josephson (1962)], see
Fig. 3.2(c). The transmon Hamiltonian incorporating the capacitance, the Josephson
junction, and an (i) external gate voltage or (ii) influence by quasi-particle tunneling
[Riste et al. (2013)] reads

Hr = 4Ec(n — ny)* — Ejcos (27T§0>. (3.3.4)
Here, n = /2e is the charge number operator of the Cooper pairs, the scalar n, is
the so-called offset charge, &y = h/2e the flux quantum, E¢ the charging energy, and
E; the Josephson energy. The anharmonic cosine potential is depicted schematically
in Fig. 3.2(b). It can be interpreted as an analogy to the gravitational potential of
a pendulum or a rotor. Note that higher-order Josephson harmonics of the cosine
potential can be relevant [Willsch et al. (2024), Wang et al. (2025)].

The quantized version of Eq. (3.3.4) can be written as [Vool and Devoret (2017)]

E;
Hp = 4Ec an(n —ng)? |n)(n| — == an(lnxn +1]+ [n+1)nl), (3.3.5)
or in the F; > E¢ limit as
E;>Ec f Ec ot
Hr "~ hwgd'b— 7b b'hb. (3.3.6)

Here, b is the annihilation operator of the transmon, w, = V8E;Ec — E¢ is the
qubit energy between the ground state and the first excited state, and —F¢ is the
anharmonicity. The resulting spectra for E;/Ec =5 and E;/Ec = 45 are shown in
Figs. 3.3(a) and 3.3(b). For E;/E¢c = 45, the anharmonicity of the levels is visible and
enables driving transitions between |j) <> |j + 1) selectively. Especially, transitions in
the qubit subspace |0) <+ |1), i.e., gates, can be realized. The number of addressable
transmon levels can be estimated as the number of bound states in the Josephson
potential. Assuming zero anharmonicity, it can be approximated by dividing the
height of the potential 2E; by the energy spacing between neighboring levels
2FE; E;

Noound = RE Fe — Fo ~ T (3.3.7)
see the dashed curve in Fig. 3.3(c). Taking a constant anharmonicity —FE¢ into
account, the approximation turns into Nyouna =~ (\/é —2)\/Ej/Ec, see the dotted
curve in Fig. 3.3(c).

In the paragraphs above, we have seen that physical implementations of qubits, e.g.,
the superconducting transmon, feature more states than only the two qubit states.
Therefore, it is natural to think about quantum information beyond two-level systems.
Taking higher-excited states into account, the so-called quantum dit (qudit) is born.
Here, the “d” stands for an integer number d larger than two and corresponds to the

28



3.3 Quantum Computing Hardware

4
(a) ' (b) ' (c) 1.0
_3r . - 1 0.8
[e=) )
= — |4) g
§2 \/ — |3)F - 'é 0.6

) [ay]
£ —12) E 0.4

SRS 1— 1) &
— ® 0.2

Ej/Ec =5 N By/Ec =45
0 1 1 O O
—05 0.0 05 —05 0.0 0.5 '
Ng Ng

Figure 3.3: Schematic level structure based on the eigenenergies E;(ny) of the transmon
Hamiltonian Eq. (3.3.5). (a) Low E;/E¢ limit: strong dependence of the eigenenergies on n,.
(b) Large E;/FE¢ limit, typical values for transmon qubits, see Fig. 4.1: less dependence of
the eigenenergies on ng. (c) The ratio E;(0)/E(0) which depends smoothly on j for bound
states and jumps between zero and values above one for unbound states. The dashed curve

corresponds to \/E;/2E¢ and the dotted curve corresponds to (v/8 — 2)\/E;/Ec. Both are
approximations of the number of bound states, see Eq. (3.3.7).

base of the number system we use for representing states. The case d = 3 is also
known as the qutrit. In Ch. 4, that is based on [Kehrer et al. (2024a)], a measurement,
of a ququart (four states) on an IBM Quantum transmon will be presented. Qudits
can be used to simulate large-spin systems more naturally [Champion et al. (2025)].

Using QISKIT [Javadi-Abhari et al. (2024)], the software development kit for quantum
hardware of IBM and other companies, quantum algorithms can be programmed.
On superconducting platforms, gates are implemented as microwave pulses of an
external drive that acts on the qudit. The model Hamiltonian of qudit states |j) with
eigenenergies w; in the rotating frame of the drive is

H = 37 (w; = jua) |3)] + (b +b). (3.3.8)

where wy is the drive frequency and (), is the drive strength. In Fig. 3.4, simulation
data based on Rabi oscillations between |j) <> |j + k) for k = 1,2,3 are shown. The
qudit is prepared in the state |j) (corresponds to color) and a drive with frequency
wq is applied, see Eq. (3.3.8). The height of the curve corresponds to the minimal
population of this state in the time evolution of duration twp; = 4000. A dip indicates
a resonant transition. Solid, dashed and dotted lines correspond to the predictions of
first, second, and third-order transitions. In Fig. 4.6, we will present measurement
data of the implementation of a |0) <+ |2) and |1) <> |3) transition.

In preparation for the publication [Kehrer et al. (2024a)] presented in Ch. 4, several
experiments have been run on IBM Quantum hardware. Experimental data on up to
second-order transitions is presented in Fig. 4.6. Preliminary data on the |0) <> |3)
transition on ibmg_lima as well as on the |2) <> |4) transition on ibmg_guadalupe has
been collected. A Ramsey measurement like in [Riste et al. (2013)] has revealed the
two background charge configurations n, = 0,0.5 indicated by two observed qubit
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Figure 3.4: Simulated Rabi oscillations for E;/FEc = 45 and €, = 0.008wp,; of duration

two,1 = 4000 between states |7) <> |7 + k), see Eq. (3.3.8). The color of the curves corresponds

to the state |j) in which the qudit is initialized and the height of the curves corresponds to the

minimal population of |j) during the time evolution. Vertical lines of solid, dashed, and dotted

(for k = 1,2, 3) style indicate the prediction of the transition frequency wj j1r = (Ej1r—E;)/k

between |j) <+ |j + k). The energy Ej is the average of E;(ng) over n, € [—0.5,0.5], see
Fig. 3.3(b). The choice of E;/E¢ is typical for IBM Quantum devices, see Fig. 4.1(b).

frequencies.

An overview of other retired devices with, e.g., ny = 1,5,7,16, 27,65, 127,433 qubits,
can be found online®. For IBM’s vision about the future of quantum computing, check
out the roadmap® of IBM Quantum.

In Sec. 4.4, the model for reading out transmon qudit states is presented. Measure-
ment data of a ququart on an IBM Quantum device can be found in Sec. 4.6.

3.3.2 Trapped Ions

Another promising physical platform for quantum computing are trapped ions. Here,
some lower-energy levels in the electronic structure of single ions, e.g., of calcium,
beryllium, strontium, or ytterbium, are used to encode the logical qubit states |g)
(ground state) and |e) (excited state), see [Bruzewicz et al. (2019)]. Companies that
are building commercial trapped-ion quantum computers are, e.g., AQT, IonQ, and
Quantinuum. The following is based on [Leibfried et al. (2003)].

Single ions are mostly trapped in either Penning traps [Penning (1936)] or Paul traps
[Paul (1990)]. The latter trap uses oscillating electromagnetic fields at radio-frequency.
The effective trapping potential is often described as a quadratic harmonic potential.
In so-called linear traps, ions are trapped strongly in the radial direction but less
strong in the axial direction. The interaction between the motional degree of freedom
along the trap axis and the electronic states is mediated by laser light propagating
along the same trap axis. The so-called Lamb-Dicke parameter n = kxg = k+\/h/2mv
depends on the effective wave vector k of the light, on the ion mass, and on the trap

Shttps://quantum.cloud.ibm.com/docs/de/guides/retired-qpus [Accessed: August 3, 2025]
Shttps://www.ibm.com/quantum/technology [Accessed: August 3, 2025]
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Figure 3.5: Blue and red sideband transitions. (a) The first blue sideband corresponds to
0 = v and the first red sideband corresponds to § = —v. The surplus (missing) energy v is

compensated by (de)exciting the motion by one quanta |n) — |n+ 1) (|n) — |n —1)). (b)
Including the fast decay of the ion state |e) — |g) with rate x, the sidebands with effective
Rabi frequency QPSB and QRSB can be interpreted to heat and cool the ion motion.

frequency v. Using 7, the effective model Hamiltonian reads

h . . .

H= §Qoa+ exp (in(ae_‘”t + aTe‘”t))el(¢_5t) +He.c.. (3.3.9)
Here, o = |e)(g| is the operator exciting the ion from state |g) to |e), & is the
detuning between the drive frequency and the ion frequency weay (“carrier”), and a is
the annihilation operator of the quantum harmonic oscillator of motion.

In the so-called Lamb-Dicke regime, where < 1 is small, the first exponential
factor in Eq. (3.3.9) can be Taylor expanded. Choosing a detuning 0 = sv, with s € Z,
the so-called |s|th blue (red) sideband transition is driven resonantly if s > 0 (s < 0),
see Fig. 3.5(a). In the |s|th blue (red) sideband case, the surplus (missing) energy v
is compensated by (de)exciting the motion by |s| quanta. Including the fast decay
of the ion state |e) — |g) with rate k, the blue (red) sideband heat (cool) the ion
motion |n) — |n + s), see Fig. 3.5(b). Their effective Rabi frequency is QBB and
QRSB where BSB (RSB) means blue (red) sideband. In [Behrle et al. (2023)], a red
sideband is realized on a calcium ion and a blue sideband is driven on a beryllium ion
simultaneously, both trapped in the same potential. In a certain parameter regime,
this leads to a lasing state, also understood as a limit cycle, see Sec. 6.2. In contrast,
if the sidebands are driven on the same electronic transition, e.g., squeezed states
occur, [Rojkov et al. (2024)]. See Sec. 10.6 for a brief discussion about simultaneous
driving of multiple higher-order sidebands.

In Sec. 10.6, another setup will be discussed: the operation of trapped ions outside
the Lamb-Dicke regime of small 1. Here, the higher orders of the first exponential in
Eq. (3.3.9) lead to nonlinear effective Rabi frequencies [Leibfried et al. (2003)],

- o
Qn,n+s _ Qn—i—s,n _ QO| <n + S| em(aTJra) |n> ‘ — Q0n|s|efn2/2 nmJLM (772) ’

| 7~ Mmin
(3.3.10)

max-
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Figure 3.6: Blue and red sidebands driven on the same ion transition with QBSE = QRSB — (.24,
(a) Squeezed-like state for npsg = 0.1. (b), (¢) Squeezed-cat-like states for npsp = 0.4, 0.6
(from left to right). For panels (a) to (c) (sess, srss) = (1, —1) and nrsp = 0.3 is chosen. (d)
State resembling a squeezed three-legged cat state for (spsp, Srsp) = (2, —1) and nrsp = 0.1.
(e) State resembling a squeezed four-legged cat state for (spgp, srsp) = (2, —2) and nrsp = 0.2.
For panels (d) and (e) ngsp = 0.6 is chosen.

where
Nmin = Min(n,n + ), Nmax = max(n,n + s), (3.3.11)

and the generalized Laguerre polynomials are

n m

Lﬁmg::E:c—nm<;j;Z)iﬂ, (3.3.12)
m=0

see Eq. (8.970.1) of [Gradshteyn and Ryzhik (2015)].

Applying a red and a blue sideband to the same electronic transition leads to squeezed
states, see Fig. 3.6(a), and states that look like squeezed cat states, see Figs. 3.6(b) and
3.6(c). Moreover, choosing (spsB, SrsB) = (2, —1) or (sBsB, srsB) = (2, —2), states
that resemble squeezed three-legged or four-legged cat states can be generated, see
Figs. 3.6(d) and 3.6(e). An l-legged cat state is defined as [Haroche and Raimond

(2006)]

-1

n

)5

ei%k/la> , (3.3.13)
k=0

Cém> = dpm- In [Rojkov
et al. (2024)], the setup was studied with a focus on bosonic error-correction codes

[Gottesman et al. (2001), Mirrahimi et al. (2014)]. Depending on the parameters
()BSB/RSB

where n € [0,] — 1] and N guarantees normalization <C(lxn

and 7psp/rsB, @ large phase diagram hosting interesting states might be
explored in future research projects, e.g., in the context of dissipative phase transitions
[Minganti et al. (2023), Beaulieu et al. (2025)].
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Chapter 4

Resolving Transmon Qudit States on
IBM Quantum Hardware

This chapter is based on the results published in:

T. Kehrer, T. Nadolny, and C. Bruder,
Improving transmon qudit measurement on IBM Quantum hardware,
Physical Review Research 6, 013050 (2024)

4.1 Motivation

Conventional quantum computing is based on qubits which are realized on two-level
subspaces of a larger physical Hilbert space. A number of physical realizations of
qubits have been proposed and implemented on various platforms. These include
superconducting qubits [Blais et al. (2021)], trapped ions [Bruzewicz et al. (2019)],
cold atoms and Rydberg atoms [Saffman (2016)], as well as electron spins in quantum
dots [Burkard et al. (2023)]. On all of these platforms, it is necessary to isolate the
two-dimensional qubit space from the remaining states of the physical Hilbert space
to avoid leakage out of the computation space. However, utilizing qudits, i.e., d-
dimensional building blocks of quantum computation, can provide advantages [Fedorov
et al. (2012), Zeytinoglu et al. (2015), Jerger et al. (2016), Egger et al. (2018), Elder
et al. (2020), Yurtalan et al. (2020), Wang et al. (2020), Ciavarella et al. (2021), Li
et al. (2021), Tacchino et al. (2021), Cervera-Lierta et al. (2022), Fischer et al. (2022),
Fischer et al. (2023)]. Examples include implementing an ancilla qubit within the
second and third excited states of a qudit [Fischer et al. (2022)] that leads to a smaller
number of physical qubits needed to realize the same algorithm. Another example is
the so-called shelving [Elder et al. (2020)]: by transferring the population of the first
excited state to the second excited state before final readout, the error of identifying
the ground state decreases.

Superconducting qubits [Blais et al. (2004), Koch et al. (2007)] are prominent build-
ing blocks of noisy intermediate-scale quantum (NISQ) systems [Preskill (2018)]. The
most promising example is the so-called transmon that can effectively be described as a
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quantum anharmonic electromagnetic oscillator. In this system, the two lowest-energy
levels are identified as the qubit. Taking into account higher-lying transmon levels
leads to a natural realization of a superconducting qudit. The smallest extension of the
qubit is the qutrit, i.e., a three-level system. Qutrits have been used to implement a
Toffoli gate [Fedorov et al. (2012)] with a significantly lower number of elementary gates
compared with a realization based on two-level systems. Another interesting example
is the recent experimental demonstration of a qutrit Greenberger—-Horne—Zeilinger
(GHZ) state [Cervera-Lierta et al. (2022)].

In general, if one is interested in measuring a qudit state, a proper classification of
all levels involved is needed. In [Bianchetti et al. (2010)], the qubit state is determined
by a fit of the time evolution of the system. In setups which do not provide time-
resolved data, such as the current IBM Quantum [IBM Quantum. (2023)] devices,
other methods of separating qudit states have to be employed [Wang et al. (2021),
Chen et al. (2023), Miao et al. (2023)]. The strategies described in [Wang et al.
(2021), Chen et al. (2023)] involve exciting the qudit-resonator system at readout
drive frequencies other than the default frequency. At the default frequency, the
distinguishability of the ground state and first excited state is maximized, whereas
using the adapted frequencies aims at optimizing various distances between different
pairs of qudit states.

In the work this chapter is based on, we propose and evaluate improvements of the
measurement scheme of transmon qudit states by enhancing their distinguishability.
To optimize the readout, we determine the measurement errors from the assignment
matrix whose entries denote the probability to classify a measurement outcome to
a state |i) even if state |j) was prepared. This assignment matrix is calculated
using qudit-state dependent resonator steady-state amplitudes obtained from a model
describing the readout of a transmon qudit by driving a coupled resonator. The
default measurement schedule of most superconducting quantum hardware consists
of a single-tone drive applied to the readout resonator. The frequency of the tone
is chosen to maximally separate the ground and first excited states. The strategies
we propose are based on modified readout resonator drive frequencies that take into
account the separation of all qudit states. These strategies include a single-frequency
as well as a multifrequency readout scheme. For a ququart, viz., the four lowest states
of a qudit, we compare the proposed strategies in simulation and show that depending
on hardware parameters, both strategies can be beneficial. We furthermore compare
the model to a measurement of the drive-frequency-dependent resonator states on a
current IBM Quantum device.

This chapter is organized as follows. After describing the level scheme of a typical
IBM transmon qudit in Sec. 4.2, we present our model of a transmon qudit coupled to
a harmonic readout resonator in Sec. 4.3. In Sec. 4.4, the mean-field model describing
the readout sequence is discussed. Based on this model, we calculate the readout
drive-frequency-dependent assignment errors between multiple states that in some
limits can be expressed analytically. In Sec. 4.5, we analyze both proposed readout
schemes that aim to minimize these errors. In Sec. 4.6, before we compare the data
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that we generated on current IBM Quantum hardware to the readout model and
strategies discussed earlier, we present calibrations of relevant qudit gates. To improve
the state preparation procedure, we propose to add two-photon transitions to the
universal gate set of qudit gates [Fischer et al. (2023)] and show that this will reduce
the execution time of certain qudit circuits and the duration of X-gate calibrations.

4.2 Transmon Energy Levels

To estimate resonance frequencies for various transitions of a transmon qudit, we
numerically compute the energy levels of its Hamiltonian [Koch et al. (2007), Vool
and Devoret (2017)],

Hr =4Ec zn:(n —ng)? [n){n| — % zn:(!nxn + 1+ |n+ 1)n)), (4.2.1)
depending on the offset charge ng4, the charging energy E¢, and the Josephson energy
E;. The relevant parameter is the ratio of the two energy scales E;/FEc. The sorted
eigenvalues E),(ny) are shifted such that Ey(0) = 0. Using & = 1 here and in the rest
of the chapter, we define the average transition frequency w; ; between [i) and |j) of
both configurations ngy = 0,1/2 as

E;(0) + E;(1/2) — Ei(0) — Ei(1/2)

= , 4.2.2
e 26— 1) (22
and the frequency difference Aw; ; as
E;(0) — E;(0) — E;(1/2) + E;(1/2
o, = B0~ Bi0) B0/ + Bi(1/2) )

j—1
The anharmonicity «; and the energy dispersion €; of the transmon qudit are defined

by

Qj = Wi+l — Wj-1,5 5 (4.2.4)
¢ = E;(0) — E;(1/2).

We numerically obtain the fundamental parameter E;/E¢ of a specific IBM Quantum
backend by demanding that the qubit frequency wp ; and anharmonicity o; reported
by the device match the values calculated using the equations above. In Fig. 4.1(a),
we plot the dependence of E,, on n, for the five lowest states. The values of the
frequency difference vary from Awg /27 = 25.1kHz to Aws4/27 = —142MHz. In
Fig. 4.1(b), the values €3 for a number of IBM Quantum devices are displayed. For
large €; compared to wj i1, the Wigner function of the state |j) effectively is smeared
out in phase space since both configurations ny = 0,1/2 exhibit different resonance
frequencies.
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Figure 4.1: Transmon spectra. (a) Numerical prediction of the energy levels E,(ng) of
ibm_lagos Q4 (July 7, 2023) based on Eq. (4.2.1) and E;/Ec = 45.6. The transition
frequencies w; ; are displayed in units of (27) GHz. (b) Overview of the qubit resonance
frequency wp 1 and anharmonicity oy of the IBM Quantum devices listed in the legend. The
energy dispersion es of the third excited state given in Eq. (4.2.5) follows from these device
specifications that were accessed on May 23, 2023. The labeled straight black lines correspond
to constant values of E;/FE¢.

4.3 Transmon-Resonator System

The fundamental building blocks of a superconducting quantum computer are a
quantum anharmonic oscillator, i.e., the transmon qudit, coupled to a harmonic
oscillator, i.e., the readout resonator. Following the notation of [Koch et al. (2007)],
the Hamiltonian describing a transmon qudit and its readout resonator reads

Hy + Hy + Hine = Y wj )]+ wrala + ) gj i (a’ [ + 1+ alj + 1)) ,
J J
(4.3.1)

where wj is the energy (see Sec. 4.2) of the bare qudit state |j), w, is the energy of
the readout resonator, and a(!) is its annihilation (creation) operator. The parameters
gj,j+1 denote generalized Jaynes-Cummings coupling strengths between the qudit
and the resonator. The approximation g, j+1 = g+v/J + 1 used in [Blais et al. (2004)]
reduces the interaction Hamiltonian to g(afb + abl), where b(t) is the annihilation
(creation) operator of the transmon qudit. The qudit and resonator Hamiltonians H,
and H, denote two sets of commuting operators |i)(j| and a(t). Each set can be visually
interpreted as a block in the total Hamiltonian. The generalized Jaynes-Cummings
interaction couples both blocks.

In general, a Hamiltonian of interest can be defined by
H=Hy+ \H{+ V. (4.3.2)

Here, Hy and Hy are block diagonal in the subsystems, whereas V' is block off diagonal.
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To find an effective block-diagonal Hamiltonian, i.e., eliminate the block off-diagonal
part V, the unitary transformation U = e° is applied to H,

Hpg=UHU"=eHe™® . (4.3.3)

Expanding the anti-Hermitian operator S = —ST as S = > NS H.g can be
expressed as

1 =1 R
- - R (n) _ n gr(n)
Heg = H +[S, H] + 5 [S,[S, H]| + - = ;:o: 18, " = n§:0: AVHS o (4.3.4)
where [S, H]®) = H and
S, H)™+D) = [5, S, H]W} . (4.3.5)

The lowest order H ég«) = Hj is identical to the total Hamiltonian evaluated for A = 0.
The first-order contribution reads He%) =H +V + [S(l),HO]. To eliminate the
block off-diagonal V' in this expression, we impose [S @), HO] = —V. Since Hy is block
diagonal, S() has to be block off diagonal. As a consequence, [S M), V] is block diagonal.
The second-order contribution reads Hé? = % [S(l), V] + [S(l), Hl] + [5(2), Hg}, and
imposing [S (2)] Ho] = - [S W H 1] guarantees the second order to be block diagonal.
The second-order contribution to the effective block-diagonal Hamiltonian is then
given by

H? = % [s®,v]. (4.3.6)

We choose a superposition of all operators appearing in V' as an ansatz for S @,

To compute the effective Hamiltonian of the Jaynes-Cummings interaction, we start
with identifying the block-diagonal parts Hy = H, + H, and H; = Hg as well as the
block off-diagonal parts V = Hiy of Eq. (4.3.1). The ansatz for S() consists of a
superposition of all operators appearing in V,

$® =3 (Cral i) +11 - Calj + 1)) - (43.7)

J

The coefficients C; are defined implicitly by the previously mentioned equation
[SMW, Hy) = -V,

o = 9pgtl (4.3.8)

Wj — Wjt+1 + wr

Replacing C; in Eq. (4.3.7) by this expression and using the definition g_1 9 =0 as
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well as the sign convention of [Koch et al. (2007), Blais et al. (2021)] leads to
2
H = [ sW,v] = ZXJ 1y 1)l + ij (4.3.9)

Here, corrections to the qudit energy are

92 i1

J5J

ii+1 = s 4.3.10
Xj.g Wj41 — Wy — Wy ( )

and corrections to the qudit-state-dependent resonator energies or the resonator-state-
dependent qudit energies are

2 2
ditty __ dawl (4.3.11)

OJJ' — Oijl — Wp OJJ'+1 — wj — Wp

We have neglected terms proportional to (a? |j + 2)(j| + H.c.). This is justified by the
possibility to interpret these terms as perturbations that are eliminated by a second
Schrieffer-Wolff transformation. This second transformation will lead to fourth-order
terms proportional to |j)j|, afa|7)j|, (aTa)?|j)j|, and also (a*|j +4) (j| + H.c.).
Importantly, for typical values of g; i1, wj, and w,, the coefficients of all these
terms are a factor of 10* smaller than the previous second-order contributions and
can therefore safely be neglected. In Eq. (4.3.9), we arrived at corrections to the
Hamiltonian that are diagonal in the qudit and resonator states. The shifts of the
qudit and resonator energies are

Wj = wj + Xj-1 »
Wrj = Wr 4 X - (4.3.12)
The resonance frequencies of the qudit transitions |i) <> |j) can be estimated to

wj—wl-
j—i

(4.3.13)

Wij =

The effective Hamiltonian of the transmon coupled to a readout resonator is

Heg =) (wj + Xj-14 + Xxja'a) |j}il + wrala. (4.3.14)
J
The parameter w; is the energy (see Sec. 4.2) of the bare qudit state |j), w, is the
energy of the readout resonator, and a') is its annihilation (creation) operator. The
second-order corrections x;j_1,; and x; to the qudit and resonator energies, are defined
in Egs. (4.3.10) and (4.3.11). Additionally, we describe a coherent driving of the
resonator at frequency wy by [Blais et al. (2021)]

H, = % (eiwdt—id) ot e—iwdt+i¢a1) 7 (4.3.15)

38



4.4 Readout of Qudit States

which enables the readout of qudit states.

4.4 Readout of Qudit States

The readout of a transmon qudit, in short, consists of driving the readout resonator
while recording the response signal. We model the time evolution of a general quantum
state p comprised of a qudit and its readout resonator by the following Lindblad
master equation:

o= ilHe+ Ha, ] + wDlal(p) (4.4.1)
where D[L](p) = LpL' — (L'Lp + pLTL)/2 is the Lindblad dissipator and & is the
decay rate of the resonator. Using the effective Hamiltonian given by Eq. (4.3.14)
and assuming the qudit to be in state |j), we arrive at the equation of motion of the
mean-field amplitude A = (a) = Trlap]

d ) Q. ; K

aA = —i(w, + x;5)A — ie wattig _ §A. (4.4.2)
The fact that A depends on the qudit state |j) is used to discriminate different qudit
states. If the qudit is in a mixture or superposition of states, this measurement
procedure projects the qudit onto one of its Fock states [Blais et al. (2021)].

The general form of the complex value returned by an IBM Quantum device is

T
A= [ dtk®)A, (4.4.3)
/

where k(t) encodes the so-called kernel integration instructions, see meas_kernel
[McKay et al. (2018)] in QISKIT [Qiskit contributors (2023)], and T is the total
duration of the measurement. The choice k(t) = exp(iwgt) corresponds to integrating
the measurement signal in the rotating frame of the drive, see Sec. 4.4.1, whereas the
choice k(t) = exp(iwnt) corresponds to a frame rotating at an arbitrary modulation
frequency wy,, see Sec. 4.4.2.

In the following, we mainly consider the offset charge configuration ny, = 0. The
value of ny influences the transmon qudit energy spectrum, see Sec. 4.2(a). Note that
due to the significant dependence on ny of the third and higher excited states, their
corresponding readout-resonator states may be smeared out in phase space if charge
noise is present. In Fig. 4.1(b) we present an overview of the energy dispersion €3
of the third excited state defined in Eq. (4.2.5) for several IBM Quantum devices.
Since €3 decreases with increasing E;/E¢c, qudits that lie in the upper-right region
are preferred in general.
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Figure 4.2: Theory prediction of the readout resonator amplitude. (a) Drive-frequency-
dependent phase-space positions A4 and A™ of the coherent state of the resonator given the
qudit prepared in |j), see Eqgs. (4.4.4) and (4.4.9). For w,, = wq, the trajectories of all states

A? match, denoted by the black circle. The colored lines correspond to A7" for wy, = wc(io(’)l).

Crosses indicate the positions at wg = w,, where both models match, A;l = A7 (b), (c)
Error measures §; and £ in the frame of wy and w, respectively, see Eqgs. (4.5.5) and (4.5.6).
Following Secs. 4.2 and 4.3, for these plots, we determine E;/E¢c by the qubit parameters
wo,1 and a; from ibm_lagos Q4 (July 7, 2023). Moreover, we choose g/2m = 100 MHz,
Q/2m = 100MHz, /27 = 5MHz, T = 0.35ps, 0; = 0.13Q/k, ¢ =0, and ny = 0.

4.4.1 Rotating Frame of Drive

In this section, we will work in the rotating frame of the drive. Quantities in this frame
will be denoted by the superscript d. Since Eq. (4.4.2) is defined in the laboratory
frame, we choose k(t) = exp(iwgt) to transform the signal into the rotating frame of
the drive and obtain

Ad RT1 Q el?

- = A4, 4.4.4
T 2 wr + Xj —wg —ik/2 J ( )

Here, A? is the complex-valued steady-state amplitude of the resonator when the qudit
is in state |j) and defines a coherent state )A;l>. Its dependence on the resonator drive

frequency is presented in Fig. 4.2(a). Varying wy, the steady-state amplitudes A;l of
the readout resonator move on a circle centered at A. = —ie'?Q/2x with diameter
Q/k. At resonance wc(ljg = wr + Xj, the states reach the maximum amplitude 2A4..
For qudit readout, it is important that the distance d;; = |Ad — A?| between two
qudit-state-dependent resonator states is large. We can identify two regimes of how
the positions of the states in phase space depend on the readout drive frequency.
For a large resonator decay rate x> |x; — x|, all states are close to the position of
maximum amplitude within the same frequency range. In this case, d; ; exhibits only

one maximum at

WGP = w4 BTN ;r X (4.4.5)

ij 2Q|xi — x4l
di i ( ( ’J)) - i 4.4.6
I\ T P )
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Figure 4.3: Visualization of the different regimes of steady-state movement in the complex
plane of the readout-resonator amplitude. For a large resonator decay rate x > |x; — x;/, all
states are close to the position of maximum amplitude within the same frequency range. For
a small resonator decay rate x < |x; — x;|, the states hit the resonance maximum at distinct
frequencies.

In contrast, for a small resonator decay rate k < |x; — X;|, the frequency ranges where
the state amplitudes A;l are close to the maximum amplitude do not match, i.e., A;l
hit the resonance maximum at distinct frequencies. A visualization is given in Fig. 4.3.

Here, two drive frequencies wy = wc(l i) maximize the distance d; j,

wil =wi)) + 3V (i =) = K2, (4.4.7)
ij Q
iy (2) = 2 =, 445)

where d. denotes the diameter of the circle on which the states move. Thus, at wc(;’i),
both states are located on opposite sides of the circle, which is the maximum separation
they can obtain.

If we set the drive frequency to wC(Z’Oj ) or wc(;;’i), i.e., maximizing the distance between
state |7) and |j), the distance between other pairs of states is in general reduced and
hence not optimal for discrimination of these states. Therefore, in Sec. 4.5, we present

two measurement strategies to mitigate this issue.

4.4.2 General Rotating Frame

In a frame of a general rotation frequency wp,, i.e., choosing k(t) = exp(iwnt), the
state reached in the long-time limit k7" > 1 is time dependent,
Am rT>1 i((wm_wd)T/Q) . T/9 Ad _ Am 4.4
- e sine ((wg — wim)T/2) A7 = Aj", (4.4.9)
where sinc(z) = sin(z)/z and the superscript m is used to denote quantities in this
frame. The difference between Eqs. (4.4.4) and (4.4.9) is an additional factor of sinc
peaking at wy = w;,. These resonator-state amplitudes and their dependence on the
drive frequency wy are also visualized in Fig. 4.2(a). The states A;l move on the black
circle with diameter /r, whereas the motion of the states A7* follows a distorted
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circle (colored curves).

4.5 Measurement Strategies

In the previous section, we presented a model describing the readout on supercon-
ducting quantum hardware. The centers of the Wigner functions of the coherent
readout-resonator states when the qudit is in state |j) are given by A;. Due to intrinsic
quantum noise and hardware limitations, the possible readout-resonator states for each
qudit state overlap. This leads to potential misclassification and thus measurement
errors when reading out the qudit states.

In the following of this section, we propose two strategies for improving qudit
readout compared to the default measurement scheme that utilizes a single resonator
drive frequency that optimizes the classification of |0) and |1). The first strategy
consists of finding a single frequency that maximizes the distinguishability between
all d qudit Fock states. In the second strategy, we allow for multiple different drive
frequencies.

4.5.1 Assignment Matrix

To arrive at a measure of the distinguishability of states, we introduce the measurement
assignment matrix M [Bravyi et al. (2021)]. The qudit-state-dependent resonator
states are defined by their steady-state amplitude A;. We assume their Wigner
functions to follow a two-dimensional Gaussian distribution,

1 — Aj|?
G(z,Aj,05) = —— exp (—ZJ|> , (4.5.1)

2
27r0j 20j

centered at A; with standard deviation o; larger than the intrinsic quantum noise.
The elements of M are given by

M ; :/d2ZG(ZaAijj)H@i,lc (4.5.2)
ki

and define the probability to classify a measurement as state |i) even if state |j) was
prepared. The region corresponding to each state |¢) is defined by the maximum
likelihood estimator (MLE) leading to

@i,k = @(G(ZaAi7ai) - G(Z,Ak,O’k)) s (453)

where © denotes the Heaviside function. For o; = ¢ (valid assumption for the hardware
setup studied later in this chapter, see the discussion about the distribution of o
of Gaussian fits in the second paragraph of Sec. 4.6), the MLE is equivalent to the
minimum distance estimator (MDE) that implies

Oik = O(]z — Ag| — |2 — 4il). (4.5.4)
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Using the MDE, a data point z is assigned to the region of state A; if its Euclidean
distance to all of the other states Ay is larger. In contrast, using the MLE, a data
point z is assigned to the region of the state A; that has the largest value of the
probability density at that point. For simplicity and since in our measurements all o;
are comparable, we choose the MDE throughout this chapter.

Ideally, M;; = 0;;, meaning perfect measurement: a measurement outcome is
assigned to |i) only if |j) was prepared. We define the error measures

&=1-M;;, (4.5.5)

where §; is the probability of misclassifying the qudit state |j), and their mean & over
all d qudit states,

é- (4.5.6)

J‘f‘r
&\H
Mg“

7=0

The theoretical dependence of §; and { on the readout resonator drive frequency is
shown in Figs. 4.2(b) and 4.2(c). The measurement errors &; achieve their minima at
different readout resonator drive frequencies. If w,, # wqy, the locations of the minima
cannot be distinguished as well as for w,;, = wg. In the current setup of IBM Quantum
hardware, the frequency wy, of the rotating frame cannot be changed. Therefore, the
difference between the frequency dependencies of all §; is less pronounced.

Note that for setups where o; = o and all qudit states lie on a circle centered at
A; = z. + iy., the assignment matrix M; ; can be expressed in terms of Owen’s T’
function, that allows for a fast numerical calculation. Examples of such setups are
qudit systems with wy,, = wg, see Sec. 4.4.1, or qutrit systems even with arbitrary wy,.
In the rotated coordinate system in which A; and A;y; are aligned along the real axis
in phase space, Eq. (4.5.2) can be written as

1 Te y(.r) ( )2 ( )2
— T Yy~ Y
Mg = 2102 /dm / dyexp(— 202 202 >
—00 )
1 i — z;)? c— Yj i\ L
:/dxexp(—(x zj) > <1+erf<y yj + ai(e I))>
2V 2o 20 V20

1 Ze Tj — T yc_y“i’ai(l"_lnc)
1 —erf T = —a; J J 4.5.
4< er<f0>>+ ( o o  (451)

where y(x) = y. + ai(z — x.) and q; is the slope of the bisecting line between A; and
Ai—17

a; = _m7 (4.5.8)
Yi — Yi—-1

see the visualization in Fig. 4.4. The variables z; and y; are the real and imaginary
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A, | A
P Re[A]

Figure 4.4: Visualization of the calculation of M; ; using Owen’s T" function. The area of
integration of Eq. (4.5.7) corresponds to the dark blue region of A;. The Gaussian probability
distribution (illustrated by the gray circles) of the state |j) that was prepared is located at
Aj.

part of A;. The function T'(h,a,b) is a generalized version of Owen’s T' function,
T(h,a) =T(h,a,0) [Owen (1956), Owen (1980)] and defined as

That) = [ auesxp () ear (24 (459)
2\/ﬁh/ 2 V2

It can be expressed by multiple standard Owen’s T' functions,

T(h, a,b) :ierf (M) (1—erf (f/li)) +T<\/117a2’“+ h(12a2)>

A/ 2
—i—T(h,a—i—b)—T b wl+ta —T(h,b).
h V1+a? b hvV1 + a?
(4.5.10)

We used the standard definition of the error function, see Eq. (8.250.1) of [Gradshteyn
and Ryzhik (2015)],

erf(z) = \Z? /du exp(—u?). (4.5.11)
0

4.5.2 Finite Sampling

In experiments, measuring an unknown state |1)) = >, ¢; |j) in the Z basis is equivalent
to estimating its populations p; = |¢;|? based on a set of N data points {z;}, also
called shots. For each shot, the total state is projected onto one of the d qudit states
|7) with probability p;. Therefore, the total probability distribution of measuring one
shot at z given p'= (p;) is a sum of all d Gaussians defined in Eq. (4.5.1) weighted
by p;. The measurement task can be understood as learning the parameters p’of this
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multimodal probability distribution,

d—1

7=0

where A; and o; are obtained from a separate calibration measurement. Using the
normalization condition of p),

d—2
Pi-1=1-Y _pj, (4.5.13)
=0

where p; € [0,1], the space of possible p’ can be mapped to a (d — 1)-simplex. Using
Bayesian inference, we define a recursion relation

j . P(z]p) ) (=
PUtD(5) = WP( (), (4.5.14)
with
P(z;) = / a1 P(z;|5) PY) (5) (4.5.15)

between the estimated probability distribution (so-called prior) PU)(7) of the Gaussian
amplitudes p’ before and after receiving the jth data point z;, also called shot. Each
shot is drawn from the probability distribution P(z;|p’) defined in Eq. (4.5.12). After
obtaining N data points, the resulting probability distribution P(")(§) is given by

N— -
Hj:ol P(z;|p) (0)

T

7). (4.5.16)

The initial prior P(O)(5) is chosen to be a uniform distribution.

If the width of the Gaussians is small compared to their distances, this method is
equivalent to the description given in the following. For simplicity, instead of using this
Bayesian ansatz of the probability distribution, each of the N shots is classified as one
of the d qudit states. The classification is based on the phase-space distance (MDE) to
the d qudit Fock states, whose positions have been calibrated before. The components
Nj of N equal the number of shots assigned to |j). This procedure corresponds to
neglecting the actual position z; of this shot, i.e., its Gaussian weight G. Given Nj,
the so-called posterior probability distribution P(Y) (p') for the qudit populations p;
for a perfect measurement is equal to

d—1
L P N+d—1)!
P(p|N):D1T(P,N):%Hp£]’“, (4.5.17)
Hk:ONk k=0
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with
d—1 d—1
> pi=1, N; =N, (4.5.18)
j=0 J=0

introducing the Dirichlet distribution Dir [Kotz et al. (2000)]. It is the so-called
conjugate prior of the multinomial distribution. The location of the maximum (also
called mode) with respect to p; is given by N;/N, and its variances follow as

(N; + /(N +d)[L = (N; + 1)/(N +d)]
N+d+1

Var(p;] = . (4.5.19)

Defining nj = N;/N, for large N the variance of p; scales like n;(1 —n;)/N.
We now consider the assignment matrix M, see Eq. (4.5.2), which describes mis-

classification errors. Using a Bayesian posterior ansatz, we find that the probability
distribution has to be modified to

- 1 .
P(7|N) = 5 Dir(Mf; N) (4.5.20)

where
N = /ddpDir(Mﬁ, N). (4.5.21)

Vi

The assignment matrix M reflects the fact that some shots are classified incorrectly
and maps proper states p from Vj (related to a (d—1)-simplex) to a subspace V5 € V.
If N/N € Vg, the location of the maximum (also called mode) can be computed
analytically,

ﬁmode = *M71N~ (4.5.22)

“measurement

This result is similar to a common procedure known in QISKIT as
error mitigation”. Note that applying the inverse of M to N /N ¢ Vi can lead
to negative components of prode ¢ V5. In QISKIT, this problem is circumvented by
approximating pProde by the valid p” that is closest to N , see method least_squares in

qiskit.utils.mitigation._filters.py [Qiskit contributors (2023)],
p’ = argmin (|N/N - Mﬁ]Q) . (4.5.23)
I3
Equation (4.5.23) is the estimate of the state populations p after measuring N shots.
We will use the uncertainty of these estimates, viz., the numerically calculated standard

deviations SD[p;], to decide which of the proposed strategies performs best, i.e., exhibits
the smallest standard deviation.
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4.5.3 Comparison of Strategies

We consider two strategies that make use of either one or multiple drive frequencies.
In the default readout scheme of superconducting quantum hardware, measurement
pulses with a single drive frequency that maximizes the distinguishability between the
qubit states |0) and |1) are applied.

The first strategy we propose replaces the default frequency by the one that optimally
separates all qudit states in phase space simultaneously. Since, in general, the state |1)
that we want to measure is unknown, we suggest to optimize £ defined in Eq. (4.5.6),
which is the average of the individual measurement errors ;.

The second strategy uses N/d shots for each of the d different frequencies at which
individual states are most isolated, i.e., {; are minimal. We will show that this strategy
is advantageous in cases when there is no single frequency at which all states are
separated well enough. Hardware parameters and the state to be measured determine
which of the two strategies outperforms the other.

To compare both strategies, we draw N = 1000 samples from the probability
distribution given by Eq. (4.5.12) for 0; = ¢ and an equal-superposition state p; = 1/d.
The drive frequencies we use for (i) the single-drive strategy is the location of the
minimum of £ and for (ii) the multifrequency strategy are the minima of ¢;. Each
sample is classified using the MDE, see Eq. (4.5.4), i.e., by its Euclidean distance
to the nearest state |j). The final probability distribution for the p; of the single-
frequency strategy is given in Eq. (4.5.20). The final probability distribution for the
multifrequency strategy is the normalized product of the term in Eq. (4.5.20) for each
measurement frequency wg,

d—1
P(p{iix}) oc [ [ Dir(M (wi)piix) , (4.5.24)
k=0

where {7} is the list of counts of classified shots for the kth measurement frequency.
The standard deviation SD[p;] is computed numerically from this distribution.
Figure 4.5(a) shows the dependence of the ratio of both averaged standard deviations,

IS
—

1

SDs/m = = > SDs/mlpsl, (4.5.25)
j

Il
=)

on hardware parameters o; = o and s. The blue region corresponds to setups for
which the standard deviation SD, of p; using a single-drive frequency scheme is
smaller. In contrast, the red region corresponds to hardware configurations where it is
beneficial to measure at multiple frequencies, i.e., SD,, of the multidrive frequency
scheme is smaller. The gray region indicates parameter values for which both standard
deviations exceed SD,/,, > 0.1. Since the expected values p; lie in [0, 1], this threshold
corresponds to an uncertainty of at least 10%.

The overall trend is that for small o, i.e., strongly located Gaussians, the single-
frequency strategy performs at a similar, slightly better level than the multifrequency
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Figure 4.5: Comparison of measurement strategies. (a) Ratio of the standard deviation
SD,,, for the multifrequency strategy and the standard deviation SD; of the single-frequency
strategy applied to an equal-superposition state taking N = 1000 shots. The gray region
indicates where both standard deviations exceed SD,/,,, > 0.1. The straight lines denote
constant values of ok/Q. We take the same qudit parameters as in Fig. 4.2 and choose
g/2m = 100MHz and Q/27 = 100 MHz. (b) Histogram of Gaussian widths o; for data
presented in Sec. 4.6. The distribution justifies the assumption o; = o.

strategy. The multifrequency strategy is preferable for large o, when the overlap of
the Gaussians would be too large using a single drive frequency. Intuitively, this is
expected since, for small x and large o, only one state is isolated from the others which
group together at the origin in phase space, see discussion of regimes k < |x; — Xj+1]
in Sec. 4.4.1. We also added lines of constant relative uncertainty ox/Q. Along
these lines, the Gaussian widths o are fixed in units of the diameter ©/x of the
circle on which the states move in the rotating frame of the drive. The solid line
corresponds to o = 0.13Q2/k chosen in Figs. 4.2(b) and 4.2(c), whereas the dashed line
approximately matches the threshold of SDy/,,, > 0.1. Following the solid black line,
the standard deviation of the single-frequency strategy appears to exhibit a minimum
around k/2m = 1 — 2MHz. For fixed o0x/Q and small resonator decay rates k, the
states move around the circle rather individually, whereas for large x, the states move
as a group, see Sec. 4.4.1 and Fig. 4.3. The histogram shown in Fig. 4.5(b) is used to
justify the assumption o; = o for the measurement data presented in Sec. 4.6.

4.6 Measurement on IBM Quantum Hardware

In this section, we will compare the model described in Sec. 4.3 to data obtained from
ibm_lagos Q4 on July 7, 2023.

4.6.1 Preparation of Qudit States

We prepare the four lowest Fock states of an IBM Quantum transmon qudit, i.e., the
a so-called ququart studied in Sec. 4.6.2, by applying sequences of calibrated qudit X
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Figure 4.6: (a) Qudit resonator spectroscopy of transitions |i) <> |j). Colored markers
denote measured data and solid curves correspond to Gaussian fits. We plot each resonance
spectrum centered around the predicted transition frequency @; ;, see Eq. (4.3.13), using
g/2m = 65 MHz. (b) Rabi oscillations |i) <+ |j) depending on the drive amplitude for fixed
pulse duration. We sweep the readout resonator drive amplitude while keeping all other
parameters of the drive fixed. For first-order qudit state transitions, we fit a sinusoidal
dependence on a linear function of the drive amplitude in the interval [0,0.5], see the lines
connecting crosses and, respectively, diamonds. For second-order qudit state transitions, we
fit a sinusoidal dependence on a quadratic function of the drive amplitude in the interval
[0, 1], see the lines connecting dots and, respectively, triangles. The vertical dashed lines
indicate the locations of the first maxima obtained from the fits.

gates to the ground state |0). For simplicity, we implement these X gates via Gaussian
pulses. For each pulse, we first calibrate its drive frequency wy and second, its drive
amplitude €.

The optimal drive frequency is obtained from a Gaussian fit to resonance measure-
ment data shown in Fig. 4.6(a), where we fix the pulse amplitude to an initial estimate.
First, the measured N = 2000 complex-valued shots per qudit drive frequency, using
the default readout pulse, are averaged. Second, these averages are rotated in the
complex plane such that their major principal axis is oriented along the real axis.
And third, the averages are projected onto the real axis which justifies the axis label
“rotated projected data”. For the spectroscopy measurements, in addition, we define
the origin of the ordinate of Fig. 4.6(a) to correspond to the initial state of the
analyzed transition and the maximum to the final state. Our estimated frequency @; ;
is calculated by Eq. (4.3.13) using ¢g/27m = 65 MHz.

To obtain the initial estimate of the qudit drive amplitude, we define the rotation
angle 6 of a resonant Rabi oscillation between states |j) and |k). Comparing both
sides of

exp(-iHant) = exp (~SONK| + 1) ) (46,1
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where the left-hand side is the time evolution of the effective drive Hamiltonian,

Haerr = A5, k) ([5)0E] + [F)]) - (4.6.2)

Therefore, the rotation angle § depends on the effective Rabi frequency A(j, k) and
the pulse duration ¢. Starting with the Hamiltonian of a driven qudit in the rotating
frame of the drive, see [Blais et al. (2021)],

H=Hy+ AV =) (& —wa) ) J|+>\*Z\/J+ (15X + 1 + € 15 + 1))
j
(4.6.3)

for A = 1, the rotation angle 6 for Rabi oscillations between |j) and |j + 1) is given by

6=t 00D T, (4.6.4)

In analogy to Sec. 4.3, we now perform a Schrieffer-Wolff transformation of the
Hamiltonian in Eq. (4.6.3). This method is used to predict the Rabi oscillation
frequencies of second-order transitions |j) <+ |j + 2). For previous work on multiphoton
transitions, see, e.g., [Strauch et al. (2007), Danilin et al. (2018)]. An expansion in A
leads to

Zf TEO NG 4 2 + e [+ 2)()) (4.6.5)

where

G+ 1) +2)(@j42 — 2041 + @j) (4.6.6)

(@jr2 — @jp1 — wa) (@j41 — @5 — wa)

fi=

Note that these expressions only hold for wg # Wj41 — @y, i.e., drive pulses that are
not resonant with transitions between neighboring qudit levels |j) <+ [j +1). The
rotation angle for Rabi oscillations between non-neighboring states |j) and |j + 2) can
be computed using Eq. (4.6.5),

(Q<j,j+2>)2

— i (4.6.7)

0 =1+

Thus, the Rabi frequency of the |0) <+ |2) transition scales quadratically with Q(sz).
Using Egs. (4.6.4) and (4.6.7), the initial estimate for the m-pulse amplitudes QU+

can be related to the default X-gate amplitude Q&O’l) reported by the IBM Quantum
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backend,
) QO
lel77‘7+1) — ﬁ, (468)
(0,1)
QUI+2) _ 9 M' (4.6.9)
" fitjj+2

Here we used that all single-qudit operations are implemented within the same duration
tjj+1 = to.

After evaluating the resonance measurement, we continue to calibrate the X-
gate drive amplitude via Rabi oscillations, see Fig. 4.6(b). The data are rotated
and projected onto the major principal axis as described before for the spectroscopy
measurements. As shown in Eq. (4.6.5), the Rabi frequency for transitions |j) <> |j + 2)
depends nonlinearly on the drive amplitude. Since these transitions are suppressed by
the small factor €2, f;, we choose t; ;12 = 2tp 1 such that 9%0’2) does not exceed the
limits of IBM Quantum software/hardware restrictions: the drive amplitude in the
arbitrary units chosen in Fig. 4.6(b) has to be an element of [—1,1]. The 7 amplitude
of an X-gate pulse is identified with the location of the first maximum in Fig. 4.6(b),
indicated by a dashed line. For transitions between neighboring states, we fit a sine
dependence on a linear function of €2, and, for second-order transitions, we fit a sine
dependence on a second-order polynomial of €2,. Using those fits, any desired rotation
angle, e.g., 7w for an X gate or w/2 for a Hadamard gate, can be mapped back to a
corresponding pulse amplitude.

The sequence of calibrating drive frequency and amplitude described above can be
iterated several times to improve gate fidelity. Here, for simplicity, we consider only
one round of calibrations. To increase fidelity, we chose the initial value for {2 3 based
on prior test measurements.

Implementing gates in the |j) <> |j + 2) subspace results in two advantages. First,
our implementation of an X-gate X j1o between |j) and [j + 2) takes only twice the
single-qudit gate duration #p;. In contrast, using single-qudit gates, X ;o consists
of three single-qudit operations Xj ;11X;41,12Xj 41 with a total duration of 3t ;.
Second, the calibration of the drive frequencies (amplitudes) for |0) <> |1) and |0) <> |2)
are independent of each other and can therefore be combined into a single QISKIT
job (set of measurements submitted to an IBM Quantum device). In contrast, the
frequency calibration for the transition |1) <+ |2) depends on the Rabi measurement
for the transition |0) <> |1). In total, we can perform our calibration procedure in four
QISKIT jobs:

1. drive frequency of Xy; and Xys,
2. drive amplitude of Xy; and Xgo,
3. drive frequency of X192, Xo3, and Xi3,

4. drive amplitude of X792, Xo3, and Xi3.
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Figure 4.7: Measurement of ququart states on ibm_lagos Q4 (July 7, 2023). (a) Drive-
frequency-dependent and qudit-state-dependent resonator amplitudes, the experimental
equivalent of Fig. 4.2(a). The colored dots are the measurement results of all N = 2000
shots for each prepared Fock state for the drive frequency wy = wy = 7.2463 GHz. The
black crosses mark the centers of their Gaussian fits and the black straight lines indicate the
boundaries of regions assigned to individual Fock states. These boundaries are constructed
using the minimum distance estimator, see Eq. (4.5.4). The colored curves (with white
shadows) correspond to the centers of Gaussian fits to the Fock states |j). A video of this
panel is available at [Kehrer (2025)]. (b) Measurement errors ; = 1 — M; ; based on all
measured shots of the data presented in (a). Here, the elements M; ; of the assignment
matrix equal the relative number of shots, N;/N, that are classified as |i) even if |j) is
prepared. The horizontal gray line denotes the measurement error £4.f obtained using the
default measurement pulse. (c) Measurement errors &; based on Gaussian fits to the data
presented in (a) and the assignment matrix M defined in Eq. (4.5.2). Using the centers and
average o of Gaussian fits for each readout resonator drive frequency, see Fig. 4.5(b), we
calculate M numerically. The &; shown in (b) are larger than those in (c) since they do
not only represent assignment errors, but also include additional errors such as qudit decay,
leakage, and imperfect state preparation. In both (b) and (c), the minimum of the average
assignment error ¢ is smaller than £q.¢ obtained by the default pulse.

In contrast, the standard sequential calibration of single-qudit X gates would take six
jobs: two for each of the three single-qudit X gates between neighboring states.

4.6.2 Measurement of a Ququart

After calibration of the standard single-qudit gates X1, X192, and X3 as well as the
higher-order (two-photon) single-qudit gates X2 and X3, we compare the readout
model described in Sec. 4.3 to measurements executed on ibm_lagos Q4 (July 7,
2023). In Fig. 4.7(a) we show the measurements of the four lowest Fock states for
various readout resonator drive frequencies. This plot is the experimental equivalent
of Fig. 4.2(a). A video of this panel is available at [Kehrer (2025)]7. For each Fock
state and for each readout resonator drive frequency, we take N = 2000 shots while
keeping the other drive parameters fixed at the default values. For wq/2m = wy/27m =
7.2463 GHz, Fig. 4.7(a) shows all shots in the color of the prepared Fock state. This
value of wy is —5.5 MHz off the default frequency reported by the IBM Quantum device.
Black crosses highlight the centers of the Gaussian fits. For other drive frequencies, we

"Direct link: https://tobias-kehrer.github.io/thesis/qudit_measurement/ [Accessed: July 30, 2025]
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only plot the centers of the Gaussian fits as colored lines (with a white shadow). The
straight black lines denote the boundaries of regions (defined via MDE, see Eq. (4.5.4))
that are assigned to one Fock state.

We analyze the measurement errors in two ways. First, we define the elements M; ;
by the relative number of shots, N;/N, classified as |i) even if |j) is prepared. In
this way, M incorporates misclassification errors but also additional errors such as
imperfect qudit state preparation. From this matrix, we obtain the errors ¢;, displayed
in Fig. 4.7(b). Second, we use the centers of the Gaussian fits for each qudit state and
for each value of the resonator drive frequency and a fixed value of o to compute the
assignment matrix defined in Eq. (4.5.2). By examining these Gaussian fits, we find a
narrow distribution of the o values: o = (0.302 + 0.017) (same arbitrary units as in
Fig. 4.7(a)), see Fig. 4.5(b). The resulting errors &; are shown in Fig. 4.7(c). Here,
the &; only represent errors that arise from misassignment of shots drawn from the
multi-Gaussian distribution, see Eqs. (4.5.1) and (4.5.2). Since real devices feature
other sources of error, e.g., qubit decay, leakage, and imperfect state preparation, the
values of ¢; presented in Fig. 4.7(b) are larger than in Fig. 4.7(c).

Our model, visualized by the theory plots in Figs. 4.2(a) and 4.2(c), shows qualitative
agreement with the data presented in Figs. 4.7(a) and 4.7(c). In both Figs. 4.7(b)
and 4.7(c), the horizontal gray line £4of denotes the average assignment error of the
four lowest Fock states using the default readout pulse and should be compared with
the solid black line £&. The corresponding data were taken from Rabi calibration
measurements, similar to Fig. 4.6(b), at the drive amplitude that is closest to the
fitted optimum.

We find a dependence of the measurement errors §; on the readout resonator
frequency as expected. The data presented in Figs. 4.7(b) and 4.7(c) suggest that
the default measurement frequency is not ideal to separate all four qudit states
simultaneously. However, the minima appear at only slightly different positions. Note
that the difference in positions is small due to IBM Quantum software/hardware
limitations: wy, cannot be set to its ideal value w,, = wy, see Sec. 4.4.2. We expect
the impact of varying the readout resonator drive frequency to be much higher if it is
possible to analyze all data in the rotating frame of the drive, compare Figs. 4.2(b)
and 4.2(c).

In this chapter, we focused on the analysis of only four qudit states since the readout
of higher excited states beyond |3) becomes difficult for several reasons. Higher-excited
states are more sensitive to charge noise, see Fig. 4.1(a). Since x; depends on the qudit
spectrum wj, charge noise leads to ambiguous steady-state amplitudes. In addition,
finding a single drive frequency that properly separates all qudit states becomes more
difficult with an increasing number of qudit states. For example, for the IBM Quantum
device that we utilized in this chapter, we estimate x1 < x4 < x2 which indicates that
the steady-state amplitude corresponding to |4) lies between |1) and |2). We expect
that the more states are involved, the better the performance of a multifrequency
strategy in comparison to a single-frequency strategy given a small £ < |x; — X/,
cf. Fig. 4.5. Examples for multifrequency readout for d = 8 and d = 12 are [Wang
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et al. (2025), Champion et al. (2025)]. Here, E;/E¢c reaches values up to 325.

4.7 Conclusion

We have presented a model that describes phase-space measurement data of qudit
states on superconducting quantum hardware. Our model qualitatively matches
the data that we generated on a current IBM Quantum device. For qudit-state
preparation, we employ higher-order X gates between |j) and |j 4+ 2). This scheme
leads to a reduction of the execution time of qudit quantum circuits as well as of
the duration of X-gate calibrations. Based on our model, we have compared the
performance of two measurement strategies, a single-frequency and a multifrequency
scheme, in simulations. For each strategy, we have identified the regime in hardware
parameter space where it is optimal. The multifrequency strategy is superior when
the qudit-state-dependent resonator states overlap significantly.

To use the full potential of both strategies, it is necessary to adjust the modulation
frequency wy, of the device. This is currently not possible on IBM Quantum hardware.
Despite these software and hardware restrictions, we still find predicted differences
in the frequency locations of the minima of the individual measurement errors &;
and an improvement over the measurement error £4.r using the default measurement
pulse. We expect a better performance of the strategies for setups that operate in the
rotating frame of the drive w,, = wy.

In the future, adaptive measurement schemes that change the drive frequency from
shot to shot or between bunches of shots may be possible. This can lead to a further
improvement of transmon qudit measurements.

The results and figures of this chapter have been published in parts in [Kehrer et al.
(2024a)].
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Chapter 5

Simulating Effective GGain by
Mirroring Native Decay Using Echo
Sequences

This chapter is based on preliminary and unpublished results obtained in a collaboration
with T. Nadolny.

5.1 Motivation

In the current noisy-intermediate-scale quantum (NISQ) era [Preskill (2018)], available
quantum computers are still far away from exceeding qubit numbers of many thousands
that are of sufficient quality such that millions of logical gates can be executed.
Hopefully, in the near future, we will understand what “far away” truly means. In the
meantime, before achieving fault-tolerant universal quantum computing, we might
focus on using quantum computing platforms as quantum simulators [Feynman (1982),
Johnson et al. (2014), Altman et al. (2021)], in the spirit of classical analog computing.
Taking IBM Quantum [IBM Quantum. (2025)] as an example, the former pulse-level
access [Alexander et al. (2020)], which unfortunately has been removed in April 20258,
allowed users to program custom microwave-pulse schedules to control qubits in a
powerful and diverse fashion.

A quantum computer is built to perform environmentally isolated unitary time
evolutions of its quantum system. On NISQ-era quantum devices, however, native
qubit decay and dephasing does exist. Unsurprisingly, this noise can be used to
simulate an open system that exhibits a decay and dephasing rate identical to the
one of the hardware. The quantum simulation of open quantum systems is an active
field [Barreiro et al. (2011), Kropf et al. (2016), Chen et al. (2018), Garcia-Pérez et al.
(2020), Del Re et al. (2020)]. In [Rost et al. (2020), Tolunay et al. (2023), Sun et al.
(2024)], native decay is used to generate nontrivial mixed states. In these papers,
echo sequences are used to mirror the native decay into an effective gain that leads
to a fully mixed state. Echo sequences are essential in (nuclear) magnetic resonance

Shttps://www.ibm.com/quantum/blog/qiskit-2-0-release-summary [Accessed: July 30, 2025]
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imaging [Hahn (1950), Hennig et al. (1986), Haase et al. (2011)] and are related to
Ramsey interference [Ramsey (1950)].

In this chapter, we will understand the mirroring of native decay to effective gain in
a detailed way. By introducing asymmetries in the echo sequence, the effective gain
can be different from the resulting effective damping and lead to different mixed states
than the ones that have been presented before.

The chapter is structured as follows. In Sec. 5.2, we present the spin-1/2 toy model
including incoherent processes we want to simulate using the echo sequences. In
Sec. 5.3, we introduce the symmetric echo sequence and in Sec. 5.4 the asymmetric
echo sequence.

5.2 Model

In general, we want to simulate a nonunitary time evolution, e.g., incoherent gain and
damping in addition to unitary evolution. Natively, loss is present on arguably any
quantum computation platform. A special case of Lindblad master equations that
we would like to simulate are related to the study of quantum synchronization (see
Ch. 7), discussed in the second part of this thesis. Preferably, we want to simulate a
coherent drive and detuning in combination with incoherent gain and damping.

Let us start with two-level systems, i.e., qubits. In the following, we want to model
the Lindblad master equation without drive,

[AZ, p| + KiD[ot]p+ K_Dl[o"|p+ K,D[Z)p, (5.2.1)

. 1
P = Lmodel(p) = - 5

where K, and K_ are the gain and damping rates, K, is the dephasing rate, and X,
Y, and Z are the Pauli matrices. Furthermore, we use o = |[1)0| and o~ = |0)X1].
The corresponding evolution of p(©) for a duration 27" results in

K. — e 2K 4KOT () (K + K,)pl0)

model
T) = 5.2.2
() e L 622
pSiOdel(T) _ p((](i)e—(K,+K++4Kz+21A)T7 (5.2‘3)
where p;; = (i| p|j). In particular, the steady state
K_
model
Tooo)= o2 5.2.4
poo ( 00) K + K. ( )

is mixed and the coherences pf)nf’del decay exponentially with rate K_ + K, +4K,.
The native Lindblad master equation of an idling qubit,

. i _
p=Lilp) =502 p] + k-Dlo~]p, (5.2.5)
consists of a native damping with rate k_ and a detuning ¢ that is approximately

constant during one time evolution [Riste et al. (2013)]. In the quantum computing
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community, one such time evolution is called a “shot”. The evolution of an initial state
P by Eq. (5.2.5) for a duration ¢ reads

pon (1) =1 — ™11 = ) (5:2.6)
p(()ll) (t) = pg(i)e*(i(”k—/?)t. (5.2.7)

Averaging over multiple shots, i.e., randomly drawn detunings J that are normal
distributed, leads to a Gaussian decay of coherences,

o % B ~
o (1) = S / dg e~ (0020 0k /D1 — (k- /2=0*2/2 (5 9 8)

P01 - 270
—00
Here we used Eq. (2.326.3) of [Gradshteyn and Ryzhik (2015)]. The resulting coherences
oscillate at the mean detuning 6 and decay both exponentially and Gaussian.

5.3 Symmetric Echo Sequence

Our echo building block consists of two X gates that are nested within three evolutions
with £;. Using Lx(p) = XpX, we define the evolution of one building block as the
concatencation £1 0 Lx o L1 0 Lx o Ly. The first (right) and last (left) £; are applied
for a duration 7'/2 and the central £; is applied for a duration 7'. For the first and last
L1, we set the detuning to 6 + A, and for the central £, we set the detuning to § — A.
In this way, the random ¢ part is canceled by the echo but the engineered A remains
and can be used for quantum simulation purposes. The X gates are assumed to be
implemented on timescales significantly smaller than 7. For a number n; of these
echo blocks, i.e., an even number 2n; of X gates, we obtain the iterative expressions

p(()g”)(T) 1 e kT2 4 o3k T/2 2% T | eka_TpéTOLb—l)(T) : (5.3.1)
pgllb)(T) — (ko +dko+i2A)T pé’}bil)(T) . (5.3.2)

These recursions can be solved using the initial conditions pé%) (0) = p(()%) and péo) (0) =
(0)
pOl )

—2npk_T
n ok 0 kel —e
i (T) =1 = 2T (1 — plg)) — e h TPy
1
— (1 — o 2mk-T 1— —2npk_T (0) 3
( ¢ ) ( 2cosh(kT/2)> e P00 (5:3:3)
p(()qbb)(T) — o 2np(k—+dk.+i2A)T P(()?) _ (5.3.4)
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Figure 5.1: Time evolution of the symmetric echo sequence defined in Eq. (5.3.3). The colored
solid zigzag curves correspond to the time evolution £; between two X gates that correspond
to the jumps, see Eq. (5.2.5). Each color represents one echo block. The dashed curve denotes
the native decay poo(t) = 1 — e~ ¥-*. The dotted curve denotes the effective time evolution of
one echo block, see Eq. (5.3.7). The gray horizontal line corresponds to the steady state. (a)
Small decay durations k_T = 0.2. (b) Large decay durations k_T = 4.

For many repetitions of these echo blocks, the resulting state is given by

0o (np—r00) 1 1
pOO(T) - pOO (T) - 1 2COSh(k,T/2) ) (535)
pRUT) = pl (1) = 0. (5.3.6)

Note that p§5(T") € [0.5,1]. In the limit k-7 > 1 leading to pJ5(7") = 1, the delay
between two consecutive X gates is so long such that the state decays completely. In
the limit k_T < 1 leading to pi5(T") = 0.5, the state only decays marginally between
two consecutive X gates such that eventually the maximally mixed state is reached.

Time evolutions are shown in Fig. 5.1. The colored solid curves correspond to the
time evolution described by Eq. (5.2.5): one color per echo block. The jumps reflect
the effects of the X gates. The dashed curve shows the native decay poo(t) = 1 —e 1.

The dotted curve corresponds to the effective time evolution generated by the echo,

1
block (4, _ (1 _ —k_t . —k_t (0)
poo (1) = (1 ¢ > (1 QCosh(kT/2)> e oo

matching with the actual time evolution after each echo block.

(5.3.7)

Let us compare the steady state generated by the echo defined in Egs. (5.3.3)
and (5.3.4) with the result of the Lindblad master equation in Eq. (5.2.1) that describes
gain and damping given in Egs. (5.2.2) and (5.2.3). The off-diagonal components
restrict the gain and damping rates to K_ + K + 4K, = k_ + 4k,, effectively fixing
K. . A Taylor expansion of the difference between p(™)(T) after n; echo blocks and

the model p™°%!(2n,T) in k_T is used to fix the values of K, and K_. Demanding
vanishing first order,
-k
z) ) nbk_t N

(5.3.8)

K +4p0(K.,
0={1-2 ;
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Figure 5.2: Error of symmetric echo sequence. (a) Difference between echo sequence consisting
of ny, echo blocks, see Eq. (5.3.3), and piedel(t — oo) = 1/2. The solid curves denote contour
lines and the dashed curve indicates the local minima of the error at given k_T. (b) The
dashed curve corresponds to the one in panel (a) and the solid curve is the value of the error

at this dashed curve. The two dotted lines correspond to n;l and n;Q.

fixes K,. Furthermore, demanding the resulting second order,

_—2K_
54444a544@(k7132, (5.3.9)
2k_pog

0= (200 — 1)

to vanish implies K_ = k_/2 and K, = k,, leading to K = k_/2. The remaining
expression reads

nb(k_T)3

pbo” (1) = Py (2mT) = =5

+0 ((k-T7)%) . (5.3.10)
Thus, the error of approximating the master equation Eq. (5.2.1) by the echo sequence
is linear in ny and of third order in k_T. Moreover, the echo sequence turns the native
decay into both effective damping and gain.

The more relevant error measure is the difference between the echo and the steady
state to be simulated. The steady state piicdel(t — oo) = 1/2 for equal K_ = K
differs from pgg to second order in k_T,

p%:=;+-@1gy—+O(G;Tf). (5.3.11)

The error, i.e., difference between pidel(t — co) = 1/2 and the state at the end of an
echo sequence of ny echo blocks is shown in Fig. 5.2(a). For a given decay rate k_
of the qubit, there exists an optimal relation between 1" and n; at which the error is
minimal, see the dashed curve in Figs. 5.2(a) and 5.2(b). For n;, ~ 103, this minimal
error scales approximately like nb_Q.

5.4 Asymmetric Echo Sequence

Using the symmetric echo sequence presented in the previous section, the effective
gain and loss rates are equal K_ = K, = k_/2. We are interested in generating other
steady states than pgg = 1/2. One way to engineer the ratio between the rates is
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Figure 5.3: Time evolution of the asymmetric echo sequence defined in Eq. (5.4.1) for
k_T = 0.2. The dashed curve denotes the native decay poo(t) = 1 — e~ *~%. The dotted curve
denotes the effective time evolution of one echo block. The gray horizontal line corresponds
to the steady state. (a) Negative shift 7 = —0.37 leading to smaller steady-state pgo. (b)
Positive shift 7 = 0.3T leading to larger steady-state pgg.

to modify the individual durations of the £; evolutions in our echo sequence. We
introduce a shift 7 that changes the durations ¢/2 — (¢t + 7)/2 of the first and last £,
and the duration ¢t — t — 7 of the central £;. The asymmetric echo block, note the
tilde, reads

Ia(()ﬁb)(T7 T) — e*Qlek—Tp(O) + (1 Slnh(k— (T _ T)/2) > (1 B eonbk_T) 7

00 ~ 2cosh(k_T/2) sinh(k_T/2)
(5.4.1)
ﬁ((ﬁb)(ﬂ 7) = e~ 2mo(k—-+ik+2i(Ator/T)T p((g) ) (5.4.2)

The structure of the result is quite similar to the solution for the symmetric echo
in Egs. (5.3.3) and (5.3.4). For 7 = 0, the sinh terms cancel. Note that due to the
asymmetry, the native detuning 0 is not canceled completely which results in Gaussian
damping of the coherences, see Eq. (5.2.8).

In Fig. 5.3, we present time evolutions of two asymmetric echo sequences. The
influence of the sign of 7 on the effective gain and damping rates can be understood
intuitively. The evolutions of £ for a duration (T + 7)/2 take place after an even
number of X gates, i.e., ideally identity. If their duration is increased, the native
decay is converted to an even larger effective decay. Vice versa, if the duration T' — 7
of the £1 evolutions that take place after an even number of X gates is increased, i.e.,
negative 7 < 0, the native decay is converted into a larger effective gain.

Similar to the symmetric echo, we can compute the difference between the asymmet-
ric echo and the model solution Eq. (5.2.2). The simulated detuning equals A + d7/T
and the off-diagonals of the state fix K_+ K, +4K, = k_+4k, as before. The first and
second order of the Taylor expansion of the difference between the asymmetric echo and
the model in k_T and k_7 vanish if Ky =k_(1 —7/T)/2 and K_ =k_(1+7/T)/2.
The remaining term is again of third order,

poe) (T.7) = (2 T) = 22k 1) (Z+1) (7 - 1) (7 —3) + O (k1)) .
(5.4.3)
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Figure 5.4: Error of asymmetric echo sequence. (a) Difference between echo sequence consisting
of ny, echo blocks and pgicdel(t — oo) = (1+ 7/T)/2 at the optimal k_T for a given 7. The
solid curves denote contour lines and the dash-dotted line indicates 7 = (1 — 2/v/3)T, i.e.,
the maximum deviation in Eq. (5.4.3). (b) The black (gray) dashed curve corresponds to
the optimal k_T that minimizes the difference between echo sequence and (1 + 7/T)/2 for
7 = —0.3T (7 = 0.3T). The black (gray) solid curve represents the value of the error at the
corresponding dashed curve. The two dotted lines correspond to nb_l and nb_z.

The maximum deviation for 7 € [T, T] is achieved for 7/T = 1 — 2/4/3. Using this
asymmetric echo, the effective damping and gain rates can be tuned to distinct values.
The resulting steady state ground-state population can be tuned within the interval
[0,1] and is approximately linear for small k_T and k_,

=g (14 7) + (741) (7-1) (7-9) 55 roeny . eas

We plot the difference between the asymmetric echo sequence consisting of n; echo
blocks and pfedel(t — oo) = (1 + 7/T)/2 in Fig. 5.4(a). For each value of 7 and ny,
only the error at the optimal k_T is shown, i.e., the minimal error for a fixed value of
7 and ny. In Fig. 5.4(b), the optimal k_T and error are shown for 7/7" = —0.3,0.3.
No significant difference between both cases can be found.

5.5 Conclusion

In this chapter, we have learned how echo sequences can be used to generate mixed
states of qubits, i.e., spin-1/2. These echo sequences that consist of alternating decay
periods and X gates map native damping to both effective damping and gain of equal
magnitude. This can be used to simulate simple open quantum systems on quantum
hardware. However, the resulting effective gain and damping rates still depend on the
actual hardware.

We have shown that by making the echo sequence asymmetric in time, the ratio of
the resulting effective gain and damping rates can be changed. Thus, mixed states of
arbitrary Z expectation values can be prepared. The generation of nontrivial steady
states in combination with the simulation of open quantum systems is relevant for
realizing quantum synchronization in experiments. For a detailed presentation of
quantum synchronization see the second part of this thesis, e.g., Ch. 7.

In this regard, the simulation of spin-1 models is of special interest. It might be
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promising to study the echo sequences presented here for (transmon) qutrits in the
future. In this case, the native loss manifests mainly as a sequential decay of higher-
excited states into neighboring lower-excited states, see [Fischer et al. (2022)]. Since
higher-excited states often exhibit faster decay, they could be useful for simulating
effective gain and damping faster than the native rates. Echo sequences making use
of standard qudit X gates Xj ;1 operating between neighboring states as well as
two-photon gates X j12, see Sec. 4.6.1, might lead to the preparation of useful steady
states. Later on, one might study models consisting of multilevel qudits.
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Quantum Synchronization of
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Chapter 6

Classical Synchronization

Synchronization, which Christiaan Huyguens in 1665 called “la sympathie des horologes”
(french for “the sympathy of clocks”), see letter no. 1335 of [Huygens (1893)], can
be defined as the alignment of features of oscillators with either external signals or
other oscillators. Examples for these features are the frequency of oscillation and the
phase of oscillation. For modern views on Huygen’s clocks see [Oliveira and Melo
(2015), Willms et al. (2017)]. In the last century, synchronization became a vivid
field of research by bringing together, e.g., biology [Buck (1938), Winfree (1967)],
laser physics [Stover and Steier (1966)], biochemistry/medicine [Schifer et al. (1998),
Laurent and Kellershohn (1999), Glass (2001), Enjieu Kadji et al. (2007), Feillet et al.
(2014), Goldbeter and Yan (2022)], civil engineering [Strogatz et al. (2005), Rohden
et al. (2012), Taher et al. (2019)], and social sciences [Hong and Strogatz (2011a),
Hong and Strogatz (2011b)]. Several books on nonlinear dynamics [Pikovsky et al.
(2001), Strogatz (2003), Balanov et al. (2008)] but also life sciences [Wang (2022)]
feature synchronization.

About a decade ago, another avenue of synchronization emerged: quantum synchro-
nization [Lee and Sadeghpour (2013)]. Here, people try to identify unique quantum
features of synchronization of quantum oscillators. Starting in Ch. 7, quantum syn-
chronization will be the main topic of this second part of the thesis. In this chapter,
we will review the main aspects of classical synchronization that we will later use as a
reference for studies of quantum setups.

6.1 Kuramoto Model

Thinking about a model of clocks, naively, one could start with assigning a single scalar,
i.e., a phase of oscillation, to each clock. One ‘tick’ corresponds to a 27 evolution
of this phase and the corresponding frequency of oscillation is defined as the inverse
duration between two ticks. However, a physical clock is often realized as an oscillator
with nonvanishing amplitude and therefore more than one degree of freedom. In this
section, we will discuss synchronization of oscillators of fized amplitude before moving
on to amplitude oscillators in the subsequent sections. In [Kuramoto (1975)], Yoshiki
Kuramoto proposed a model of synchronization consisting of phase oscillators, i.e.,
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Figure 6.1: Kuramoto model for K > 0. (a) Schematics of a two-oscillator Kuramoto model.
The blue curve depicts the right hand side of Eq. (6.1.2), the orange dashed line corresponds
to the value of the frequency difference A. The black dot (circle) highlights the location of
the stable (unstable) fixed point of ¢4p = 0. The arrows indicate the time evolution of the
phase difference. (b) Phase diagram averaged over 50 realizations of N = 10,102,103,10%
oscillators after a duration tdw = 100. The width of each ribbon corresponds to the respective
standard deviation. The black dashed curve is the formal solution in the N — oo limit, see
Eq. (6.1.9). The inset shows the |R| = N~1/2 relation (gray line) at K = 0, see Eq. (6.1.12).

oscillators that are described by a phase of oscillation only. A broad review of various
modifications of the Kuramoto model can be found in [Acebrén et al. (2005)]. This
section is based on Ch. 13 of [Strogatz (2024)].

The Kuramoto model is described by the following set of first order nonlinear
differential equations

. KX
¢j = w; + N;Sin(@ —¢;), (6.1.1)

where j € [1, N] and N is the number of oscillators that are all-to-all coupled with
strength K The jth oscillator is characterized by a phase of oscillation ¢; € [—7, 7]
and a frequency w;. In general, the frequencies w; are drawn from a distribution G(w).
If K > 0, the coupling defined above is attractive and leads to synchronization of the
phases of the oscillators. Focusing on only two oscillators A and B, we can rewrite
Eq. (6.1.1) in terms of their phase difference ¢pap = ¢4 — ¢,

GaB = b4 — dp =wa —wp — Ksin(éa — ¢p) = A — Ksin(pag). (6.1.2)

In Fig. 6.1(a), this equation of motion of the two-oscillator Kuramoto model is
visualized. The black dot (circle) highlights the location of the stable (unstable) fixed
point of 45 = 0. The arrows indicate the time evolution of the phase difference: to the
right if b > 0 and to the left if 45 < 0. In the presence of the frequency detuning
A, two oscillators lock their relative phase to a single value ¢ 4p = arcsin(A/K). For
|A/K| <« 1, this value is close to zero. If |A/K| > 1, the oscillators do not lock their
phase since no fixed point of ¢ 45 = 0 exists. They rather oscillate monotonically with
varying frequency.

The dynamics of a macroscopic number of oscillators is richer. The equation of
motion Eq. (6.1.1) can be rewritten in a more elegant way using the complex order
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parameter
. 1M
R = |R|e'® = v > el (6.1.3)
j=1

This order parameter is the average of the complex phase factors of the oscillators
implying |R| € [0, 1]. It can be interpreted as the mean field of the oscillators. If the N
phases ¢; are identical, the magnitude of R is one. If the phases are distributed equally,
the magnitude of R is zero. Therefore, |R| acts as a measure of phase synchronization.
Interestingly, this order parameter appears natively in Eq. (6.1.1),

N
¢j = wj + N E Im[e'?e %] = w; + K|R|Im[e'®e %] = w; + K|R|sin(® — ¢;).
i=1

(6.1.4)

Thus, the all-to-all coupling of oscillators can be understood as a coupling of each
individual oscillator to the mean field R.

The distribution G(w) of frequencies has to be fixed to perform simulations. Here,
we choose a Gaussian distribution. Moving to a rotating frame, i.e., transforming all
phases by a linear shift proportional to the average frequency w,

oj — Q5 +wt, (6.1.5)
S — O+ wt, (6.1.6)

the mean of the Gaussian distribution can effectively be chosen to be zero. Furthermore,
by rescaling time with respect to the Gaussian width dw, we can effectively choose
G(w) to have unit variance. In Fig. 6.1(b), we present the average of the order
parameter |R| for N = 10,102,103, 10* oscillators over 50 realizations initialized with a
uniform distribution of phases. The width of each ribbon corresponds to the respective
standard deviation. The larger the number N of oscillators, the smaller the standard
deviation and the sharper the kink at K/§ = 2,/2/7 ~ 1.596, see the discussion below
Eq. (6.1.9). The black dashed curve in Fig. 6.1(b) corresponds to the formal solution
of R(K) in the limit N — oco. This solution will be given in the following.

Assuming K > 0 and that |R| is constant in time for large N, the oscillators with
lwj| < K|R| lock to a phase value given by w; = K|R|sin(¢;). The expectation value
of the phase factor e'¢7 = cos(¢;) + isin(¢;) over all frequencies can be split into a
symmetric cos and antisymmetric sin part. Since for locked oscillators w; and sin(¢;)
are both antisymmetric in w; whereas G(w;) is symmetric in wj, the sin part of the
phase factor expectation value vanishes. In the rotating frame where the average
frequency is zero, the average locking angle is also zero, i.e., ® = 0. Therefore, the
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remaining term of expectation value of the phase factor ¢'%s is
K|R| K|R|
R| = / 919 G ;) dwj = / cos(é;(w)Glw)dwy . (6.1.7)
—K|R| —K|R|

and can be rewritten using w; = K|R|sin(¢;),

w/2

Rl = KIR| [ cos(6,) G| RIsin(6,)d; (6.1.8)

—7/2

In [Strogatz (2024)], it is shown that the nonlocked oscillators do not contribute to
this expectation value due to the symmetry of both G(w;) and their density function
that depends on ¢; and w;. Inserting G(w) = e™%*/2/\/21 in Eq. (6.1.8), the following
implicit equation, also called self-consistency equation, for |R(K)| # 0 is obtained,

K K2|R|? K2|RJ?
1= 2e_K2|R2/4\/§ <IO <4’1‘> + Il <lL‘>> ) (619)

where I, is the modified Bessel function of the first kind. This function, see Eq. (8.406.1)
of [Gradshteyn and Ryzhik (2015)],

I(z) = e ™/2 ], (ei7/22) (6.1.10)

can be expressed by the Bessel function of the first kind, see Eq. (8.402) of [Gradshteyn
and Ryzhik (2015)],

v ZQk

T k:O 22’%'1“ +k+1)

N

(6.1.11)

Using Ip(0) = 1 and I;(0) = 0, the critical value K. = 24/2/m ~ 1.596 at which the
transition from |R| = 0 to |R| # 0 occurs can be extracted from Eq. (6.1.8) analytically.

At K = 0, the system exhibits trivial dynamics: each oscillator oscillates with its
frequency w;. For a uniform distribution of initial phases, the square of the magnitude
|R|?> = R*R of the order parameter R has the following expectation value,

REEIEy /qul /dng Z i(#5=di) = % (6.1.12)

3,j=1

Only the N terms el(®?—%) = 1 where ¢; = ¢; survive the integrals over each ¢;. The
result of each of these terms after integration over all ¢; yields (2m)N. In the inset of
Fig. 6.1(b), this prediction |R| = N~'/2 is compared to the results of the simulation.

This study sets the basics of synchronization at the level of phase oscillators. What
happens if we add a second degree of freedom, i.e., an amplitude, and what is the
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connection between phase oscillators and amplitude oscillators? An answer to the
second question is already hidden in this section: interpret the order parameter
R = |R|e'® defined in Eq. (6.1.3), which is based on many phase oscillators, as an
oscillator that exhibits an amplitude |R| € [0, 1], a phase ®, and oscillates with the
mean frequency of G(w). The connection between the order parameter and an actual
amplitude oscillator has been presented in [Ott and Antonsen (2008), Pikovsky and
Rosenblum (2015)].

6.2 Limit Cycles

This section on limit cycles, the fundamental building blocks of describing synchroniza-
tion of amplitude oscillators, is based on Chs. 7 and 8 of [Strogatz (2024)] and Ch. 7
of [Pikovsky et al. (2001)]. A limit-cycle oscillator is an oscillator whose phase space
hosts a limit cycle. In some sense, the Kuramoto model implicitly consists of limit-
cycle oscillators that all exhibit a time-independent (and maybe even equal) radius.
But what is a limit cycle? A limit cycle is an isolated, closed, and one-dimensional
trajectory in the phase space of an oscillator. The adjective isolated refers to the
non-existence of other closed trajectories in its neighborhood. Closed, on the other
hand, can be rephrased as: we can find an angle-like S (1-sphere) parametrization
of the limit cycle, which will be called the phase (of oscillation). For example, this
definition of a limit cycle excludes: (i) orbits of a harmonic oscillator, since they are
dense in phase space, or (ii) the strange Lorenz attractor since even if it lives in a
bounded subset of its phase space, it is not closed. Often in this thesis, the term ‘limit
cycle’ will be used as a synonym for ‘limit-cycle oscillator’.

Intuitively, the closedness can be achieved by making a single orbit either stable/at-
tracting, unstable/repulsive, or both. A class of systems that feature a unique stable
limit cycle is the Liénard system [Liénard (1928), Perko (2001), Leonov and Kuznetsov
(2013)] defined by the second-order differential equation

d?z dx

T + f(z)a +g(z) =0. (6.2.1)

This equation can be reduced to the following set of first-order differential equations,

dez |
L=y, (6.2.2)
Y =~y - gla). (623

This Liénard system hosts a stable limit cycle if the continuously differentiable functions
f(z) = f(—x) and g(z) = —g(—x) satisfy:

(1) g(x) >0 for x > 0,

(2) F(z) = [ f(y)dy has exactly one zero at x = x¢ > 0,
0
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nw=20.5

—-2.5 0.0 25
T

Figure 6.2: Phase portraits of the van der Pol oscillator for various values of u. The gray
arrows correspond to the vector field of the equations of motion, see Eqgs. (6.2.2) and (6.2.3).
The black curve marks the limit cycle to which every trajectory converges.

(3) F(z) <0 for 0 <z < xg,
(4) 4E(z) = f(x) > 0 for = > o,
(5) F(x) — oo for x — oo,

see [Perko (2001)] for a proof.

Bifurcations are, e.g., changes in the number or stability properties of fixed points
or stabilized closed orbits in phase space depending on the value of a particular tuning
parameter. Examples in 2D are the saddle-node bifurcation, pitchfork bifurcations,
and the Hopf bifurcation. The saddle-node bifurcation describes the existence of a
saddle and fixed point above a critical value of the parameter and the coalescence
of both at the critical value. Below this critical value, no fixed point occurs. The
supercritical (subcritical) pitchfork bifurcation describes the existence of a single stable
(unstable) fixed point below (above) a critical value of the parameter. Above (below)
this critical value this fixed point becomes unstable (stable) and is accompanied by
two symmetrically distributed stable (unstable) fixed points. All three fixed points
coalesce at the critical value. The supercritical Hopf bifurcation is the change of a
stable spiral into an unstable spiral that is enclosed by a limit cycle. The subcritical
Hopf bifurcation describes the transition of a stable fixed point surrounded by an
unstable limit cycle that itself is surrounded by a stable limit cycle below a critical
value of the tuning parameter to an unstable fixed point that is surrounded by a
stable limit cycle. The unstable limit cycle and the stable fixed point coalesce at the
critical value. In this latter case, hysteresis occurs. An overview of different types of
bifurcation is given in [Chia et al. (2025)].

6.2.1 Van der Pol Oscillator

A famous example that exhibits a limit cycle is the van der Pol (vdP) oscillator [Pol
(1920), Pol (1927)]. It is a special case of a Liénard system where f(z) = u(z? — 1)
and g(r) = z. Note that originally in [Pol (1927)], rather f(x) = 3ujz? — uo has
been considered. Since F(z) = px (x> — 3)/3 has a single positive zero at zg = v/3,
the vdP oscillator exhibits a stable limit cycle. Limit cycles of the vdP oscillator for
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various values of p are shown in Fig. 6.2. For small y, the limit cycle looks like a
stabilized orbit of the harmonic oscillator, whereas for large p the limit cycle appears
to be quite distorted. In the chapter on quantum synchronization, see Ch. 7, we
will often talk about the “quantum van der Pol” oscillator. As discussed in [Chia
et al. (2020), Ben Arosh et al. (2021)], that model is rather the quantum analogue of
the Stuart-Landau oscillator [Stuart (1960), Landau (1965)], described in the next
section. By adding a drive term with strength 2 and performing a rotating-wave
approximation in the rotating frame of the drive, the equation of motion of the van
der Pol oscillator exhibits the same form as the one of the Stuart-Landau oscillator.
Using the complex variable z = x + iy, we obtain an approximate equation of motion
for the van der Pol oscillator in the rotating frame of its drive,

el

L~ 0 — A
z 1 1 2—1—2

z— %]z]ZZ. (6.2.4)

Here, A is the detuning between the oscillator and the drive.

6.2.2 Stuart-Landau Oscillator

As mentioned in the previous section, the Stuart-Landau oscillator can be interpreted
as an approximation of the van der Pol oscillator. In the rotating frame of an external
drive of strength £ > 0, the Stuart-Landau oscillator is defined by the first-order
differential equation

dz

pri z= —iQ—iAz—i—%z—vg|z|22, (6.2.5)

for the complex amplitude z = re'®. The detuning between the eigenfrequency of the
oscillator and the frequency drive is A = wg — wy, the gain rate is denoted by 1, and
the damping rate is denoted by ~»2. Note that we recover the approximation of the van
der Pol oscillator for ;3 = p and 9 = u/8. For Q = 0, the Stuart-Landau oscillator
exhibits a U(1) symmetry: invariance of Eq. (6.2.5) under the time-independent
transformation z — zel. Therefore, it is often convenient to study the equation of
motion of the radius and phase separately. Both equations are obtained in an elegant
way by extracting the amplitude and phase part of z = re + irel?¢ Eq. (6.2.5),

i = Relze 9] = 7 (% - W?) — Qsin(e), (6.2.6)
¢ =Tm[z/z] = —A — %cos(qﬁ) : (6.2.7)

If Q@ = 0, the steady-state value of the radius can be read off Eq. (6.2.6): the ratio of
the gain and damping rates 1 and 2 determine rg = \/71/2v2. Intuitively, the linear
gain leads to an exponential increase of the radius. However, the nonlinear damping
that vanishes for small radii will eventually cancel the gain at a certain value of the
radius. Since there is only a single positive value at which both effects cancel, a stable
limit cycle is formed. For trajectories starting below rg, the gain wins such that they
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Figure 6.3: Time evolutions of Adler’s equation Eq. (6.2.7) for constant radius r. (a), (b) For
r|A| < Q, the phase (blue curve) converges to a fixed point ¢ = — arccos(—rA/Q) that is
indicated by the dashed black line. (c), (d) For r|A] > €, the phase (blue curve) oscillates
continuously with a mean frequency v4 (orange line) defined in Eq. (6.2.9).

are pushed toward to the limit cycle. For trajectories starting above rg, the damping
wins such that they are pulled toward to the limit cycle.

If Q # 0, the equation of motion of the phase, Eq. (6.2.7), can be viewed as a
modified version of Adler’s equation [Adler (1946)] that is basically the equation of
motion of the two-oscillator Kuramoto model, see Eq. (6.1.2). Here, modified refers to
sin <=+ cos.

Let us consider the case of a constant radius. Here, an analytical solution of the
time evolution of the phase can be found. For ¢(0) = 0,

A+Q)r
va

¢(t) = —2arctan < tan(tVA/2)> , (6.2.8)

where
va=VriA2—-Q2/r. (6.2.9)

In Fig. 6.3, time evolutions are shown. Note that for v4 to be real, |A| > Q must
hold which leads to oscillating solutions. For r|A| < €, the identity taniz = itanh z
can be used to realize that solutions decay to a fixed point ¢ = — arccos(—rA/Q).
Since tan is m-periodic, the mean frequency of Eq. (6.2.8) is v4. The fact that the
equations of motion of the oscillator are defined in the rotating frame of the drive,
the observed frequency of the oscillator is the difference between the actual frequency
of the oscillator and the drive frequency wg. Thus, if the phase of the oscillator is
constant in time, the oscillator aligns its frequency to the one of the drive. This effect
is also called frequency synchronization. Furthermore, if the phase of the oscillator is
fixed to a particular value, phase synchronization occurs. Both terms will be discussed
in the following.

6.3 Frequency Synchronization

In the previous section, the analytical solution of the phase of a Stuart-Landau
oscillator for a constant radius r was presented showing frequency synchronization
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Figure 6.4: Mode locking of the circle map defined in Eq. (6.3.1). A total number of 500
iteration steps were computed. (a) Arnold tongues of the mode locking measure 0/0a. For
various intervals of a in which this derivative is zero, the circle map exhibits mode locking.
White regions correspond to the plateaus in (b). (b) Mode locking measure 0v/0a for € = 1.
The plateaus correspond to the white regions in (a). (¢) Bifurcation diagram of the circle map
for e = 1 as a histogram with 200 bins in ¢,,. For the values of a for which the circle maps
exhibits mode locking, the bifurcation diagram shows 27 /7 accumulation points between the
sequence @, jumps.
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Figure 6.5: Visualization of m-cycles for ¢ = 1 of the circle map defined in Eq. (6.3.1).
The colored curves correspond to an m-fold application of the circle map @, 1m(¢n) at
different values of a. The black line corresponds to ¢,+0 = ¢,. The dots indicate where

Ontm(pn) = ©n and |0@pm/0¢n| < 1, i.e., the values of some accumulation points shown in
Fig. 6.4(c).

for r|A| < Q, where A is the detuning between the oscillator and an external drive of
strength Q. Here, we will simulate both the equations of motion for the radius and the
phase to study frequency synchronization of the Stuart-Landau oscillator. So-called
Arnold tongues named after Vladimir Igorevich Arnol’d will appear. In the original
work [Arnol’d (1961)], the circle map

Ont+1 = Pn + a+ £ cos(ep) (6.3.1)

has been studied. This map can be seen as the discretized version of Eq. (6.2.7), where
the parameters a and ¢ are related to A and Q/r. Depending on a and ¢, regions of
mode locking are identified in which the effective mean frequency

(6.3.2)

is constant in a, see Figs. 6.4(a) and 6.4(b).
of phases ¢,, exhibits m = 27/ accumulation points that in general are not equally

Here, when 0v/0a = 0, the sequence
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Figure 6.6: Arnold tongues of the Stuart-Landau oscillator. (a) Final value of the radius r at
ty1 = 100. Striped regions indicate time dependence of the radius. (b) Standard deviation of
the normalized complex amplitudes z/|z|. Small values indicate static phases and high values

indicate oscillating solutions. In both panels, the dashed red curves correspond to Eq. (6.3.6),
which is linear for small A: Q = Ay/~1/27.

0
A/

spaced, see Figs. 6.4(c) and 6.5. These are so-called m-cycles. If 7 = 0, a single
accumulation point exists: a l-cycle with ¢, = arccos(—a/e). For another map
example, see the discussion of the logistic map in [Strogatz (2024)]. In Fig. 6.5, the
m-fold application of the circle map @,1m(¢n) is shown as colorful curves. Dots
indicate phases for which @, 4m(0n) = ¢n and |0¢n1m/dpn| < 1 holds. These are
stable fixed points of the m-fold application of the circle map. Their values correspond
to the accumulation points that can be identified in Fig. 6.4(c).

In the field of (quantum) synchronization, similar looking triangular-like shapes
that indicate locking regimes are also called Arnold tongues, e.g., see Chs. 7 and 10.
In Fig. 6.6(a) the final value of the radius r is shown depending on A and 2. The
regions above the dashed red curves correspond to time-independent radii while the
striped region below the dashed red curves indicate solution with oscillating radius.
A better quantity to identify oscillations is the standard deviation of z/|z| shown in
Fig. 6.6(b). Here, modulations of the radius are excluded. For both small A and €2,
the separatrix between static and oscillating solutions follows Q = Ay/~1/2v2. For
larger values of the drive strength, the amplitude of the oscillator deviates significantly
from rg = \/71/272 leading to a change in the ratio 2/A. To obtain an approximate
expression for the separatrix between static and oscillating solutions, we perform a
perturbation expansion of Egs. (6.2.6) and (6.2.7) about r = rg, cf. Ch. 8 of [Pikovsky
and Rosenblum (2015)]. Let 7 = 79 4+ er™) with € = Q/y; < 1. Solving Eq. (6.2.6) to
first order in e yields r() = —sin(¢). Using this result, Eq. (6.2.7) can be approximated
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Figure 6.7: Spectra |S(w)| of Stuart-Landau oscillator, see Eq. (6.3.7). (a) @ = 0.1v1,
Y2 = 05’)/1 (b) Q= 0.1"}/1, Y2 = 2’)/1. (C) Q= 0.5’)/1, Y2 = 05"}/1 (d) Q= 0.5’}/1, Y2 = 2"}/1
The orange (blue) curves in all panels correspond to integer multiples of (—)sign(A)va.

to first order in € as

d=—A—Q, / ? cos(<b) QQ% sin(2¢) . (6.3.3)

The last term shifts the location of the minimum of ¢ to

\/ '}/1 + 16’)/292 \ Y (6 3 4)

427202 S o

At this value of the phase ¢, its equation of motion

. Q2
dm A= o 772 03, (6.3.5)
1

0 o A7/6207D)Y° — (94 + /2497 + BIA2)*/3 636
h V272323(9A + /2477 + 81A2)1/3 o

This expression is visualized by the dashed red curves in Fig. 6.6.

vanishes for

Another way of identifying oscillating solutions is to compute the spectrum

S(w) = e Wiy (6.3.7)

\/12?/z(t
R

of z. If 2(t) = re*o!, the spectrum exhibits a single peak at w = wp. In Fig. 6.7,
spectra of the Stuart-Landau oscillator are presented together with the approximation
v4 defined in Eq. (6.2.9) evaluated for a fixed radius » = 0. The most dominant
maxima of the spectra lie at —sign(A)v4 (blue curves) and correspond to the mean
frequency of the solution of Adler’s equation, see Eq. (6.2.8) and Figs. 6.3(c) and 6.3(d).
Higher-frequency contributions of this solution are visible as less dominant maxima of
the spectra at positive integer multiples of —sign(A)v (blue curves). The maxima at
sign(A)v4 (orange curves) originate from the oscillation of the radii. The simplistic

75



Chapter 6 Classical Synchronization

example r = o + dr cos(v4t) has two frequency contributions at +v4. For small drive
strengths, see Figs. 6.7(a) and 6.7(b), the approximation v4 seems to be valid. For
small drive strengths, however, see Figs. 6.7(c) and 6.7(d), the observed frequencies
deviate from v4. For small detunings, a jump from zero to nonzero frequencies occur.
The region of frequency locking is larger for oscillators with smaller radius (larger v2).

6.4 Phase Synchronization

In the last section, we saw that the Stuart-Landau oscillator exhibits regimes in which
the observed frequency of oscillation in the rotating frame of an external drive is zero,
i.e., the oscillator locks its frequency to the one of the drive. Outside this region, both
radius and phase start to oscillate, see Figs. 6.6 and 6.7. To lowest order, the frequency
of oscillation can be approximated by v4 defined in Eq. (6.2.9). In this section, we
will focus on the region in which frequency locking occurs. In particular, we want to
answer the question: to which values does the phase of the oscillator lock? The locking
of the phase of an oscillator to a particular value is called phase synchronization. We
directly start with the equation of motion after a first perturbation expansion step,
i.e., Eq. (6.3.3). For small drive strengths, the steady state of the phase to leading
order in the drive strength is given by ¢ = — arccos(—rA/Q). For vanishing detuning
A = 0, the Stuart-Landau oscillator locks to ¢ = —m/2. Note, that this value depends
on the phase of the complex drive amplitude Q: in general, the oscillator locks to
¢ = arg(2) — 7/2. Furthermore, at A = 0, the slope d¢/0A = —r/Q increases for
oscillators with a larger radius. For larger drive strengths Q > r¢v1, Eq. (6.3.3) exhibits
two new stable fixed points close to the now unstable fixed point ¢ = —m /2. However,
this perturbation expansion is invalid for values as large as €2 > r¢y;. Studying the
next order of correction, r = g + er() + €212 with

3
@ = 9 gin2
r 2rg S (), (6.4.1)

that leads to

b= —A— Q\/E cos(9) — 222 sin(20) - 2 _gin(2p)sin(e),  (6.4.2)
gé! gh 2ro7y

these new fixed points disappear again. Numerical simulations presented in Fig. 6.8
show only one stable fixed point of the phase. In Figs. 6.8(b) and 6.8(c), the thin red
curves correspond to the steady-state solution ¢ = — arccos(—r9A/Q) of Eq. (6.2.7)
and the thick blue curves correspond to the steady-state solution of Eq. (6.4.2). For
small drive strengths, see Fig. 6.8(b), and for large drive strengths, see Fig. 6.8(c),
both approximations are good predictions of the numerically achieved values of the
phase. Here, for small detuning, the red curve seems to be a better approximation
than the blue one and for large detuning vice versa. Especially, for large detuning,
their domains (regions of phase locking) and slopes at A = 0 are different. Note that
phase locking implies frequency locking. In general, the opposite is not true.
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Figure 6.8: Phase locking of the driven Stuart-Landau oscillator. (a) Final value of the
phase ¢/ at ty; = 100. Similar to Fig. 6.6(a), striped regions indicate time dependence
of the phase. The dashed red curves correspond to Eq. (6.3.6), which is linear for small A:
Q = Ay/71/272. (b), (c) Final values of the phase for particular values of the drive strength
Q (gray dots). The thin red curves correspond to the steady state of Eq. (6.2.7). The thick
blue curves correspond to the steady state of Eq. (6.4.2).

6.5 Multiple Limit-Cycle Oscillators

So far, we have discussed the synchronization of individual limit cycle oscillators in
the presence of an external drive. Now, we want to replace the drive, that can be
interpreted as a perfectly stabilized oscillator, by other interacting oscillators. Let us
start with two Stuart-Landau oscillators that are coupled

A
ZA = —iwaza + %ZA —73'|z4l%24 — igap2B (6.5.1)
71B B 2
ip = —iwpzp + 723 — v |2B|“ 2B —194B%24 - (6.5.2)

Here, w; are the eigenfrequencies of the oscillators with complex amplitude z; and
g ap is the coupling strength. This coupling is reciprocal, meaning that the coupling
of A to B is as strong as the coupling from B to A. We will break this symmetry
in Ch. 9, where we discuss the publication [Kehrer and Bruder (2025)]. There, the
nonreciprocal interactions result in various active states in the classical model. As
exemplary references, see [Lotka (1925), Volterra (1926), Fruchart et al. (2021)].

Similar to Sec. 6.2.2, the equations of motion of both oscillators are split into
amplitude and phase parts, z; = rjei¢j,

. J .
7j = Re[zje %] =1 (21 - 7%7}2) — gaprisin(@; — &), (6.5.3)
& = Im[z;/z] = —w; — gap— cos(6; — &1), (6.5.)

J

with 7,7 = A, B and i # j. Due to the U(1) symmetry of Egs. (6.5.1) and (6.5.2),
i.e., invariance under the time-independent transformation z; — zjeie, the equations
of motion depend on the phase difference ¢ 45 = ¢4 — ¢p and not on the individual

7



Chapter 6 Classical Synchronization

phases. Thus, let us define the equation of motion of ¢ 45, also called relative phase,

B TA

ba=—A—gap < - ) cos(paB), (6.5.5)
rA B

where A = wgq —wp. This equation looks similar to the equation of motion of a driven

Stuart-Landau oscillator, Eq. (6.2.7), where the coupling g, together with the radii

takes the role of the drive strength 2. In general, the gain and damping rates of the

oscillators are different and lead to steady-state amplitudes \/'y{' / 27%. Furthermore,
the relative phase locks to a single value. However, if the rates are chosen to be
equal, the coupling term in Eq. (6.5.5) vanishes resulting in the absence of phase
locking to a single value. This so-called synchronization blockade that is observed
in quantum systems [Lee and Sadeghpour (2013), Roulet and Bruder (2018b)] and
will be discussed later in Secs. 7.1.4 and 7.2.2 as well as Chs. 8 to 10, already shows
up here for classical oscillators. In contrast to the suppression of phase locking to
a single value, a second-order coupling survives that induces bistable locking, as we
will see below. We have to take a closer look at the equations of motion and perform

a perturbation expansion about the steady-state amplitudes r; = \/7{ / 27% + er§1),
where € = gAB/fylA and

3/2
. 7 — sin(pap) = '72 il (6.5.6)
’YQ ’)’1

Inserting this correction in Eq. (6.5.5), the equation of motion of the relative phase
becomes

A~ B A B
; M 72 72
$aB=—A —gup ( - ) cos(¢aB)
B\ AP
1

1 A, B A B
~ 5 (G4 p * ke pip ) o) 657
If the cos term vanishes and the sin term remains, the steady state exhibits two
possible values of ¢p4p. In contrast to phase locking, this feature is called bistable
locking, meaning that ¢ap can lock to two values with equal probability. To gain
insights about the blockades, the number of free parameters has to be reduced. This
can be done in different ways.

6.5.1 Equal Rate Ratios

The first simplification one can choose is to fix the ratio between gain and damping rate
of both oscillators v{* /74 = v£ /v& = X. This choice of rates leads to the vanishing of
the cos term in Eq. (6.5.7), naively speaking, since the lowest-order steady-state radii
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r; = \/A/2 are equal. The remaining equation is
A B
¢pap =—A— 91243% sin(2¢4p) , (6.5.8)
1N

and exhibits two stable solutions ¢ap, ™+ ¢pap = —arcsin(V{VEA/ (v + P4 5) /2
for |A] < g4 z(v{* +vP) /7{*4f. Note that the value of the steady-state phase does
not depend on .

6.5.2 Identical Oscillators

The next choice we often call the case of ‘identical oscillators’. Here, we choose
the same gain rate and the same damping rate for every oscillator: 7{1 = 713 and
754 = 8. Similar to the previous section about equal rate ratios, the remaining terms
of Eq. (6.5.7) are

. 2
bap=—A— 912437—14 sin(2¢ap) . (6.5.9)
1
This equation can be obtained by setting 4{* = v in Eq. (6.5.8) and also exhibits
two stable solutions ¢, ™ + ¢ap = — arcsin('yf‘A/QgiB)/Q for |A| < 2¢% 5/77

6.5.3 Almost Identical Oscillators

In Eq. (6.5.5), we saw that if the oscillators have different gain and damping rates, the
relative phase locks to a single value. In contrast, if the oscillators have identical rates
or the ratio of gain versus damping is identical, the synchronization blockade and
bistable locking occurs, see Egs. (6.5.8) and (6.5.9). A remaining question is: when
does the transition from locking to bistable locking occur? In Ch. 9, we will answer
this question for quantum van der Pol oscillators.

To identify the transition in the classical case, let us choose different oscillators
with rates v{* = vf and 74! # 2. There is one free parameter v /4 left that can
be used to tune between phase locking and bistable locking. For A = 0, ¢ap =

+7/2 are fixed points. If g,5 < ¥{'\ /1384 — 72|/ (75' + 7F)?, these two are
the only fixed points of which ¢ap = (—)7/2 is stable for v& > ~v5t (48 < ~3)).

If gu5 > v\ /1898 1st — 81/ (3" +78)? two new fixed points ¢pap, ™ — dap =

— arcsin (fyf‘w VENB (v —A8) ) (V8 + 48 )2> emerge in the vicinity of the stable one

of p4p = £m/2. In Fig. 6.9(a), the approximation Eq. (6.5.7) is shown. The histogram
of final values of the relative phase after a duration of ty{! = 500 of numerical
simulations of 20 random initializations per g, 5 leads to a similar bifurcation around
the predicted value of g, 5, see Fig. 6.9(b). A special Arnold tongue is presented in
Fig. 6.9(c). Here three regions can be distinguished. For large detuning A (checkered
colorful region), the oscillators do not synchronize such that their relative phase takes
every possible value. For small detuning A and large coupling (checkered two-colored
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Figure 6.9: Phase locking of two Stuart-Landau oscillators with y{! = v and v /v5' = 1.5.
(a) Plot of ¢4 based on Eq. (6.5.7), i.e., pitchfork bifurcation mentioned in Sec. 6.2. The
arrows indicate the flow direction of time evolutions of the relative phase, i.e., they point
toward stable fixed points. The color is scaled linear in the interval [—1073,107%] and
logarithmic elsewhere. (b) Histogram for each value of g, of final values of the relative
phase after a duration of ¢y{* = 500 of numerical simulations of 20 random initializations
with 200 bins in ¢. (c) Arnold tongue based on the final values of the relative phase after
a duration of ty{' = 500. Each pixel corresponds to a random initialization. The dashed
black line in panels (a), (b), and ( ) corresponds to the approximation of the onset of bistable

locking g, 5 = 7' \V/18F 75 — 81/ (v5 +~48)2. (d), (e), (f) Time evolutions for A = 0.15y7
and g,45/7 = 0.1,0.2,0.4 (from left to right), i.e., examples of each of the three regions in

panel (¢). All examples are time dependent, whereas in panel (e) and (f), the relative phase
¢ap is time independent: (bistable) locking of the relative phase.

region), the oscillators do synchronize and their relative phase takes two possible
values, i.e., see the discussion about bistable locking in the previous paragraphs. Since
V8 /4B = 1.5 # 1, there exists a third region (smooth strips) in which only one value
of the relative phase is attained.

Time evolutions for A = 0.27{' and g,45/7{* = 0.1,0.2,0.4 (from left to right), i.e
for each of the three regions, are presented in Figs. 6.9(d) to 6.9(f). All examples
are time-dependent solutions. The solutions in Figs. 6.9(e) and 6.9(f) exhibit time-
independent radii and relative phases but time-dependent individual phases ¢4 and
¢p. Such states are called traveling-wave states. Note that in general, the two steady-
state values of the relative phase depend on the complex phase of the coupling g4 5:
dap = arg(g,p),arg(g ) + m. Here, we chose arg(g,z) = 0. A different choice
arg(g,p) = —m/2 is discussed in Ch. 9.

Since the solutions are time-dependent, we want to know more about the oscillation
frequencies. Using Eq. (6.3.7), we obtain the spectra S;(w;) of the oscillators and
show them in Figs. 6.10(a) and 6.10(b). The spectrum of the relative phase shown in
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Figure 6.10: Spectra of two Stuart-Landau oscillators with v{* = v and v£ /44! = 1.5
averaged over 20 random realizations within ty;* € [500,1000]. The three columns of this
figure correspond to horizontal line cuts of Fig. 6.9(c). (a) Spectra |Sa(wa)| of oscillator
A. The gray line indicates wq = —A/2. (a) Spectra |Sp(wg)| of oscillator B. The gray
line indicates wp = A/2. The dotted curve in both panels (a) and (b) corresponds to
wj = /g4 + (A/2)2. For the definition of the spectrum for a single oscillator see Eq. (6.3.7).
(c) Spectra |Sap(wap)| of the relative phase ¢ 45, see Eq. (6.5.10). The gray line corresponds
to wap = —A.

Fig. 6.10(c) is defined by

Sap(wan) = \/127( / 2 ()2 (H)e—antds (6.5.10)
R

The three columns of Fig. 6.10 correspond to horizontal line cuts of Fig. 6.9(c). The
first column of Fig. 6.10 shows two regions. For small |A|, both oscillators exhibit the
same frequency, i.e., wap = 0. For large |A[, the observed frequency of oscillator A (B)
iswa=—-A/2 (wp =A/2),ie., wap = A. In the remaining two columns of Fig. 6.10
three regions can be identified. For small |A|, two oscillation frequencies for both
oscillators are visible, i.e., bistable locking of frequency and phase. However, since
wap = 0, the oscillators always choose identical frequencies w; = /g% 5 + (A/2)2.
Moreover, the value of the relative phase is correlated with the sign of the observed
frequency: ¢pap = 0 <> wap < 0 and ¢pap = 7 <> wap > 0. This is the reason, why
we often consider bistable phase locking as an indicator for traveling-wave states. For
a bit larger |A|, only one frequency to which both oscillators lock is visible. This
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region corresponds to the smooth stripes in Fig. 6.9(c). For a large |A|, the observed
frequency of oscillator A (B) is wqa = —A/2 (wp = A/2), i.e., wap = A. Even if this
seems to be a simple model of two amplitude oscillators, interesting active states with
locking of frequency and relative phase emerge. Similar results are obtained for two
groups of active quantum spins in [Nadolny et al. (2025a)].

In Ch. 9, we will study similar classical oscillators and their quantum analogues.
There, the interactions are nonreciprocal and can be tuned to be unidirectional. Besides
traveling waves, other active states will occur. For a thorough study of nonreciprocal
phase transitions see [Fruchart et al. (2021)] and its supplemental material.

In Ch. 10, we will discuss oscillators whose phase space hosts multiple limit cycles
and study their quantum analogues. These can be imagined intuitively by realizing
multiple fixed points in Liénard systems defined in Eq. (6.2.1), where f(x) is a highly-
nonlinear function or by replacing the quadratic dependence on r in Eq. (6.2.6) by a
suitable higher-order polynomial.

Bistable locking, e.g., two possible steady-state values of the relative phase of two
oscillators, as presented on the previous pages, can also be generated by higher-order
coupling terms. For 4 = —iggzj‘z?g, the resulting term for the equation of motion of
the phase is d4 = —gar% cos(2pap). An example for bistable locking of a single driven
oscillator is a so-called squeezing drive # = —if0y2* that leads to ¢ = — cos(2¢). In
these cases, bistable locking occurs natively and not in a perturbative sense. Most often
in (quantum) synchornization, linear interactions are considered as native. Therefore,
bistable locking will occur in perturbation expansions and thus as an indicator for
synchronization blockades.

In this section, we discussed the interplay of only two oscillators. For examples
of studies on networks of oscillators see [Choe et al. (2010), Heinrich et al. (2011),
Luccioli et al. (2012), Tumash et al. (2017)].

6.6 Swarmalators

When we discussed multiple coupled oscillators in the previous sections, we did not
think about the physical implementation of the coupling: the oscillators only had
internal degrees of freedom that were interacting with the ones of other oscillators. In
reality, the coupling might be mediated by, e.g., springs or the Coulomb interaction.
Remembering Huygens’ clocks, the interaction might also be induced by friction. Most
of these interactions can be interpreted as position-dependent forces or stemming from
some position-dependent potential. So why not considering oscillators that move in
space? This section serves as an outlook and inspiration for future work but is not
relevant for the core of the following chapters.

By the work “Oscillators that synch and swarm” [O’Keeffe et al. (2017)], a new
avenue in the field of synchronization and active matter was established: swarmalators.
This section is based on [O'Keeffe et al. (2017)] and [Hughes (2024)].

The basic idea is to combine swarming [Couzin (2007), Sumpter (2010)] and phase
synchronization. This is done by assigning a internal degree of freedom, i.e., a phase
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of oscillation ¢, to agents that move in a two-dimensional space # € R?. These
swarmalators obey the following equations of motion [O’Keeffe et al. (2017)],

iR S 1 T — T T — T >
Ti =U; + — ﬁA“—JCOS ;. — Qg _Bﬁ s 6.6.1
J J NZ<|.’L'1—$J( (QS’L qb])) ’xi_xj‘Q ( )
i#]
N .
. K sin(¢; — @
di=wi+ o> M . (6.6.2)
N’L#] ‘xl_x]’

The vector #; denotes the 2D position and v; the self-propulsion velocities of the jth
swarmalator. The phase ¢; is the phase of the jth swarmalator that couples to the
other swarmalators in a Kuramoto-like fashion with a distance-dependent strength
K/|#; — #;|. Similar to the Kuramoto model, w; are the eigenfrequencies of the
swarmalators. The first coupling term of Eq. (6.6.1) is always attractive for A > J > 0
and distance independent, whereas the second coupling term is always repulsive for
B > 0 and decreases with distance. The larger J, the larger is the feedback of phase
(anti)alignment on the attraction between swarmalators.

By setting ¥/; = ¥, we can go to the center of mass frame and subtract Zj aL;'j/N =4
for the equations of motion: equivalent to ¥; — 0. Similarly, we go to a rotating
frame that is rotating at the mean frequency. If identical oscillators w; = w are
considered, it is equivalent to set w; — 0. Rescaling space and time to unitless
quantities, i.e., £ — &% and t — 7t, leads to zZ— :'Eg/f. Therefore, we can replace
K7/¢ and J7/€ by new unitless quantities K and J too. Furthermore, for simplicity,
we set A7/¢ = Br/€% = 1.

In the remaining parameter space (K, .J), a phase diagram with beautiful steady
states emerges, see Fig. 1 of [O'Keeffe et al. (2017)]. Representatives of each class
of steady states are shown in Fig. 6.11, where each column corresponds to one state.
Here, N = 100 are simulated for a duration of ¢ = 1000. A video of this figure is
available at [Kehrer (2025)]%. To characterize the different classes of steady states, the
Kuramoto order parameter R defined in Eq. (6.1.3) is used as well as another order

parameter W,

) Wy for |[Wi|>|W_|,
W = |W|e1\ll _ + or ’ +’ ‘ ‘ (663)
W_  for [Wy| < |W_],
where
1 XL
We=+ ;elwi%) : (6.6.4)

The value of |R| € [0,1] quantifies the level of phase synchronization among the
swarmalators. The value of |W4| € [0, 1] indicates the (anti)correlation between the
phase ¢; and the azimuthal angle ¢; of a swarmalator, i.e., the (anti)correlation

Direct link: https://tobias-kehrer.github.io/thesis/swarmalators/ [Accessed: July 26, 2025]
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Figure 6.11: Classes of steady states of NV = 100 swarmalators after a duration of ¢ = 1000.
The top row shows the steady states in 2D position space where the color corresponds to
¢; — U, i.e., the phase of each swarmalator subtracted by the complex phase of the order
parameter W defined in Eq. (6.6.3). The order parameter R is the Kuramoto model order
parameter defined in Eq. (6.1.3). The second row shows the correlation between the phase
¢; — VU of the swarmalators and their azimuthal angle ¢;. (a) Static Asynch (StA) for
(K,J) =(-0.8,0.2). (b) Active Phase Wave (ActPW) for (K, J) = (—0.8,1). (c) Splintered
Phase Wave (SpPW) for (K, J) = (—0.1,1). (d) Static Phase Wave (StPW) for (K, J) = (0,1).
(e) Static Synch (StS) for (K, J) = (0.1,0.2). A video of this figure is available at [Kehrer
(2025)].

between the internal degree of freedom and the position in space. For K < 0 the
swarmalators want to antialign their phases ¢;. If additionally K < —1.2J, the
resulting steady state exhibits both small |R| and ||, i.e., antialignment of phases
and no correlation between ¢; and ¢;: Static Aysnch (StA) for (K, J) = (—0.8,0.2) in
Fig. 6.11(a). If —1.2J < K < —0.35J, the swarmalators are actively moving and align
on a ring where the phase shows (anti)correlation with the azimuthal angle: Active
Phase Wave (ActPW) for (K,J) = (—0.8,1) in Fig. 6.11(b). If —0.35J < K < 0,
the swarmalators arrange themselves into groups of approximately equal phase. In
the groups that are aligned on a ring, the swarmalators are actively moving and
exhibit (anti)correlation between ¢; and ¢;: Splintered Phase Wave (SpPW) for
(K,J) =(—0.1,1) in Fig. 6.11(c). If K = 0, no phase dynamics take place and the
swarmalators arrange themselves in a ring that shows high (anti)correlation between
¢j and @;: Static Phase Wave (StPW) for (K,J) = (0,1) in Fig. 6.11(d). If K > 0,
the swarmalators want to align their phases ¢; resulting in a large value of |R|: Static
Synch (StS) for (K, J) = (0.1,0.2) in Fig. 6.11(d). Since they arrange themselves in
one group centered at the origin, |W| is very small.

Several extensions of this model exist, e.g., swarmalators in 1D [O'Keeffe and Hong
(2022)] and 3D [O’Keeffe et al. (2017)], more internal degrees of freedom [Yadav
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Figure 6.12: Overview of effects due to the pseudo force A (preliminary data). (a) Minimum
(dashed) and maximum (solid) distance of swarmalators from the center for several steady
states. The black line corresponds to 1/v/A. (b) Order parameter |W| defined in Eq. (6.6.3).
(c) Top row: steady states for (K, J) = (—0.1,1) and A\ = 10%7,10%® (left to right). Bottom
row: corresponding spatial Fourier transformations defined in Eq. (6.6.5). (d) Number of
groups in SpPW steady states. The gray line indicates the minimum of one group. The data
shown in (a), (b), and (d) are averaged over 31 random initializations.

et al. (2024)], and delayed interactions [Blum et al. (2024)]. In [Lizarraga and Aguiar
(2020)], a term F cos(wst — ¢;)/|Z0 — #;] is added to ¢; and acts as an external seed
for frequency and phase synchronization. This force natively only modifies the phase
dynamics, however, due to the backaction of phase synchronization on the spatial
attraction in Eq. (6.6.1), swarmalators that synchronize with the seed move closer to
Zo. In the yet-unpublished work presented in [Hughes (2024)], we add a pseudo-force
term \(Zp — @) to :E’j In [Fetecau et al. (2011)], a linear attraction o &; — Z; between
members of a swarm is considered, which leads to a o< 1/4/1 + J scaling of the disk
radius of the StS state. As demonstrated in [O'Keeffe et al. (2017)], in this case, the
inner and outer radii of StPW increase for larger J. In our pseudo-force extension
model, a preliminary analysis shows: the radii of StS and StA, the inner and outer radii
of StPW, SpPW, and ActPW as well as the number of groups in SpPW decrease for
increasing A, see Figs. 6.12(a) and 6.12(d). Furthermore, for K < 0, the states ActPW,
SpPW, and StPW transition to StA for large enough values of A, see Figs. 6.12(b) and
6.12(c). Inspired by the usage of the term “crystal” for StS and StA in [O’Keeffe et al.
(2017)], we defined another indicator F that is based on the spatial Fourier transform,

N

% 3 o iFT;

=1

F(k) = (6.6.5)

If the swarmalators align themselves in a highly symmetric pattern, only few spatial
frequencies appear in the spectrum. The more order, the fewer spatial frequencies
with larger local maxima in the spectrum, see Fig. 6.12(c).

With the combination of spatial swarming and phase synchronization, i.e., swarmala-
tors, I would like to conclude this chapter on synchronization of classical oscillators.
In the next chapter, the quantum analogue of synchronization will be introduced.
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Chapter 7

Quantum Synchronization

Succeeding the previous chapter on classical synchronization — from the Kuramoto
model over the Stuart-Landau oscillator to swarmalators — we now focus on the main
topic of this second part of the thesis: quantum synchronization. This relatively young
field took off by considering quantized self-sustained oscillators in [Lee and Sadeghpour
(2013)] even if the term “quantum synchronization” has been introduced earlier in
[Zhirov and Shepelyansky (2006)]. The model that is also one of the protagonists of
this thesis, called the quantum van der Pol oscillator, became the standard example of
quantum synchronization. As mentioned at the end of Sec. 6.2.1, the quantum van der
Pol oscillator is rather the quantum analogue of the classical Stuart-Landau oscillator.
However, in this thesis, we will stick to the widely used terminology “quantum van der
Pol” while keeping in mind the maybe more adequate term “quantum Stuart-Landau”.
The quantum van der Pol oscillator will be discussed in Sec. 7.1.2. The following
paragraph is based on the introductions of the publications [Kehrer et al. (2024b),
Kehrer and Bruder (2025), Kehrer et al. (2025)].

Over the years, many different types of quantum oscillators have been studied.
Examples are harmonic-oscillator-like (infinite-level) oscillators [Ludwig and Mar-
quardt (2013), Lee and Sadeghpour (2013), Lorch et al. (2014), Walter et al. (2015),
Davis-Tilley and Armour (2016), Weiss et al. (2017), Amitai et al. (2017), Es’haqi-Sani
et al. (2020), Chia et al. (2020), Ben Arosh et al. (2021), Wichtler and Platero (2023)]
and spin-like (few-level) models [Roulet and Bruder (2018a), Cabot et al. (2019),
Parra-Lépez and Bergli (2020), Cabot et al. (2021)]. Also many-body scenarios have
been considered [Manzano et al. (2013), Xu et al. (2014), Zhu et al. (2015), Roth
and Hammerer (2016), Nadolny et al. (2025a)]. These scenarios have in common that
incoherent gain and damping stabilize a particular steady state. In addition to stabi-
lization, these states have to feature a free phase which is ideally uniformly distributed,
i.e., the oscillator does not exhibit phase preference. To realize synchronization, this
symmetry is broken and a particular value or multiple discrete values of the phase
are preferred. In contrast to classical synchronization, where phase locking is often
equal to Dirac-d-like probability distributions, the term “phase locking” in quantum
synchronization is used when the probability distribution of the phase exhibits a global
maximum. We say “the quantum oscillator locks to ¢¢” when the synchronization
measure of the phase exhibits a global maximum at ¢g. In a similar way, multi-stable
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locking occurs when the global maximum is degenerate, i.e., multiple local maxima of
identical value coincide with the global maximum.

One starting point in a top-down approach to quantum synchronization is to
canonically quantize classical limit cycle systems [Chia et al. (2020), Ben Arosh et al.
(2021), Chia et al. (2025)] and study the resulting system in the quantum limit of
few excitations. Some unique quantum features are related to entanglement [Giorgi
et al. (2012), Mari et al. (2013), Lee et al. (2014), Ameri et al. (2015), Yin et al.
(2017), Roulet and Bruder (2018b), He et al. (2024)] or interference [Roulet and Bruder
(2018a), Roulet and Bruder (2018b)] and manifest in the unexpected occurrence or
suppression of frequency locking [Walter et al. (2014), Lorch et al. (2016)] and phase
locking [Lorch et al. (2017), Roulet and Bruder (2018a)]. In particular, the suppression
of classical synchronization is called a synchronization blockade, see Ch. 6. In quantum
analogues of limit-cycle oscillators, blockades [Solanki et al. (2023)] are observed
in similar but also different cases. Examples of unique quantum blockades are the
quantum interference blockade of a driven spin-1 [Roulet and Bruder (2018a)] and the
energy quantization blockade [Lorch et al. (2017)].

Quantum synchronization is also studied in more exotic scenarios like chimera states
[Bastidas et al. (2015), Viennot and Aubourg (2016)], nonlinear interactions [Thomas
and Senthilvelan (2022)], and nonlinear driving [Sonar et al. (2018)]. Furthermore,
quantum synchronization is in some aspects related to quantum sensing [Vaidya et al.
(2025)], quantum thermodynamics [Jaseem et al. (2020b), Solanki et al. (2022), Aifer
et al. (2024)], and time-crystals [Hajdusek et al. (2022), Buca et al. (2022), Solanki
et al. (2024)].

First steps toward experimental realization have been taken on several platforms
including cold atoms [Laskar et al. (2020)], nuclear spins [Krithika et al. (2022)],
trapped-ions [Behrle et al. (2023), Zhang et al. (2023)], and superconducting circuits
[Koppenhofer et al. (2020), Tao et al. (2025)].

In the following sections, the fundamental aspects of quantum synchronization of
infinite-level and few-level oscillators will be presented. This serves as a preparation
for Chs. 8 to 10 where the publications [Kehrer et al. (2024b), Kehrer and Bruder
(2025), Kehrer et al. (2025)] will be presented.

7.1 Infinite-Level Quantum Oscillators

The standard example of a quantum limit-cycle oscillator is based on the quantum
harmonic oscillator. A key property of the classical harmonic oscillator is that its phase
space exhibits an infinite number of closed orbits. To obtain a stabilized quantum
limit cycle, gain and damping terms, e.g., incoherent Lindbladian jump processes,
have to be introduced. Once such a limit cycle is prepared, it can be synchronized to
external quantum signals or other quantum limit cycles.
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7.1.1 Synchronization Measures

A crucial aspect of quantum synchronization is the definition of suitable synchronization
measures. Various types of measures have been considered in the literature. Some
of them are constructed by projections onto particular states [Barak and Ben-Aryeh
(2005), Hush et al. (2015), Weiss et al. (2016), Roulet and Bruder (2018a)], others are
based on entanglement [Ameri et al. (2015)] or distances in phase space [Mari et al.
(2013)]. In the following, a selection of common measures that quantify synchronization
is presented. These are in some sense measures of localization in phase space. To
get an intuition for the features of the different measures of synchronization, let us
evaluate them for coherent states |a = re'?) defined in Eq. (2.4.4). Using (Aa)? =
(a®) —(a)? = 0, the variance of position X = (a'+a)/2 and momentum P = i(a’ —a)/2
operators

1 1
(AX)? = (X?) —(X)? = Z(oz*2 +a?+ (ad'a+ aa') — a? — o® — 200%) = 1

(7.1.1)
(AP = (P%) — (P)? = {(~a™ — o® + (ala + aal) + 0™ 1 o? ~ 200") = |
(7.1.2)

reduces to the simple equation AX = AP = 1/2. The Gaussian width of a coherent
state |) in phase space is constant. Therefore, the variance (A¢)? of the phase

¢ = arg(«a) = arctan((P)/(X)), (7.1.3)

that is approximated by

D¢ 2 O 2 1
A¢)? = [ 5 AX ——AP| =_—— 7.1.4
@7 = (5052%) + (ot 2o’ L0
is decreasing for increasing |a|. This means that a coherent state |«) is more phase
localized than |B) if |a] > |B|. Intuitively, one can rephrase it as: since the noise

in position and momentum is constant, for larger ||, a smaller fraction of the
circumference at 7 = |a is covered by the Gaussian blob of the coherent state.

The computationally simple measure

S = 23@, (7.1.5)

presented in [Weiss et al. (2016)], effectively measures the ‘coherent-stateness’ of a state.
Evaluated for coherent states, it reduces to the complex phase factor S’ = a/|a| = €.
The fact that it is not depending on |«a| results in the issue that a coherent state
infinitesimally close to the origin (Ja| < 1) is assigned to the same level of phase
localization as a coherent state far away from the origin (Ja| > 1). This, however,
contradicts the intuition gained by Eq. (7.1.4).
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Another measure P;, which will be used in Chs. 9 and 10 that are based on [Kehrer
and Bruder (2025), Kehrer et al. (2025)], is defined as the projection of the density
matrix p onto phase states [Barak and Ben-Aryeh (2005), Hush et al. (2015)],

R o T
) = m% n) (7.1.6)

where |n) are Fock basis states. This measure,

11 1
P — R (m— n)qﬁ - — 1.
(6) = (@lpl) — 5 =5 > T alplm) — -, (7.0)
n, m=0
can be interpreted as the deviation of the probability distribution (¢| p |¢) of the phase
¢ from a uniform distribution. It can be rewritten in terms of constant k = m — n,

= %ZZ(W’ (nlpln+k) +e % (n+ k| pln)). (7.1.8)

k=1n=0

The sum over n covers all matrix elements that lie on the kth off-diagonal. The
contribution for m —n = 0 reduces to Tr[p]/2m = 1/27 and cancels the second term
in Eq. (7.1.7). In [Kehrer and Bruder (2025)] presented in Ch. 9, the remaining
expectation values in Eq. (7.1.8) are identified as expectation values of an operator.
For coherent states ‘04 = rei¢°>, the synchronization measure P; can be approximated
in the following two limits

Pi(¢) elstlol — cos(¢o — ), (7.1.9)
'“l?li L R Y
Pi(9) = o kz_:ooe 5 =060 —¢) — . (7.1.10)

States are expected to show no synchronization if their phase noise covers a majority
of 2, e.g., coherent states that are close to the origin. Thus, it is not surprising that
for coherent states close to the origin the first moment of P; dominates. In contrast,
for |a| > 1, the phase distribution P; diverges at ¢ in the sense of a Dirac ¢. To
understand the scaling of the maximum of P; for large ||, we compute its derivative
with respect to r at ¢ = 9. We use

Or (e_r2rk+2n) = e_T2rk+2"_1(k: +2n — 2r%), (7.1.11)
to obtain
X X k+2"(k +2n — 27”2)
Hec.. 1.1
9y Pi(¢o) = 2 Z SN CESY n—|—k)+ c (7.1.12)

We find numerical indications supporting 0, Pl(qSo \/2 /7. The measure P, and
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Figure 7.1: Comparison of synchronization measures for coherent states |a). (a) Measures of
states close to the origin, a = 0.01, are dominated by their first momentum (dashed lines).
(b) Large-|«| scaling of quantum synchronization measures.

its approximation given in Eq. (7.1.9) are shown in Fig. 7.1(a). The dependence of S’,
the maximum of Py, and (a|a|a) on |a is presented in Fig. 7.1(b).

Another widely used measure is the Husimi @ function defined in Eq. (2.4.13) as a

projection of a state p onto coherent states. A phase synchronization measure can be
obtained by integrating out the radial part of the coherent states

’a = re1¢> —e /2 Z e"?|n) (7.1.13)

note the differences to Eq. (7.1.6). The phase synchronization measure Q(¢) is given

Q¢) = ;/oodrr <a —re?| pla = rei¢> _ iﬂ
0

oo

]. 77,2 > Tn+m+1 1(mfn)¢> ].
0
1 EreeEey
~or vnlm!

n,m=0

n,m=0

. 1
M= (n| p|m) — ol (7.1.14)

In the last step we used Eq. (3.326.2) of [Gradshteyn and Ryzhik (2015)]. Similar to
Eq. (7.1.8), Q can be expressed in terms of equal m —n = k,

(n+%+1) ko
e*?(nlpln+ kY +H.c.. 7.1.15
z%nzmnﬂ Tk’ (el k) (71.15)
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Figure 7.2: Quantum van der Pol steady states for Q = 0, see Eq. (7.1.17). (a), (b) Wigner
functions for 2 /71 = 0.2, 1 (from left to right). The dashed rings correspond to the mean-field

prediction of the radius \/71/272. (¢) Expectation value /(afa) evaluated for the steady
state (blue curve) and the quantum limit p, (dotted curve) defined in Eq. (7.1.23), compared
to the mean-field prediction (dashed line).

For coherent states close to the origin, Q reduces to

~ |aj§<1 |Oé|

Qo) NG (7.1.16)

cos(¢o — @) -

We compare Q with P; in Fig. 7.1.

7.1.2 Standard Quantum van der Pol Oscillator

The standard example of quantum synchronization, the quantum van der Pol oscillator
was introduced in [Lee and Sadeghpour (2013)]. In the case of the classical Stuart-
Landau oscillator, the infinite number of closed orbits in phase space of the harmonic
oscillator is reduced to one by nonlinearities in the equation of motion, i.e., gain and
damping. In the quantum case, these gain and damping terms are defined as Lindblad
jump operators. This and the following two sections is based on [Lee and Sadeghpour
(2013)].

The gain corresponds to incoherent single-phonon gain L = a and the damping
originates from two-phonon loss L = a?. The total Lindblad master equation reads

d ) .
P = 0= —ilH, p + mDla')(p) + 12Dla*|(p) (7.1.17)
where a common Hamiltonian
H = Ad'a + Kaa® 4+ Qa' + Q*a (7.1.18)

contains a coherent drive term of strength €2, a detuning A, or a Kerr nonlinearity K.
In Fig. 7.2, Wigner functions of two choices of v2/v; are shown.

The corresponding mean-field equation is obtained from the Heisenberg equation of
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7.1 Infinite-Level Quantum Oscillators

motion

d
= —iAa — 2iKa'a® —iQ + %a — yeata?, (7.1.19)

by performing a cumulant expansion of the expectation value to lowest order,

d

(@) ~ ~iA(a) - 2K (@) (a) - 12+ %(a) — yo|(a)[*{a). (7.1.20)

To gain intuition of this equation of motion, it is useful to set (a) = re'® in order to
split the amplitude part,

7 = Re [e—wim)} = (% - w?) — | sin(¢ — arg(Q)) (7.1.21)

from the phase part,

- 1 d Q

¢ =1Im [@dt@)} = —A-—2Kr?— |7“‘ cos(¢ — arg(92)) . (7.1.22)
For vanishing drive strength 2 = 0, the radial equation of motion is solved by
7o = \/71/272. The larger the gain or the smaller the damping, the larger the amplitude
of the resulting limit cycle, see Fig. 7.2(c). In the quantum limit A = ;1 /72 < 1, the
Taylor expansion of the steady state for {2 = 0 reads

(3 5. 31, 1 2. 25,
i~ (5 - 3h+ 5320 ) 1000+ (5 + 50— 50

A B A2

S AT 202 4 =133 . 7.1.23

+(5 - 32 1+ 5 1 (7.1.23)

The dotted curve in Fig. 7.2(c) corresponds to the radius \/Tr[afap,| =~ (3 + 4\ —
5\2)/3v/3 of the ring-like state evaluated in the quantum limit.

7.1.3 Quantum Synchronization of the Standard Quantum van der Pol
Oscillator

In this section, we will present the synchronization of a single driven quantum van
der Pol oscillator to an external coherent drive. In Fig. 7.3, we show the steady-
state Wigner functions of a driven oscillator for A = K = 0. From left to right we
increase the order n of the drive term Q(a!™ 4 a”) from n = 1 to n = 4. A squeezing
drive n = 2 has been studied as an improvement of quantum synchronization [Sonar
et al. (2018)] and also in the context of time crystals [Cabot et al. (2024)]. The
number of local maxima in the Wigner function corresponds to n. Their locations are
¢r = narg(Q) — w/2n + k27 /n with k € Z.

Considering a standard coherent drive as studied in [Lee and Sadeghpour (2013)], the
quantum analogue of an Arnold tongue presented in Fig. 6.6 is shown in Fig. 7.4. The
first row corresponds to varying detuning A at K = 0 and the second row corresponds
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Figure 7.3: Wigner functions of a quantum van der Pol oscillator locking to a coherent drive
Q(al™ + a™) with n = 1,2,3,4 (from left to right for A = K = 0 and v, = 0.571). (a), (b)
Q2 =0.1. (¢), (d) @ =0.05. The dashed rings correspond to the mean-field prediction of the
radius \/71/272. The number of local maxima corresponds to the order n of the drive.
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Figure 7.4: Phase locking of a coherently driven standard quantum van der Pol oscillator. In
the top row we set K = 0 and in the bottom row we set A = 0. (a), (b), (d), (¢) Maximum of
P, showing Arnold tongues, see Fig. 6.6. (c), (f) The solid curves correspond to the argmax
of P; and the dotted curves to the mean-field prediction, see Eq. (7.1.22). The black curves
denote contour lines at half the maximum value of the color scale.

to varying Kerr nonlinearity K at A = 0. The mean-field steady-state solution of the
phase is based on Eq. (7.1.22). For real-valued drive strengths €2,

(7.1.24)

rA + 23K
Q bl

OMF = — arccos (—

solves ¢ = 0. This solution corresponds to the dotted lines in Figs. 7.4(c) and 7.4(f).
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Figure 7.5: Frequency pulling of a coherently driven standard quantum van der Pol oscillator
for v = 71. The blue dots correspond to the location of the frequency maxima of S, see
Eq. (7.1.27). (a) No influence of the drive on the oscillator frequency w. (b) Frequency of the
oscillator pulled toward w = 0 for small A. The solid curve corresponds to the classical case
w = —vy, see Eq. (6.2.9). The black line indicates w = —A.

At A = K =0, the slope of ¢pr depending on both A and K increases with r,

Opmr r

=g (7.1.25)
3
85? = —%. (7.1.26)

This same qualitative behavior is found in the full quantum case (solid curves in
Figs. 7.4(c) and 7.4(f)): the phase of the driven oscillator reacts stronger to detuning
A and Kerr nonlinearity K for a larger radius of the limit cycle. Furthermore, for limit
cycles with larger radii, the same value of max(P)), see black curves in Fig. 7.4, is
achieved for a smaller drive strength: larger limit cycles show stronger synchronization

due to smaller relevance of noise.
In [Walter et al. (2014)], the spectra

[e.9]

S(w) = lim [ dr{(a’(t+7)a(r))e*", (7.1.27)
t—o0

—0o0
based on two-time correlations of driven quantum van der Pol oscillators have been
studied. The frequency locking in the quantum case is much weaker than in the
classical case shown in Fig. 6.7. Two examples for /v, = 0.1,1 for the choice
72 = 71 are presented in Fig. 7.5. In Fig. 7.5(a), no frequency locking plateau is
visible compared to the one of the classical solution (solid curve). Ounly for larger drive
strength considered in Fig. 7.5(b), the frequency of the quantum van der Pol is pulled
toward w = 0 for small detunings. Remarkably, even if the frequency of the quantum

oscillator is not altered drastically, phase synchronization is visible.

Intuitively speaking, in several aspects, the quantum van der Pol oscillator behaves
similar to a classical Stuart-Landau oscillator with noise, e.g., sharp edges in Arnold
tongues or spectra are smoothed out in the quantum case. True quantum features of
synchronization are hard to find.
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7.1.4 Quantum Synchronization of Two Standard Quantum van der Pol
Oscillators

In the previous section, the reaction of a quantum van der Pol oscillator to an external
drive has been presented. Such an external drive can be interpreted as another
oscillator with fixed dynamics: there is no backaction from the oscillator to the drive.
In this section, we consider two coherently coupled oscillators A and B with backaction,
see [Lee and Sadeghpour (2013)]. Their Lindblad master equation

p=—i[H,pl+ Y (+vDla'](p) + 1 Dla’](p)) (7.1.28)
j=A,B

features the Hamiltonian

H= Z Aja}aj + gAB(ei‘ﬁagaB + e_i¢aAaTB) . (7.1.29)
j=A,B

As before, the corresponding mean-field equations are obtained from the Heisenberg
equations of motion of a = a4 and b = ap,

d . s i¢ " _ AT 2
0= iAja —igype'®b+ 5 a—pala, (7.1.30)
d : : —i " Bpt2
dtb: —iAgb —ig ge %a + 5 b—~Pbi?, (7.1.31)

by performing a cumulant expansion of the expectation value to lowest order,

d . . ) ’Yf‘ A 2

S o) ~ —i8ala) — igape (1) + 1-(0) 310} (o) (7.1.32)
B

C0) > —iBnlb) —igape o) + ) —BIOPE . (7133)

For ¢ = 0, by setting (a;) = r;e!%/, we split the amplitude part,

. ,i,d Vj ] .
7; = Re {e ¢Jdt(aj>] =7, <21 - ’y%r?) + gaprisin(g; — ¢;), (7.1.34)

from the phase part,

e

Here, i,j € {A, B} and i # j. This model exhibits a U(1) symmetry, i.e., invariance

Q—-‘Q_,

t<aj>] =-A; - gAB% cos(¢; — ¢j) . (7.1.35)

J

under the transformation a; — ajeia. Therefore, an interesting quantity is the relative
phase ¢ap = ¢4 — ¢ between the oscillators. Its dynamics are given by

) P2 g2
OAB = —5+gA37A Bcos(qSAB), (7.1.36)
TATB
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Figure 7.6: Regions of the quantum synchronization blockade for g = 7, and v& = 2.5vF.
In all panels, P, is shown and maxima in ¢4p are indicated by dash-dotted lines. (a) Two
standard limit cycles with fixed v{* = 7, i.e., different mean-field radii. (b) Two standard
limit cycles with fixed v5' = 2.57{", i.e., identical mean-field radii. The color scale is linear in
the interval [-1073,1073] and logarithmic elsewhere.

where 6 = Ay — Ap. The equation of motion of the relative phase Eq. (7.1.36) is
identical to the one of two classical Stuart-Landau oscillators defined in Eq. (6.5.5).
Therefore, the synchronization blockade and bistable phase locking that we saw in
Sec. 6.5.3 also shows up here.

The phase distribution measure P>(¢4p) of the relative phase of two oscillators, see
[Hush et al. (2015)], reads

1

2
Py(dan) = /d¢B (bap + ¢, é5lp|oaB + 05, 08) — 5 (7.1.37)
0

This measure is based on the projection of a state p onto tensor products of phase
states. Similar to P; defined in Eq. (7.1.7), a uniform distribution of the relative
phases is subtracted by the second term in Eq. (7.1.37). Bistable phase locking in
the quantum case is defined in analogy to phase locking: if two local maxima of
P, of equal height coincide with the global maximum, bistable locking to these two
values occurs. In Fig. 7.6(a), we fix both 4{! = vf and £ = 2.59{!. Depending on
the ratio 74' /7% of the damping rates, the mean-field radii of the limit cycles differ
and the synchronization measure Pa(¢ap) of the relative phase exhibits one or two
maxima. If there are two maxima at a given value of the ratio ’yﬁ“ / 723 , the quantum
synchronization blockade (bistable locking) occurs.

Another scenario is presented in Fig. 7.6(b). Here, both ratios v5'/v{* = 8 /4 = 2.5
are fixed and lead to identical mean-field radii independent of the value of ratio ’yé“ /.
Therefore, in the classical model presented in Sec. 6.5.1, bistable locking to ¢pap = 0,7
is independent of 74! /v2, i.e., both oscillators are permanently in the blockade regime.
However, in the quantum model, the values of ¢ 45 vary and the blockade disappears
above a particular value of v4'/y#. This preliminary result is a good candidate for
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Figure 7.7: Wigner functions of the quantum limit-cycle oscillator stabilized by Lindblad
jump operators L = a3 and L = a?, see Eq. (7.1.38). (a), (b) No drive Q = 0. (c) Phase
locking to a coherent drive €2 = 5y3. The dashed white circles correspond to the mean-field

predictions /373 /474.

another quantum feature of synchronization. Future studies might describe potential
interferences of coherences that lead to the blockade, similar to Sec. 7.2.2.

A unique quantum feature of synchronization has been described in [Lorch et al.
(2017)]: the energy quantization blockade. In the case of two coherently coupled
anharmonic oscillators, interaction and therefore synchronization can be enhanced by
a certain amount of detuning between the oscillators. Due to the quantized energy
that can be transferred between the oscillators and the anharmonic level structure,
the detuned case has larger overlap between energy transitions than the nondetuned
case. This contradicts the classical intuition that synchronization is maximized on

resonance.

7.1.5 Quantum van der Pol Oscillator with Higher-Order Gain and Damping

In Ch. 10, the work published in [Kehrer et al. (2025)] will be presented. In that work,
higher-order gain and damping channels are considered. In this section, let us take a
brief look at a limit cycle that is stabilized by the Lindblad jump operators L = a3
and L = a*,

p=—ilAa'a + Kaa® + Q(a' + a), p] + 13D[a™](p) + 74D[a’](p) . (7.1.38)

The corresponding mean-field equations of the amplitude and phase are

p= (2 2wr?) - 2snio), (7.1.39)
qﬁ = -A-2Kr?— %cos(qb) . (7.1.40)

The mean-filed prediction of the steady-state radius of the limit cycle is /3v3/474,
corresponding to the dashed white circles in Fig. 7.7. The steady state in the quantum
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Figure 7.8: Phase locking of a coherently driven modified quantum van der Pol oscillator, see
Eq. (7.1.38). In the top row we set K = 0 and in the bottom row we set A = 0. (a), (b), (d),
(e) Maximum of P; showing Arnold tongues, see Fig. 6.6. (c), (f) The solid curves correspond
to the argmax of P; and the dotted curves to the mean-field prediction, see Eq. (7.1.40). The
black curves denote contour lines at 0.01.

limit A = v3/74 < 1 has several contributions,

5 1145 5 1265 1 253
~[—=————X]1|0X0 — A —M\ ] [12X2
oy (7 o )r><\+(28 1176)\><\+( +588)r><|

+ (5 + o) 19031+ 3 a1+ Sy BYSl + g lo6l . (L)

Its limit-cycle radius \/Tr[afap,] = 1/3/7 + 695)/56+/21 is slightly larger than the
one of the standard quantum van der Pol oscillator.

This oscillator exhibits different phase locking behavior, presented in Fig. 7.8, in
comparison to the standard quantum van der Pol oscillator, shown in Fig. 7.4. The
smaller limit cycle reacts stronger to detuning A than the larger limit cycle, see
Fig. 7.8(c). Moreover, the larger limit cycle needs to be driven with a larger  to
achieve the same value of synchronization P;: the smaller limit cycle synchronizes
stronger. These findings will become relevant in Ch. 10 but need to be studied in
more detail separately.

7.2 Spin Oscillators

In the previous sections, quantum synchronization was studied in some sort of a
top-down approach: the classical Stuart-Landau oscillator has been quantized in a
canonical way. The resulting quantum van der Pol oscillator is then taken to the
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quantum limit. In this limit, the quantum van der Pol oscillator and its modification
incorporating third-order gain and fourth-order damping consists of only two and four
levels, respectively. Outside this quantum limit, the number of significantly populated
levels grows rather rapidly and the quantum model does not show a substantial
distinction from a noisy classical model. The energy quantization blockade [Lorch
et al. (2017)], a unique quantum feature of synchronization, has been found in a case
where only few levels are populated.

Another approach to quantum synchronization is to go bottom-up: consider native
few-level systems, i.e., spins. Spin oscillators are few-level quantum oscillators that are
expected to show more genuine quantum effects of synchronization than infinite-level
oscillators discussed in Sec. 7.1. Similar to the quantum van der Pol oscillator, one can
interpret a large-spin-s system as an ‘almost-infinite-level oscillator’ with truncated
Fock space where 2s + 1 is the maximum Fock number [Kato and Nakao (2024)]. The
creation and annihilation operators a' and a are replaced by spin ladder operators S+
and S~ using a Holstein-Primakoff transformation [Holstein and Primakoff (1940)].

Other scenarios involving different gain and damping terms have been considered
[Roulet and Bruder (2018a), Koppenhofer and Roulet (2019), Parra-Lépez and Bergli
(2020), Tan et al. (2022)]. In general, as in the previous section, incoherent gain and
damping stabilize particular states. These stabilized states are limit-cycle states if
they exhibit a free phase of oscillation that can be locked to an external drive or other
spin oscillators.

7.2.1 Synchronization Measure

The free phase of oscillation of a limit-cycle state for spin oscillators is defined by
projection onto the so-called spin coherent states |0, ¢). These states are generated by
spin rotations of the extremal spin state |s, ms = s). Since SU(2) is three-dimensional,

e., it has three group elements, we can interpret these rotations as an analogy to
SO(3) rotations of the spin vector (5%, SY,5%). This way of defining angles is identical
to the definition of the polar angles 6 and azimuthal angles ¢ in spherical coordinates.
Spin coherent states can be expressed by the (small) Wigner D matrix [Wigner (1959)],

10, ¢) = 71577109 |5 ) Zeﬂ"‘bds )ls,m) (7.2.1)

Zel(m MO (0)dS, o(0) s, n)s,m] (7.2.2)

S
where dj, ,,,

dp, i (0) :\/(s + n) (s —n)l(s+m)!(s —m)!

Smax 9\ 2s+m—n—2r . ,g\n—m+2r
y Z ) cos(§) sin(§) (7.2.3)
= s+m—7‘)'r'(n—m+r)(s—n—7‘)! ’ -
min
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Smin = max(0,m —n), and Spmax = min(s + m,s — n). The relevant entries are the
ones for m = s leading to Smin = Smax = § — 1 and

& ,(6) :\/ o 75)2!2!_ 5 o8 (g) i (Z) o (7.2.4)

In this thesis, we use the measure of quantum synchronization for single spin-s

oscillators introduced in [Roulet and Bruder (2018a)],

™

51(6) = [ 46 sin(©)Q(0,0.0) ~ 5. (7.2
0
where
Q. 6.9) = 220,01 10.0) (726)

is the Husimi ) function of p with respect to spin coherent states. One can interpret S
as the difference between a proper probability distribution and a uniform distribution,
see the —1/27 term in Eq. (7.2.5). The proper probability distribution only depends
on the azimuthal angle ¢ since the polar angle # has been integrated out. Using
Eq. (7.2.1), we can express Eq. (7.2.6) as

_25+1

QO,0,p) = = — > " (0)d5, (0)pnm - (7.2.7)

n,m

The integration over € in Eq. (7.2.5) can be mapped to Eq. (3.621.5) of [Gradshteyn
and Ryzhik (2015)],

]de sin(6) cos@)n sm<9)m _ L+ i+3) (7.2.8)
0

2 I (2+m5m)

where I'(z) is the Gamma function
I'(z) = /dte_ttz_l, (7.2.9)
0

see Eq. (8.310.1) of [Gradshteyn and Ryzhik (2015)]. Using this expression, we simplify
S1 to [Tan et al. (2022)],

S1(6) = &) pnim (7.2.10)
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where
i

[ a6 sin0)a: 0.0
0

Gl T (15 £ 2T (1 5 24)
21 /(s +n)l(s —n)l(s +m)!(s —m)!

In [Kehrer et al. (2024b)] presented in Ch. 8, an operator ¢*(¢) is defined such that
S1 can be rewritten as an expectation value of this operator. With this trick, the

:ei(n—m)¢ 2s+1
41

(7.2.11)

synchronization measure becomes more interpretable and faster to compute.

The definition of the synchronization measure in Eq. (7.2.5) can be generalized
to systems consisting of NV spin-s oscillators by considering tensor products of spin
coherent states, see [Roulet and Bruder (2018b)],

— i A oL 1
SN(¢) = do, Sin(el). .. don Sin(@N)Q(G’ &, ,0) - (7‘2‘12)
0/ 0/ (2m)
where
Q.60 = (250) (0.d]0]5.5) (72.13)
and
N
0.3) = @ exp(-i6;57) exp(i6;5")|s,5) . (7214

J=1

In the synchronization measure Sy, each polar angle 6; is integrated out such that
only the azimuthal angle information remains. Due to particular symmetries in a
model, synchronization will be found in the distribution of a subset of coordinates ¢;,
e.g., relative phases ¢; — ¢;. In these cases, a synchronization measure can be defined
by integrating out the irrelevant combinations of ¢;.

7.2.2 Spin-1

There has been work published on quantum synchronization of spin-1/2 oscillators,
e.g., [Zhirov and Shepelyansky (2008), Cabot et al. (2019), Parra-Lépez and Bergli
(2020)]. However, here, we will focus on models consisting of spins 1. This section is
based on [Roulet and Bruder (2018a), Roulet and Bruder (2018b)]. The first scenario
that is considered when studying quantum synchronization of a particular model
is the coupling to an external coherent drive. This drive can be interpreted as an
oscillator whose dynamics are fixed, i.e., there is no backaction from the free oscillator
to the drive. In a spin model, a coherent drive is described by Hy = Q(S* +57)/2,
where ST = v/2(|£1)0| + |0XF1]|) are the ladder operators and € is the real-valued
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Figure 7.9: Quantum synchronization of spins 1. (a) Schematics of gain, damping, and drive
of a spin-1 oscillator, see Eq. (7.2.15). (b) Synchronization measure S1(¢) for v4 = 1.57,.
The gray line denotes the switch from a single maximum to two maxima at approximately
Q = 37|va — v,l/32. (c) Synchronization measure Sz(¢pap) for 75 = 1.575‘]4, VB = 27;‘7
and 'yf = 'y;;‘. The gray line denotes the switch from a single maximum to two maxima at
approximately g, = 972|v4 + vf — 'yz;‘ —~P|/256. In panels (b) and (c), the color is scaled
linear in the interval [—~1072,1073] and logarithmic elsewhere.

drive strength. Since in this section only s = 1 is considered, we will abbreviate
|s =1, ms) = |ms).

In the setup considered in [Roulet and Bruder (2018a), Roulet and Bruder (2018b)],
the stabilized limit-cycle state is the central spin state |0). The gain (damping) process
is described by the Lindblad jump operator L = STS* (L = S~S%). The S* operator
ensures that there is no excitation from |0) — |1) and no deexcitation from |0) — |—1),
see Fig. 7.9(a). The total Lindblad master equation in the rotating frame of the drive
reads

d
—p=p=—ilAS*+ Hy, p] + %D[S*SZ] (p) + gp[s—sq(p) . (7.2.15)

An analytical expression for the steady state p = 0 exists but is quite lengthy. Using
the definition

N1 =479 (7] + 40%) (75 + 48%)(va + )% + 16A%) + 32(7a + 74)*Q°
+4(va + 79)%((27d + 79) (va + 274) + 20A2)Q*
+ dyaye (V3 + Yavg + 72 + 4A2)(va + 79)° + 16A2)02, (7.2.16)

the expectation values of §%, S*, and S*2 can be reduced to

(SN =2(75 —70)(va + 7g)* + 16A%) (v + 22°)97, (7.2.17)
(SN =2(va — ’Vg)Q(%mg((’m +79)” + 16A%)(21A + 7,) (24 — i)
+ 4i(va + 79)(va + v + 8iA)Q4) ; (7.2.18)

(STNG =402 (%wg((%z +799)% + 16A%)(20A + 7) (1A + 74) + 4(va + 74) Q!

+ 4va79(Ya + ¥9) (Ya + ¥ + 4iA)92) . (7.2.19)
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Chapter 7 Quantum Synchronization

Note that both (S%) and (ST) vanish for equal rates 7, = 74. In the quantum
synchronization regime of small drive strengths and detunings , A < 74,74, the
density matrix reads

202 _ V2(ivq+2A)Q 202
73 72 YdYe
pro | L8 22 SAngaae | (7.2:20)
d Ya g g
20?2 V2(—ing+24)Q 202
YdVg vz vz

and the expectation values of S%, ST, and 52 are

2 2
(57) ~ 228 Jig2, (7.2.21)
Vdry‘g
(5% ~ NG vg)(Q(vd;r;g)A - deg)Q’ (7.2.92)
Yy
402
(572 ~ S (7.2.23)
g

The synchronization measure for this approximation yields

YdYg Sin(@) + 2(vq + v¢)A cos(¢) Q4+ 02 cos(2¢) .

(7.2.24)
87372 T™VdYg

51(¢) ~ 3(7a — 7g)
This equation shows that the terms proportional to Q lead to phase locking to (i)

¢ = arctan(vq4vg/2(va + 79)A) (7.2.25)

for A >0 and 4 < yq or A < 0 and 74 > 74 and to phase locking to (ii)

¢ = 7 + arctan(vayy/2(va + 79)A) (7.2.26)
for A > 0 and v4 > yg or A <0 and 74 < 4.

In contrast, the term proportional to Q2 in Eq. (7.2.24) leads to bistable locking of
the oscillator to ¢ = 0, 7. Therefore, for small €2, the phase of the oscillator locks to
a single value and if € is larger than a critical value, bistable phase locking occurs.
For A = 0 the critical value is = 37|yq — v4//32, see the gray line in Fig. 7.9(b).
Similarly, if v4 = 74, any value of Q will lead to bistable locking to ¢ = 0, 7. This
bistable locking is called the quantum synchronization blockade or to be more precise
the quantum interference blockade and will be relevant in Ch. 8. The terms in S
proportional to € originate form different coherences |+1)0| and |0)(£1]. If v4 = v,
these coherences interfere destructively, i.e., the pairs [1)0] and |0)—1| as well as
|—1X0| and |0)(1| have the same absolute value but opposite sign. Similar to the
energy quantization blockade [Lorch et al. (2017)], this is a genuine quantum effect of
synchronization: a single driven spin-1 oscillator exhibits a synchronization blockade
(bistable locking) due to quantum interference. Note that neither classical cases nor
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quantum van der Pol oscillators exhibit this type of blockade. For other examples of
blockades see Secs. 6.2.1 and 7.1.4.

The original definition of phase synchronization in Ch. 6 requires a small drive
strength such that the driven oscillator exhibits a phase preference without a significant
distortion of its limit-cycle state. Significant in this case means that the population
changes, e.g., (S7), are proportional to Q22 and therefore subleading order. Whether
bistable locking should be considered a (quantum) synchronization effect or not is
debatable, since it is of the same order as the population changes. In this thesis, such
higher-order effects are considered a part of (quantum) synchronization while keeping
in mind the original definition.

In a system consisting of two coherently coupled spins 1 A and B [Roulet and
Bruder (2018b)], the measure

2

Sa(¢ap) = /d¢B Sa(paB + ¢B,0B) (7.2.27)

0

is employed to determine the distribution of the relative phase ¢ 4 = ¢4 — ¢ between
the two oscillators. Here, the Lindblad master equation in the rotating frame of the
drive reads

: J J

. 1 — FY z ’7 — Q7

p= _i[gABSjSB +H.c.,p] + Z (;D[Sjsj](p) + EdD[Sj Sj](p)) , (7.2.28)
j=A,B

where g, 5 is the coherent coupling strength, Sjj.[ and S7 are spin operators that act
on the jth oscillator, and 75 and ’yé are the gain and damping rates of oscillator j.
The steady state for g,z = 0 is p(®) = |0,0)0,0|. Due to the U(1) symmetry of the
model, i.e., invariance under the transformation S;f — Sjeie, only the relative phase
between the oscillators is relevant.

Similar to the single driven spin, an analytical expression of the steady state exists
but is too lengthy to be shown here. In the quantum synchronization regime of small
coupling g, 5 < Wg,yg, the synchronization measure evaluated for the perturbation
expansion of the steady state reads

or v +F = —AF

- cos(2¢4B)
So(paB) = 948G (A +1B) (A +8)

(v D) (g +8)
(7.2.29)

sin(¢ap) + gan

Similar to Eq. (7.2.24), the term linear in g, leads to phase locking to ¢pap = 7/2
(pap = —m/2) if ’yf + ’yf > 7;4 + Vf (75‘ + ’yf < 7;4 + ’yf) and the term proportional
to g4 p leads to bistable locking to ¢4p = 0,7. Two maxima of Sz in Eq. (7.2.29)
exist if g, 5 > 9772\7;? + 'yf — 754 — vP|/256, see the gray line in Fig. 7.9(c). If
v+ v = 7;]4 + ~Z, the pairs of coherences |1, —1)0,0| and |0,0)(—1, 1| as well as
|—1,1)0,0] and |0,0)1, —1| that form the term linear in g, exhibit the identical
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Chapter 7 Quantum Synchronization

absolute value but opposite sign and therefore cancel. In this case, the two spin
oscillators are in the synchronization blockade, similar to quantum vdP oscillators
Sec. 7.1.2. Here, for spins 1, we can understand the blockade in more detail, i.e., as
the destructive interference of coherences.

There are different choices of rates that lead to the vanishing of the term linear in
9ap, i-e., vanishing locking to a single value of the phase. The first, second, and third
choice that we know from classical vdP oscillators are: (i) 'y;;‘ = 'yf and 7214 = ~5,
called identical oscillators, (ii) 'y;‘/'yg‘ = ’yf/fyf = ), called equal rate ratios, and (iii)
7&4 = 75; = ’yf = =, called equal rates. Another choice that is available in this spin
setup are so-called inverted rates 7;]4 =~B and 7} = 7}]3 [Roulet and Bruder (2018b)].

In Ch. 8, we will study cases in which two blockades occur. First, for two coherently
coupled spins 1, we consider the blockade between the drive and one of the oscillators
and the blockade between both oscillators. Second, for a chain of three coherently
coupled spins 1, we consider the two blockades between neighboring spins. We will
find that in some parameter regime quantum synchronization through the blockades
of indirectly coupled oscillators exists, i.e., without lifting the blockades.

7.3 Many Quantum Oscillators

An interesting research direction is to go beyond two-oscillator models, i.e., the study
of networks of quantum oscillators in contrast to classical oscillators [Kuramoto (1984),
Acebrén et al. (2005), Ott and Antonsen (2008)]. Already in [Lee and Sadeghpour
(2013)], the mean-field equations of the model have been analyzed in the limit of
an infinite number of identical all-to-all connected oscillators. A transition between
synchronized and unsynchronized states is found. In [Nadolny and Bruder (2023)],
the question whether quantum effects of synchronization survive in large groups of
limit-cycle oscillators is answered affirmatively. In the setups of (i) a single driven and
(i) two reactively coupled large groups of anharmonic spin-1 oscillators, macroscopic
manifestations of the quantum interference blockade [Roulet and Bruder (2018a)]
and the energy quantization blockade [Lorch et al. (2017)] are found. Considering
a specific connectivity, e.g., topological networks [Wanjura et al. (2020), Wéchtler
et al. (2020), Sone et al. (2022)], the enhancement of robustness of synchronization is
studied [Wichtler and Platero (2023), Wichtler and Moore (2024)]. In macroscopic
networks, the relation between frustration and quantum synchronization has been
touched [Ha and Kim (2019), Karpat et al. (2020)].

Another direction is the one of active quantum matter. First steps toward describing
self-propelled quantum objects powered by environmental energy have been taken
[Yamagishi et al. (2024), Antonov et al. (2025), Penner et al. (2025)]. A precursor of
spatially active quantum matter are active oscillatory states, e.g., quantum analogues
of traveling-wave states [Fruchart et al. (2021)] found in coupled groups of spins
[Nadolny et al. (2025a), Nadolny et al. (2025b)] and coupled quantum van der Pol
oscillators [Kehrer and Bruder (2025)]. The latter example will be presented in detail
in Ch. 9.
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Chapter 8

Quantum Synchronization of Spin-1
Oscillators in the Presence of
Interference Blockades

This chapter is based on the results published in:

T. Kehrer, T. Nadolny, and C. Bruder,
Quantum synchronization through the interference blockade,
Physical Review A 110, 042203 (2024)

8.1 Motivation

As described in the previous chapter, in the last decade, there has been a lot of
activity in the study of synchronization in quantum systems. A three-level quantum
system in which one of the three states is stabilized by incoherent gain and damping
processes has been established as a minimal quantum limit-cycle oscillator [Roulet and
Bruder (2018a)]. Subject to an external drive, this spin-1 oscillator aligns its phase of
oscillation with the one of the drive. The magnitude of this so-called 1:1 phase locking
is proportional to the drive strength. In this chapter, we will use the term n:1 phase
locking if the probability distribution of the phase of an oscillator exhibits n maxima
that corresponds to multistable locking. If the gain and damping rates are equal, an
interference blockade emerges leading to a complete suppression of 1:1 phase locking.
In this case, the oscillator tends to align its phase in one of two positions: in phase or
opposite the phase of the drive. This corresponds to 2:1 phase locking which could be
called passing by the blockades. A similar effect is observed for the synchronization of
two identical coupled spins 1, i.e., the absence of 1:1 phase locking and the presence
of 2:1 phase locking [Roulet and Bruder (2018b), Koppenhdofer and Roulet (2019)].
Interference blockades [Solanki et al. (2023)] are not the only type of blockades that
have been studied in systems of quantum oscillators, for another example see [Lorch
et al. (2017)].

In this chapter, we first consider a drive applied to one of two coherently coupled
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Figure 8.1: Schematics of the models. (a) Each minimal quantum limit-cycle oscillator labeled
A, B, and C consists of three spin-1 states [—1), |O> and |1). Tt is subject to two independent
gain and damping processes with rates 7 and 77 that incoherently drive the population
toward the state |0). (b) Two spins A and B are coherently coupled with strength g, 5, see
Sec. 8.3. Spin A is furthermore driven by an external drive with strength Q4. (¢) Chain of
three coupled spins without external drive, see Sec. 8.4. The insets in (b) and (c) qualitatively
show the resulting (bistable) phase locking of the spins. Due to blockades (red brick walls),
1:1 phase locking vanishes. Solid arcs denote second-order effects leading to 2:1 phase locking
passing by blockades. Dashed arcs denote fourth-order effects leading to 1:1 and 2:1 phase
locking between not directly coupled elements through the blockades.

spin-1 oscillators. In the parameter regime of equal gain and damping rates, see
Fig. 8.1(b), both spins are blockaded: there is no 1:1 phase locking of the driven spin
to the drive as well as no 1:1 phase locking between both spins. They both align in
and out of phase corresponding to 2:1 phase locking. Remarkably, the undriven spin
does exhibit 1:1 phase locking to the external drive. In other words, the undriven
oscillator synchronizes to the external drive through both (drive-spin and spin-spin)
interference blockades without lifting them. The locking strength is linear in the drive
strength and of third order in the coupling strength. The second system that we study
is a chain of three coupled spin-1 oscillators. An unexpected 1:1 phase locking, in
analogy to the two-spin case, is found between the first and last spin, see Fig. 8.1(c).
However, the central spin mediating this locking is itself not 1:1 phase locked to any
of the two other spins.

This chapter is structured as follows. In Sec. 8.2, we define the Lindblad master
equation of our systems and the measure of quantum synchronization we will use. In
Sec. 8.3, we study the behavior of two spin-1 oscillators in and outside the interference
blockades. In Sec. 8.4, we analyze a system of three coupled spins 1. We discuss
entanglement measures in Sec. 8.5.
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8.2 Model and Quantum Synchronization Measure

8.2 Model and Quantum Synchronization Measure

We consider models of coupled spin-1 oscillators subject to gain and damping processes,
visualized in Fig. 8.1. The systems are described by the following Lindblad master

equation
%p =p=L(p) = =ilHpl + > L5(p). (8.2.1)
J
J j
£;(p) = 2DIS] 551(p) + “2DIS; S)(p) (8.2.2)

where the Hamiltonian H that encodes a coherent drive and spin-spin interactions
will be specified later in Eqgs. (8.3.1) and (8.4.1). Both incoherent gain and damping
processes are combined in the Liouvillian £; and provide limit-cycle stabilization of
the jth spin, see the black wavy arrows in Fig. 8.1(a). The gain and damping rates
of the jth spin are denoted by ~J and *yé and we choose S% = |1)(1] — |—1)}—1| and
S* = /2(|£1%0| 4 |0X=F1|) as defined in Sec. 2.2. We use the standard notation
DI[L](p) = LpLT — (LTLp + pLTL)/2. The steady state for H = 0 is the product state
p(O) = |07 0><07 O’

A previous work shows that quantum synchronization of a single spin-1 oscillator to
an external resonant drive is observed if 75 # 'yg [Roulet and Bruder (2018a)]. For two
resonant spin-1 oscillators, quantum synchronization occurs if 'yfi —I—'yg #* 'y; —&—’yé [Roulet
and Bruder (2018b)]. In those works, quantum synchronization is defined as an effect
that is linear in the drive strength or the interaction strength, respectively. If the rate
conditions mentioned above are violated, only higher-order synchronization can be
observed, i.e., the system is in the quantum interference synchronization blockade, see
also Sec. 7.2.2.

A variety of measures to quantify the degree of quantum synchronization has
been proposed in the literature [Ludwig and Marquardt (2013), Hush et al. (2015),
Weiss et al. (2016), Roulet and Bruder (2018a)]. For N spin-1 oscillators, we choose
the synchronization measure Sy(¢) defined in [Roulet and Bruder (2018b)] and
Eq. (7.2.12),

N 7 ™
SN(%) = <4?;T> /d01 sin(fy) - - - x /d@N sin(O) <‘§, 5‘ p 915> - (271)]\, , (8.2.3)
0 0
where
N
2 $> = ) exp(—i¢;57) exp(—if;S¥) 1, 1) . (8.2.4)
j=1

This measure is a probability distribution of phases ¢; of each oscillator j that are
defined by projections of the density matrix to spin coherent states ’6_?: $>, where

|s,ms) = |1,1) is the extremal spin-1 state. Using Sy, we will calculate probability
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distributions of relative phase angles as marginals by integrating over global phases, see,
e.g., Eq. (8.2.14). If the synchronization measure is flat, there is no phase preference,
i.e., no synchronization in the system. Maxima of Sy are related to locking of the
oscillator phases. In Eq. (7.2.10), we saw that the synchronization measure of one
spin-s oscillator can be written as

SUe) =Y m(®)pnm (8.2.5)

n,m
where [Tan et al. (2022)]

eln=m T (14 s+ 252 T (14 s — 257

21 /(s +n)!(s —n)!(s +m)!(s —m)! (8.2.6)

Crm () =

Here, we interpret c;, ,,(¢) as the components of an operator c*(¢). For spin-1/2 and
spin-1 oscillators, we find explicit expressions for ¢*(¢),

A2(g) = %+é<ei¢5++e_i¢5_> ’ (8.2.7)
cl(¢) = 27r+( S 8 (8T +He ) (8.2.8)

For larger spins, the expression of ¢® becomes more complex, e.g., ¢3/2 (¢) features
terms of the form (S)2S~ and S~(S*)2. Due to the tensor-product structure of Sy,
we can express Eq. (7.2.12) in a compact way,

N
=Tr p®cs(¢j) e <®C ¢]> %) (8.2.9)
j=1

In this chapter, we are interested in up to three spin-1 oscillators. Combining
Egs. (8.2.8) and (8.2.9), for a single spin 1, we obtain

3
Si(¢) = <32 St 4 - S+2 + H.c. > , (8.2.10)

and for a system consisting of two spins 1,

27
Sa(ba) = / o Sa(éas + 65, 65)
0
97 12¢AB
_ ipap Qg+ 2
<512 S585 + 55— (S%55) +H.c.>, (8.2.11)

where ¢oap = ¢4 — ¢p is the relative phase between oscillator A and B. Note that the
coefficients of Eq. (8.2.11), 97/512 = 27(3/32)? and 1/327 = 27/(87)?, are related
to squares of the coefficients of Eq. (8.2.10), where the additional factor of 27 arises
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from the integration over ¢ p. Similarly, for three spins, we define

2

S3(pap, 9BC) = /d¢B S3(¢aB + ¢B. 9B 9B — PBC) ; (8.2.12)

0
2w

Sa(an, doa) = / b S3(6a,da — das, b+ ba). (8.2.13)

0

The structure of Eq. (8.2.10), i.e., S1 consists of terms oc €*?ST*  allows us to express
the Fourier transform of Sy as expectation values of powers of the spin-1 ladder
operators S;T. In particular, we find that the phase distributions can be written as

S1(¢5) = 2(m" cos(;) +m'? cos(2¢;)),

21
Sa(dij) = /qu So(¢ij + ¢, ¢) = 2(mg) cos(¢ij) + mg) cos(2¢i5)) , (8.2.14)
0

where ¢;; = ¢; — ¢; is the relative phase of two oscillators ¢ and j. Here, we define
the moments

3
3 pn=1
mi" = (517) % {312 Z } 2’ (8.2.15)
ST - )
n _ 2 n=1 s
m) = ((S757)") x { °12 (8.2.16)
3on n=2 y

where the label n corresponds to n:1 phase locking and equals the number of maxima in
the synchronization measure. Thus, these moments are linked to the Fourier coefficients
of the phase distributions and we will use them to quantify synchronization.

8.3 Two Spins and an External Drive

In this section, we consider two coherently coupled spins 1 labeled A and B. A
resonant coherent drive with strength Q4 acts on spin A, see Fig. 8.1(b). The system
is described by Eq. (8.2.1) with the Hamiltonian in the rotating frame of the drive

H="2
2

S+ 242555 +He, (8.3.1)
where g, 5 denotes the strength of the coherent coupling. We choose both {24 and
gap to be positive. Note that both spins are assumed to be in resonance with the
coherent drive, i.e., the frequency of the external drive is chosen to match exactly the
level spacing of the spins.
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8.3.1 In the Interference Blockade

To study two spins 1 in the quantum interference synchronization blockade, we set the
gain and damping rates 7;4 = *y(’? = ’yf = ’yf =~ to be equal. In the case of Q4 =0,

we obtain
89,243 (0) 329%3 (00) _ s 9aB7Y +o— (0)
pSS: (]_ —1 [S S +H'C'7p }7
8¢5 + 72 32¢% 5 + 492 1694 +292 A7F
(8.3.2)
where

o 1 1 1 e
P =52 D MM Y 1,0),(7,0l, = 55 (SESp + S35h)?
J=12M=-1,1 J=0,2

(8.3.3)

is the state in the limit g, > v. It is diagonal in the combined spin basis |J, M),
of two spins 1. We now consider a drive that acts on spin A as a small perturbation.
This results in the following leading-order contributions in 24/ to the first moment
of the synchronization measure of the undriven spin B

03 9% 50 (64g% 5 + 34897 572 + 13574)
B A8 + 1) Ak +972) (169 5 + T20% 577 + 97Y)
9ap>7 304
- 32945
9457 5g3 5
St

(8.3.4)

as well as to the second moment

m® S gAY
21 (955 + 7)) (4955 +72)
9695 5 + 65695 572 + 518¢% g7t + 108624 570 + 8148
(89%p +72) (4955 + 972 (1697 g + 7297 57% + 9*)
gap>r 903
T 128713,

9a5<7 395505

. (8.3.5)

2mry

The undriven spin B exhibits a 1:1 phase locking to the drive with a magnitude that to
leading order is linear in Q4 /7, for both large and small g, /7. The second moment
of the combined synchronization measure for both spins up to second order in 4 /7
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is proportional to

@ 1 _ s (1 | 0%(848¢5 5 + 46009 57* + 190567 57" + 7024°) )
AB ™ gn 89,243 + 42 (891243 + 72)(491243 + 972)(169j443 + 7293‘372 1 994)
9ap>r 1 5302 + 4+*

64T 2048mg% 5

945 9B - 2602 + 2495 5 | (8.3.6)
82 34
Analogously, for a vanishing spin-spin interaction strength g,z = 0, we obtain
s (1o 8% o e e o T g g o)
82 + 7 BOZ 4204 TP Bz AT PP
(8.3.7)

leading to the following contribution to the second moment of the synchronization
measure of the driven spin A up to second order in g,5/7,

o) 1 0% ( _ gap(448Q% + 45605 + 18972) )
AT 2m 802 + 42 (892 +42) (16924 + 309342 + 9*)
Qa>y 1 28¢%5 + 72
T 16m 128702
Qa<y Q4 <1 _ 2lgip + 89%)
T 2my2 v4 ’

(8.3.8)

(1)

Note that for equal gain and damping rates, the first moment m;,’ of the synchroniza-

(1)

tion measure of the single spin A and m), 5 of the combined synchronization measure
vanish, i.e., the system exhibits two quantum interference blockades.

In conclusion, we expand the steady state pss = > €"p(™) of Eq. (8.2.1) in powers
of € for the small Hamiltonian eH of Eq. (8.3.1). The terms p(™ obey

Zﬁ (P Oy = i[H, p™™)]. (8.3.9)

The synchronization measures up to a combined fourth order in Q4/v and g, /7 are

Iy 1 g 1303
Sa(dap) = 7;‘73 cos(2¢4B) <4 - 2% - 373 : (8.3.10)
02 g 02
S —A 2 <1 — 91248 AB 8A> , 8.3.11
1(pa) = 7 0s(2¢4) 2 2 ( )
593 52 3g% 02
S1(¢B) ~ % cos(¢B) + % cos(2¢6p) . (8.3.12)

In this regime of equal gain and damping rates there is no cos(¢4) and cos(¢pap)

contribution since both m(Al) and m(Alj)B vanish. This is a consequence of the (drive-spin

113



Chapter 8 Quantum Synchronization of Spin-1 Oscillators in the Presence of
Interference Blockades

and spin-spin) interference blockades that persist for arbitrary drive and coupling
strengths: no 1:1 phase locking of spin A to the drive and no 1:1 phase locking between
spins A and B. However, the synchronization measure S1(¢p) in Eq. (8.3.12) features
cos(¢p). Hence, there is an effective first-order o< 24 1:1 phase locking of the undriven
spin-1 oscillator to the drive. This 1:1 phase locking is surprising, since spin A does
not distinguish between the phase of the drive and its polar opposite as well as spin B
does not distinguish between in and out of phase locking to spin A. We refer to this
as synchronization through the interference blockade. It is mediated by a third-order
x gi p spin-spin interaction as we will explain in more detail below. The second term
in Eq. (8.3.12) denotes 2:1 phase locking of spin B.

In the synchronization regime where both €24 and g,5 are small compared to 7,
the single-maximum 1:1 phase locking of the undriven spin B to the drive is a small
fourth-order effect. However, there is neither 1:1 phase locking of oscillator A to the
drive nor between oscillators A and B at any order in {24 and g, ;. Both the phase
distribution of oscillator A and the distribution of the relative phase of oscillators A
and B do not allow to distinguish between the phase angle of the drive and its polar
opposite. For any €24 and g, 5, only the phase distribution of oscillator B uniquely
reflects the phase of the drive.

This behavior can be traced back to the destructive interference of various coherences
that build up. In short, even if spin A does not show 1:1 phase locking to the drive,
the phase of the drive is nevertheless imprinted in the coherences of the full density
matrix. Therefore, spin B can exhibit 1:1 phase locking. The contributions of the
coherences to the first moment of the synchronization measure of spin A cancel but
not for spin B.

For a detailed explanation, we note that the choice of equal gain and damping
rates introduces a symmetry: the master equation defined in Eq. (8.2.1) with the
Hamiltonian Eq. (8.3.1) is invariant under the transformation that effectively exchanges
the states |j) < |—j),

+ + z z z
Sy — 2572V =5F, 87— 29721 = —57 (8.3.13)
where
Z = exp(in(S% + S§)), S7 = (5] +57)/2. (8.3.14)

We find L(Zp2") = ZL(p) 2T, which implies pss = ZpsZT. Using the invariance of
the steady state under the symmetry transformation defined in Eq. (8.3.13), it follows
that (S1) = (S,) and (St S5) = (S,S%), hence m(Al) x (S}) and mfjj)g x (S4Sp)
are real. Since the master equation Eq. (8.2.1) only consists of real parameters and
o0
real and odd orders p(®"*1) are purely imaginary, see Eq. (8.3.9). At least up to a

combined fourth order in 24 and g, 5, both mfj) and mi‘% only depend on p(37+1),

is real, even orders p(2") of the perturbation expansion of the steady state are

so they must be purely imaginary. Taking into account the symmetry arguments from
above, they must vanish in the interference blockade: the individual coherences do
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Figure 8.2: Synchronization measures S; and Sz, see Egs. (8.2.3) and (8.2.14), for ’yé = 'yé =7,
Qa/y=0.1, and g,5/7 = 0.15. (b) Combined synchronization measure Sz(¢a, ¢p). (a),(d)
Single synchronization measures S1(¢4) and S1(¢p) as marginals of (b). (c) Combined
synchronization measure S2(¢pap). Both Sa(¢ap) and S1(d4) exhibit two maxima, whereas
S1(¢p) of the undriven spin in panel (a) is characterized by only one maximum.

not vanish but they interfere destructively, (|[1X0| ® 1) = —(|0}—1| ® 1), implying
(s%) = 0.

Spin A can be intuitively interpreted as an effective drive acting on spin B mediated
by the spin-spin coupling. Because of the additional coupling, mg) depends on p(?"),
and is therefore real. Thus, the above arguments that explain the interference blockade
of spin A do not apply, and spin B is able to synchronize to the external drive. For
mg), only the terms of order g,54 interfere destructively but terms of order g3 5304
survive which we discuss in more detail in Sec. 8.3.2.

In Fig. 8.2, we plot the individual synchronization measures Si(¢4) and Si(ép)
as well as the combined measures S2(¢p4,dp) and Sa(dap = ¢4 — ¢p), that are
defined in Sec. 8.2, evaluated for the numerically exact steady state of Eq. (8.2.1). As
expected from Egs. (8.3.10) to (8.3.12), both S1(¢4) and S2(¢pap) show two maxima,
see Figs. 8.2(c) and 8.2(d). These two distributions imply that spin A locks with two
preferred phases to the drive and spin B locks with two preferred phases to spin A.
Therefore, one could naively conclude that spin B also exhibits two maxima in its phase
distribution. However, this is not true in general. Figure 8.2(b) shows that the maxima
of the combined quantum synchronization measure lie at (¢4, ¢5) € {(0,0), (7w,0)},
leading to the single maximum of Si(¢p), see Fig. 8.2(a).

In Fig. 8.3, we show moments that reflect the synchronization behavior, see
Eqgs. (8.2.15) and (8.2.16), for various drive and coupling strengths. As predicted by
Egs. (8.3.10) to (8.3.12), S1(¢p) exhibits a first moment, see Fig. 8.3(c). In contrast,
the first moment vanishes for Sj(¢4) and Sa(¢ap), see Figs. 8.3(a) and 8.3(b). All
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Figure 8.3: Synchronization in detail. (a)—(f) First (n = 1) and second (n = 2) moments
indicating one and two maxima in the corresponding synchronization measures. The white
curves are contour lines of the moments at 5 x 10~%. (g) Ratio of the second and first moment

of spin B. The black curve indicates \mg) /mg)| = 1 and the gray dashed lines denote the
corresponding theoretical prediction 24 = 57g,5/6 based on Eq. (8.3.12). (h) Maximum
change of state populations, see Eq. (8.3.15).

synchronization measures show a two-maxima contribution, see Figs. 8.3(d) to 8.3(f).
In Fig. 8.3(g), we plot the ratio of the second and first moment of the undriven
spin B indicating that S;(¢p) exhibits predominantly two maxima if Q4 > g,z
and one maximum if Q4 < g,5. In Fig. 8.3(h), we show the maximum change in
populations between the numerically obtained density matrix p* and a reference state
p=p® =0,0X0, 0| [Koppenhsfer and Roulet (2019)]

Prmax(p) = max |y, = P - (8.3.15)

It can be used to identify the regime of synchronization in which the limit-cycle state
is only weakly perturbed, i.e., pmax < 0.1, which we find to be g, 5,4 < 0.1v. In this
region, the fourth-order approximation agrees with the numerical results presented in
Figs. 8.3(a) to 8.3(g). Moreover, entanglement measures are small below g ,5/v < 0.1,
see Sec. 8.5. The relation between quantum synchronization and entanglement has been
studied for, e.g., spins [Roulet and Bruder (2018b), Chepelianskii and Shepelyansky
(2024)] and harmonic oscillators [Mari et al. (2013), Lee et al. (2014), Garg et al.
(2023)].

Note that if the gain and damping rates are chosen such that only one of either a
drive-spin or a spin-spin interference blockade exists, this blockade does not persist
up to large drive and coupling strengths: the drive-spin blockade is lifted by the

. . . . . . 1 1
spin-spin interaction and vice versa. Since in these cases mg) and mgé are not zero,

(1)

it is not surprising that also mj’ is not zero. Only when imposing both blockades
simultaneously by equal gain and damping rates for all spins, as described in this
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8.3 Two Spins and an External Drive

section, the blockades persist.

8.3.2 Outside the Interference Blockade

In the previous section, synchronization is blockaded perfectly. We now discuss the
behavior of the two-spin system for inverted gain and damping rates 'yg‘ = ’yf =y
and 734 = vf = 4 close to the blockade. Here, both mfj) and mg}g do not vanish.
Considering the drive that acts on spin A as a small perturbation leads to the following

leading-order contributions in Q4 /7,

30 — 2+ dygva+ 2 y
mg) —i% Adg = [ _ 49,243 (7g 72972 Va) e (gﬁB) 7 (8.3.16)
6 YgYd YgVd Vd
30 . 2 4
) 2324945 <(’Yd 9)° | o <9A43>
8797d Ygd Vd

r 3207393 + 23(vgv3 + ) — 32(78 +15) — 106(v3va + vg73)
AP 37373 (279 + 7a) (Vg + 27a) '
(8.3.17)

The first moment of the combined synchronization measure,

from |0,1)1,0] from |—1,0%0,—1|

L) 979,45 (2(va — V9)9ABgVa +2(va — V9)9ABg7a) /256
AP 3208 + 308 + 4945202 + Treva + 293) + 9Aprena (02 + 5970 + 43)
from ]0,0)%1,—1| from |—1,1)0,0|

-~

y (4945 + 7970) (9aB +70)va— (948 +72)Y9)
3298 5 + V373 + 494 5(292 + Tygvd + 293) + GAp1eva (402 + 5v9va + 43)
B 1979 4 5(Va — V9) (494 + GABVeVd — V2V3) /256
32085 + 373 + 494 5(292 4 Tygva + 292) + 9 pVeva (402 + 5vgva + 493)
(8.3.18)

is approximately constant in € ,4/7. The known interference blockades for mg), mf41])3,

and the leading order of mg) arise for 4 = 4, see [Roulet and Bruder (2018a), Roulet
and Bruder (2018b)] and Sec. 8.3.1. Note that the absolute values of the first moments

mg), mg), and m(Al])g are invariant under the exchange of the gain and damping

rates. The contributions of the coherences |i, j}k, (| to m5411)3 are highlighted in the
first line of Eq. (8.3.18). Terms originating from both [0,1)1,0| and |—1,0%0, —1|
vanish individually, whereas terms proportional to |0,0)1, —1| and |—1, 1)0, 0| cancel
in this interference blockade. For mg), the coherences |0, —1)0,0| and |0,0)0, 1]
cancel with the coherences |—1,0)—1,1| and |1,—1)1,0|. Note that contributions to
mg) of order gi 5§24 and higher do not vanish for equal gain and damping rates, see
Sec. 8.3.1. There, ad%li)tional coherences |1,0)1,1| and |—1,—1)—1,0| appear. The
1

remaining terms of my’ in the interference blockade can be interpreted as first-order
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Figure 8.4: Synchronization of two spins 1 for inverted rates ’y;;‘ =B =+, and 75‘ = 7;3 =
v4- (a), (b) First moments of the individual and combined synchronization measures for
Qa/(vg+7a) = 1072 and g, 5/ (74 +7a) = 0.05,0.5 (from top to bottom). The inset highlights
the region close to the interference blockade v, = v4. (c), (d) Ratio of the first moments of
spin A and B. The gray line corresponds to Eq. (8.3.19). (e), (f) Maximum change of state
populations, see Eq. (8.3.15).

synchronization o< 24 of the undriven spin B to the drive that acts on spin A mediated
by a third-order spin-spin interaction o gi B

We show mfj), mg), and m;) in Fig. 8.4. Whenever v, # 74, the symmetry

defined by Eq. (8.3.13) is broken and the interference blockades disappear such that
1:1 drive-spin and spin-spin phase locking exist. Nevertheless, there is a regime in
which |m541)] < |mg)|, see Fig. 8.4(d). Its width can be estimated by expanding the
ratio of the first moments of spin A and spin B to first order in v,/v4 — 1. This

expansion can be used to approximatively solve |mf41)/ mg)\ =1 by

IGOg?AB
3('79 + '7d)3

Yo _ oy 2064

+0(¢%5/7) ~ 1+
=1k T 4 Olgha /)

(8.3.19)

The region in which the undriven spin B exhibits a stronger 1:1 phase locking to the
drive than the driven spin A has an approximate width o giB /75 in terms of the
ratio of gain and damping rates v4/v4.

In addition to the interference blockade, i.e., vanishing qul) and m(Alj)B, between spin

A and its drive as well as between both spins we find another synchronization blockade
that is induced by the coupling. This new and additional blockade appears at zeros of
mgg and m&‘) for values of v,/v4 depending on g,5. The solution of mg}g =0 for

9ap>Vg <K 7Ya can be obtained analytically,

Vg 9B JAp
= (1+W) 2 2(1+\ﬁ)(7g+’m) (8.3.20)
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Figure 8.5: Synchronization measures Sz and Ss, for 'yg = *yg =vyand g, 5 = gge = 0.127. (b),
(¢) Combined measures Sz for three coupled spin-1 oscillators, see Egs. (8.2.12) and (8.2.13).
(a), (d), (e) Combined measures Sy for pairs of two spins 1, see Eq. (8.2.14). Even if both
Sa(pap) and S2(¢ppc) exhibit two maxima, Sz(dca) only shows one maximum.

The approximate solution of mfj) = 0 is obtained for (a) small 74 < 74 and for (b)
both small g, 5,7y < Vas

a1 | 393, (8.3.21)
Yg T Vd
Yo )2 Jap (8.3.22)

Ya A1+ /10% T7d’
(1)

see Fig. 8.4(c). In the interference blockade v, = 74 = 7, contributions to myp
originating from both |0, 1)(1,0| and |—1, 0)0, —1| vanish individually up to first order
in Q4/7v, whereas terms proportional to |0,0)1,—1| and |-1,1)0,0| cancel. In the
coupling-induced blockade, these coherences cancel collectively.

The coupling-induced blockades occur for rather large coupling strengths for which
the steady state of the system deviates significantly from p(o). In the regime g, 5 2
Vg +7a one obtains Pmax(p%)) < 0.1, i.e., the steady state is close to p(>), see Fig. 8.4.

8.4 Three Undriven Spins

We now consider a chain of three undriven coupled spin-1 oscillators labeled A, B,
and C,

H=93851 55 + IBCGHS + Hee., (8.4.1)
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Figure 8.6: Synchronization in detail. (a)—(f) First (n = 1) and second (n = 2) moments

indicating one and two maxima in the corresponding synchronization measures. The white

curves are contour lines of the moments at 5 x 107%. (g) Ratio |m(c234 / m(clzq| < 1 of the second

and first moment of the combined measure S2(¢c4) of spins A and C. (h) Maximum change
of a state populations, see Eq. (8.3.15).

where g, 5 (95¢) is the coupling strength between spins A and B (B and C). Similar
to Sec. 8.3.1, all gain and damping rates are set equal to ’yﬁ = yj = . In Fig. 8.5,
we show both synchronization measures S3(¢ap, ¢pc) and S3(pap, dca) evaluated
for the numerically exact steady state of Eq. (8.2.1) for three spins. These measures
are defined in Eqs. (8.2.12) and (8.2.13). Moreover, we present the synchronization
measures Sy between all three pairs of spins as marginals. As expected, S2(¢ap)
and Sa(¢pc) of both pairs of coupled spins exhibit two maxima due to the quantum
interference synchronization blockade, see Figs. 8.5(a) and 8.5(d). However, similar to
the single-maximum locking of the undriven spin B in Fig. 8.2(a), the synchronization
measure between the spins A and C' that are not directly coupled exhibits a single
maximum in the phase difference ¢c 4, see Fig. 8.5(e). This contradicts the naive
expectation that if So(¢4p) and S2(¢pc) exhibit two maxima, S2(¢pc4) will also exhibit
two maxima. In fact, the synchronization measures S3(¢ap, ¢pc) and S3(Pap, Pca)
exhibit maxima at (¢4, ¢Bc, Pca) € {(0,0,0), (7, m,0)} revealing the true locking
behavior: the phases of neighboring spins are either aligned or anti-aligned.

In analogy to Fig. 8.3, we display relevant moments of the three-spin system in
Fig. 8.6. Figures 8.6(a) and 8.6(b) show vanishing 1:1 phase locking between directly
coupled spins. In contrast, Fig. 8.6(c) shows 1:1 phase locking between the spins A
and C that are not directly coupled. Similar to what was found for the undriven
spin B discussed in Sec. 8.3, the quantum synchronization measure between the
uncoupled spins A and C' exhibits both non-vanishing first and second moments. All
synchronization measures exhibit a two-maxima contribution, see Figs. 8.6(d) to 8.6(f).
Interestingly, in contrast to the setup of two spin-1 oscillators, Fig. 8.6(g) shows that

the first moment always dominates, i.e., |mg34| < |m((21] For g,4p5,95c S 0.1, the

120



8.5 Entanglement Measures

maximum change of state populations ppax < 0.1 is small, see Fig. 8.6(h).

8.5 Entanglement Measures

In this final section of this chapter, we look at entanglement measures for both cases
described in Secs. 8.3 and 8.4: (i) two coherently coupled spin-1 oscillators, one of
which is driven, and (ii) a chain of three coherently coupled spin-1 oscillators. We
compute correlations

) cov
Gij = 5 (8.5.1)
Jcovicov
COVE = ((S787)™) — (S7™)(S7™) (8.5.2)
and entanglement measures
Lij = S(pi) + S(pj) — S(pij) » (8.5.3)
Tillp — 1 el — A
Nj(p) = Hp!l =y ”“'2’“ : (8.5.4)
k

where I;; is the quantum mutual information, S(p) is the von Neumann entropy, and
Nj is the negativity. The eigenvalues of pli are denoted by \j, where T; indicates
the partial transpose that only acts on subsystem j. Note that in a two-partite
system, p™4 and p’® = (p?4)T have the same eigenvalues and therefore Ny = Np.
For quantum systems of dimensions larger than 2 x 3, a necessary condition of
separability is zero negativity [Peres (1996), Horodecki et al. (1996)]. Therefore,
N; > 0 implies entanglement. For mixed states, both entanglement and classical
correlations contribute to the quantum mutual information I;;.

We want to highlight the following features of correlations between both spins in the
two-spin setup. In Figs. 8.7(b) and 8.7(c), both I45 and N4 exhibit a local maximum
between 0.1y < g, 5 < 7 and below the gray dashed line that indicates the theoretical

prediction Q24 = 57g,5/6 of |mg)/mg)| = 1. In this region, the first moment mg)

(2)
B

indicating 1:1 phase locking, and ppax(p(?)) exhibits a strong change, see Figs. 8.3(g)

of the synchronization measure of spin B is larger than the second moment m

and 8.3(h). Therefore, the phase locking through the blockades corresponds to stronger
correlations between the spins. Comparing all three panels Figs. 8.7(a) to 8.7(c), in
this system, the mutual information /45 appears to be a combination of correlations,
e.g., 01(42])37 and entanglement.

In Figs. 8.7(d) to 8.7(1), we present the correlations, quantum mutual information,
and negativity between pairs of spin-1 oscillators in the three-spin case. We define N;;
as the negativity of spin ¢ evaluated for the reduced density matrix of the subsystem
of spin ¢ and j. The correlations, mutual information, and negativity of subsystem

AB (BC) exhibit similar qualitative features, e.g., a local maximum of I;; and N;
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Figure 8.7: Correlation measures for two spins 1 (a)—(c) and three spins 1 (d)—(1). (a)
Correlations Cff% related to Figs. 8.3(d) to 8.3(f), see Eq. (8.5.2). (b) Quantum mutual
information of spin A and B defined in Eq. (8.5.3). (c) Negativity of spin A, see Eq. (8.5.4).
The gray dashed line denotes the theoretical prediction Q4 = 57g,5/6 of |mg)/mg)| =1,
see Fig. 8.3. (d)—(f) Correlations related to Figs. 8.6(d) to 8.6(f). (g)—(i) Quantum mutual
information of pairs of spins. (j)—(1) Negativity N;; of spin ¢ evaluated for the reduced density
matrix of the subsystem of spin ¢ and j. The black curves are contour lines at 0.01. All
measures are evaluated for the steady state of the Lindblad master equation.

between 0.1y < g4 5 (9c) < 7, like in the two-spin case. The measures of subsystem
CA exhibit local maxima at 0.1y < g,p,95~ < 7. Here, qualitatively, the measures
of the other two subsystems overlap.

8.6 Conclusion

In this chapter, we have analyzed setups of two and three coupled spin-1 oscillators
in the parameter regime of equal gain and damping rates. In the case of three spins
1, this choice of rates leads to (spin-spin) quantum interference blockades between
all coupled oscillators. In the case of two spins, a drive acting on spin A results in a
second type of a (drive-spin) quantum interference blockade. Both blockades persist
for arbitrarily large drive and coupling strengths.

In the two-spin setup, the blockades manifest themselves in the form of vanishing
first moments of (i) the quantum synchronization measure of spin A as well as of
(ii) the combined synchronization measure of both spins. Spin A synchronizes with
equal probability in and out of phase with the drive with a magnitude proportional to
the square of the drive strength €24. Similarly, spin B locks in and out of phase to
spin A with a magnitude proportional to the square of the coupling strength g. The
naive expectation that spin B will therefore also lock with two preferred phases to the
drive fails in general: the undriven spin B exhibits a 1:1 phase locking to the drive
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through both blockades without lifting them. The magnitude of this 1:1 phase locking
is proportional to gi 584 corresponding to a first-order locking to the drive mediated
by a third-order spin-spin interaction. Remarkably, the driven spin A exhibits no 1:1
phase locking. If the parameters are chosen such that only one of either a drive-spin or
a spin-spin interference blockade exists, this blockade does not persist up to large drive
and coupling strengths. The drive-spin blockade is lifted by the spin-spin interaction
and vice versa. Only when imposing both blockades simultaneously by equal gain
and damping rates for all spins, the blockades persist. The quantum synchronization
effect described here is not observed for two quantum van der Pol oscillators since
these oscillators do not exhibit the drive-spin blockade. Thus, the blockade between
the oscillators is lifted by the drive, see Sec. 9.3. In the next chapter, we will study
quantum synchronization between two quantum van der Pol oscillators, one of which
is driven.

In a three-spin chain, the combined quantum synchronization measures of both
pairs of directly coupled spins exhibit two maxima. However, similar to the two-spin
case discussed in the previous paragraph, we observe a 1:1 phase locking behavior
between the two not directly coupled spins A and C. Analogously, this locking exists
without lifting the quantum interference blockades in the other two subsystems AB
and BC.

Quantum synchronization thus provides a rich set of interesting features. Even for
systems whose building blocks are the simplest possible quantum limit-cycle oscillators,
unexpected properties arise like the locking of two not directly coupled spins mediated
by an intermediate spin that is itself not locked. An intriguing question for the future
is the study of the competition of single-maximum (indirect coupling) and two-maxima
locking (direct coupling) in geometrically frustrated configurations of spin-1 oscillators.
Another future research topic is to study quantum synchronization in a chain of three
identical quantum van der Pol oscillators. Since in this case two blockades between
both pairs of coupled oscillators exist, a similar effect of synchronization through the
blockades might be observed.

The results and figures of this chapter have been published in parts in [Kehrer et al.
(2024D)).

123






Chapter 9

Quantum Synchronization of
Nonreciprocally Coupled Quantum
van der Pol Oscillators

This chapter is based on the results published in:

T. Kehrer and C. Bruder,
Quantum synchronization blockade induced by nonreciprocal coupling,
Physical Review A 112, 012223 (2025)

9.1 Motivation

In 1687, Newton’s laws of motion have been published. The third law reads:

“Lex III: Actioni contrariam semper € equalem esse reactionem: sive corporum
duorum actiones in se mutuo semper esse equales € in partes dirigi.” [Newton (1687)]
(latin for “Law III: To every Action there is always opposed an equal Reaction: or
the mutual actions of two bodies upon each other are always equal, and directed to
contrary parts.” [Newton (1729)]).

In this sentence, so-called reciprocal interactions are described. In contrast, interac-
tions between two agents A and B are called nonreciprocal if the response of A to an
action of B differs from the response of B to an action of A. Nonreciprocal interactions
can only appear in nonequilibrium systems [Ivlev et al. (2015)]. In particular, in
active matter, i.e., systems composed of active agents [Ramaswamy (2010), Schweitzer
(2019)], nonreciprocal interactions have been intensively studied in classical models.
Prime examples of such active states are the so-called traveling-wave states. In nonre-
ciprocal models like the Lotka-Volterra predator-prey model [Lotka (1920), Volterra
(1926), Bacaér (2011)] these states are associated to two different agents, one of which
(predator) is hunting the other (prey). More recently, phase transitions [Fruchart
et al. (2021)] and frustration [Hanai (2024)] in systems of nonreciprocal oscillators
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Chapter 9 Quantum Synchronization of Nonreciprocally Coupled Quantum van der
Pol Oscillators

Figure 9.1: Schematic overview of two coherently and dissipatively coupled, driven oscillators
A and B. (a) Each oscillator is subject to single-phonon gain and two-phonon loss. The
coherent coupling g, pe'? is denoted by a solid double arrow and the dissipative coupling §
by a wavy double arrow. An external drive 24 represented by a solid arrow is applied to
A. The solid (dashed) arc visualizes (bistable) locking between the oscillators. The insets
are qualitative plots of the combined synchronization measure P, an effective probability
distribution of the relative phase ¢4p5. (b) Schematic regions labeled by the steady-state
values of ¢4p at which P, exhibits a maximum. Each corner/arrow head corresponds to
the regime in which this parameter is large compared to the others. Dashed lines indicate
approximate transitions.

have been investigated. First steps toward nonreciprocity in quantum systems have
been taken, e.g., in non-Hermitian quantum mechanics [Hatano and Nelson (1996)],
cascaded networks [Roth and Hammerer (2016), Lorenzo et al. (2022)], and topological
networks [Wanjura et al. (2020), Wichtler and Platero (2023)]. Lately, investiga-
tions of the effects of nonreciprocal interactions on quantum synchronization have
started [Nadolny et al. (2025a)].

In this chapter, we consider systems of two coupled quantum limit-cycle oscillators
and study the interplay of three competing quantum synchronization mechanisms:
phase locking, antiphase locking, and bistable locking. These three effects are induced
by an external coherent drive that acts on one of the two quantum oscillators as
well as by a coherent and dissipative coupling that yield an effective nonreciprocal
interaction between the oscillators. The two couplings can be tuned such that the
nonreciprocal interaction even becomes unidirectional [Metelmann and Clerk (2015)].
A schematic overview of the phase-locking regimes is presented in Fig. 9.1. To quantify
quantum synchronization, we employ a common measure. We show that the effective
interaction leads to synchronization blockades. One blockade occurs between the
undriven oscillator and the external drive in the unidirectional case when oscillator A
does not influence oscillator B. The second blockade occurs between both oscillators
when the effective interaction is close to being unidirectional. A mean-field analysis
reproduces this behavior. To understand this blockade in the quantum case, we make
use of the quantum synchronization measure evaluated for a perturbation expansion
of the steady state.

This chapter is structured as follows. In Sec. 9.2, we introduce the Lindblad master
equation which describes the gain and damping processes that stabilize the quantum
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limit cycles and define suitable quantum synchronization measures. We start our
analysis by considering two coherently coupled oscillators, one of which is driven
externally, in Sec. 9.3. Then, we introduce a dissipative coupling and study its effect
both in the absence and in the presence of the external drive in Sec. 9.4. After studying
frequency synchronization in Sec. 9.5 we simulate quantum trajectories in Sec. 9.6. In
Sec. 9.7, we analyze the blockades induced by the nonreciprocal interactions. In the
last section, Sec. 9.8, we compare the phase diagram of our quantum model to the
ones of classical analogues that are defined by the corresponding mean-field equations.

9.2 Model and Quantum Synchronization Measure

We consider two limit-cycle oscillators A and B, stabilized by single-phonon gain at
rate 75 and two-phonon damping at rate v/ [Lee and Sadeghpour (2013)],

== Llp) = ~ilH.0+ £(o). (92.1)
) A ~B A ~B
£(p) = LDl)(o) + D)) + D)) + LW (922)

The operators a'f) = ag) and b(f) = ag) denote the annihilation (creation) operators of
system A and B. The Hamiltonian H will be defined in the individual sections below
and contains coherent drive and coupling terms. Later, we will introduce an additional
dissipative coupling between both oscillators to create an effective unidirectional
coupling. A schematic overview of the system is given in Fig. 9.1.

To study quantum synchronization phenomena in this model, we have to choose
an appropriate quantitative measure of synchronization. In previous works, several
measures have been defined [Ludwig and Marquardt (2013), Ameri et al. (2015), Hush
et al. (2015), Weiss et al. (2016), Roulet and Bruder (2018a), Jaseem et al. (2020a)]. In
the present study, we will follow [Hush et al. (2015), Weiss et al. (2016)] and consider
effective probability distributions of phases of quantum oscillators. These distributions
are based on the phase states [Barak and Ben-Aryeh (2005)], see also Eq. (7.1.6),

_ L N ane,
|6) = \/%;) n) . (9.2.3)

For a single oscillator, the measure P; is given by

Pi@) = (Blpld) — = = £ S ooy, - L
2r 27 e o
n,m=0
1 © oo .
= o Z (elk(bpn,nJrk +e lk¢pn+k,n) ) (92'4)
k=1 n=0

where py, m = (n| p|m). The sum over n in the last line of Eq. (9.2.4) covers all matrix
elements that lie on the kth off-diagonal. The contribution for m — n = 0 reduces
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to Tr[p]/2m = 1/27 and cancels the second term in the first row of Eq. (9.2.4). The
remaining matrix elements pp, 4, = Tr [dkp] and pp iy = Tr [ZLTkp] in Eq. (9.2.4) are
identified as expectation values of an operator a,

[e.9]

=D Inn+1], @ =) |n}n+kl, (9.2.5)
n=0

N

which is related to the Susskind-Glogower operator [Susskind and Glogower (1964)].
Therefore, this synchronization measure can be rewritten in a compact form,

PO) = D0~ 5 = 000) — 5 = 5 Do) e (020
k
where
p(¢) = 27T]l + ;ﬁ > (e7*9a" 4+ Hee.) (9.2.7)
k=1

is similar to Egs. (8.2.7) and (8.2.8). The moments of P,

2

m = / do Py(¢)el™ = (a"), (9.2.8)

0

that are linked to the discrete Fourier transformation of the phase distribution, are
expectation values of powers of a. In Ch. 8, we have seen that moments are very
useful for classifying different types of phase locking since they quantify the weight of
the n-maxima term in the phase distribution. Therefore, they can be used to identify
switches between e.g., phase locking and bistable phase locking.

In the following paragraphs, we want to gain a better understanding of the operator
a. As an introductory example, let us study the expectation value of a for an oscillator
in a coherent state |a),

(o] @¥ o) = e7loF Z

n,m,j=0

o™ a*m n+k

Vo () G+ ki) =e ‘“'QZ NCCE

= el af?"
,;Jn!\/(n+1)...(n+k)‘ (9.2.9)

Without the square root in the denominator, the series in Eq. (9.2.9) would equal the
exponential function of |a|?. The expression for coherent states close to the origin,
i.e., in the limit || < 1, follows directly from a Taylor expansion,

laj<1 aF

~k PN
(o] @" o) =~ Nk

In this limit, a effectively becomes a phase operator that measures the phase of a

(9.2.10)
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coherent state. In contrast to S = (a)/+/{afa), see Eq. (7.1.5), the expectation value
(a| @* |a) vanishes for coherent states located at the origin that are considered to show
no form of quantum synchronization, i.e., no phase preference.

The limit of large || > 1 is more subtle. From the inequality

o |2n > ’271

S M e DI D D SR (ERY
o a4 D) S 2/t ’ >

one can naively guess that the expression in the center scales like o el®”/|a|. For
large || > 1, terms of small n become less relevant. Using Stirling’s approximation
of the Gamma function I'(n + 1) = n!, see Eq. (8.327.2) of [Gradshteyn and Ryzhik
(2015)],

T(n+1) "2 Vamn (@)" , (9.2.12)
(§]
we see that
P(n+b+1) (n+4)""
lim 2 = lim U W L E—
el Dy (n41). (k) 7% preans  mUR (g k)t
n
(9.2.13)

Therefore, the denominator in the last line of Eq. (9.2.9) can be replaced by I'(n +
k/2+1),

~k lo>1 —|o? . |a|2n o\
L I S el = (9.2.14)
=l(+s+1)  \laf

where in the last step the index shift n — n — k/2 was used. Thus, for coherent
states, the absolute value of (a|@" |a) is upper bounded by S’. In conclusion, (a|a |c)
measures the phase of coherent states. For large || > 1, it is similar to S” and for
small |a| < 1 it vanishes linearly in o which is a more adequate behavior than S’.

Similar to Eq. (8.2.9), for a system containing N quantum oscillators, we consider
the following synchronization measure,

o|6) - G <®p ¢)) > %) (9.2.15)

that is based on tensor products of phase states

) = é) 65 - (9.2.16)
j=1

Py(3) = (4

In Eq. (9.2.15), this measure is rewritten as tensor products of p(¢;) defined in
Eq. (9.2.7). Therefore, Py contains terms with various combinations of e~*¢; &;‘? and
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their Hermitian conjugates that act on the jth oscillator. Thus, the moments of the
phase distributions Py are given by expectation values of products of dgr)kj .
The phase distribution measure P(¢4p) of the relative phase ¢ap = ¢4 — ¢p of

two oscillators reads
1 o0
Py(¢aB) /d¢B Py(¢paB + ¢B,9B) = o Z e %A (g ,al)*) + He., (9.2.17)
k=1

similar to Eq. (8.2.11). Due to the operator structure of Py mentioned above, we can
define the moments of these phase distributions for individual phases ¢; and relative
phases ¢;; as

M= (@, (9.2.18)
Y= ((aah)"). (9.2.19)

9.3 Coherently Coupled Oscillators

In previous work [Lee and Sadeghpour (2013)], two distinct cases have been studied: (i)
a single driven limit-cycle oscillator and (ii) two coherently coupled identical limit- cycle
oscillators, i.e, with gain and damping rates 7g = 79 and 7d = 7d but 79 #* 'yd
The single oscillator locks to the phase of the external drive with a phase shift of
—m/2. Note that in the context of quantum synchronization the existence of a single
maximum of the synchronization measure at ¢ is referred to as ‘phase locking to ¢¢’,
i.e., this maximum does not need to be infinitely sharp. The two coherently coupled
oscillators were found to be in the quantum synchronization blockade and exhibit
bistable phase locking. These two cases are the harmonic-oscillator-like analogues of
[Roulet and Bruder (2018a), Roulet and Bruder (2018b)], see also Sec. 7.2.2.

Here, we first consider the combination of both cases, i.e., two coherently coupled
identical limit-cycle oscillators, one of which is driven externally. The spin-1 equivalent
is discussed in the previous chapter. In the majority of the following sections, all gain
and damping rates are set to be equal 7(’14 = ’ydB = ’yg‘ = ’yf = . qu this‘ choice, the
oscillators are in the blockade and neither in the classical limit v/} <~ nor in the
quantum limit fyé > fyg. The system is described by Eq. (9.2.1) and the Hamiltonian

H = %a* + g“?Bei‘z’aTb +He.. (9.3.1)
In the original description of the synchronization behavior of identical quantum limit-
cycle oscillators [Lee and Sadeghpour (2013)], two separate locking mechanisms can
be identified. First, a driven oscillator A tends to align its phase to the one of the
external drive plus a shift of —7/2. In the limit where another coupled oscillator
B identifies the driven oscillator A as an effective drive, the relative phase between
both oscillators will be ¢pap = ¢4 — ¢p = ¢ + 7/2. The parameter ¢ is the complex
phase of the coherent coupling between A and B, defined in Eq. (9.3.1). Second, the
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Figure 9.2: Probability distribution of the relative phase of two identical oscillators for
¢ = —7/2 and § = 0. (a) Fixed interaction strength g, 5 = 0.17. The dash-dotted black curve
denotes the maxima of P. (b) P»(0) as a function of g, 5. The dotted black curve denotes
the transition from two maxima to one maximum. In both panels (a) and (b), the color is

scaled linear in the interval [-10~%,107%] and logarithmic elsewhere. The dashed black curves

indicate where mf421)3 = 0 and the solid black curves indicate where |m541])3 = |mf})B . (e)—(e)

First moments of the phase distributions Py(¢4), Pi(¢p), and P;(¢ap) showing lifting of
the blockade.

probability distribution of the relative phase for two coherently coupled undriven
oscillators will exhibit two maxima at different values ¢ap = ¢, ¢ + . Therefore,
these two locking mechanisms compete in the following sense: depending on the ratio
of drive strength and coupling strength, the combined synchronization measure either
exhibits one maximum or two maxima.

In Fig. 9.2, the transition from two maxima to one maximum of the combined
synchronization measure for ¢ = —m/2 is visualized. For small drive strengths, Py
exhibits two maxima at ¢4p = £7/2 that merge into a single maximum at ¢45 = 0
for a sufficiently large drive strength. In Fig. 9.2(a) the dash-dotted black curve
highlights local maxima of P, whereas in Fig. 9.2(b), the dotted curve indicates the
point of transition from two maxima to one maximum. The maxima merge at values
of Q4 between the dashed black line where mf])g = 0 and the solid black line that
indicates ]mfj}g = ]mf])g . In Figs. 9.2(c) to 9.2(e), the non-vanishing first moments of
Pi(¢4), Pi(¢p), and Pi(¢ap) are shown. An analogue of the drive-spin blockade of
Ch. 8 does not exist for quantum van der Pol oscillators. Therefore, mill) is not zero
here. Moreover, the blockade between both oscillators mfj}g = 0 only exists for small
drive strengths, i.e., it is lifted by the drive. The effect that single blockades are lifted
by another interaction has been mentioned in Sec. 8.3.1 for spin-1 oscillators.
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9.4 Coherently and Dissipatively Coupled Oscillators

We now add a dissipative coupling g D]a + b](p) between the two oscillators to the
Lindblad master equation Eq. (9.2.1). This dissipative coupling can be realized by
introducing an auxiliary rapidly decaying cavity [Metelmann and Clerk (2015)], see
Sec. 2.3.2. The Lindblad master equation of the full three-oscillator model reads

g

0 .
p=—1i TACLT + gATBe“z’aTb + §(ch +cla)+He.,p| + gD[C] (p)

A B A B
19 Dlaf)(p) + C DT (p) + LD (p) + LDI)(p).  (9.4.1)

+2 2 2 2

Like in the previous section, the two quantum van der Pol oscillators that are denoted
by the annihilation operators a and b are coherently coupled with strength g, and
phase ¢. Their gain and damping rates are defined as vg and vé. Oscillator A is
driven by an external drive 24. Furthermore, both oscillators are coherently coupled
with strength g to a rapidly decaying cavity that is characterized by the operator c.
The decay rate k of the cavity is significantly larger than any other timescale of the
System.

The Heisenberg equation of motion of the cavity operator ¢ reads

d

o= —i%(a +b) — %c. (9.4.2)
For k > 'yg, 'yg we can assume that the cavity reaches its steady state much faster
than oscillator A and B. Therefore, we replace ¢ — —2i(a + b)g/k obtained from
Eq. (9.4.2) with de/dt = 0 in Eq. (9.4.1) leading to

%(b% +cla) + He — 0, (9.4.3)

K 2
5Dlel(p) = 2 Dla+1l(p). (9.4.4)

In this limit, the system can be described effectively by two quantum van der Pol
oscillators interacting dissipatively. The resulting Heisenberg equations of motion are

d Q igupe®+3, Ve =20 )

Sa= it - lgABGQ 9y, T y T %daTa?, (9.4.5)
d : —i¢p | = B _ 95 B

ab:—lgABGQ 9,10 . gb—%dbnﬂ. (9.4.6)

A cumulant expansion to lowest order yields the mean-field equations

. Q4 igupe® 4+ g Ve =29 — 24 1{a)?
(a) = —i—- - AB 5 (b) + 2 1 (a), (9.4.7)
. i —ib 4 5 B 25— 2vB|(b)|?
_ _1g9ape " +g Yo — 29— “7a
(b) = 5 (a) + 1

(b) . (9.4.8)
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The coupling between A and B depends on the two possible directions

g = —igape ™ — 7, (9.4.9)
9hp = —igape® — g, (9.4.10)

and becomes unidirectional for g, = g and ¢ = £m/2. The influence of oscillator
B on A (A on B) vanishes for g,5 = g and ¢ = (—)71/2, i.e., the effective coupling
becomes unidirectional.

The equations of motion of the amplitude and phase of the oscillators are obtained
by using (a;) = rjel®s,

A 25 A
== sin(oa) + T = M0 B g, sin(oan — 9) + Geos(6an)).
(9.4.11)
B _ 24 B
ip = =rp = Mo+ T g sin(0an — 6) — Geos(0an) . (9.4.12)
as well as
ba=— o cos(0a) — 22 (gapcos(ban —0) ~ gsn(6an),  (941)
TA 2r4
95 == 5 (9anos(ban — 9) + Gsin(dap)) (9.4.14)

The dynamics of the relative phase obey

<15AB =— &cos(gﬁA) + 9 (TA + :i) sin(¢ap) + Jap <TA — Ti) cos(dap — ).

2rp 2 \rp

9.4.1 No External Drive

In [Walter et al. (2015)], it has been shown that two dissipatively coupled quantum
limit-cycle oscillators lock to a relative phase ¢ 4p = w. This synchronization behavior
is different to the one induced by a coherent coupling with complex phase ¢ = —7/2,
see Sec. 9.3. In Fig. 9.3(a), we present the combined synchronization measure for a
fixed coherent coupling strength, whereas in Fig. 9.3(b), we vary both the coherent and
dissipative coupling strengths to study the transition between both locking mechanisms
at 24 = 0. For increasing g, at fixed g, four consecutive changes occur that are
shown in Fig. 9.3(b): the effective coupling becomes unidirectional (solid gray line),
the second moment vanishes mfj)g = 0 (dashed black curve), the two maxima of
the combined synchronization measure originally at ¢ 45 = £7/2 turn into a single
maximum at ¢4p = 7 (dotted black curve), and the first and second moment become
equal |m1(41])3 = |m(j])9| (solid black curve). Counterintuitively, the second moment
does not vanish when the effective coupling becomes unidirectional; this feature
will be studied in more detail in Sec. 9.7. For small g,5, we recognize that the
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Figure 9.3: Combined synchronization measure P, for ¢ = —7/2 and Q4 = 0. (a) Fixed
interaction strength g, 5 = 0.3y. The dash-dotted black curves denote the maxima of P,. (b)
Ps(7) as a function of g, 5. Here, the dotted curve denotes the transition from two maxima to
one maximum of P,. In both panels, the solid gray lines denote § = g, 5. The dashed black
curves indicate where mf)g = 0 and the solid black curves indicate where |m541) =|m (2)
The color is scaled linear in the interval [-107%,107%] and logarithmic elsewhere.

boundary between one and two locking phases follows the scaling g o g124 /7. This
behavior is reproduced by the mean-field approximation presented in the following.
The perturbative solution of the steady-state radii

rj = 4 erlV) : (9.4.16)
for Q4 = 0 reads
erﬁll) =— iA( © 4 7‘1(9) cos(¢pap)) — g’;{f 7"1(3 sin(pap — ¢), (9.4.17)
g g
67“531) =— %(r%) + 7“1(4) cos(¢pap)) + 9;37“1(4 sin(¢pap — ¢) - (9.4.18)
7 g
For equal rates 754 = 'yf = 'yj‘ = ’yf =+, this leads to
bap =Gsin(gap) — QATB sin(2(¢ap — ¢)) (9.4.19)

If g > g%p/7, a single stable solution ¢pap = 7 exists. If § < g%5/7, the system
experiences bistable locking to ¢pap = ¢, ¢ + m. For ¢ = +7/2, there are two stable
solutions ¢ap = :l:arccos(—fry/QgiB) if § < 2¢%p/v and there is a single stable
solution ¢pap = 7 if § > 2¢%5/7-

In the configuration of vanishing drive strength, the system exhibits several symme-
tries. First, a global U(1) symmetry, i.e., the invariance of the Liouvillian £ under

the transformation a; — eeaj The interaction term a'd — e afe?h = afb as
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well as the Lindblad dissipators D[L] — D[e*’L] = |*|D[L] = D[L] are indepen-
dently invariant under this transformation. Second, for ¢ = 0,7, the Liouvillian is
invariant under the transformation a — €'%b,b — e '?a. Here, e?alb + e %abl —
el®e™?blei9q + e71%e%aTei%h = e%aTb + e~ abl as well as D[L] are invariant. Note
that a +b — e®(a + e 2%) = e®(a + b) for ¢ = 0,7. Third, for ¢ = +7/2, the
Liouvillian is real £ = £* which implies that the steady state py = p; is also real.
Following [Fruchart et al. (2021), Nadolny et al. (2025a)], this invariance can be
interpreted as a generalized PT symmetry. In our setup, this symmetry is defined
as the invariance under the consecutive transformations a <+ b and g, 5 —+ —g,5- In
other words, if the oscillators are exchanged, we arrive again at the same physics if
the sign of g, is flipped too.

9.4.2 With External Drive

Here, we consider all three parameters €24, g, 5, and g to be nonzero. There are three
competing synchronization effects: First, as described in Sec. 9.3, the external drive
defines a preferred phase to which oscillator A locks with a phase shift of —7/2. If
the coherent coupling with complex phase ¢ is small compared to the drive, it leads
to a locking of oscillator B such that the relative phase results in ¢pap = ¢ + 7/2.
Second, the coherent coupling itself leads to a bistable locking of the relative phase to
¢AB = ¢, ¢ + w. Third, the dissipative coupling induces locking to ¢pap = 7.

Two cuts through the three-dimensional phase diagram at Q24 = 0.2y and Q4 = 0.5y
are presented in Figs. 9.4(a) and 9.4(b). Three regions of the maxima £¢max of P
can be identified. First, the bottom left corner corresponds to a dominant drive
where the ratio between g and g, determines the relative phase ¢ 4p, i.e., 0 or 7 as
explained in the beginning of this section and visualized in Fig. 9.1. Second, in the
bottom right corner, in which the coherent coupling g,z dominates, the combined
synchronization measure experiences two maxima at ¢pap = +m/2. Third, in the
top left corner, where the dissipative coupling dominates, the relative phase reaches
¢ap = m. Figures 9.4(c) and 9.4(d) show the combined synchronization measure along
two line cuts in Fig. 9.4(b) where Fig. 9.4(c) corresponds to the dashed gray line and
Fig. 9.4(d) corresponds to the solid gray line. In Fig. 9.4(e) we present the line cut
shown in Fig. 9.4(d) as well as a fit of a model for ¢nyax. This model is defined as the

maximum of P,
02 ~ " ~2 u 2
Pr(daB) = <U1gA§3A — u;;i) cos(pap) + W cos(2048),  (9.4.20)

with u; > 0. The parameter u; (u3) corresponds to a maximum at 0 () and the
parameter us (u4) corresponds to maxima at 0 and 7 (at £7/2). The powers of the
parameters in P,, were obtained by a perturbation expansion of the steady state in
the parameters g,5, g, and €24 with respect to the equal gain and damping rates
’yé = vg = ~. For each of the two cosine terms in Eq. (9.4.20), we only consider
the leading order of each parameter up to a combined third order. Since in this
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Figure 9.4: Visualization of different regimes of phase locking. The maxima of the combined
synchronization measure P, are located at £¢max. (a) Q4 = 0.27. (b) Q4 = 0.5v. The
dashed gray line indicates the line cut at g,z = 10794y shown in (c) and the solid gray line
indicates the line cut at § = 0.017y shown in (d). (c), (d) Combined synchronization measures
along line cuts highlighted in (b). The dash-dotted black curves highlight the maxima of P.
The thin light blue curve corresponds to a fit of the maximum of Eq. (9.4.20) to data of (d).
(e) The thick blue curve corresponds to the line cut in (b) indicated by the solid gray line, i.e.,
the dash-dotted black curves in (d). The inset shows a zoom to the step-like change of ¢ax.

calculation we truncate the Fock space at a finite occupation number, the values of u;
cannot be obtained. To get a rough estimate of these values, we fit the maximum of
P,, to Fig. 9.4(e) at g/v = 0.01. The fit (u1,u2,u3) ~ (11,6.0,8.8)uys shows a good
match with the numerical data for g,5 < 7. Note that this simple model is only
suitable for small g and g, 5. For large g, /7, the transition of ¢max from 0 to m/2 is
captured qualitatively. The linear dependence g o< g, for which the second moment
in Eq. (9.4.20) vanishes, see the dashed black curve in Fig. 9.3(b), appears to be valid
even slightly above g,5 = 7. Moreover, for Q24 = 0, the equality of the first and
second moment in Eq. (9.4.20) follows § o< g% 5/7 for small parameter values up to
slightly above g, 5 = 7, see the solid black curve in Fig. 9.3(b). For § = 0, the equality
of the first and second moment implies 24 o /g, 5 for small parameter values up to
slightly below g,z = 7, see Fig. 9.2.
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9.5 Frequency Synchronization

Another perspective on these synchronization phenomena is provided by the study
of frequency synchronization. In contrast to before, where we studied the phase
synchronization of oscillators, we now compute their oscillation frequencies. The power
spectrum

o

Sij..(w) = lim [ dr Cy;_ (¢, T)e“T (9.5.1)

is the Fourier transform of the two-time correlations

Caa(t,7) = (al(t + 1)a(t)), (9.5.2)
Cpp(t,7) = (b1 (t +7)b(t)), (9.5.3)
Capap(t,T) = (bT(t + 1)a(t + 7)a’ (£)b(t)), (9.5.4)

in the steady-state limit ¢ — co. To approximate S44 and Spp, we rewrite the Heisen-
berg equations of motion for 24 = 0 of the 7-dependent operators as dv/dr = M

where
1 Vg =25 —4vina  2(iguge® —7) 9.5.5)
4 2(ig 4 g% — 9) 75—2@—475713 ’
= ({a (t + m)a(t)), (' (t + m)a(®))) (9.5.6)

and n; = (a;{(t + 7)a;(t + 7)). Here, we approximate (a?(t + T)a(t + 7)a(t)) ~
2(a'(t + 7)a(t + 7))(af(t + 7)a(t)) using a cumulant expansion of second order and
the fact that in the limit ¢ — oo, i.e., evaluating the expectation values in the steady
state, (a0 (t 4+ 7)) = (a(™(t)) = 0. For equal rates *yg = 7& = 7, the two eigenvalues
Mg of M read

1 1z
At :Z(fy(l —2ny4 —2np) —2g) + 5\/92 — 945+ (na —np)*y2. (9.5.7)
For na ~ np, we can approximate the imaginary part of Ay by
wy =Im\y] ~ +£4/¢%5 — 5%/2. (9.5.8)

The correlations Cy4(t,7) and Cpp(t,7) effectively measure the time evolution of
the phases of the individual oscillators A and B. The correlation Capap(t, ) is used
to obtain the time evolution of the relative phase between both oscillators. Fourier
transforms of these three correlations can be used to distinguish between static and
active steady states. In Figs. 9.5(a) to 9.5(f), we present Saa(wa), Spr(wg), and
Sapap(wap) for fixed g = 0.01v as a function of g, 5. The dashed curves denote the
approximation wy and the dotted curves in Figs. 9.5(e) and 9.5(f) denote 2w.. For
Q4 = 0.5y (bottom row), the individual spectra Sq4 and Spp exhibit an additional
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Figure 9.5: Power spectra defined in Eq. (9.5.1) for g = 0.01y as well as Q4 = 0 (top row) and
Q4 = 0.5y (bottom row). (a)—(d) The white dashed curves correspond to wy of Eq. (9.5.8).
(e), (f) The white dotted curves correspond to 2ws and the arrow in (f) points at a local
maximum that is close to wy. (g), (h) Location of maxima of Sq4. The black dotted curve
in (g) equals the one in Fig. 9.3(b) and indicates the transition between a single maximum
and two maxima in Ps.

local maximum at w; = 0 (j = A, B) that fades out for g,z > §. This maximum
corresponds to the possibility that the oscillators lock to the frequency of the drive.
In Fig. 9.5(f) a local maximum at w4 is visible (black arrow) which can be interpreted
as follows: one of the oscillators locks to the drive while the other one is oscillating at
frequency w+. Similar situations will be discussed for classical oscillators in Sec. 9.8.1.

We show the location of the maxima of Sg4 in Figs. 9.5(g) and 9.5(h). The dotted
curve in Fig. 9.5(g) is identical to the one in Fig. 9.3(b) and indicates the transition
between a single maximum and two maxima in P,. Below this curve, the relative
phase between the oscillators locks to ¢p4p ~ +m/2. This region of bistable phase
locking partially overlaps with the region of frequency locking to nonvanishing w;
while the spectrum of the relative frequency has a dominating maximum at wap = 0.
This partial overlap may be related to the fact that quantum states lock their phase
and frequency only probabilistically: therefore, both effects can occur independently.
In classical systems, states that exhibit a vanishing relative frequency also exhibit
locking of their relative phase. States that feature both frequency locking to w; # 0
and a vanishing relative frequency wap = 0 simultaneously are known as traveling-
wave states. We will present exemplary time evolutions of such states and the phase
diagram of the mean-field equations of multiple such oscillators in Sec. 9.8. Moreover,
in Sec. 9.6, quantum trajectories of two coherently coupled and undriven oscillators
that exhibit antiphase locking and traveling waves are shown.

The relation between phase and frequency locking of traveling-wave states is also
analyzed in systems of nonreciprocally coupled groups of multiple spins 1/2 [Nadolny
et al. (2025a)].
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Figure 9.6: Quantum trajectories of two coherently coupled oscillators corresponding to
Fig. 9.3. We set 04 = 0 and g = 0.01y. (a) Antiphase locking to ¢ap ~ m for g,5 = 0.17.
(b) Bistable phase locking to ¢ap ~ +m/2 for g,z = 27. In the upper row, the complex
phases are unwrapped: the difference between subsequent values never exceeds +7 due to
added shifts of +27.

9.6 Quantum Trajectories

In addition to the steady-state analysis of the density matrix presented in Fig. 9.3, we
simulate individual quantum trajectories. Following [Wiseman and Milburn (2009)],
the stochastic quantum master equation reads

dpm = —i[H, pp]dt + L(py)dt + GD[a + b](pm)dt
+Vl(a+b—Tr[(a+b)pm))pm + He]dW, (9.6.1)

where the first line describes the deterministic part with H = g, ze'®a’b/2+H.c. and L
is defined in Eq. (9.2.2). In the second line, the stochastic part with Wiener increment
dW originates from the dissipative interaction gD[a + b]. As described in Sec. 9.4, this
interaction is mediated by a lossy cavity. Monitoring the signal leaking out of this
cavity leads to insights about the expectation value (a 4 b) that carries information
about the relative phase ¢ 4p. The density matrix p,, is the state conditioned on the
outcome of a measurement of (a + b). Numerically, we compute various operator
expectation values using p,,. For the case 24 = 0, we study the first moments mg-l) of
the individual operators as well as the first moment of the combined synchronization
measure mf}g. Their complex argument effectively corresponds to ¢; and ¢ap and is
shown in Fig. 9.6 for g = 0.01y. For g,z = 0.1y the relative phase locks to ¢pap =~ ,
whereas for g, 5 = 2+, bistable locking to ¢pap ~ £7/2 occurs. In Fig. 9.6(b), one can
furthermore identify the traveling-wave character, i.e., linearly increasing/decreasing
phases ¢;, as well as a correlation between the signs of éj and ¢ 2. The quantum
trajectories presented in Fig. 9.6 should be compared with the steady-state analysis
shown in Figs. 9.3(b) and 9.5(g).

The quantum trajectories of the three cases along the gray line at g = 0.017 in
Fig. 9.4(b) are presented in Fig. 9.7. The drive locks at least one of the oscillators
close to ¢j = —m /2. Therefore, (from left to right in Fig. 9.7) (i) antiphase locking
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Figure 9.7: Quantum trajectories of two coherently coupled oscillators corresponding to
Fig. 9.4(b). We set Q4 = 0.5y and § = 0.01y. (a) Antiphase locking to ¢pap ~ m for
gap = 0.01v. (b) Phase locking to ¢pap =~ 0 for g,5 = 0.17. (c) Both phase locking to
¢ap =~ 0 and bistable phase locking to ¢ap ~ £7/2 for g, 5 = 27 can be identified, depending

on which moment mfﬁ% is studied.

to ¢ap ~ m, (ii) phase locking to ¢ap ~ 0, and (iii) bistable phase locking to
¢Ap ~ £7m/2 are not that prominent. Moreover, in the regime of bistable phase

locking, see Fig. 9.7(c), due to the drive, the first moment m(Al])B does not vanish. Thus,

bistable locking can only be identified by analyzing the second moment mg])g. Here,
drive-induced phase locking and bistable locking coexist which we have already seen

in Fig. 9.5(f).

The bistable locking of the relative phase and the corresponding traveling-wave
states have two configurations: ¢ap ~ +7/2 corresponding to ban 2 0. Due to
quantum fluctuations, the oscillators can switch between these configurations. In
classical scenarios of two groups A and B [Fruchart et al. (2021)] as well as for two
groups of many spins 1/2 [Nadolny et al. (2025a)], the switching rate depends on
the number of agents in one group. For large numbers of agents, the switching is
suppressed leading to a so-called nonreciprocal phase transition. In the sense of a
finite-component phase transition [Hwang and Plenio (2016), Puebla et al. (2017),
Hwang et al. (2018)], we consider the radius of an oscillator to be analogous to the
number of agents in one group. The dependence of the number of switches on the
radius of identical oscillators 7!’]4 = ’yf and 7&4 = 'yf is presented in Fig. 9.8. Depending
on the overall noise strength that increases with both 7;]4 and ’yg?, the number of
jumps between the two configurations can increase or decrease with the theoretical

radius 4 /7z'/274' and the measured radius (aTa): in Fig. 9.8, the red (purple) crosses

correspond to varying 7&4 / ’7&4 (’7&4 / 'Yg‘ )-

140



9.7 Blockades

T 1F e o et T = [T T T T ]
&£ 0 L(a) o A N & (c) $¥. SN 40 1(e)
8. B AFEN s : tti
ERLA AR 1200l
£ E £
bs-‘o 1.'\.. / go m.-‘ - - s,
SR 1LY S " B S S 20%. L ’} L.
025050075100125150
/Q’Yd
T 1F s el v, —
i 5 _(b) 9 i (d) v "'.__‘ “ r
=. /'-v‘?. :?E é ’l‘ {‘ ’}
S ok wd TH FOr 1 2307 Jf,} Jf
=% "0‘.‘ .‘? =% . N ,}
3 gl ‘"-"""”'s"'. 1 2,k % 5% tal 20 , ’l‘—
400 450 500 400 450 500 0.25 0.50 0.75 1.00 1.251.50
tya tys (a’a)

Figure 9.8: Dependence of switching rate for identical oscillators ’yg 'yf and 4 = 4P
without external drive 24 = 0. (a), (c) Few switches for 7' = 0.177". (b), (d) More switches
for ’yg‘ = 3y4. (e), (f) Vary 'y;‘ for fixed § = 0.174 and g,z = 274 (red) and vary 7' for
fixed g = 0.17;1 and g, 5 = 27;4 (purple).

9.7 Blockades

If the first-order contribution to the synchronization measure of the relative phase
of two coupled oscillators vanishes and the second-order contribution remains, the
oscillators are in the so-called synchronization blockade. Here, since mill])g = 0, bistable
locking of their relative phase corresponding to mfj)g (see the previous sections) is the
leading order. This bistable locking can be interpreted to be mediated by an effective
second-order interaction, see Eq. (9.4.19). Intuitively, information is carried back and
forth between both oscillators. Therefore, we would expect the second moment mf}g
to vanish when at least one of the effective couplings g%, 5 or gff_ g of Egs. (9.4.9)
and (9.4.10) vanishes: at ¢ = +7/2 and § = g,5. However, this is not the case. In
Fig. 9.9(a), we show the second moment of the combined synchronization measure
P,. The two zeros of mfj)g at ¢ = +7/2 can be approximated by the dashed gray line
that denotes § = g,5/v/6. This approximation is based on Eq. (9.4.20), where the
powers were obtained by a perturbation expansion up to third order in g, 5, g, and
Q4. The prefactors were extracted from a fit of the maximum of P, to numerical
data presented in Fig. 9.4(e).

In Fig. 9.9(b), we show the dependence of the zero of mf)

on the ratio 7, Ay
Small values of this ratio correspond to the quantum limit, i.e., small radii of the
quantum limit cycle meaning small amplitudes of the oscillator. We expand the steady
state of identical oscillators with different gain and damping rates 7;4 = yf and
'y;? = 7513 up to second order in g/ ’yfl‘ and g,5/ fy;?. This leads to an approximation of

the value of g at which the second moment of the combined synchronization measure
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Figure 9.9: Second moment of the combined synchronization measure P, for g,z = 0.174
and Q4 = 0. (a) Equal rates 77 = y2 = 72 = 77 = ~. (b) Identical oscillators with
different rates ;' =2 and 77 =% and ¢ = —7/2. The dotted curve corresponds to the
approximation defined in Eq. (9.7.1). In both panels, the solid line denotes § = g, and the
dashed line denotes §j = g, 5/Vv6. The latter expression is obtained from Eq. (9.4.20).

vanishes: for ’ygl < 734 )

s [3 (1o 30 (12 + 5V/3) (9.7.1)
i~ 51 G 9aB - e

This approximation is shown in Fig. 9.9(b) as the dotted curve.

More insights into the quantum synchronization mechanisms of unidirectional
coupling are obtained by considering an external drive acting on oscillator A. In
Fig. 9.10, we show the first two moments of Py(¢ap) and Pi(¢p). For ¢ = —m/2 and
g = gap, the effective coupling gi{i p from oscillator A to B is zero, see Eq. (9.4.9).
Therefore, naively, the influence of the drive on the undriven oscillator B vanishes.
The zero in Fig. 9.10(b) confirms this prediction. This effect can be understood since
the Heisenberg equation of motion for b is independent of a,

B ~
ib:u

’%? 112
" 1 b— 76 b*, (9.7.2)

see Eq. (9.4.6). Analogously, Eq. (9.7.2) is invariant under the U(1) transformation
b — €b such that oscillator B shows no phase preference. However, the relative phase
between A and B as well as the phase of A is locked. These effects can be understood
intuitively by imagining a quantum trajectory of these unidirectionally interacting
oscillators. Oscillator B evolves independently from A, but A is influenced by (the
random jumps of) B. Thus, the relative phase ¢ 4p is locked even if ¢ p is not. In this
way, B can be interpreted as an additional noise source acting on A.

At fixed g g5, ¢ = —7/2, and Q4 # 0, increasing § leads to switches from locking
(¢ap = 0) to bistable locking and back to locking (¢ap = 7), see Fig. 9.4(c). At some
value close to § = 5g 4592 /4, indicated by the dashed line in Fig. 9.10(a), the relative
phase between both oscillators exhibits bistable locking even if both phases lock to
a single value individually. This approximation is obtained from Eq. (9.4.20). In
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Figure 9.10: Moments of the combined and individual synchronization measures Py(¢4p5) and
Py (¢p) for equal rates, g,5 = 0.1y and Q4 = 0.27. The solid line denotes § = g,5. The
dashed line in (a) corresponds to the approximation § = 5g,59%/4 and the one in (c) to
G = gap/V6. Both lines are obtained from Eq. (9.4.20).

comparison to Fig. 9.9(b), the minima of the second moment mg]é shown in Fig. 9.10(c)

lie at different values of §: in the presence of the external drive the symmetry between
¢ =—m/2 and ¢ = /2 is broken.

A perturbation expansion of the first and second moment of the synchronization
measure of the undriven oscillator B to leading order in g, 5, g, and {14 yields

o _1¢
m{l) =y 9B 672 9aBq,, (9.7.3)
e _1¢
o~ —i 1 (6}
mg) = —(iugd + ure g p) : 4 a5 2% (9.74)

Both equations suggest a zero at § = g, and ¢ = —m/2. Within this approximation,
the second zero in Fig. 9.10(d) can be explained by opposite signs of ug and .

9.8 Classical Analogue

In this section, as a comparison to the phase diagram of the relative phase between
the two quantum oscillators shown in Fig. 9.4(b), we will discuss the phase diagrams
of the classical analogues of two and three quantum oscillators.

9.8.1 Two Oscillators

The phase diagrams of the relative phase between two quantum oscillators in the
mean-field limit are obtained from Egs. (9.4.7) and (9.4.8). These equations have
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Figure 9.11: Two oscillators without external drive 24 = 0 described by Egs. (9.4.7) and (9.4.8).
(a) Phase diagram where each color denotes a different phase. The dashed black curve
corresponds to the approximate phase boundary between locking and bistable locking, see
Eq. (9.8.1). (b) Spectrum Sya(wa) for § = 0.794 (location of symbols in (a)). The dashed
white curve corresponds to wx defined in Eq. (9.5.8). In the regime of modulated traveling-
wave states, i.e., the example presented in (d), several maxima exist. Panels (c) to (e) show
the time evolutions of one phase each corresponding to the symbol next to the panel label.
The values of g, and § equal the coordinates of the respective symbol in (a). (c) Phase
locking to ¢ap = 7. (d) Modulated traveling-wave states: varying amplitudes and oscillating
relative phase around ¢ap ~ £7/2. (e) Traveling-wave states: constantly increasing phases
with fixed ¢pap ~ +7/2. A list of rules and thresholds for each class of steady states is given
in Sec. 9.8.3.

been studied in the context of exceptional points [Weis et al. (2023)]. The phase
diagram for Q4 = 0 is presented in Fig. 9.11(a). As in the previous sections, we
consider identical oscillators 7;‘ = vgB and 7&4 = 75 as well as ¢ = —7/2. To avoid
vanishing linear gain that would lead to both oscillators collapsing to zero amplitude,
we fix 754 — 2§ = 4. We identify the following regimes: (i) phase locking to ¢ap = T,
(ii) phase locking to ¢pap = 0, (iii) traveling-wave states with ¢pap ~ £7/2, and (iv)
modulated traveling-wave states. If g,5 = 0 and g > 0, both oscillators want to lock
to the other oscillator with ¢4p = 7. For small g, 5 7# 0 we expect bistable locking
for g smaller than 2gi B /ng, see Eq. (9.4.19), resulting in the boundary

A
~ 7,
g = \/g3\3+(7(;‘/4)2—7d. (9.8.1)

This boundary corresponds to the dashed black curve in Fig. 9.11(a). The especially
interesting so-called (modulated) traveling-wave states are identified by bistable lock-
ing of their relative phase and monotonic growing phases of oscillation. Traveling
waves exhibit fixed amplitudes and modulated traveling waves exhibit varying am-
plitudes. Such active states have been studied in the context of nonreciprocal phase
transitions [Fruchart et al. (2021), Hanai (2024), Nadolny et al. (2025a)]. The spectra
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Figure 9.12: Two oscillators with external drive Q4 = 0.57;;‘ described by Egs. (9.4.7)
and (9.4.8). (a) Phase diagram where each color denotes a different phase. White pixels
were not assigned any phase. The gray line denotes § = g, 5. (b) Spectrum Saa(wa) for
g = 0.774 (location of upper symbols in (a)). The dashed white curves indicate wy and
2wy defined in Eq. (9.5.8). Panels (c) to (e) show the time evolutions of one phase each
corresponding to the symbol next to the panel label. The values of g, 5 and § equal the
coordinates of the respective symbol in (a). (c) Phase locking to ¢4 = ¢p = —7/2. (d)
Wobble motion: varying amplitudes and oscillating phases around ¢ap ~ +7/2. (e) Partial
traveling-wave states: constantly increasing ¢4, oscillating ¢p around —n/2. The yellow
phase (top left) corresponds to phase locking to ¢ap = m, similar to Fig. 9.11(c), where
for § > gap (G < gap) pa = —7/2 (¢4 = w/2). The darker orange phase (center right)
hosts modulated traveling-wave states, similar to Fig. 9.11(d). Videos of time evolutions are
provided in [Kehrer (2025)]. A list of rules and thresholds for each class of steady states is
given in Sec. 9.8.3.

of oscillators in such states show maxima at nonvanishing frequencies, see Fig. 9.11(b).
Note that in the regime of modulated traveling waves, maxima at frequencies lower
than the expected oscillation frequency appear. These are very likely related to the
modulation frequencies of the variation of the amplitude and oscillation frequency.

More classes of steady states are found for nonvanishing drive strength €24. The
phase diagram of two oscillators for Q4 = 0.577' is shown in Fig. 9.12(a). Here, in
addition to the regions of (i) locking to ¢4p = 7 (yellow, top left) and (ii) modulated
traveling-wave states (darker orange, center right) known from Fig. 9.11, we find: (iii)
locking to ¢4 = ¢p = —m/2, (iv) wobble motion, and (v) partial traveling-wave states.
The wobble motion is identified by varying phases ¢; within an interval smaller than
27 as well as varying amplitude, see Fig. 9.12(d). Our definition of the wobble motion
also includes states that are assigned to the so-called swap phase discussed in [Fruchart
et al. (2021)]. In the swap phase, the oscillators are aligned on a line and periodically
switch between a static ¢; and ¢; + m. To distinguish between the wobble motion and
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traveling waves, we use the following order parameter

1 TH41
Sori,j = - / dt sign(Im[(a;)(a;)*]) . (9.8.2)
T

The integrand measures the orientation of rotation which is averaged over a time
interval 7 when the steady state is reached (T’ygl4 > 1). If the state switches between
clockwise and counterclockwise rotation, i.e., varying phase around fixed values (wobble
motion), | Sy ;| will be small. However, if a state does not change its orientation of
rotation, |Sqy ;| will be close to unity. This is the case for (modulated) traveling waves.
In Fig. 9.12(e), we present an example trajectory of partial traveling-wave states.
Here, only oscillator A performs full rotations (|Sor a| &~ 1), whereas oscillator B is
still in a wobble motion (Ser 4 ~ 0). Remarkably, in this phase and for this choice of
nonreciprocal coupling (¢ = —m/2), the undriven oscillator B is more localized to the
phase ¢p =~ —m/2 induced by the drive than the driven oscillator which is rotating
monotonically. A similar behavior is found in the spectra of the quantum oscillators
in Figs. 9.5(b) and 9.5(d), where the peak at w4 = 0 is less dominant than the peak
at wp = 0, and the quantum trajectories shown in Fig. 9.7(c). In [Kehrer (2025)]1°,
we provide videos of time evolutions for each phase that are shown in Figs. 9.12(c) to
9.12(e).

9.8.2 Three Oscillators

We also consider the next more complex system consisting of three oscillators. In
Fig. 9.13(a), we present the phase diagram of an open chain of oscillators that obey

J ~ J 2 G
) Yo — 2§ — 2v;|{a;)] Gi i~
() == 1 = <aj>—7]2]+1 (aj41) — sz ~(aj-1). (9.8.3)

Here, we set 'yg = ’y(‘? and fix 75 —2g = 'y(‘?. The couplings

Gj,j+1 = Gj,(j—H) mod3 — g+g-, (984)
G]'ajfl = Gj,(jfl) mod3 — g - 9g9-, (985)
are chosen identical for each oscillator and g_ corresponds to ig 4 Bei¢ and ¢ = —7/2.

In the open chain, GQ 1=G ac=0 vanish. The phase diagram of the open chain
is rich: (i) phase locking to A¢; = ¢; — ¢j41 = m, (ii) phase locking to A¢; = 0, (iii)
traveling waves, (iv) modulated traveling waves, (v) wobble motion, and (vi) both
wobble motion and traveling waves. To distinguish states performing the wobble
motion and fully rotating traveling-wave states, in addition to Sy ;, we employ the

"Direct link: https://tobias-kehrer.github.io/thesis/two_classical nonrecip/ [Accessed: July 26, 2025
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Figure 9.13: Open chain of three oscillators described by Eq. (9.8.3). (a) Phase diagram
where each color denotes a different phase. White pixels were not assigned any phase. Panels
(b) to (g) show the time evolutions of one phase each corresponding to the symbol next to
the panel label. The values of g_ and ¢ equal the coordinates of the respective symbol in
(a). (b) Phase locking to A¢; = ¢; — ¢j41 = 7. (c) Wobble motion: varying amplitudes
and oscillating phases around A¢; ~ m. (d) Both wobble motion (c) and traveling-wave
states (f) exist. (e) Modulated traveling-wave states: varying amplitudes and oscillating
phases around A¢; ~ £27/3. (f) Traveling-wave states: constantly increasing phases with
fixed Ag; =~ £27/3. (g) Phase locking to A¢; = 0. Videos of time evolutions are provided
in [Kehrer (2025)]. A list of rules and thresholds for each class of steady states is given in
Sec. 9.8.3.

following order parameter

TH4T

1 .
Srot.j = |~ / dte'?i| . (9.8.6)
T

It is the magnitude of a time average of the complex phase factors when the steady
state is reached (T'yg? > 1). The order parameter Syo ;j reaches values close to zero
for fully rotating (modulated) traveling-wave states, values close to one for static
states, and values in between for states performing a wobble motion. For each pixel in
Fig. 9.13(a), we generate time evolutions of 100 random initial states (a;) = exp(ip;)
that are drawn from a uniform distribution over the interval ¢; € [0,27]. In [Kehrer
(2025)], we provide videos of time evolutions for each phase that are shown in
Figs. 9.13(b) to 9.13(g).

9.8.3 Order Parameter Thresholds

Here, we list the thresholds and rules to identify the different classes of steady states
shown in Figs. 9.11 to 9.13. Other order parameters are: (i) SDy, the standard

"Direct link: https://tobias-kehrer.github.io/thesis/three_classical nonrecip/ [Accessed: July 26,
2025)
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deviation of the oscillator phases over time, (ii) SD,, the standard deviation of
the oscillator amplitudes over time. Both order parameters were averaged over all
oscillators. The rules for both two-oscillator cases presented in Sec. 9.8.1 are listed in
Tab. 9.1.

class without drive with drive
static ¢4 and ¢p SDy <1 Srot, a4 > 0.99 A Siot,8 > 0.99
traveling wave SDg > 1 ASD, < 0.01 -

modulated traveling wave | SDy > 1 A SDq > 0.01 | [Sori,a| > 0.9 A [Sori,B| > 0.9
A Srota < 0.99

partial traveling wave - |Sori, 4| > 0.9 A [Sori. 5| < 0.9
A Srop.a < 0.99
wobble motion - |Sori,al < 0.9A |Seri.B| < 0.9

A Srot.a < 0.99

Table 9.1: Order parameter rules for two oscillators corresponding to Figs. 9.11 and 9.12.

To distinguish steady states in the three-oscillator case presented in Sec. 9.8.2, we
generate time evolutions of 100 random initializations. Out of these time evolutions, a
histogram of |Sori a4 + Sori, 8| With 40 bins in the range [0, 1] is obtained: Shist k, Where
k € [1,40] corresponds to the kth bin. The rules for the three-oscillator case presented
in Sec. 9.8.2 are listed in Tab. 9.2.

class rules
static ¢4 and ¢p SD, < 1073 A Shist,40 > 0
traveling wave SD, < 1073 A Shist,1 > 99
modulated traveling wave SD, > 1073 A Shist,1 > 99
wobble motion SD, > 1073 A SDg > 0.1
A Shist,1 = 0
wobble motion and traveling waves 0 < Shist,1 < 100

Table 9.2: Order parameter rules for three oscillators corresponding to Fig. 9.13.

9.9 Conclusion

We have investigated the interplay of three phase-locking mechanisms of two quan-
tum limit-cycle oscillators induced by an external drive, a coherent coupling, and
a dissipative coupling leading to three different steady-state configurations. In this
setup, the effective nonreciprocal interaction can be tuned to be unidirectional. For
increasing nonreciprocity at zero drive strength, the following sequence of events
occurs: (i) interaction terms in the mean-field equations become unidirectional, (ii)
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the second moment of the combined quantum synchronization measure vanishes, (iii) a
switch from phase locking to bistable locking occurs, and (iv) the first and second mo-
ment of the combined quantum synchronization measure become equal. Interestingly,
unidirectionality does not coincide with the switch from locking to bistable locking.
Varying all three interaction parameters of the model, i.e., the drive strength of
an external signal acting on one of the two oscillators, the magnitude of a coherent
coupling, and the strength of a dissipative interaction, we have shown that the steady-
state value of the relative phase between the oscillators can be tuned. Making use
of the quantum synchronization measure evaluated for a perturbation expansion
of the steady state in the three parameters drive strength, coherent coupling, and
dissipative interaction, we have qualitatively explained the transitions between the
three regimes of phase localization. This perturbation expansion has been used to
identify magnitude minima of the second moment of the synchronization measure
of the relative phase. Moreover, regions of bistable locking partially overlap with
regions in which two-time correlations exhibit a periodic time dependence similar to
traveling-wave states. Such traveling-wave states have also been found as steady-state
solutions of the mean-field approximation of the master equation of the quantum
system. For two and three noreciprocally coupled oscillators in the mean-field limit,
we have found highly nontrivial active states by defining suitable order parameters.
Nonreciprocity in (open) quantum systems and their classical analogues is a rapidly
emerging field in nonlinear quantum physics. Future research directions include the
study of (frustrated) networks of N > 3 quantum oscillators as well as their (potentially
existing) nonreciprocal phase transitions. Their classical analogues exhibit rich phase
diagrams too. Future studies might focus, e.g., on the comparison of open and closed
chains or on the dependence of the phase diagram on the number of oscillators.

The results and figures of this chapter have been published in parts in [Kehrer and
Bruder (2025)].
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Chapter 10

Quantum Synchronization of
Oscillators Hosting Multiple Limit
Cycles

This chapter is based on the results published in:

T. Kehrer, C. Bruder, and P. Solanki,
Quantum Synchronization of Twin Limit-Cycle Oscillators,
Physical Review Letters 135, 063601 (2025)

10.1 Motivation

All studies of classical and quantum synchronization presented in the previous chapters
consider oscillators that host a single limit cycle. While classical systems with multiple
limit cycles and distinct basins of attraction, known as Liénard systems [Liénard
(1928), Perko (2001), Leonov and Kuznetsov (2013)], have been investigated in detail,
synchronization in their quantum analogue has not yet been studied before [Kehrer
et al. (2025)]. Their amplitude dynamics can be described by an effective potential
V(r), see Fig. 10.1(a), where the number of limit cycles is given by the number of
local minima. Depending on the initial state, the system converges to one of the limit
cycles unless acted on by a noise source that is strong enough to induce switching
events.

While there has been an increasing interest in quantum systems featuring multiple
separate limit cycles [Marquardt et al. (2006), Wu et al. (2013), Bhattacharyya et
al. (2021), Ruby and Lakshmanan (2024), Kumar et al. (2024), Chia et al. (2025)],
their synchronization properties have not been studied before [Kehrer et al. (2025)].
In this chapter, we introduce a quantum Liénard system where two limit cycles
coerist in a single steady state regardless of the initial conditions and investigate
their synchronization behavior. We call this system a twin limit cycle (TLC): it is
characterized by a double ring-like structure in phase space as sketched in Fig. 10.1(b).
The location of the minima (maxima) of the effective potential of the corresponding
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Figure 10.1: Illustration of a system with two limit cycles. (a) Sketch of the effective potential
V(r) of a classical Liénard system featuring two basins of attraction separated at r.. (b)
Wigner function of a twin limit cycle, a quantum Liénard system with (a) = rel®. The dashed
(dotted) rings with radii 1 and ry (r.) correspond to the local minima (maximum) of the
effective potential obtained from the mean-field equations of motion, see Eq. (10.2.6).

classical Liénard system is indicated by the dashed (dotted) rings. Our setup can be
extended to host multiple limit cycles. We examine the synchronization of a single
TLC under an external coherent drive and find that the limit cycles exhibit different
locking behaviors. Furthermore, for two coupled identical TLCs, both synchronization
and blockade effects coexist, an apparent paradoxical interplay unattainable with
standard limit cycles. To distinguish the contributions of individual limit cycles of a
TLC, we define new finer measures of quantum synchronization. Finally, we outline
an experimental setup to implement our model.

This chapter is structured as follows. First, we define the quantum TLC oscillator
in Sec. 10.2. Second, in Sec. 10.3, we study the mean-field equations as classical
oscillators that host twin limit cycles before considering a single driven TLC oscillator
in Sec. 10.4. The complex synchronization between two TLCs is presented in Sec. 10.5.
We suggest experimental realizations in Sec. 10.6.

10.2 Model

In the first sections of this chapter, we consider a coherently driven anharmonic
quantum oscillator subject to incoherent first and third-order pumping, along with
second and fourth-order damping. These dissipative processes stabilize two concentric
limit cycles, see Fig. 10.1(b). The dynamics in the rotating frame of the drive is
described by the master equation

p = L(p) = —i[Ho + Ha, p] + mD[a'](p) + 22D[a’](p) + 13D[a’](p) + 14Dla"](p) ,
(10.2.1)

where D[L](p) = LpL! — (LTLp + pL'L)/2 is the Lindblad dissipator, Hy = Aaa +
Ka'?a?, Hy = Q(a + a'), and a (a') denote the annihilation (creation) operators of
the oscillator. The detuning between the TLC and the drive is denoted by A, K
parametrizes the Kerr nonlinearity, and {2 denotes the strength of the drive. The rates
7; correspond to incoherent gain (odd j) and damping (even j). For 3 =4 = 0, the
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model simplifies to the paradigmatic quantum van der Pol oscillator with a single
limit cycle. Additional incoherent processes of higher order, D[a™](p) and D[a™](p),
with n (m) being odd (even), can be included to obtain multiple limit cycles.
We obtain the Heisenberg equation of motion of the annihilation operator using
Eq. (10.2.1),
%a = —iQ —iAa — i2Ka'a? —1—]2137 2(1" atU=1 J22247 J atU=Ye/ . (10.2.2)

We begin by examining the semiclassical limit to obtain an approximation to the
steady state of the quantum system. The mean-field equation of the effective classical
Liénard model can be derived by performing a cumulant expansion to first order

(@) =10~ 18(0) - 2K1(@) P + (o) (3~ l@P + 2Nl - 2@l )
(10.2.3)

Setting (a) = re'?, the mean-field equation can be split into equations of motion of
the amplitude r and the phase ¢,

;o= <721 — yor? + 32&7”4 - 274r6> — Qsin(¢), (10.2.4)

. s Q

¢p=—A—-2Kr°— —cos(¢). (10.2.5)
r

Since we are interested in the case of two stable limit cycles, we choose v; such that
the right-hand side of Eq. (10.2.4) exhibits three real zeros r < r. < r9 at vanishing
drive Q =0,

i =r(r? —r?)(r2 = ) (r3 — 1?2y, = -0,V (r). (10.2.6)

Here, 1 and ro are the stable solutions, and r. is the unstable solution of the mean-field
equations, and V (r) is the effective potential, see Fig. 10.1(a). In a classical system,
r. separates the two basins of attraction. An initial state with r < r. (r > r.) will
therefore converge to ry (r2).

To explore the corresponding quantum TLC, we examine the Wigner function
associated with the steady state of Eq. (10.2.1). The Wigner function exhibits two
coexisting concentric limit cycles, as illustrated in Fig. 10.1(b), regardless of the
initial state. In this figure, the dashed and dotted rings represent the stable and
unstable solutions of the classical mean-field equation for the oscillator amplitude,
respectively, as defined in Eq. (10.2.6). The radius of the outer ring aligns closely with
the mean-field prediction ro, while the inner ring shows a notable deviation from ry.

In a classical Liénard system of two limit cycles, both basins of attraction are
separated at r.. However, if extrinsic noise is added, trajectories can cross this
boundary. In the language of the effective potential shown in Fig. 10.1(a), noise-
induced jumps in r have to overcome the potential barriers AVj to “tunnel” between
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Figure 10.2: Values of real-valued solutions to Eq. (10.2.6) for 75 = 2.59;. The black lines
indicate v3 = 1.04y; and 4 = 0.09671, the values that will be used in the quantum case.

both limit cycles. In our quantum setup, the steady state is a combination of two
distinct quantum limit cycles. Considering quantum trajectories, the system tunnels
between the two limit cycles due to inherent quantum noise, see Sec. 10.4.3 for a
detailed discussion.

10.3 Classical Multi-Limit-Cycle Oscillators

Before we study synchronization of quantum TLC oscillators, we want to focus on
their classical analogue in the form of their mean-field equations, see Eq. (10.2.3).
Already this classical version of such multi-limit-cycle oscillators is showing interesting
features presented in the following. Intuitively, it is not surprising that in complex
systems like living matter oscillators with multiple limit cycles have been found, e.g.,
[Laurent and Kellershohn (1999), Enjieu Kadji et al. (2007), Feillet et al. (2014),
Goldbeter and Yan (2022)].

The mean-field equations shown in Egs. (10.2.5) and (10.2.6) can be interpreted
as a modified Stuart-Landau oscillator that features higher-order gain and damping
leading to multiple stabilized limit cycles. The parameters 3 and 4 are the rates
of additional nonlinear gain and damping terms. Depending on their value, up to
two stable radii are possible, see Fig. 10.2. Example trajectories and spectra of
several random initializations of a classical TLC are shown in Fig. 10.3. The range of
detuning |A] < /r in which frequency locking occurs depends on the value of the
drive strength © and the radius r of the limit cycle, see Eq. (10.2.5). Therefore, this
range is different for both limit cycles. The three cases in which frequency locking
occurs for (i) both limit cycles, (ii) only the outer limit cycle, and (iii) no limit cycle,
are presented in Figs. 10.3(a) to 10.3(c). In the spectra, contributions from both limit
cycles at the frequencies v4(A,Q,r) defined in Eq. (6.2.9) are visible. In Figs. 10.3(d)
to 10.3(f), 20 random realizations for different detunings at 2 = 0.1y; are shown.
For A = 0.027;, both limit cycles are frequency-locked and lock to ¢ ~ —m/2. For
A = 0.15v1, only the inner limit cycle is locked and for A = 0.571, none of the limit
cycles is locked. Furthermore, states in the attractor of the inner limit cycle exhibit
modulations of their radii. The peaks in the spectra Figs. 10.4(b) and 10.4(c) at
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Figure 10.3: Frequency locking of a classical TLC for v = 2.5, v3 = 1.04v1, and 4 = 0.0967;.
(a), (b), (c) Spectra for drive strengths /1 = 0,0.1,0.2 (from left to right) averaged over
100 random initializations. The blue dashed (orange dotted) curves correspond to the
approximation w = /A2 — Q2 /r2 defined in Eq. (6.2.9) for the inner (outer) limit cycle with
radius 1 (r2). (d), (e), (f) Time evolutions of 20 random initializations (gray dots) for drive
strength Q = 0.1y, and for detunings A/, = 0.02,0.15,0.5 (from left to right), corresponding
to the three red lines in panel (b). Two evolutions are highlighted in blue (inner limit cycle)
and orange (outer limit cycle). Depending on the value of A either both limit cycles lock
their frequency to the one of the drive, only the inner limit cycle, or no limit cycle.

w =nv4 > 0 correspond to the varying radius of trajectories of the inner limit cycle,
see Fig. 10.4(f). The spectra of the radius oscillations exhibit maxima at integer
multiples of £v4.

We now consider Gaussian noise with standard deviation ¢ that induces jumps
between both attractors. Following [Fruchart et al. (2021)], the expected number of
jumps in a fixed time interval is proportional to the inverse tunneling time

Njumps o exp(—AV/c?) (10.3.1)

where AV is the barrier of the effective potential V, see Fig. 10.1(a). The larger
the noise, the more jumps occur in a fixed time interval, see Figs. 10.4(c) to 10.4(f).
In the time evolutions, the correlation between the amplitude of the oscillator and
phase locking, as described in the previous paragraph, is visible. If the state is close
to r1, the phase ¢ is locked. In contrast, if the state is close to r9, no phase locking
occurs. For increasing noise, the spectra in Figs. 10.4(a) and 10.4(b) are smoothed and
higher-frequency peaks that correspond to the fluctuations of the oscillation frequency,
see Eq. (6.2.8), disappear.
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Figure 10.4: Frequency locking of a classical TLC with noise for v = 2.5, v3 = 1.0471, and
~v4 = 0.0967;. (a), (b) Spectra for drive strength 2 = 0.1y, and detunings A/~; = 0.15,0.25
(from left to right) averaged over 100 random initializations. The blue dashed (orange dotted)
lines correspond to the approximation defined in Eq. (6.2.9) for the inner (outer) limit cycle
with radius r1 (r2). (¢) Number of jumps njumps that occur in a time interval of duration
1000/~; with standard deviations obtained from averaging over 100 realizations. The red
curve corresponds to a fit of Eq. (10.3.1). The larger the noise o, the more jumps occur. (d),
(e), (f) Time evolutions of 10 random initializations (overlapping transparent gray dots) for
drive strength © = 0.171, detuning A = 0.15v1, and for noises o/,/71 = 0.01,0.2,0.3 (from
left to right), corresponding to the three red lines in panel (a). One evolution is highlighted
in red.

10.4 One Driven Twin Limit Cycle

We now focus on the synchronization properties of the corresponding quantum Liénard
system. First, we discuss phase locking of a TLC to an external drive.

10.4.1 Phase Synchronization

In Fig. 10.5(a), we present the Wigner function corresponding to the steady state
of a driven TLC, which exhibits phase localization near ¢ = arg((a)) = arg(f2) —
m/2 = —x/2 indicating the synchronization of both limit cycles to the external
drive. To characterize and quantify the amount of synchronization, we define a
phase localization measure. Various measures of quantum synchronization have been
proposed in the literature [Barak and Ben-Aryeh (2005), Ludwig and Marquardt
(2013), Hush et al. (2015), Weiss et al. (2016), Roulet and Bruder (2018a), Jaseem
et al. (2020a)]. In this work, we use the synchronization measure based on phase
states |¢) = Y o0 ;e |n) /v/27 [Barak and Ben-Aryeh (2005)] where |n) are Fock
states. Identical to Eq. (9.2.6),

o)

Pi(¢) = (¢lplo) — Z —ik(GF) + Hee. (10.4.1)

k:
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Figure 10.5: Drive-induced phase locking of a TLC. (a) Wigner function for Q = 8y,
and A = K = 0 showing phase localization of both limit cycles, i.e., a maximum at
¢ = arg({a)) = arg() — n/2 = —w/2. Here, dashed (dotted) rings correspond to stable
(unstable) solutions of the mean-field equations of the undriven limit cycles, see Eq. (10.2.6).
The solid orange curves are contour lines at 0.0225. Note the power-law color scale. In panels
(b) and (c), solid curves denote the maximum of P{* with « € {in, out}, dashed curves denote
arg({aq)). Varying A and K, the inner limit cycle exhibits a larger phase shift than the
outer one. This is opposite to the behavior of a standard quantum van der Pol oscillator, see
Sec. 7.1.3. Here, 2 = 0.25v; for both (b) K =0 and (c¢) A = 0. The dissipation rates for all
panels are y5 = 2.57v1, v3 = 1.04~1, and y4 = 0.096;.

where the operator powers a* = >°° | |n)n + k| capture information about the

coherence generation and phase localization. This measure can be interpreted as a
probability distribution of phases ¢ from which a uniform distribution is subtracted.
If a state shows no phase preference, this measure will be flat and equal to zero. For
phase-locked oscillators, a single maximum will appear. Two maxima will be visible
for oscillators that exhibit bistable phase locking.

To resolve the phase information of the two limit cycles individually, we define
truncated operators a,, with a € {in, out}, as

ne—1

Gin = Y [n)}n+1], Gow= Y |n}n+1]. (10.4.2)
n=0

n=nc

These are an approximation of operators that only act on the respective subspace of
each ring. The cutoff Fock number n,. is chosen to be the integer closest to 72. We
use powers of these @, to define the phase distributions Pi" of the inner and P of
the outer ring of a TLC,

[e.e]

1 ik =k
H.c. 10.4.3
2 (T 1;—16 (Gq) + H.c., ( )

P(¢) =
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Figure 10.6: Arnold tongues of a driven TLC using P{* defined in Eq. (10.4.3). (a), (b) A =0.
(c), (d) K =0. The black curves are contour lines at 5. The dissipation rates for all panels
are yo = 2.5y1, v3 = 1.04v1, and 4 = 0.096y;. Compare this plot to Figs. 7.4 and 7.8.

where « € {in,out}. Here Z% represents the unit matrix in the subspace «,

"= |n)Xn|, I = > |n)}n|, (10.4.4)
n=0 n=nc+1

and is used to properly normalize the phase distribution.

We use the measure P}* to characterize the synchronization properties of the two
limit cycles. In Figs. 10.5(b) and 10.5(c), the locking phase angle of a driven TLC is
shown for fixed drive strength € = 0.25+;, varying detuning A, and Kerr nonlinearity
K. Remarkably, for nonzero A and K, each limit cycle locks to a distinct phase.
Notably, the inner limit cycle responds more strongly to the external drive compared
to the outer limit cycle. This deviates from the steady state solution of the mean-field
Eq. (10.2.5), which predicts a stronger phase sensitivity of the outer limit cycle. The
slopes of the solution ¢mayx for ¢ =0 at A = K = 0,

r

aAQZ)maX = 75 5 (1045)
273
aK(bmax - _ﬁ 5 (1046)

reveal that the value of the locked phase depends stronger on both A and K for
larger radii. This feature is consistent with standard single-limit-cycle oscillators with
v3 = v4 = 0, see Sec. 7.1.3. The higher-order gain and damping channels lead to
features that are unique to TLCs. The overlap of the inner and outer limit cycles
of a TLC leads to tunneling and leakage of information between them. This is a
qualitatively different behavior compared with the classical analogue following the
mean-field equations. Note that quantum limit cycles stabilized by third-order gain and
fourth-order damping, see Sec. 7.1.5, that exhibit smaller radii are reacting stronger
to detuning A than the ones that exhibit larger radii.

We furthermore present Arnold tongues of the inner and outer limit cycles for varying
drive strength €2 versus A and K in Fig. 10.6. To achieve the same value of P[*, the
inner limit cycle needs to be driven with a stronger drive similar to the standard
quantum van der Pol oscillator presented in Fig. 7.4. This is the opposite behavior

158



10.4 One Driven Twin Limit Cycle

Sa(w)/5a(0)

10 1.0 '
0.8

206
~
S04

5

02F —ip out | [ =in out

0 0.0 L
0 10 20 0 20 -20 0 20 -20 0 20

10
A/m A/ w/m w/m

Figure 10.7: Frequency synchronization of a driven TLC with s = 2.571, v3 = 1.04;, and
~v4 = 0.0967;. (a), (b) Power spectra S, (w) for a weak drive 2 = 0.25v;. The dashed white
line corresponds to w = A. No frequency locking plateau visible. (c¢), (d) Normalized power
spectra Sy (w)/S«(0) corresponding to Qy; = 0.25,5 (from left to right) and A = 0. The
power spectra are based on the truncated annihilation operators defined in Eq. (10.4.8) and
exhibit a peak at w = 0 due to injection locking.

compared to quantum limit cycles stabilized by third-order gain and fourth-order
damping, see Fig. 7.8.

10.4.2 Frequency Synchronization

In addition to the locking of the two limit cycles of a driven TLC to distinct phases
shown in the previous section, we discuss their frequency synchronization below. To
analyze the frequency entrainment of the TLC, we utilize the power spectrum which
is defined as

o0

Sa(w) = lim [ dr{al (t+ T)aa(t))eT, (10.4.7)
t—o00
—00
where « € {in,out}. The power spectrum defined above is based on two-time correla-
tions of the truncated annihilation operators, which we define as

ne—1

Ain = Z vn+1nn+1|, aou = i vn+1|n)n+1]. (10.4.8)
n=0

n=nc

Note the difference to Eq. (10.4.2), where the factor v/n + 1 is not included. The power
spectrum is well-defined for both limit cycles for small values of 2. One such example
is shown in Fig. 10.7(c) where 2 = 0.25; and A = 0. However, no frequency locking
occurs when A # 0 for such smaller drive strength, see Figs. 10.7(a) and 10.7(b).
In regions of stronger drive, where a significant degree of phase synchronization is
observed, the spectrum of the inner limit cycles broadens considerably, as illustrated
in Fig. 10.7(d) for © = 8y;. Such spectral broadening results from changes in the
population distribution within the inner limit cycle, shifting toward the critical radius
for higher Q2 values. With a further increase in €2, the population increasingly overlaps
with the outer limit cycle, expected to lead to further broadening of the power spectrum.
Therefore, the phase synchronization measure is more sensitive and applicable even at
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Figure 10.8: Quantum trajectories of the undriven TLC for A = K = 0 and the rates that lead
to (r1,7e,m2) = (1,4,8): (72,73,74) ~ (0.539,0.0264,2.44 x 10~*)7;. (a) Effective potential of
the mean-field equations along the radial direction, defined in Eq. (10.2.6). Here AVy (AVa) is
the potential difference between the stable minimum at 7, (r2) and the unstable maximum at
re. The inset shows the minimum of V() at rq, see the dashed box in the top left. (b) Single
trajectory based on Monte Carlo simulation of Eq. (10.2.1). Jump probabilities between 7
and ro are clearly asymmetric.

higher drive strengths for the TLC oscillators.

10.4.3 Quantum Trajectories

In this section, we briefly examine the coexistence of limit cycles by analyzing the
dynamics of a single quantum trajectory in a quantum Liénard system. In Fig. 10.8,
we choose the dissipation rates that lead to (ri,r.,r2) = (1,4,8): (7v2,73,74) =
(0.539,0.0264,2.44 x 107%);. The minima of V(r) are sufficiently separated to
facilitate the observation of the transition from one stable radius to the other due
to intrinsic quantum noise. As shown in Fig. 10.8(a), the noise has to overcome a
smaller potential difference, AVj, when transitioning from 71 to ro, in contrast to
the larger potential difference, AV,, for the reverse direction. This asymmetry in the
potential differences is evident in the time evolution of a single trajectory presented
in Fig. 10.8(b), where the system spends more time in the outer limit cycle at ro
compared to the inner limit cycle at r1. The density matrix of a steady-state can be
interpreted as the long-time average of many such quantum trajectories, which results
in the two-ring-like structures found in the corresponding Wigner function, similar to
Fig. 10.5(a).

10.5 Two Coupled Twin Limit Cycles

We now focus on the synchronization between two coherently coupled TLCs that are
depicted schematically in Fig. 10.9. Intuitively, we expect to find both locking and
bistable locking of the relative phase in this setup. We imagine synchronization to
occur between limit cycles of different radius and blockades to emerge between limit
cycles of equal radius. In other words, we expect the coexistence of synchronization
and blockade, two distinct scenarios described in Sec. 7.1.4. The dynamics of two
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Figure 10.9: Schematic representation of the phase locking behavior of two coherently coupled
TLCs. Limit cycles of unequal radius exhibit phase locking. In contrast, for limit cycles of
equal radius bistable phase locking is found.

TLCs are described by the Lindblad master equation
p= —ilgapahag +He, gl + La(p) + L(p). (10.5.1)

Here, the first term is the coherent coupling between the two TLCs with strength
9gap- The Liouvillians £; describe the independent dynamics of each TLC similar
to Eq. (10.2.1), where the operators a; act on oscillator j. In the following, we fix
Q=0 =0,=A4—Ap,and K = K4 = Kp.

10.5.1 Phase Locking

Similar to Eq. (9.2.17), the phase distribution of two oscillators is obtained by projecting
the density matrix onto the tensor products of phase states |¢4, ¢p) and is defined as

Py(paB) = | Ao (pap + &, 9| p|daB + ¢, ¢) — %

— o\gp

o0

= > e hoan (a, ak)k) + He.. (10.5.2)
k=1

We integrate over the phase ¢ to obtain the synchronization measure for the relative
phase ¢ap = ¢4 — ¢p. In analogy to Eq. (10.4.3), we define the combined phase
distribution Py’ ' of two TLCs as

o 1 > —1i ~ ~
PP (pap) = > e kean((a, al )F) + He. (10.5.3)
k=1

2m(I3T5) f=

where G, and Z%* are the truncated operators a, and the unit operators Z% that act
on the jth oscillator. The measure above allows us to investigate the synchronization
between the limit cycles of both oscillators since («, 8) can take various combinations:
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Figure 10.10: Arnold tongues of two identical coupled twin limit cycles with rates 7}4 = 'yJB,
74 = 2.5, 44 = 1.04741, and 4! = 0.09674* for Q; = 0 and n. = 2. (a)—(c) Maximum of
P;"ﬁ x 10% of Eq. (10.5.3) as a function of coupling strength ¢, 5 and detuning § at K = 0. (d)
Maximum of the full synchronization measure Py of Eq. (10.5.2) for K = 0. (e)—(g) Maximum
of Py’ % 103 as a function of g 4p and Kerr nonlinearity K at 6 = 0. (h) Maximum of the
full synchronization measure P, of Eq. (10.5.2) for 6 = 0. The black curves denote contour
lines at half the maximum value of the color scale. The red dots correspond to the example
plots shown in Fig. 10.11.

(in,in), (in,out), (out,in), and (out,out).

We now set the dissipation rates 73-4 = 'yJB equal, such that the radii of the inner
limit cycles of both TLCs are identical as well as the radii of the outer limit cycles.
In Figs. 10.10(a) to 10.10(d), we plot the maxima of the combined synchronization
measures PQO"’B and P, as a function of g, 5 and ¢ for K = 0. For 6 = 0 and K = 0,
both oscillators have the same frequencies, and hence, we expect a maximum amount
of synchronization. In these four panels, Arnold tongues centered at § = 0 are visible.
The measure Pzin’in even exhibits a local maximum. This fact can be interpreted as:
above g, 5 2 5/ 'yf‘, phase synchronization outside the perturbative regime is found,
see the clearly asymmetric Wigner function in Fig. 10.5(a).

In Figs. 10.10(e) to 10.10(h), we plot the maxima of the combined synchroniza-
tion measures Py’ # and P, as a function of gup and K for 6 = 0. Interestingly,
the synchronization measure for (o, ) = (in,in) and («, 8) = (out, out), shown in
Figs. 10.10(e) and 10.10(g), is highly suppressed around K = 0. This is a signature
of the synchronization blockade, where the contribution from the first-order locking
vanishes ((a@, a&g o) = 0) due to the cancellation of coherences. Only second-order
phase locking can be observed, as indicated by the two maxima in Fig. 10.11(a). This
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Figure 10.11: Synchronization measures Py’ (¢4p) x 10® (colored curves) and P, (black
dash-dotted curve) corresponding to the red dots in Figs. 10.10(e) to 10.10(h) at g,z = 871"
and K/v{* = 0,1.2,12 (from left to right).

blockade can also be understood using the mean-field equations of Eq. (10.5.1),

J ) 3~7 )
i =r; (721 —r: + %r? - 2717?) + gaprisin(g; — ¢j) — Qysin(¢;),  (10.5.4)

0 == Dy = 2K;1] — gap— cos(¢i — &) — —* cos(;) (10.5.5)
j j
where 7,5 € {A, B} and i # j. The equation of motion of the relative phase for 2; =0

18

2 2

dap=—0 —2K(r% —12) + gap 2B cos(pan), (10.5.6)
TATRB

where the coupling term vanishes for limit cycles with equal radii. The limit cycles
with different radii exhibit an Arnold tongue, see Figs. 10.10(b) and 10.10(f), signifying
synchronization between the (in,out) limit cycles. Thus, both synchronization and
blockade effects occur simultaneously in the coupled identical TLC oscillators, a
behavior not known in classical analogues in the absence of noise. For our choice of
parameters n. = 2 and dout ~ @, Py 10 shown in Fig. 10.10(g) behaves qualitatively
similar to the standard synchronization measure P» defined in Eq. (10.5.2). The
existence of the blockade at K = 0 is therefore also confirmed by Ps, see Fig. 10.10(h)
and Fig. 10.11(a).

The synchronization blockade is lifted for K # 0 [Lorch et al. (2017)], as shown
in Figs. 10.10(e) and 10.10(g). For 6 = 0 and K > 0 (K < 0) the relative phase of
both oscillators locks to ¢ap = 7 (dap = 0), see Fig. 10.11(c). To understand this
behavior, we investigate the mean-field equations in more detail. We examine the
phase-locking behavior by expanding Eq. (10.5.6) about the radii 71 and 79 of the limit
cycles for the two cases: (i) equal radii r4, 75 ~ r, and (ii) different radii r4 ~ r,
and rp ~ 13, where j € {4, B}, o, f € {1,2}, and « # . For equal radii, we choose
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T =Ta +1i1945/M +1i2(945/M)%

sin(¢ap) 7
rAl=— = =-rp1, (10.5.7)
T2 = )02~ D)
92 (r2 +r2) — 5rar2 — 13rt 42
raz =sin(¢ap) alrs +re) ~ St NI (10.5.8)

323 (rd —r3)P(rd — 123 4

Note that since r1 < r. < r2, the product (r2 — r%)(ri —72) > 0 in the denominators
is always positive. The resulting equation of motion of the relative phase ¢p4p when

expanding both twin limit cycles about r,, see Figs. 10.10(e) and 10.10(g), reads

4gABKTgL sin(¢ap) — 91243 sin(2¢4p)

(10.5.9)
22(rd —r3)(rd —r¥mn

pap=—0+
If § = K = 0, bistable locking to ¢4p = 0,7 occurs, which corresponds to the
synchronization blockade due to the absence of first-order phase locking. Thus, the
system is in the synchronization blockade between the limit cycles of the same type
of the TLCs at K = 0. For § =0 and K > 0 (K < 0), the relative phase between
both inner or outer limit cycles locks to a single value pap = 7 (¢4 = 0). Thus, for

K # 0, the blockade is lifted. In the case of equal radii, the mean-field prediction
coincides with the quantum results.

For different radii r4 = ro + TA,1gAB/71 and rp =rg + rB,lgAB/fyl, we obtain

rgsin(¢ap) "

TA1 = — —, (10.5.10)
Arg(rg —r3)(rd —2) 74
Ta Sin(¢AB) Y1
TB1 = — —. (10.5.11)
302~ )03 —72) e
The equation of motion for the relative phase reads
2 _ 2
3 [0
Gap=—0—2K(r% —13)+gap 7“17“2[3 cos(¢anB)
2,2 _,.2
ri+ry—r .
+ gapK 12 __c sin(¢ag) - (10.5.12)

rira(rg = i) (r3 = r2)m

For § = K = 0, these mean-field equations lead to locking to a single value of the
relative phase. In contrast to the quantum case, the relative phase in Eq. (10.5.12)
locks to pap = —7/2 for (o, 5) = (1,2) <> (in,out) and to pap = 7/2 for (o, B) =
(2,1) <> (out,in). Choosing § = 0 and K > 0 (K < 0) in Eq. (10.5.12) leads to a
shift of the locking phase toward ¢ap = 0 (¢ap = 7). This shift contradicts the
quantum result too, see Fig. 10.11(c). In conclusion, the mean-field analysis performed
here is suitable to predict the locking of the relative phases of (i) equal limit cycles
(cv, B) = (in,in), (out, out) of two coupled TLCs but fails to describe the locking of (ii)
different limit cycles (o, §) = (in,out), (out,in). An explanation might be that in the
quantum Liénard system, both limit cycles are not strictly separated like the basins of
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Figure 10.12: Mutual information I(pa,,g) x 102 for identical TLCs with § = 0 and ’yf‘ = ’yf.
(a)—(c) Evaluated for truncated density matrices po g, see Eq. (10.5.14). (d) Evaluated for
the full density matrix p. The black curves denote contour lines at 0.1. The blockade at
K =0 is not as prominent as in P;"ﬂ, see Fig. 10.10.

attraction in the classical analogue. Therefore, locking mechanisms of different pairs
of limit cycles of two TLC oscillators interplay.

10.5.2 Quantum Mutual Information

Another measure of quantum synchronization is the quantum mutual information
[Ameri et al. (2015)],

1(p) = S(pa) + S(ps) — S(p). (10.5.13)

where S is the von Neumann entropy and p; are reduced density matrices. For
mixed states, the quantum mutual information contains both classical and quantum
correlations. To quantify the correlation between different limit cycles of the TLC
oscillators, we truncate the density matrices as follows

pas=Tr [Igzgp} . (10.5.14)

In Fig. 10.12, we show the mutual information for truncated density matrices as well
as the full density matrix. The behavior of the mutual information is qualitatively
similar to that of Py’ # shown in Fig. 10.10. It exhibits a dip around the blockade
region at K = 0 for the limit cycles (in, in) and (out, out), although it does not vanish
completely. In contrast, the mutual information evaluated for the full density matrix
contains information about synchronization between different limit cycles and also
the blockade effect between similar limit cycles. Hence, the mutual information is not
reduced significantly around the blockade. Therefore, even if the mutual information
reflects the blockade at K = 0, it does not capture the blockade as much as Py’ B

10.5.3 Persistence of the Quantum Synchronization Blockade

In this section, we compare the stability of the synchronization blockade of coupled
TLCs with the one of standard limit cycles, i.e., the range of dissipation rates 73-4 for
which the blockade (bistable locking) persists. If there are two equally high maxima in
P} P at a given value of the ratio ’yjA / ’yJB , the blockade (bistable locking) occurs. In the
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Figure 10.13: Regions of the quantum synchronization blockade of two TLCs for g, = 71",
i =~E, v8 =259, 48 = 1.047{‘, and 72 = 0.096+{*. In each column, only a single ratio
v /AE is varied. (a)-(c) P, (d)-(f) P5"*°"". In all panels, maxima in ¢ap are denoted
by dash-dotted lines. The color scale is linear in the interval [-107%,107%] and logarithmic
elsewhere.

mean-filed equations, the equality of the radii seem to be sufficient to lead to vanishing
interactions at K = 0, see Eq. (10.5.6). When coupling a standard limit-cycle oscillator
A to a TLC oscillator B and varying the ratio ’yf‘ /78 while keeping ’ij fixed, no
blockade emerges between the standard limit cycle and neither of the limit cycles in
the TLC. Thus, to show the synchronization blockade effect between two quantum
oscillators, the states need to be identical and not only the radii of their limit cycles.
Naively, based on the mean-field equations, one could have guessed that when the
radius of the standard limit cycle matches one of the radii of the TLC a blockade
occurs.

In a system of two coupled TLC oscillators, we vary the rates fyg‘, ’yé“, and ’yf
individually by keeping ’yfl = ’le, 723 = 2.5714, ’y?’? = 1.04’)/14, and 'yf = 0.096%4 fixed.
The resulting blockades are illustrated in Fig. 10.13 and exist in a narrower range of
7}4 / 'VJB € [0.97,1.03] compared to the system of two standard limit cycles presented in
Fig. 7.6(a). Thus, the blockade in a pair of TLCs is more susceptible to variations in
gain and damping rates than that of two standard limit cycles.

10.6 Experimental Realization

The effects discussed here can be potentially observed in a trapped-ion experiment
similar to [Behrle et al. (2023)] that demonstrated quantum synchronization of a
phonon laser to an external signal. The setup consists of a calcium and a beryllium
ion in a radio-frequency trap that share a common harmonic mode of motion which is
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Figure 10.14: Preliminary data showing that a multi-limit-cycle oscillator can be realized
by the nonlinear phonon-ion interaction described in Eq. (10.6.1). The parameters are
SBSB = —SRsSB = 1, QOBSB = QB{SB = 0.1k, nesp = 0.8, and nrsp = 0.9. (a) Wigner function
and marginals of the final state of a time evolution of duration xt = 103 starting from a

coherent state |a = 2). (b) Populations p,, , of the final state. The curves correspond to the

heating Q,Ef’sn]il and cooling QRSB | sidebands, see Eq. (10.6.1). Populations of Fock numbers

n > 19 are smaller than 1074, A video of the time evolution can be found at [Kehrer (2025)].

denoted by the annihilation operator a. To realize nth-order gain (mth-order damping)
in the Lamb-Dicke regime, one has to implement a sideband heating (cooling) laser
that is detuned from a particular transition in the ion energy-level scheme [Leibfried
et al. (2003)]. If this detuning equals n (—m) times the energy of the harmonic mode
and assuming fast ion decay with respect to the timescales of the motion in the trap,
an effective jump operator L = af™ (L = a™) is realized. For each dissipator in
Eq. (10.2.1), a distinct ion transition has to be chosen. Therefore, to realize the four
gain and damping channels of a TLC, two spin transitions per ion have to be driven
with one of the four red and blue sideband lasers each.

Alternatively, the setup can be operated outside Lamb-Dicke regime [Rojkov et al.
(2024)] making use of the higher-order contributions presented in Eq. (3.3.10) of
Sec. 3.3.2. Here, one internal transition (first sideband) for each heating and cooling is
driven. Both transitions decay at rate x. The intrinsic nonlinearity of the phonon-ion
interaction leads to the stabilization of multiple limit cycles. We recall the equation
of the effective Rabi frequencies [Leibfried et al. (2003)],

. .
Qnnts = Qngsn = Qo| (n + s em(aT—i-a) In) | = Q0n|8|e—n2/2 MLISI (772) :

| 7~ Mmin
max-

(10.6.1)

where

Npin = Min(n,n + 8), Nmax = max(n,n + s), (10.6.2)
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and Llf'(:c) are the generalized Laguerre polynomials, see Eq. (3.3.12). In Fig. 10.14,
preliminary data for the stabilization of a multi-limit-cycle state is shown for spgp =
—SRrsB = 1, QE’SB = QgSB = 0.1k, nesB = 0.8, and nrsg = 0.9. For Fock states
[n) for which QFSB > QRSB (OBSB < QBSB) 'population is moved to higher (lower)
n. Therefore, state populations accumulate close to crossing points n* at which
QBSB — QRSB

and when the heating dominates for slightly smaller Fock numbers
n < n*. The time evolution of duration st = 103, starting from a coherent state
|oe = 2), results in a state whose Wigner function exhibits multiple local maxima along
the radial direction. A video of the time evolution can be found at [Kehrer (2025)]'2.
More thorough studies of the various model parameters have to be performed in the
future.

10.7 Conclusion

We have presented a quantum Liénard system whose steady state hosts two coexisting
limit cycles. This is qualitatively different in the classical analogue without noise,
where the phase space of the oscillator splits in distinct basins of attraction for each
limit cycle. Due to the coexistence of both limit cycles, the quantum system exhibits
surprising synchronization behavior: coherently driving this quantum twin limit cycle
(TLC) oscillator, each of the two limit cycles locks to a distinct phase when the
oscillator is detuned from the drive or in the presence of a Kerr nonlinearity. Varying
the detuning or the Kerr nonlinearity, the inner limit cycle exhibits a larger phase
shift than the outer one. In contrast, the induced phase shift of a standard quantum
van der Pol oscillator increases monotonically with its radius. A pair of coherently
coupled identical TLC oscillators shows an apparent paradoxical effect: the relative
phase of two equal-sized limit cycles of oscillators A and B exhibits bistable locking,
i.e., the oscillators are in the quantum synchronization blockade. Simultaneously, two
limit cycles of different radius lock to a single value of the relative phase. Therefore,
in a pair of TLCs, both synchronization and blockade coerist within the same steady
state. Moreover, the range of the gain and damping rates in which the blockades exist
is smaller than in the case of standard quantum limit-cycle oscillators. In conclusion,
TLCs exhibit synchronization properties that differ in a qualitative way from those of
conventional limit cycle oscillators. They provide a foundation for exploring complex
collective dynamics and enable the understanding of quantum synchronization in more
general systems with multiple coexisting attractors.

Our setup can be extended by incorporating higher-order gain and damping channels,
leading to multiple local minima in the effective potential and, therefore, multiple
limit cycles. Another choice of dissipation channels that are more localized in Fock
space has been studied in [Rips et al. (2012)]. Employing such channels will lead to
multiple effective few-level limit cycles in Fock space centered at various Fock numbers.
Future directions also include the study of minimal examples, e.g., spin-2 oscillators
where both |£1) are stabilized, as well as networks of TLCs. The study of classical

2Direkt link: https://tobias-kehrer.github.io/thesis/twin_limit_cycles/ [Accessed: July 26, 2025]
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10.7 Conclusion

multi-limit-cycle oscillators in the framework of synchronization and nonreciprocity
appears to be another path of research with rich physics. The analysis of multiple
limit cycles within a single quantum steady state opens a promising avenue within the
field of quantum synchronization with potential applications in quantum sensing and

entanglement generation.

The results and figures of this chapter have been published in parts in [Kehrer et al.
(2025)].
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Chapter 11

Conclusion and Outlook

In the recent years, impressive progress of quantum computing hardware has been
made. A precursor of fault-tolerant quantum computers are quantum simulators.
As an analogy, a fault-tolerant quantum computer can be used to perform quantum
simulations in a digital way whereas quantum simulators implement an analog simula-
tion of a quantum system. Including incoherent processes like gain and damping in
quantum simulation is of great interest. This thesis has presented contributions to
both hardware-oriented modeling of transmon qudits and theoretical studies of unique
quantum features of synchronization. Please consult the individual conclusions of each
chapter for a more detailed summary.

Part I: Quantum Computing on Superconducting Hardware

Summary

In the current noisy intermediate-scale quantum era, where fault-tolerant quantum
computing is not yet achieved, I believe studying quantum computing platforms as
a quantum simulator is the most promising avenue. Moreover, to unlock the full
potential of the physical implementation of a qubit, higher-excited qudit states of its
physical Hilbert space have to be taken into account.

In the example of a superconducting transmon qudit on IBM Quantum hardware,
in Ch. 4, we have presented a readout model that is used to compare the performance
of two proposed measurement strategies. The default strategy to measure two-
level qubit states is to maximize the distinguishability of both states. Applying
this strategy to qudits, i.e., multiple states, is in general not optimal since more
than two states have to be distinguished properly. One strategy we have proposed
operates, similar to the default strategy, at a single readout frequency that minimizes
the misclassification error of all relevant qudit states simultaneously. Moreover, we
have identified the parameter regime in which another strategy, i.e., combining the
outcomes of multiple measurements at distinct readout frequencies, outperforms the
single-frequency strategy. To prepare the Fock states of a ququart, i.e., the four lowest
eigenstates of a qudit, we have employed higher-order X gates by driving two-photon
transitions. One of the advantages of such gates is the speed-up of certain qudit
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operations.

In order to enable the simulation of open quantum systems, e.g., quantum syn-
chronization that has been discussed in the second part of this thesis, on quantum
computing hardware that is optimized to realize unitary time evolutions, we have
investigated a strategy to engineer an effective incoherent gain. The model that has
been presented in Ch. 5, makes use of echo-sequence-like gate operations combined
with decay periods to map the native decay to both effective gain and damping. By
making the echo sequence asymmetric in time, the ratio of the effective gain and
damping rates can be tuned.

In this first part of the thesis, we have improved the default readout of a transmon
qudit. Considering it as a noisy quantum computing platform, we have shown that
native decay can be used to simulate an effective incoherent gain.

Outlook

The readout model studied in Ch. 4 inspires other measurement schemes. Further
improvements of qudit state readout can potentially be achieved by an adaptive
measurement scheme in which the readout frequency is updated sequentially between
bunches of data in the spirit of Bayesian inference, e.g., see [Granade et al. (2017),
Garcia-Pérez et al. (2021)]. Partial information about the quantum state that is gained
after a fraction of the measurement might be used to improve the distinguishability of
the following parts of the measurement. Other schemes based on adapting readout
frequencies might involve neural networks that have already been used for improved
readout [Quek et al. (2021), Wang et al. (2025)].

Similar to our implementation of two-photon transitions for higher-order X gates,
multiphoton transitions can be utilized to improve other gate operations, even two-
qubit gates [Roth et al. (2017), Li et al. (2024)]. Future research involves to identify
further feasible higher-order-gate extensions of the universal qudit gate set [Gottesman
(1999), Fischer et al. (2023)].

To improve the quantum simulation of open multilevel models, the echo-sequences
presented in Ch. 5 have to be extended to qudits. In the three-level qutrit case, new
transitions including two-photon processes can be used to generate mixed states by
effective incoherent gain. A question that will be worthwhile to answer is: which
effective gain and damping operators can be realized in qutrit or qudit models using
such echo-sequence-like gate operations? Moreover, the faster decay of higher excited
transmon states [Fischer et al. (2022)] can be used to engineer a speed-up mixed-state
preparation in comparison to using qubit states only.

Part II: Quantum Synchronization of Oscillating Systems

Summary

In the second part of this thesis, we have focused on one family of open quantum
systems we would like to implement on a quantum simulator: limit-cycle oscillators
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that show quantum synchronization. Here, gain and damping stabilize a limit-cycle
state that exhibits a free phase that can be synchronized to an external signal or the
phase of other oscillators.

In Ch. 8, using an efficient operator representation of the synchronization measure, we
have studied two scenarios of coherently coupled spin-1 oscillators: (i) two oscillators,
one of which is driven coherently, and (ii) a chain of three oscillators. Between
pairs of oscillators a synchronization blockade occurs that suppresses standard first-
order locking of the relative phase of these oscillators such that only second-order
bistable locking remains. Here, the pair of spins locks in and out of phase with each
other. Another synchronization blockade between the drive and the driven spin exists.
Surprisingly, the two spins at both ends of the three-oscillator chain synchronize
similar to the undriven spin in the two-oscillator case that synchronizes to the external
drive. Since the mentioned synchronization blockades between directly coupled spins
persist, i.e., they are not lifted, we refer to this effect as locking through the blockades.

A similar interplay of synchronization mechanisms leading to (i) standard locking
to a single value of the relative phase between two oscillators and (ii) bistable locking
has been presented in Ch. 9. Here, three interactions compete in a setup of two
harmonic-oscillator-like modes. A dissipative interaction between both oscillators
induces antiphase locking in contrast to a coherent coupling that nurtures bistable
phase locking. A coherent drive that acts on one of the oscillators leads to in-
phase or antiphase locking depending on the ratio of the dissipative and coherent
interaction strength. The resulting phase diagram as well as emerging synchronization
blockades have been understood by a perturbation expansion of the steady state.
Quantum analogues of traveling-wave states originating from an effective nonreciprocal
interaction have been identified by maxima in the Fourier transforms of two-time
correlations as well as by quantum trajectory simulations. The classical analogues
of two and three oscillators based on their mean-field equations feature many highly
nontrivial active states.

In the last publication discussed in Ch. 10 of this thesis, a new avenue of quantum
synchronization has been identified: the study of multi-limit-cycle oscillators, i.e.,
quantum Liénard systems. We have proposed a model whose steady state hosts two
coexisting limit cycles, which we call a “twin limit cycle”. In contrast, in its classical
analogue without noise, the phase space of the oscillator splits into two separated
basins of attraction, one for each limit cycle. Due to the coexistence in the quantum
case, surprising synchronization effects have been found. We have proposed refined
quantum synchronization measures to access the locking behavior of the individual
limit cycles. The individual limit cycles of a single coherently driven twin limit
cycle lock to distinct phases. Moreover, a pair of coherently coupled twin limit-cycle
oscillators exhibits both synchronization and synchronization blockades in the same
steady state.

In this second part of the thesis, we have identified unique quantum effects of
synchronization in both spin-1 and harmonic-oscillator-like models. Moreover, a
new direction, the quantum synchronization of multi-limit-cycle oscillators, has been
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Chapter 11 Conclusion and Outlook

initiated.

Outlook

In Ch. 8, we have introduced an operator expression of the common synchronization
measure for multiple spins. Answering the question which operator products contribute
to the measure for larger spins will improve the study of quantum synchronization
in these setups. The drive-spin blockade occurring in spin-1 models of quantum
synchronization has no counterpart in harmonic-oscillator-like models. However, an
inter-oscillator blockade exists in both cases. This raises the question whether quantum
synchronization through the blockades that has been presented in Ch. 8 also exists in
a chain of three harmonic-oscillator-like oscillators.

Another set of future topics is related to squeezing and its impact on quantum
synchronization [Sonar et al. (2018), Shen et al. (2023)]. In Figs. 7.3(c) and 7.3(d),
steady states of models including higher-order squeezing have been shown. The number
of visual maxima in the Wigner functions corresponds to the order of squeezing. What
are the implications of this higher-order squeezing for the synchronization of single
driven oscillators and coupled oscillators? There might be frustration effects emerging
when coupling a second-order squeezed oscillator with a third-order squeezed oscillator.
Moreover, higher-order squeezing of a limit-cycle state might be studied in the context
of multifurcations, i.e., generalized bifurcations [Strogatz (2024), Chia et al. (2025)].

The squeezing of twin limit cycles might also lead to interesting behavior if both
limit cycles react differently to the squeezing drive as they do for a standard coherent
drive. Can the limit cycles be significantly off-centered and what are the consequences
for defining phases of a limit cycle in the sense of the quantum asymptotic phase [Kato
and Nakao (2022), Kato and Nakao (2023)]? In analogy of a driven spin-1 oscillator
[Roulet and Bruder (2018a)] as the minimal example of a driven quantum oscillator
[Lee and Sadeghpour (2013)], what is the minimal example of a twin limit cycle? One
candidate is a spin-2 oscillator, where both states with magnetic quantum number
plus or minus one are stabilized. In this regard, interesting questions are: (i) what
are suitable synchronization measures to resolve the individual limit cycles, (ii) which
choices of Lindblad operators can be considered, and (iii) does a new class of blockades
between multi-limit-cycles and a coherent drive exist?

In general, one could choose different dissipators that stabilize multiple limit cycles
that exhibit better effective control parameters of the size and width of each limit
cycles than those presented in Ch. 10. One example is dissipators with a Lorentzian
distribution of gain and damping rates in Fock space discussed in [Rips et al. (2012),
Lorch et al. (2017)]. Adjusting the center position and width of two of such Lorentzian
gain and damping channels will likely lead to easier control of twin limit-cycle states.
The proposal of a physical implementation of multi-limit-cycles presented in Sec. 10.6
makes use of the highly nonlinear interaction between the internal degrees of freedom
of a trapped ion and its motional modes outside the Lamb-Dicke regime [Leibfried
et al. (2003)]. Moreover, the resulting state space of a related scenario in which both
gain and damping channels are engineered by blue and red sidebands driven on the
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same ion transition, see Sec. 3.3.2, can be explored in the context of dissipative phase
transitions [Minganti et al. (2023), Beaulieu et al. (2025)]. Does the combination of
both setups, i.e., each of two independent ion transitions is used to implement both
gain and damping, feature squeezed limit-cycle states?

Another topic besides squeezing is nonreciprocity [Fruchart et al. (2021)]. Taking the
setup described in Ch. 9 as an inspiration, i.e, coherent and dissipative coupling, are
there also active steady states of nonreciprocally coupled twin limit-cycles? Moving on
from two to many twin limit-cycle oscillators, it will be worthwhile to study networks
of many multi-limit-cycle oscillators. Since large quantum many-body systems are
difficult to simulate, one might start with their classical mean-field equations. Even
in this classical description, interesting nontrivial active states might be found, e.g.,
traveling-wave states where oscillators jump between stable amplitude configurations.

Classical multi-limit-cycles are known in biochemistry [Laurent and Kellershohn
(1999), Enjieu Kadji et al. (2007), Feillet et al. (2014), Goldbeter and Yan (2022)].
An arguably highly speculative question is whether quantum synchronization of multi-
limit-cycle oscillators has implications for quantum chemistry. Another exploratory
project is the investigation of a quantum analogue of swarmalators that have been
mentioned in Sec. 6.6 as quantum active matter. A simple scenario to start with might
consider two spins 1 that are coupled via a harmonic oscillator. Interpreting these
oscillators as ions in a common trap [Behrle et al. (2023)], the coupling-mediating
mode corresponds to their relative motion. Extending this setup to multiple spins and
oscillators in a 2D trap, a special case of quantum swarmalators would be realized.

More physical implementations of quantum synchronization than the ones mentioned
in Ch. 7 can be expected in the near future. Several platforms like superconducting
circuits [Grimm et al. (2020)] or trapped ions [Behrle et al. (2023)] offer promising
control. The development of new approaches to realizing quantum synchronization
can work in both directions: (i) new architectures might be needed to implement
known quantum limit cycles and (ii) hardware limitations and hardware features could
inspire new ways of limit-cycle-state stabilization.
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