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Chapter 1

Introduction

Quantum entanglement is one of the most interesting quantum mechanical phenomena, especially in relation

to quantum information theory. Since the transmission of information is based on the distribution of special

types of correlation, the quantum entanglement, any description of a faultless transmission begins with a dis-

cussion of how it is possible to prevent the information from degrading.

Thus the subject of this thesis is the entanglement dynamics of a quantum system which consists of an arbi-

trary number of qubits coupled linearly to a thermal bath. This coupling shows environmental influences in

the context of decoherence effects and leads to a fundamental description of the entanglement dynamics within

time. But the entanglement dynamics primarily requires a full understanding of the system dynamics. There-

fore, we assume that the system-bath couplings are weak so that the reduced system dynamics can be described

by the Markovian master equations. We first consider a system of two qubits embedded in a thermal bath. For

such a bipartite system the entanglement is fully understood and gives us an intuitive comprehension of the

entanglement dynamics. Especially we are interested in environment-induced entanglement which shows that

such a coupling of a quantum system cannot only destroy the entanglement but also create it, transiently or

permanently. To obtain a complete description we shall investigate how different entangled states appear by

variation of the coupling constants. This requires a substantial study of the coherent physics, the Lamb-shift

and entanglement-sudden-death which is a typical effect induced by the dissipative dynamics. Additionally to

the entanglement behaviors we are also interested in finding a solution to prevent the information from decoher-

ing. This is possible whenever an initial state of the dissipative dynamics has a component remaining constant

which is only the case for certain subspaces, known as decoherence-free subspaces.

In the second part of this thesis our theory of entanglement dynamics will be extended from a two qubit system

to a three qubit system. This extension is a qualitative one as there is no formulation of the entanglement dynam-

ics of mixed tripartite states. Another difficulty of a tripartite system is that the dynamics given by the reduced

density matrix is huge in comparison to the bipartite system. As a consequence of this we have to find a method

to generate the master equation algorithmically from the abstract differential equation given in the semi-group

definition and implement this equation numerically. This allows quantitative statements on the basis of the nu-

merical implementation of the dynamics. In the end we shall obtain a fundamental description of the dynamics

of three qubits embedded in a thermal bath which can be compared with the dynamics of the bipartite system.

Based on this dynamics the steady state between the qubit system and the environment shall be discussed in

the context of the thermal occupation, so that a fundamental description of the time-dependent distribution of

an initial occupation under the influence of the dissipative dynamics is given. Finally the entanglement dynam-

ics of this tripartite system will be discussed. In particular, the focus is going to be on similar effects like in the

bipartite case: environment-induced entanglement, decoherence-free subspaces, entanglement sudden death,

coherent physics induced by the bath, and the influence of different couplings.
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2 Chapter 1 Introduction

Outline

The outline of this thesis is the following. In chapter 2 we introduce the mathematical description of entangle-

ment in the context of bipartite and multipartite systems. In addition to these definitions we introduce some

separability criteria which determine if a given state is separable or entangled. The main part of this chapter will

be the introduction of an entanglement measure based on the properties of entanglement, the non-local corre-

lations. In section 2.3 we will discuss such an entanglement measure for a bipartite system, the concurrence. In

the last part we consider the concurrence of a tripartite system which is limited to pure states.

In chapter 3 we begin with a discussion of the Jaynes-Cummings model to obtain a description of the interac-

tion of the qubits with a bosonic field. Then the unitary dynamics of closed quantum systems is discussed and

from this, we derive the dynamics of open quantum systems under the Markovian assumptions. In section 3.2

we derive the master equation in Lindblad form for our qubit system under the restriction that the system-bath

coupling is weak. At the end of this chapter we discuss how it is possible to prevent the information from deco-

hering in the context of the theory of decoherence-free subspaces.

In chapter 4 we consider a bipartite qubit system embedded in a thermal environment described by the Marko-

vian master equation. Primarily we discuss the dynamics of this system, the steady state between the qubits

and the thermal bath in the context of the occupation of the states. Then we introduce the entanglement theory

based on the stationary solution of the master equation, particularly the theory of environment-induced entan-

glement and decoherence-free subspaces. In sections 4.2 and 4.3 we then discuss the numerical results with this

theoretical background. In the next section we rewrite the Lamb-shift contribution of the master equation in the

pseudo-spin representation to obtain an intuitive understanding of the coherent physics. In the last part of this

chapter we discuss the corresponding numerical result of the time-dependent concurrence of this representa-

tion.

In chapter 5 we extend the bipartite system to a tripartite system. We first discuss the dynamics of this tripartite

system in the context of the stationary solution which describes the occupation in time. To obtain a fundamental

description of the coherent physics we only consider the pseudo-spin representation of the Lamb-shift contri-

bution. Then we consider the entanglement dynamics for a symmetric coupling for several initial states. At the

end of this section we compare these numerical results of the time-dependent concurrence with the numerical

results of the bipartite system. In the last part of this chapter we change the symmetric coupling of the qubits

to a chain representation. This leads to a comparison of the concurrence and occupation behavior defined by

different couplings.



Chapter 2

Quantum entanglement

2.1 Quantum state space of qubits

The quantum bit, or qubit for short, is the basic unit of quantum information theory [1]. Many different physical

systems are suitable for the realization of qubits, for example a spin 1
2 -particle, a two-level atom or the polariza-

tion of a single photon. The state of a qubit is a vector |ψ〉 in a two dimensional complex Hilbert spaceC2. The

vectors of the computational basis states form an orthonormal basis of that space and are represented in matrix

form as

|0〉 =
(

1

0

)
, |1〉 =

(
0

1

)
.

In contrast to classical information which is either 0 or 1, any superposition of these two states is possible

|ψ〉 = a |0〉+b |1〉 ,

where a and b are complex numbers with |a|2 +|b|2 = 1. The scalar coefficients a and b are referred as quantum

probability amplitudes, because their squared magnitudes |a|2 and |b|2 are the probabilities for the measure-

ment results.

The Bloch sphere representation is a way to describe a qubit mathematically. Any quantum state |ψ〉 of a qubit

can be represented by the Bloch vector

|ψ〉 = e iγ
(
cos

(
θ

2

)
|0〉+e iϕ sin

(
θ

2

)
|1〉

)
,

where the spherical coordinate angles θ and ϕ define a point on the three-dimensional unit sphere. The global

phase e iγ is irrelevant in quantum mechanics. This quantum state space is constructed via a special class of

linear operators acting in it, the statistical operator ρ which allows a statistical description of every available

state of the (2×2) qubit system. These operators are complex Hermitian trace-one matrices [ρi j ] ∈ Mat(C,2),

also known as density matrices. A fundamental description of this density matrices is given in terms of the Pauli

operators

3



4 Chapter 2 Quantum entanglement

σ1 = |0〉〈1|+ |1〉〈0| =
(

0 1

1 0

)
,

−iσ2 = |0〉〈1|− |1〉〈0| =
(

0 −1

1 0

)
,

σ3 = |0〉〈0|− |1〉〈1| =
(

1 0

0 −1

)
, (2.1.0.1)

with 12 =σ2
1 =σ2

2 =σ2
3 and the identity matrix 12

ρ =
(
ρ11 ρ12

ρ21 ρ22

)
= 1

2

(
1+ s3 s1 + i s2

s1 − i s2 1− s3

)
= 1

2
(12 +~s ·σ).

The vector~s = {s1, s2, s3} is known as the Bloch vector. In the case of pure qubit states, the statistical operators are

projectors onto one-dimensional subspaces and can be associated with points on the Bloch sphere, the vector

has unit length |~s| = 1. By contrast, mixed states, that can be formed from pure states, lie in the interior of the

Bloch sphere and the Bloch vector is therefore |~s| ≤ 1.

Quantum information theory is based on the behavior of qubits. The information of an n qubit system consti-

tutes a Hilbert space with the corresponding dimension 2⊗n represented by a tensor product of multiple copies

of the two-dimensional complex Hilbert space. Such systems are traditionally associated with the spin sub-

spaces of elementary particles which represent the fundamental properties of quantum information theory like

entanglement and decoherence.

2.2 Entangled states

Entanglement of quantum systems is produced by the interaction of two or more systems. It refers to the situa-

tion where only the state of the whole composite system is defined, but not the states of the single system. Erwin

Schrödinger describes an entangled state by "the best possible knowledge of the whole does not include the best

possible knowledge of its parts" [2].

We first consider a system composed of two single qubits [3][4]. The four-dimensional Hilbert space is a tensor

product H =H A ⊗HB of the predefined two-dimensional Hilbert spaces associated with each of the two single

qubits. For each state one distinguishes between separable and entangled. A pure state |ψ〉 is called separable

or a product state, if it can be written as the direct product of subsystem states

|ψ〉 = |ψA〉⊗ |ψB 〉 = |ψA〉 |ψB 〉 |ψA〉 ∈H A , |ψB 〉 ∈HB .

For example the product state |ψ〉 = |0〉⊗ |1〉 = |0〉 |1〉 contains the information of the composite system and of

the single qubit states, one qubit is in the state |0〉 while the other is in the state |1〉. Thus such states contain the

information of the full system and of the single systems.

The remaining states are entangled states which cannot be written as the direct product of the subsystem states

|ψ〉 6= |ψA〉⊗ |ψB 〉 = |ψA〉 |ψB 〉 ∀|ψA〉 ∈H A , |ψB 〉 ∈HB .

We consider for instance the entangled Bell states |ψ±〉 = |00〉±|11〉p
2

, |φ±〉 = |01〉±|10〉p
2

. The entanglement of these

states can be illustrated by imagining that the two qubits of the state are sent to different locations l1 and l2. If

we measure the qubit at location l1 the result will determine the measurement outcome of the second qubit at
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location l2. Thus a measurement of one qubit will determine the measurement outcome of the second qubit as

a result of correlation [5]. Thus a typical quantum mechanical property of entangled states is that they can be

defined by nonlocal correlations. 1

The use of density operators allows a statistical description of a composite quantum system and gives additional

information if the considered system is in a pure or mixed quantum state. For pure states the quantum state

is described by the state vectors. In contrast to mixed states which cannot be described by state vectors. The

representation of the density operator in the convex decomposition, the sum over an ensemble in the sense of

statistical mechanics, allows to distinguish between pure and mixed states

ρ =∑
i

pi
(|ψi 〉⊗〈ψi |

)
,

where pi is the probability of the system being in the i th state of the ensemble |ψi 〉, where | 〈ψi |ψi 〉 | = 1. If there

exists only one probability pi = 1 the state is a pure state

ρ = |ψi 〉〈ψi | .

This density operator is just the projection operator onto the state |ψi 〉. The square of the density operator of

pure states is ρ2 = |ψi 〉〈ψi |ψi 〉〈ψi | = |ψi 〉〈ψi | = ρ and thus it follows

Tr (ρ)2 = Tr (ρ) = 1.

A pure state is separable if it can be written as a direct product of the density operatorsρAB = ρA⊗ρB = |ψA〉〈ψA |⊗
|ψB 〉〈ψB |, where ρA and ρB describe the states of the subsystems A and B . Otherwise it is entangled.

The remaining states are mixed states where the probability of the convex decomposition is
∑

i p2
i ≤ 1. This de-

fines a sum of the projection operators over the ensemble weighted with the probabilities of each member of the

ensemble. For a fundamental criterion for mixed states we take the trace of the statistical mixture

Tr (ρ2) =∑
n

∑
i , j

pi p j 〈ϕn |ψi 〉〈ψi |ψ j 〉〈ψ j |ϕn〉

=∑
n

∑
i , j

pi p j 〈ψi |ψ j 〉〈ψ j |ϕn 〈ϕn〉︸ ︷︷ ︸
=1

|ψi 〉

=∑
i , j

pi p j 〈ψi |ψ j 〉〈ψ j |ψi 〉︸ ︷︷ ︸
≤|ψi |2|ψ j |2

≤∑
i , j

pi p j .

The last term of the equation is only one if | 〈ψi |ψ j 〉 |2 = 1 which is only possible for pure states when all states.

The square of the density matrix for mixed states holds the relation

Tr (ρ)2 < 1.

Mixed states are separable when they can be written in a convex decomposition

1That two entangled states have nonlocal correlations was found by the EPR-effect of Einstein, Podolski and Rosen [6]. They have intro-

duced a fundamental thought experiment which should prove that the quantum-mechanical description of reality is uncomplete. In this

experiment they have found that quantum mechanics behaves not like the classical theory as a consequence of this correlations.
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ρ =∑
i

pi

(
ρi

A ⊗ρi
B

)
, (2.2.0.2)

where the density matrices ρA,B give a statistical description of the corresponding systems A,B , and pi is the

probability being in the i th state of the ensemble with
∑

i pi = 1. All other states are entangled mixed states. This

decomposition into separable mixed states is not straightforward. For special separable mixed states, we give an

example (see appendix) to decompose this states into separable states like in equation (2.2.0.2)

Entanglement of multi-partite systems

The definition of entangled states can be generalized to multi-partite systems, i.e. systems that decompose into

more than two subsystems. An n-partite system is described by a Hilbert space H which is a tensor product of

all subsystems H1 ⊗H2 ⊗ ...⊗Hn . A pure state is separable if it can be written as a direct product of n states,

otherwise the pure state is entangled. A mixed state is separable if it can be written as a convex sum of product

states. Any mixed state that cannot be represented as a convex sum of separable states is entangled.

2.2.1 Schmidt decomposition

The Schmidt decomposition refers to a particular way of expressing a vector in a tensor product of two different

subsystems. The Schmidt decomposition allows to classify pure bipartite states |ψ〉 of a composite systems A,B

[1]. The Hilbert spaces of the components are defined by H A and HB with dimensions dA and dB . Then there

exists orthonormal states |m〉 ∈ |ψA〉 and |ν〉 ∈ |ψB 〉 such that

|ψ〉 =
dA∑

m=1

dB∑
ν=1

λmν |m〉 |ν〉 (2.2.1.1)

where λmcν are non-negative real numbers satisfying
∑

mνλ
2
mν = 1, known as Schmidt coefficients.

This representation is provided for all pure states, which is shown easily. A state of the composite system is

defined as a product of any fixed orthonormal basis |n〉 , |µ〉 for the subsystems A,B

|ψ〉 = ∑
n,µ

cnµ |n〉 |µ〉

for some matrix C of complex numbers cnµ. This state is rewritten by the singular value decomposition c = ud v ,

where d is a diagonal matrix with non-negative elements and u and v are unitary matrices, as

|ψ〉 = ∑
mνnµ

unmdmνvνµ |n〉 |µ〉 .

This expression gives the Schmidt decomposition (2.2.1.1), defining |m〉 = ∑
mn umn |n〉 , |ν〉 = ∑

νµ vνµ |µ〉, and

λmν = dmν. The basis |m〉 forms an orthonormal set from the unitary of u and the orthonormality of |n〉 and

similarly for |ν〉.
The Schmidt coefficients allows to distinguish separable from entangled states. For a separable state the Schmidt

decomposition of the single state is ρA =∑
m λ2

m |m〉〈m| and ρB =∑
νλ

2
ν |ν〉〈ν|, the eigenvalues of ρA and ρB are

identical, namely λ2
mν for both density operators. The Schmidt vector which is created by the Schmidt coeffi-

cients has only one non-vanishing entry~λ= [1,0, ...,0], namely the product state composed of the two pure states

that determine the reduced state. In contrast to fully entangled states where the Schmidt vector has n compo-

nents~λ= [1/d , ...,1/d ]. Therefore it is important to have all the Schmidt coefficients for the characterization of

all the correlations of the pure state. An n-dimensional system has (n − 1) independent Schmidt coefficients,

because of the normalization 〈ψ|ψ〉 = 1.
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The Schmidt decomposition for maximally entangled states exhibits maximally mixed reduced states. The form

of the maximally entangled states are

|ψmax〉 = 1p
d

d∑
i=1

|ei 〉⊗ | fi 〉 .

Thus different maximally entangled states only differ in their Schmidt basis, but not in their Schmidt coefficients.

2.2.2 Separability criteria

For mixed states the Schmidt decomposition is not a sufficient criterion for the separability [4]. In general, the

characterization of a set of separable mixed states appears to be extremely complex, because the given density

operator has infinitely many ensemble decompositions. Thus we introduce operational and non-operational

criteria which are known to describe partially a set of quantum states.

Operational separability criteria

We distinguish between three different operational separability criteria, namely the Peres-Horodecki criterion

(positive partial transpose), reduction criterion and the majorization criterion [7]. The positive partial transpose

criterion, or for short the PPT criterion, provides for all mixed states a necessary criterion of entanglement,

because it is based on the fact that any transposition operation of a separable state leads always to another

separable state.

We consider a bipartite mixed system represented by a separable density matrix ρAB which can be described in

an arbitrary product basis as

ρm,µ,nν = 〈m,µ|ρ|n,ν〉 ,

where Latin indices are referring to the subsystem A and Greek ones to the subsystem B . The partial transpose of

this composite density matrix is given by the transpose of only one subsystem. For example, the partial transpose

of the subsystem B is given by the new density matrix ρT B
AB with matrix elements in the fixed product basis as

〈m| 〈µ|ρT B
AB |n〉 |ν〉 = 〈m| 〈ν|ρAB |n〉 |µ〉 .

Thus the operation T B , the partial transpose, corresponds to transposition of indices of subsystem B . To obtain

an intuitive representation of the partial transpose of any separable state we use the decomposition according

to (2.2.0.2). With this definition any separable state can be written as

ρ
T B
sep =∑

i
pi

(
ρi

A ⊗ (ρi
B )T

)
=∑

i
pi

(|mi 〉〈mi |⊗ (|νi 〉〈νi |)T )
,

since the transposed density matrix
(
ρi

B

)T = (|νi 〉〈νi |)T is again a valid density matrix for B . The density matrix

ρAB is an operator matrix in an orthogonal basis which has a non-negative spectrum. Thus the corresponding

transposed matrix (ρAB )T is also a quantum state and positive and we obtain the following relation

ρAB ,sep ≥ 0 ⇒ (
ρAB ,sep

)TB ≥ 0.

The relation ρAB ≥ 0 is synonymous with the fact that all eigenvalues of this matrix are positive or zero. The

spectrum of the matrix and the transposed matrix is equal which can easily be shown by the relation det(ρAB −
λ1) = det((ρAB )T −λ1) and thus the eigenvalues of the transposed separable matrix are also positive or zero.
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If the partial transposition operation is performed on a separable mixed state the result is always another positive

density matrix with non-negative eigenvalues. Then the partial transpose criterion says that if ρT AB ≤ 0 then ρ is

entangled.

A. Peres [8] shows that the partial transpose criterion is only perfectly adequate , i.e. necessary and sufficient for

the characterization of separability and entanglement for low-dimensional systems, 2⊗2 or 2⊗3 dimensional

systems. For higher dimensional systems only the existence of entangled PPT states can be shown and thus the

partial transpose criterion is not a sufficient criterion for such systems.

Non-operational separability criteria

In the following, we want to discuss a non-operational separability criterion, namely positive maps. The criteria

of positive maps is an extension of the partial transpose criterium through a general analysis of the problem of

separable states in terms of linear positive maps. A map is called a positive map, if it takes positive operators to

positive operators

Λ(ρ) ≥ 0, ρ ≥ 0,

where the operator ρ is positive semi-definite according to its definition. The crucial property of this criterion

is that if Λ ≥ 0 not every map is necessarily positive. We consider for example a positive map on the second

subsystem B and define 1⊗Λ with Λ acting only on the second subsystem B and 1 is the identity map on the

first subsystem A. If the considered state is separable, its convex decomposition into product states is given by

(1⊗Λ)ρ =∑
i

pi
(
ρA

i ⊗ΛρB
1

)
.

Thus we obtain the following relation for separable states

(1⊗Λ)ρ ≥ 0.

In contrast to states which are not separable the extended map is not positive, there are some states ν such that

(1⊗Λ)ν 6≥ 0. Such states ρ are necessarily entangled.

A state is also separable if the extended map is positive and can be written in its convex decomposition and all

expectation values of this quantity are non negative, otherwise it is entangled. To show that a state is entangled

it is sufficient to find only one positive map Λ with (1⊗Λ)(ρ) < 0. Since the positive maps criterion is based

on the theory of the PPT-criterion it is also limited for low-dimensional systems, (2⊗2) and (2⊗3). In higher

dimensional system there are entangled states which cannot be detected by this criterion [7]

2.3 Entanglement measures and monotones

The entanglement properties must be fully understood for the introduction of a theoretically correct formulation

of entanglement measure. A fundamental description of entanglement is given in the context of operations, par-

ticularly local operations and classical communication(LOCC) [9]. These operations allow to create controllable

quantum correlations and thus we are able to coherently prepare, manipulate, and measure individual quantum

systems. We will discuss the entanglement measure by concentrating on the finite dimensional bipartite case.

2.3.1 Properties of entanglement measures

For the introduction of entanglement measures we start with an operational point of view in the context of

quantum communication experiments. Plenio describes the quantum communication by "Perfect quantum
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communication is essentially equivalent to perfect entanglement distribution" [10]. This means that it must be

possible to share the information of a particle by two distantly separated laboratories without decoherence. If

we consider for example a qubit the information of it is perfectly transmitted when it is possible to distribute the

entanglement from one laboratory to the other. Such a perfectly distribution of the information of the states can

be achieved by local operations and classical communication [10].

In the following, we give the mathematical description of the different operations for two finite dimensional

systems as it has been proposed in Ref.[9].

Local operations

An operation is local, if both subsystems evolve independently of each other under the action of this operation.

In terms of the operator sum the local operation can be represented by the operators of the subsystem in the

following way

εloc (ρ) =∑
i j

Ai ⊗B jρB †
j ⊗ A†

i with
∑
i j

A†
i Ai ⊗B †

j B j =1H1⊗H2 ,

where the operators Ai , A†
i and B j ,B †

j correspond to the first subsystem, respectively to the second subsystem.

Possible entanglement between these two subsystems defined by preexisting correlations remains unaffected

when both system evolve unaffected by each other. Thus the entanglement can neither increase nor decrease.

As a consequence of the remaining correlation under all local operations, the product state of both subsystems

remains a product state and can be written in terms of the operators

εl oc (ρ1 ⊗ρ2) =
(∑

i
Aiρi A†

i

)
⊗

(
Biρ2B †

i

)
as well any separable state will remain separable under local transformations

εloc

(∑
i

piρ
i
1 ⊗ρi

2

)
=∑

i
pi

(∑
i

Aiρ
i
1 A†

i

)
⊗

(∑
i

Biρ
i
2B †

i

)

Any separable state can thus be created by local operations alone.

Global operations

In contrast to the local operation, a global operation should take into account that the two involved subsystems

evolve dependently of each other, thus an interaction between these both subsystems exists. If we assume that

the two subsystems are uncorrelated at the beginning then the initial state is a separable state and become an

entangled state only by the interaction of the two subsystems. Thus an entangled state can be created from any

initial separable state and vice versa, because the interaction between the subsystems leads to an entanglement

decrease or increase. In other words, global transformations due to the interaction of the subsystems allow to

create entangled states.

Local operations and classical communication(LOCC)

Local operators and classical communication(LOCC) provide a method to perform local operations on a part of

a system and transmit this information by classical communication to another part of the system. This allows

an exchange of the created information between the involved subsystems. In the following we introduce the

mathematical description of LOCC.

The LOCC transformation in terms of the operator sum is expressed as
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εLOCC (ρ) =∑
i

Ai ⊗BiρB †
i ⊗ A†

i with
∑

i
A†

i Ai ⊗B †
i Bi =1H1⊗H2 .

In contrast to the definition of a local transformation this operator sum is defined by only one sum. This results in

the theory that separable states can be created on different parts of the system. If the first operator Ai is applied

to the first subsystem the other operator Bi is applied to the second subsystem. Thus the LOCC operations create

then a classical correlation between these two subsystems. But a product state will not remain a product state

under this transformation as a result of the exchange between both subsystems

εLOCC (ρ1 ⊗ρ2) =∑
i

(
Aiρ1 A†

i

)
⊗

(
Biρ2B †

i

)
=∑

i
piρ

i
1 ⊗ρi

2,

with

ρi
1 =

Aiρ1 A†
i

Tr (Aiρ1 A†
i )

ρi
2 =

Biρ1B †
i

Tr (Biρ1B †
i )

, and pi = Tr (AiρA†
i )Tr (BiρB †

i )

Thus any separable state will remain separable under the LOCC transformation, but entangled states can not be

created by LOCC operations.

2.3.2 Entanglement monotones

In addition to the conventional requirements that a measure of entanglement should be nonnegative and nor-

malized, we introduce a fundamental pair of monotonicity conditions to obtain a good measure of entangle-

ment. The most important postulate in the context of operationally defined measures was introduced by Ben-

nett, DiVincenzo et al. [11]. The entanglement measure can be interpreted as functionals E(ρ) that characterize

the strength of quantum correlations, the existing entanglement between both subsystems. The definition of

such a functional E(ρ) is based on the theory of LOCC transformations which guarantees that the entanglement

measurement have no influence on the correlations. The basic axiom or fundamental postulate is the mono-

tonicity under LOCC; entanglement cannot increase under local operations and classical communication

E(Λ(ρ)) < E(ρ),

whereΛ(ρ) is any local operation that can be written asΛ(ρ) =∑
i j Ai ⊗B j (ρ)A†

i ⊗B †
j with the operations Ai of the

first subsystem and B j to the second (but not vice versa). The known entanglement measures usually satisfies a

stronger condition, namely that the average for each local operation is monotonic

∑
i

pi E(ρi ) ≤ E(ρ),

where pi are the probabilities of the states ρi . This condition may also be written in the form of a convex function

which is monotonic under mixing

E

(∑
i

piρi

)
≤∑

i
pi E(ρi ).

The function E that serves as an entanglement quantifier needs to fulfill several requirements which has been

proposed in Ref.[10]:
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• Discrimination of separable and entanglement states:

E(ρ) = 0 for separable ρ, and

E(ρ) > 0 for entangled ρ,

• Invariance under local unitary transformations:

E(UA ⊗UBρU †
A ⊗U †

B ) = E(ρ),

• Convexity, entanglement should not increase under mixing:

E

(∑
i

piρi

)
<∑

i
pi E(ρi ),

• Monotonicity on average under local maps and under LOCC-operations which means thatΛ(ρ)⊗1 yields

the state
∑

i piρi with an ensemble of states ρi and probability pi , it holds∑
i

pi E(ρi ) ≤ E(ρ).

Also entanglement of the total state cannot increase because of convexity:

E
(
Λ(ρ)⊗1)≤ E(ρ).

If a function E satisfies the monotonicity postulate, it turns out that for separable states it is constant. This

follows from the fact that every separable state can be transformed to any other separable state by LOCC. In

contrast to separable states where the function E vanishes. These two conditions imply that the function E is

a non negative function. All other conditions are necessary for a fundamental description of entanglement by

systems with collective, global properties.

To obtain an intuitive description of an entanglement measure the partial additivity and the continuity condition

are used

• The entanglement of n copies of a state ρ is defined by n times the entanglement of one copy

E(ρ⊗n) = nE(ρ),

• If 〈ψ⊗n |ρn |ψ⊗n〉→ 1 for n →∞, then

1

n
|E(P (|ψ〉)⊗n)−E(ρn)|→ 0,

the index n defines the number of pairs of qubits ρn .

This additive criterion is not a necessary condition and is therefore not one of the basics axioms. This results in

the fact that for any given measure E where the additivity is not fulfilled, it is possible to define a regularized, or

asymptotic version of this condition

E∞(ρ) := lim
n→∞

E(ρ⊗n)

n
.

This definition of the measure satisfies automatically the additivity. The full additivity, for any pair of states ρ

and σ holding the relation E(ρ⊗σ) = E(ρ)⊗E(σ), is in most cases a too strong condition and is therefore not

fulfilled. A good entanglement measure is given by the four basic properties. In the next section we introduce

the concurrence, a special measure of entanglement which gives a correct entanglement description.

2.4 Concurrence and entanglement of formation

2.4.1 Concurrence of bipartite systems

Wootters [12] has introduced an applicable formula for the entanglement of formation for a bipartite system

by the concurrence C . The entanglement measure E(ψ) of a pure state living in a product Hilbert space H =
H A ⊗HB with the general density matrix ρ =∑

i |ψi 〉〈ψi | is described by the von Neumann entropy S(ρ)



12 Chapter 2 Quantum entanglement

E(ψ) = S(ρ) =−Tr B (ρA logρA) =−Tr A(ρB logρB )

where Tr A ,B are the partial traces over the subsystems. This knowledge cannot simply be applied to mixed states

in terms of an average over the mixture of pure state entanglement. The problem is that two decompositions of

the same density matrix usually lead to a different average entanglement and there is no clear definition which

is the correct one. Thus the entanglement measure by the entanglement of formation E f represents the minimal

possible entanglement over all pure state decomposition of ρ, where E(|ψ〉〈ψ|) = S(Tr {|ψ〉〈ψ|}) is taken and the

measure, is then defined by

E f (ρ) = inf
∑

i
pi E(ψi ),

where the infimum is taken over all possible probability distributions. This equation is the so called convex roof

of the entanglement of formation for pure states and a decomposition leading to this convex roof value is called

an optimal decomposition.

The concurrence provides an analytic formula for the entanglement. The concurrence C of a pure state |ψ〉 is

defined to be C (ψ) = |〈ψ̃|ψ〉 |, where the tilde denotes the spin-flip transformation. This transformation is a

function applicable to states of an arbitrary number of qubits

|ψ̃〉 =σy |ψ∗〉 ,

where |ψ∗〉 defines the complex conjugated of |ψ〉 and σy is the matrix

(
0 −i

i 0

)
represented in the basis {|↑〉 , |↓〉.

For n qubits such a spin-flip can be obtained by applying the above transformation on each qubit. If we consider

two qubits with the general density matrix given in the basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉} the spin-flip state is the scalar

product of ρ with the elementwise conjugated

ρ̃ = (σy ⊗σy )ρ∗(σy ⊗σy ).

For example, this spin-flip transformation leaves the singlet state |ψ〉 = 1p
2

(|↑↓〉− |↓↑〉) unchanged and thus its

concurrence | 〈ψ|ψ̃〉 | takes the maximum value. In contrast to an unentangled pure state such as |↑↓〉which is not

unchanged by the flip transformation because it is mapped to an orthogonal state and therefore the concurrence

is zero. The von Neumann entropy is expressed as the function of the Concurrence C

E(ψ) = ε(C (ψ))

= h

(
1

2

(
1+

√
1+C (ψ)2

))
, (2.4.1.1)

where h(x) =: −x log2 x − (1− x) log2(1− x) is the binary entropy. The function ε(C ) increases monotonically for

0 ≤C ≤ 1, thus the concurrence is regarded as a measure of entanglement.

For mixed states ρ the von Neumann entropy as a function of the concurrence is defined similarly. The function

ε(C ), in addition to be increasing monotonically is also convex for mixed states

ε(C (ρ)) = infε

(∑
j

p j C (ψ j )

)
≤ inf

∑
j

p jε
(
C (ψ j )

)= E f (ρ),

where ε(C (ρ)) is also a lower bound on E f (ρ). The explicit formula for the concurrence C is
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C (ρ) = max{0,λ1 −λ2 −λ3 −λ4}, (2.4.1.2)

where the λ′
i s are the square roots of the eigenvalues of ρρ̃ in descending order. Therefore the formula for

entanglement of a pair of qubits in any mixed state ρ is given by

E f (ρ) = ε(
C (ρ)

)
,

with the concurrence C (2.4.1.2) and the function ε (2.4.1.1). For instance, the concurrence C of a maximal

entangled state is one and the concurrence C of a separable mixed state is zero.

2.4.2 Concurrence of tripartite systems

In this section we discuss the entanglement of tripartite systems. For bipartite systems the entanglement of

the system is fully described by the concurrence, but this situation is much more complicated for multipartite

systems. The property of bipartite entanglement can be used to describe the entanglement of a tripartite system,

if two of the qubits A and B are very entangled, then the third qubit C can only be weakly entangled with either

qubit A or qubit B . For example, if we consider a singlet state, a maximally entangled state, between the pair of

qubits A,B then they cannot be entangled with qubit C . This was the fundamental idea for the derivation of a

quantifier for tripartite entanglement.

The tripartite entanglement of three qubits is given by the tangle τABC ,introduced by Coffman, Kundu, and

Wotters [4]

τABC =C A(BC ) −C AB −C AC . (2.4.2.1)

The residual tangle is invariant under permutations of the qubits. The concurrence C AB refers to a mixed state of

qubit A and qubit B which is calculated with the same formula for the bipartite case (2.4.1.2) after tracing out the

degrees of freedom of qubit C . The concurrence C AC is defined similar for the relevant qubits. The concurrence

C A(BC ) described the entanglement of the qubit A with the pair of qubit B and C . The tangle, the degree of the

entanglement τ ∈ [0,1], is zero if one qubit is separable from the other two, otherwise it is one if the state is

maximally entangled.

The generic class of three-particle pure states can be written as

|ψ〉 =λ1 |000〉+λ2e iϕ |101〉+λ3 |110〉+λ4 |111〉 ,

whereλi ≥ 0,
∑

i λ
2
i = 1 and 0 ≥ϕ≥π [10]. This representation of pure states is defined by a five-parameter family,

with equivalence up to local unitary transformation. These pure states include two classes of separable states,

namely the fully separable states which can be written as a product of single-party pure states and bi-separable

states which is a product of two entangled states and one single pure qubit state. All other pure states are non-

separable and constitute the class of tripartite-entangled pure states. One class of this is the Greenberger-Horne-

Zeilinger (GHZ) state and the remaining class is the class of Werner (W) state. The tangle τABC can only detect

GHZ-type entanglement and not W-type entanglement [13]. Thus the tangle can only detect genuine tripartite

entanglement, and hence can be used as an indicator of three-party entanglement. For states which have no

genuine tripartite entanglement like mixed states, we cannot make any statement about their entanglement.

For three qubit states we can only introduce a classification for the different mixed states [14]. This classification

is divided in the following classes
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• S, the class of separable mixed states which can be expressed as a convex roof sum of projectors onto

product vectors,

• B, the class of bi-separable mixed states which can be expressed as a convex sum of projectors onto prod-

uct and bipartite entanglement vectors,

• W, the class of states expressible as convex combinations of projectors onto the separable, bi-separable

and pure W states,

• GHZ, the generic class of three qubits

All these classes are convex and compact and the classes are embedded by S ⊂ B ⊂W ⊂G H Z .



Chapter 3

Open Quantum Systems

3.1 Fully quantum-mechanical model: The Jaynes-Cummings model

Any open quantum system dynamics include environmental influences which are described by the interaction

Hamiltonian. Since we are interested in the dynamics of n qubits coupled linearly to a thermal bath an intro-

duction of the system-bath interaction is necessary.

Such an intuitive description of atom-field interaction is given by the fully quantum mechanical Rabi model,

better known as the Jaynes-Cumming model [15]. This model of Edwin Jaynes and Fred Cummings studies

the relationship between the quantum theory of radiation and the semi-classical theory in describing the phe-

nomenon of spontaneous emission. To be more precise, we consider an atom which is the quantum two-level

system whose Hilbert space is spanned by just two states, an excited state |e〉 and a ground state |g 〉, interacting

with a radiation field. We assume this field to be a single-mode free field; this has the advantage that the dy-

namics is well described. The single-mode cavity field in the z-direction is described by field operators, b† and b

which are the bosonic creation and annihilation operators

~̂E =~e
( ~ω
ε0V

) 1
2

(b̂ + b̂†) sin(kz), (3.1.0.1)

where~e is an arbitrarily oriented polarization vector, ω is the frequency of the mode and k is the wave number

related to the frequency according to k = ω
c . The interaction Hamiltonian of the atom and the field is then given

by the dipole moment operator d̂ = ~̂d ·~e and the field operator (3.1.0.1)

HI =− ~̂d · ~̂E = d̂ g (b̂ + b̂†) where g =−
( ~ω
ε0V

)
sin(kz).

For a more optimized description we introduce the Pauli operators in the basis |e〉 , |g 〉:

σ1 = |e〉〈g |+ |g 〉〈e| , σ2 =−i |e〉〈g |+ i |g 〉〈e| , σ3 = |e〉〈e|− |g 〉〈g |

satisfy the commutation relations [σi ,σ j ] = 2iεi j kσk as well as the anticommutation relations {σi ,σ j } = 2δi j . It

is convenient to introduce the so-called atomic transition operators

σ̂+ = |e〉〈g | = 1

2
(σ̂1 + i σ̂2), σ̂− = |g 〉〈e| = 1

2
(σ̂1 − i σ̂2) = σ̂†

+.

The dipole operator d̂ can be written by this definition as

15
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d̂ = d |g 〉〈e|+d∗ |e〉〈g | = dσ̂−+d∗σ̂+ = d(σ̂++ σ̂−),

where the off-diagonal elements of the dipole operator are nonzero, since by parity considerations 〈g |d̂ |g 〉 =
〈e|d̂ |e〉 = 0, and we set 〈e|d̂ |g 〉 = d , and assume that d is real. Thus the interaction Hamiltonian is

Ĥ = ~λ(σ̂++ σ̂−)(b̂k + b̂†
k )

with λ = d g
~ . We define energy to be halfway between the ground state energy level Eg and the excited state

energy level Ee with Ee =−Eg = 1
2~ω0 then the atomic Hamiltonian is written as

ĤA = 1

2
(Ee −Eg )σ̂3 = 1

2
~ω0σ̂3.

After dropping the zero-point energy ~ω
2 the free-field Hamiltonian is

ĤF = ~ωb̂†b̂.

The total Hamiltonian of this system consists of the atomic Hamiltonian HA , the free-field Hamiltonian HF and

the interaction Hamiltonian HI

Ĥ = ĤA + ĤF + ĤI

= 1

2
~ω0σ̂3 +~ωb̂b̂† +~λ(σ̂++ σ̂−)(b̂ + b̂†). (3.1.0.2)

In the interaction picture the annihilation operator b̂ and the creation operator b̂† of the bath evolve as

b̂(t ) = b̂(0)e−iωt , b̂†(t ) = b̂†(0)e iωt

and similar for the atomic transition operators σ̂+ and σ̂−

σ̂±(t ) =σ±(0)e±iω0t .

The approximate time dependence of the operator products of the interaction Hamiltonian HI is then given by

HI = ~λ(σ̂+b̂ + σ̂+b̂† + σ̂−b̂ + σ̂−b̂†

= σ̂+b̂e i (ω0−ω)t + σ̂+b̂†e i (ω0+ω)t + σ̂−b̂e i (−ω0−ω)t + σ̂−e i (−ω0+ω)t .

The two terms e i (ω0−ω)t ,e−i (ω0−ω)t do not conserve energy and for ω ≈ ω0 they vary much more rapidly than

e−i (ω0+ω)t ,e i (ω0+ω)t . Integrating the time-dependent Schrödinger equation will lead, for this terms, to oscilla-

tions of frequency containing ω0 −ω and ω0 +ω. The energy non conserving terms are quickly oscillating terms

and can be ignored for |ω0 −ω| ¿ ω0 +ω by making the rotation-wave approximation which is a averaging ap-

proximation over the fast oscillations. The total Hamiltonian in this approximation is then written as

Ĥ = 1

2
~ω0σ̂3 +~ωb̂†b̂ +~λ(σ̂+b̂ + σ̂−b̂†). (3.1.0.3)

The term σ̂−b̂k corresponds to the emission of a photon while the atom goes from the excited state to the ground

state. The term σ̂+b̂†
k corresponds to the absorbtion process of a photon while the atom goes from the ground

state to the excited state.
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3.2 The weak coupling limit

To begin with the formalism of the Markov dynamics, we use the general characterization of the dynamics of

closed and open quantum systems [16],[15]. We first discuss the evolution of the dynamics of closed quantum

systems and then use this knowledge to derive a time-dependent description of the reduced quantum system

which is influenced by an environment.

3.2.1 Closed dynamics of an open quantum system

An open quantum system represents a subsystem of the combined total of the system S and the environment

B . The Hilbert space of the total system S +B is given by the tensor product space H =HS ⊗HB of the Hilbert

space of system and environment. The total Hamiltonian H is taken in the form

H = HS ⊗1B +1S ⊗HB +HI ,

where HS is the Hamiltonian of the open system S, HB is the free Hamiltonian of the environment B , and HI is

the Hamiltonian of their interaction, the coupling of system and bath.

In most cases it is assumed that the combined system is closed following the Hamiltonian dynamics. This means,

a closed quantum system that starts in a pure state evolves according to its Hamiltonian and remains in a pure

state. The dynamics are governed by the time evolution operator U (t ) = e−i H t/~ for the formal integration of

the Schrödinger equation. The solution of the Schrödinger equation is represented in terms of the unitary time

evolution U (t ) which transforms the state |ψ(0)〉 at some initial time t0 = 0 to the state |ψ(t )〉 at time t

|ψ(t )〉 =U (t ) |ψ(0)〉 = e−i H t/~ |ψ(0)〉 .

For a mathematically correct description of the statistical dynamics given by the density matrix we introduce

the formalism of the Liouville space L. This space is linear, and the elements are linear operators on a Hilbert

space H . The equation of motion of the density matrix can easily be derived from the Schrödinger equation.

This equation can be written with the superoperator L which operates linearly on the density matrices ρ(t )

describing the state of the system at time t

d

d t
ρ(t ) =−i [H(t ),ρ(t )] =−iLρ(t ),

with the formal solution

ρ(t ) = e−iL tρ(0).

This equation is the von Neumann or Liouville-von Neumann equation. The dynamical maps U (t ) = e−iL t form

a one-parameter group of linear maps on the system U (t )◦U (t0) =U (t+t0)∀t , t0 ∈R. The Schrödinger equation

therefore describes reversible dynamics, the dynamical map U (t ) preserves the spectrum of all state operators

ρS , leaves the von Neumann entropy invariant and transforms pure states again to pure states.

Thus the total time evolution Utot (t ) of the system and the environment alone can be considered temporarily by

an unitary transformation

|ψtot 〉 =Utot (t ) |ψ(0)〉 .

This approach breaks down for the dynamics of the reduced system if we include the interaction and as a result

of this the influence of the thermal bath.
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3.2.2 Reduced dynamics of an open quantum system

In realistic systems it is physically impossible to prevent outside influence. Thus we are only interested in a

description of the time-dependent evolution of the reduced system influence by the environment.

A reduction of the state to the system degrees of freedom is given by tracing out the environment. The basis

vectors of the system and of the environment Hilbert space are defined as |m〉 ∈ HS and |ν〉 ∈ HB . The open

quantum system state is characterized as the combined state of the two subsystems |ψtot 〉 = ∑
m,ν amν |m〉 |ν〉

with the corresponding density matrix ρtot = |ψtot 〉〈ψtot |. The reduced density matrix of the system is described

by the partial trace over the environment’s Hilbert space

ρS = Tr B
(
ρtot

)= Tr B

( ∑
nm,νµ

amµa∗
nν |m〉 |n〉〈µ| 〈ν|

)
= ∑

m,n
Cmn |m〉〈n|

with matrix elements Cmn = ∑
µ amµa∗

nν. This description is the same for mixed states ρtot , because they are

a statistical mixture of pure states to which the argument applies individually due to the linearity of the trace

operation.

The effective dynamics of the system that results from the interaction with the environment is derived in the

same way as the composite state of system and environment to the system alone. The effective dynamics of the

system is obtained by a mapΛt . This map is defined as the evolution of the composite system according to Utot ,

followed by tracing over the environment of the system state

ρ(0) → ρ(t ) = Tr B [Utot (t )ρtot (0)U∗
tot (t )] =:Λt [ρ(0)] =Λtρ(0).

The mapΛt described the initial state of the system transformed to a system state with t > 0. To obtain reduced

dynamics, which provides an effective description of how the environment affects the time-evolution of the

system, we introduce some assumptions in the context of the Markovian approximations. We assume that the

initial state at time t = 0 is uncorrelated with the environment ρS ⊗ρB . Under this assumption the reduction of

the open system dynamics can be visualized by the following diagram [15] which lead to a description on the

level of the system

ρtot (0) = ρS (0)⊗ρB (0)
Utot−−−−−→ ρtot (t ) =Utot (t )ρtotU †

tot (t )

Tr B↓ ↓ Tr B

ρ(0) −−−−−→
Λt

ρt =Λtρ(0)

The time evolution of the reduced dynamics can be described by an approximation of the Schrödinger equation

or more precisely the von Neumann equation under the condition of short environmental correlation times.

Such times allow us to neglect memory effects and give a formulation in terms of a quantum dynamical semi-

group for the reduced system dynamics. This gives an efficient description of the reduced dynamics of the sys-

tem ρS in terms of time-evolutions consisting of the one parameter semigroups. Such semigroups define linear

maps U (t ) = eL t with t > 0 which act on all possible initial density matrices of the system ρS and describe

their evolution by ρS (t ) =U (t )ρS at time t . This defines the following abstract equation of the reduced system

dynamics in the context of these maps by a generator L

dρS (t )

d t
=LρS (t ).

To end up in a physical correct description of the time-evolution of the system state, the generator has to fulfill

several formal conditions which can be shown intuitively. A primary consequence of an environment is that the
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dissipative effects transform the pure system states, projections onto the Hilbert space vectors to mixtures of

projections. This means that after a certain time the pure initial state of the system evolves to a generic density

matrix. These are operators with discrete spectrums consisting of positive eigenvalues summing up to one in the

context of the statistical interpretation of quantum mechanics. Thus any description of a reduced system must

include a mapΛt which fulfils the following properties with the assumption that the initial state is uncorrelated

[15].

• Linearity: Λt (p AρA +pBρB ) = p AΛt (ρA)+pBΛt (pB ),

• Positivity: Λt (ρ) ≥ 0∀ρ ≥ 0,

• Complete positivity: 1d ⊗Λt (ρ) ≥ 0∀ρ ≥ 0 and any size d of the trivial extension to a higher dimension

space,

• Hermiticity-preserving: Λt (ρ)† =Λt (ρ) for a Hermitian ρ

• Trace-preserving: Tr [Λt (ρ)] = Trρ = 1.

The detailed mathematical proof for several conditions of the generator L of a quantum dynamical semigroup

for the case of a finite-dimensional Hilbert space is given by Lindblad.

The reduced dynamics is a non-unitary dynamics which shows dissipative effects and thus cannot be evolved

backwards in time. For example, an excited atom which is in a thermal bath will radiate a photon and decohere,

but the bath will not return the atom back to its excited state. Thus if we consider a system influenced by a

thermal bath, the considered reduced system dynamics converges to a unique stationary state regardless of

the initial condition. The Lindblad equation describes the reduced system dynamics or more precise the long

time behavior, the asymptotic dynamics and the steady-state properties of the thermal occupation of the system

where we are interested in. The representation of a trace-preserving, strongly continuous, completely positive

semi-group leads to the first standard form of the generator and thus to the Linblad equation [17]

dρ

d t
=−i [HS ,ρ]+∑

lk
alk

(
ViρV †

j − 1

2
{V †

j Vi ,ρ}

)
with the coefficient matrix (alk ) being hermitian and positive. The equation can be diagonalized with the help

of an appropriate unitary transformation u (uakl u†),

dρ

d t
=−i [HS ,ρ]+∑

k
γk

(
2AkρA†

k − A†
k Akρ−ρA†

k Ak

)
The first term of the above representation is the unitary part of the dynamics generated by the system Hamil-

tonian HS . The second term describes the influence of a perturbation, the coupling to an infinite reservoir

generates the dissipative dynamics, also known as the dissipator. The operators Ak introduced above are usually

referred to as Lindblad operators. Any Markovian master equation that fulfills the requirements of generating

trace-preserving and completely positive dynamics has Lindblad form.

3.2.3 Derivation of the master equation

For the derivation of the master equation we use the iterative method according to Breuer and Petuccione [15].

We consider a system of n degenerate qubits linearly coupled to a thermal bath with temperature T , where we

assume that the coupling is weak. The total Hamiltonian of the full system is then defined by the system HS ,

its environment HB and a system-bath interaction HI : H = HS + HB + HI . The von Neumann equation in the

interaction picture has the form

d

d t
ρI (t ) =−i [H I

I ,ρI (t )] (3.2.3.1)
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with the solution

ρI (t ) = ρI (0)− i
∫ t

0
[H I

I (s),ρI (s)]d s.

The index I indicates the interaction picture representation of the Hamiltonian. We assume that Tr B ([H I
I (t ),ρI (0)]) =

0, insert this expression into equation (3.2.3.1) and trace over the bath with its equilibrium distribution ρI
B . The

first iteration of the von Neumann equation for the reduced density matrix ρI
S = Tr B (ρI ) is then given by

d

d t
ρI

S =−
∫ t

0
Tr B ([H I

B (t ), [H I
I (s),ρI (s)]])d s.

This equation contains the Born approximation ρ(t ) ≈ ρS (t ) ⊗ ρB so that the influence of the system on the

reservoir can be neglected as a justification of the assumed weak coupling between the system and the bath.

The Markov approximation is justified by assuming that the bath correlation time τB is small compared to the

relaxation time of the system τS (τB << τS ) and thus we can change the integration over s into one over t − s and

evolve ρ at time t only

d

d t
ρI

S (t ) =−
∫ ∞

0
Tr B ([H I

I (t ), [H I
I (t − s),ρI (t )]])d s. (3.2.3.2)

The interaction Hamiltonian HI for an n qubit system interacting with a thermal bath is described by the Jaynes-

Cummings model (3.1.0.3). To obtain a mathematically correct formulation for such a system, we introduce a

summation over the creation operator σ̂+ and annihilation operator σ̂− of each qubit.

HI =
∑

i

∑
k

di (σ̂i
+b̂k )+d∗

i (σ̂i
−b̂†

k ), (3.2.3.3)

where the di and d∗
i describe the coupling between the system and the bath. The system operators are eigen-

operators of the system Hamiltonian HS with a continuous spectrum of the frequency ω. The corresponding

interaction picture system operators have the form

e i HS t σ̂±e−i HS t = e−iωt σ̂±,

e i HS t σ̂†
±e−i HS t = e iωt σ̂†

±.

The representation of the bath operators bk and b†
k in the interacting picture is defined similar. In our derivation

we use the interaction picture representation of the interaction Hamiltonian (3.2.3.3) and insert it in the equation

of motion (3.2.3.2)
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d

d t
ρI

S (t ) =
∫ ∞

0
d s Tr B HI (t − s)ρS (t )ρB HI (t )HI (t − s)ρS (t )ρB +h.c

=
∫ ∞

0
d s

∑
i , j

∑
ω,ω′

e iω(t−s)[d jσ
( j )
− bk (ω, t − s)ρS (t )e−iωt d∗

i σ
(i )
+ b†

k (ω, t )

−e iω′t d∗
j σ

(i )
+ b†

k (ω, t )e−iω(t−s)d jσ
( j )
− bk (ω, t − s)ρS (t )+h.c

+d∗
i σ

(i )
+ b†

k (ω, t − s)ρS (t )e−iωt d jσ
( j )
− bk (ω, t )

−e−iω′t d jσ
( j )
− bk (ω, t )e−iω(t−s)d∗

i σ
(i )
+ b†

k (ω, t − s)ρS (t )+h.c]

=∑
i , j

∑
ω,ω′

e i (ω′−ω)t
∫ ∞

0
d se iωs [(d jσ

( j )
− bk (ω, t − s)ρs (t )d∗

i σ
(i )
+ b†

k (ω′, t )

−d∗
i σ

(i )
+ b†

k (ω, t )d jσ
( j )
− bk (ω, t − s)ρS (t ))+h.c.

+ (d∗
i σ

(i )
+ bk (ω, t − s)ρS (t )d jσ

( j )
− b†

k (ω′, t )

−d jσ
( j )
− b†

k (ω, t )d∗
i σ

(i )
+ bk (ω, t − s)ρS (t ))+h.c.]

1
=∑

i , j

∑
ω,ω′

e i (ω−ω′)t
∫ ∞

0
d se iωs [〈b†

k (ω, t )bk (ω, t − s)〉(d jσ
( j )
− ρS (t )d∗

i σ
(i )
+ −d∗

i σ
(i )
+ d jσ

( j )
− ρS (t ))+h.c

+〈bk (ω, t )b†
k (ω, t − s)〉(d∗

i σ
(i )
+ ρS (t )d jσ

( j )
− −d jσ

( j )
− d∗

i σ
(i )
+ ρS (t ))+h.c.]

2
=∑

i , j

∑
ω

∫ ∞

0
d se iωs [〈b†

k (ω, t )bk (ω, t − s)〉(d jσ
( j )
− ρS (t )d∗

j σ
( j )
+ −d∗

i σ
(i )
+ d jσ

( j )
− ρS (t ))+h.c.

+〈bk (ω, t )b†
k (ω, t − s)〉(d∗

i σ
(i )
+ ρS (t )d jσ

( j )
− −d jσ

( j )
− d∗

i σ
(i )
+ ρS (t ))+h.c.],

The one-sided Fourier transform of the reservoir correlation function is calculated with the formula

∫ ∞

0
d se−iεs =πδ(ε)s − iP

1

ε

for both frequencies,

for ω< 0 Γkk ′ (ω) =
∫ ∞

0
d se iωs〈b†

k bk (ω, t − s)〉

= N (ωk )
∫ ∞

0
d se i (ωk+ω)s

= N (ωk )+ iP
∫ ∞

0
dωk

[
N (ωk )

ω+ωk

]
for ω> 0 Γkk ′ (ω) =

∫ ∞

0
d se iωs〈bk b†

k (ω, t − s)〉

= (1+N (ωk ))
∫ ∞

0
d se−i (ωk−ω)s

= (1+N (ωk ))+ iP
∫ ∞

0
dωk

[
(1+N (ωk ))

ω−ωk

]
1ω′ →−ω
2Rotating wave approximation, averaging approximation over fast oscillations
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where P denotes the Cauchy principal value. The decomposition of these two transformations in the real and

the imaginary part define the contribution to the dissipative part γ(±ω) and the unitary part S(±ω)

γ(ω) = (1+N (ωk )) S(ω) =P

∫ ∞

0
dωk

[
(1+N (ωk ))

ω−ωk

]
γ(−ω) = N (ωk ) S(−ω) =P

∫ ∞

0
dωk

[
N (ωk )

ω+ωk

]
.

With these definitions we finally arrive at the interaction picture master equation

d

d t
ρS (t ) =−i [HLS ,ρS (t )]+D(ρS (t )) (3.2.3.4)

with

HLS =∑
±ω

∑
i , j

[S(−ω)d jσ
( j )
− d∗

i σ
(i )
+ +S(ω)d∗

i σ
(i )
+ d jσ

( j )
− ]

=P

∫ ∞

0
dωk

[[
(1+N (ωk ))

ω−ωk

]∑
i , j

d∗
i σ

(i )
+ σ( j )

− +P

∫ ∞

0
dωk

[
N (ωk )

ω+ωk

]∑
i , j

d j d∗
i σ

( j )
− σ(i )

+

]
. (3.2.3.5)

This term is often called the Lamb-shift Hamiltonian since it leads to a Lamb-type renomalization of the unper-

turbed energy levels induced by the system-reservoir coupling. The dissipator of the master equation takes the

form

D(ρS ) =N (ωk )(
∑
i , j

d∗
i σ+ρS (t )d jσ

( j )
− − 1

2

∑
i , j

d jσ
( j )
− d∗

i σ
(i )
+ ρS (t )− 1

2
ρS (t )

∑
i , j

d jσ
( j )
− d∗

i σ
(i )
+ )

(1+N (ωk ))(
∑
i , j

d jσ−ρS (t )d∗
i σ

(i )
+ − 1

2

∑
i , j

d∗
i σ

(i )
+ d jσ

( j )
− ρS (t )− 1

2
ρS (t )

∑
i , j

d∗
i σ

(i )
+ d jσ

( j )
− ).

The dissipator of the master equation describes thermally induced emission ∝ (1+N (ωk )) and absorption pro-

cess ∝ N (ωk ). The master equation (3.2.3.4) can be considered in two different limits.

Spontaneous emission

In the limit of small temperatures T → 0, the system dynamics is dominated by spontaneous emission of energy

quanta into the bath modes. Therefore there is only the term of spontaneous emission

γ(ω) = N (ωk )

so that the system evolution is described by the following master equation

d

d t
ρS (t ) = N (ωk )

(∑
i , j

d∗
i σ+ρS (t )d jσ

( j )
− − 1

2

∑
i , j

d jσ
( j )
− d∗

i σ
(i )
+ ρS (t )− 1

2
ρS (t )

∑
i , j

d jσ
( j )
− d∗

i σ
(i )
+

)
.

This decoherence process is the fundamental limit for coherent atomic dynamics.

T infinity case

In the limit of large bath temperatures T →∞,N (ωk ) →∞, (1+N (ωk )) → N (ωk ) <∞, the emission and absorp-

tion rates are almost equal

N (ωk )

N (ωk )
T→∞−→ 1
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The T -infinity case is a process with equal probabilities for a jump from the ground to the excited state and vice

versa (bit-flips). The jump operators are

γ(−ω) = N (ωk ) γ(ω) = N (ωk )

and the master equation reads

d

d t
ρ = N (ωk )(d∗

i σ
(i )
+ ρS (t )d jσ

( j )
− − 1

2
d jσ

( j )
− d∗

i σ
(i )
+ ρS (t )− 1

2
ρS (t )d jσ

( j )
− d∗

i σ
(i )
+

+N (ωk )(d jσ
( j )
− ρS (t )d∗

i σ
(i )
+ − 1

2
d∗

i σ
(i )
+ d jσ

( j )
− ρS (t )− 1

2
ρS(t )d∗

i σ
(i )
+ d jσ

( j )
− ).

3.2.4 Calculation of the Lamb-shift integrals

The principal-value integrals need to be calculated for the numerical results of the master equation

P1 = Im(|ω|) =P

∫ ∞

0
dωk

[
(1+N (ωk ))

ω−ωk

]
P2 = Im(−|ω|) =P

∫ ∞

0
dωk

[
N (ωk )

ω+ωk

]
.

(3.2.4.1)

The integrals have the following dependence

P1 =P

∫ ∞

0
dωk

1

ω−ωk
+

∫ ∞

0

N (ωk )

ω−ωk
=P

∫ ∞

0
dωk

1

ω−ωk
−P2. (3.2.4.2)

These integrals diverge for low and high frequencies, thus we have to introduce a correct approximation of these

integrals. G.S Agrawal [18] introduced such an approximation in the context of two assumptions. The first as-

sumption is that the frequency dependent pre-factors of the Jaynes-Cummings interaction Hamiltonian (3.2.3.3)

can be ignored by introducing the dipole approximation in the derivation. The second assumption is that the

spectral function J (ω) is constant. Then it is possible to introduce the following cut-off and integrate only from

2ω to ωc

∫ ωc

2ω
dωk

1

ω−ωk
=− ln

(ωc

ω
−1

)
,

where ωc is the cut-off frequency. With this property we end up with a logarithmic divergence of the principal-

value integrals which has a qualitative influence of the Lamb-shift. The values of the integrals can be estimated

as P1 = −3,2 whereby we set the integral P2 = 1 and use the dependency (3.2.4.2) for the calculation of the

second integral.

3.3 Decoherence-free subspaces

So far, we have discussed the theory of an open system involving a single quantized mode of the field interac-

tion with atoms, described by the Jaynes-Cummings model introduced in section 2.1. As we saw in this model,

the transition dynamics between the two energy levels of the ground and the excited states are coherent and

reversible. In contrast to the reduced system dynamics of an open quantum system which is not reversible and

shows decoherence as a result of the interaction between the system and the environment. Decoherence can

be described as a transformation over the time of an initial system state into a classical mixture as a result of
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the interaction with an environment. Thus the degrees of freedom of the environment affect the state of the re-

duced system, and the information given by correlations of the originally state is lost. To prevent decoherence in

systems of open quantum systems we introduce decoherence-free subspaces and subsystems [19]. The theory

of such subsystems is based on the symmetry of the system-environment coupling. We have to consider two

different constructions of the decoherence-free subspaces and subsystems, because the symmetry is different

for an even or an odd number of qubits. We first discuss the decoherence-free subspace for an even number of

qubits which gives a fundamental description of the theory and then the more difficult description for an odd

number of qubits.

3.3.1 Decoherence-free subspaces for an even number of qubits

As remarked above, decoherence is the result of entanglement between the system and the thermal bath caused

by the interaction Hamiltonian HI [20]. Thus a reduced system will show no decoherence when the interaction

Hamiltonian is zero. Then the system and the bath are decoupled and both evolve unitarily by their Hamiltoni-

ans HS and HB . Most physical systems cannot be described without interaction between the bath and the sys-

tem, and thus HI ≡ 0 is not a satisfactory condition for a decoherence-free subspace. To obtain a decoherence-

free subspace of the full Hilbert space H without switching off the system bath interaction it must be possible to

attain a unitary evolution of the reduced system. This can be achieved by a set {|k〉} of eigenvectors of the system

operators Sα with the characteristic

Sα |k̃〉 = cα |k̃〉 ∀α, |k̃〉 , (3.3.1.1)

where the eigenvalue cα depends only on the index α of the system operator, but not on the state index k. If the

system Hamiltonian HS leaves the subspace spanned by the degenerate eigenvectors H̃ = Span[|k〉] invariant,

the time evolution is unitary and the interaction Hamiltonian has no influence on the system Hamiltonian [20].

To prove this definition of the decoherene free-subspace we follow the derivation in [19]. The initial density ma-

trices of the system and the bath can be described in their basisρS (0) =∑
mn amn |m̃〉〈ñ| andρB (0) =∑

νµbνµ |ν̃〉〈µ̃|.
We define a combined Hamiltonian of the system and the bath as HC = HS+HB which clearly commutes [HC , HS ]

with the system Hamiltonian HS over the Hilbert space H̃ . Thus the time evolution of both systems is unitary by

US = exp(−i HS t ) and UC = exp(−i HC t ). It can be written in the following way

U [|m̃〉⊗ |ν̃〉] =US |m̃〉⊗UC |ν̃〉 .

The initially decoupled state of the density matrix evolves then as ρSB (t ) =∑
mn amnUS |m̃〉〈ñ|U †

S ⊗
∑
νµbνµUS

|ν̃〉〈µ̃|U †
S . The reduced density matrix of the system is obtained by tracing out the degrees of freedom of the

environment ρS (t ) = Tr B [ρSB (t )] =USρS (0)U †
S . This shows that the system evolves completely unitary on H̃ and

H̃ is a decoherence-free subspace. Thus we end up with the following theorem of a decoherence-free subsystem

[20].

Theorem 1. Let the interaction between a system and a bath be given by the Hamiltonian H = HS ⊗1B +1S ⊗
HB + HI . If HS leaves the Hilbert subspace H̃ = Span[{|k̃〉}] invariant and if we start within H̃ , then H̃ is a

decoherence-free subspace if and only if it satisfies the condition Sα |k̃〉 = cα |k̃〉 ∀α, |k̃〉

A decoherence-free subspaces can also be defined in the Lindblad-semigroup formulation which we introduced

in section 2.3. The Lindblad master equation describes the time-dependent evolution of the reduced system by

the unitary part and the perturbative part which lead to dissipative effects. It is obvious that the dissipative term

defined by the Linblad operators Aα leads to decoherence of the subsystem.
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D(ρS ) = ∑
α,β

γαβ

(
AαρS A†

β
− 1

2
A†
β

AαρS − 1

2
ρS A†

β
Aα

)
. (3.3.1.2)

A necessary and sufficient condition for a decoherence-free subspace in the context of the Lindblad equation is

that the influence of the dissipator should not play a role. With this knowledge we can derive a mathematical

formalism of decoherence-free subspaces especially for the Lindblad master equation [20]. Let {|k̃〉}N
k=1 be the

basis of an N -dimensional subspace H̃ ⊆H and the density matrix given in this basis is

ρ̃ =
N∑

k, j=1
ρk j |k̃〉〈 j̃ | .

The Lindblad operators Aα applied to the basis lead to Aα |k̃〉 = ∑N
j=1 cαk j | j 〉. The dissipator term of the master

equation 3.3.1.2 can be rewritten in terms of this basis transformation in the following way

D(ρS ) = ∑
α,β

γα,β

∑
k, j=1

(
Aαρk j |k̃〉〈 j̃ | A†

β
− 1

2
A†
β

Aαρk j |k̃〉〈 j̃ |− 1

2
ρk j |k̃〉〈 j̃ | A†

β
Aα

)

= ∑
α,β

γα,β

∑
k, j=1

ρk j

(
Aα |k̃〉〈 j̃ | A†

β
− 1

2
A†
β

Aα |k̃〉〈 j̃ |− 1

2
|k̃〉〈 j̃ | A†

β
Aα

)
1
= ∑
α,β

γα,β

∑
k, j=1

ρk j

(
c∗βj mcαkn |ñ〉〈m̃|− c∗βkmcαkn |m̃〉〈 j̃ |− c∗βj mcαkn |m̃〉〈 j̃ |

)

with cαkn = cαδkn we get

D(ρS ) = ∑
α,β

γα,β

∑
k, j=1

ρk j |k̃〉〈 j̃ |
(
c∗βj cαk − 1

2
c∗βk cαk − 1

2
c∗βj cαj

)
.

The last two terms of this equation can be rewritten as
cαj

2cαk
+ c

β

k

2c
β

j

= 1 for α= β. Thus the dissipator D(ρS ) is zero

and does not lead to decoherence of the reduced system when we assume that there is no dependence onρ j k and

every term of the dissipator vanishes separately. This is achieved by only one projection operator |ñ〉〈m̃|. The

unitary part of the master equation is a decoherence-free subspace when the system Hamiltonian HS commutes

with the full Hamiltonian H over the N -dimensional subspace which is always fulfilled when there are no special

conditions on the reduced system. Thus we end up with the following theorem of a decoherence-free subspace

for the Lindblad master-equation [20]:

Theorem 2. If no special assumptions are made on the coefficient matrix γαβ and on the initial conditions ρk j

then a necessary and sufficient condition for a subspace H̃ = Span[{k̃N
k=1}] to be decoherence-free is that all basis

states |k̃〉 are degenerate eigenstates of all the Lindblad operators {Aα}

Aα |k̃〉 = cα |k̃〉 ∀α, |k̃〉 . (3.3.1.3)

This theoretical description of decoherence-free subspaces for an even number of qubits can be clarified by

using the example of two qubits embedded in a thermal bath. The system operators are defined by the an-

nihilation σ− and creation operator σ+ of the qubits. For this system in the basis {|11〉 , |10〉 , |01〉 , |00〉 there

is only one degenerate eigenvector |k〉 that fulfills the condition (3.3.1.1) which is the entangled singlet state

1∑
k Fα |k̃〉 =∑

k cαkn |k̃〉 and
∑

j Fβ | j̃ 〉 =
∑

j c
β
j m |m̃〉
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|s〉 = 1p
2

(|10〉− |01〉). That this is an eigenvector can easily be shown by applying the interaction Hamiltonian HI

to the singlet state.

HI |s〉 =
∑
i , j

[d∗
i (σ(i )

+ bk )+d j (σ( j )
− b†

k )] |s〉

= 1p
2

(d∗
1σ+bk |10〉+d∗

2σ+bk |10〉+d1σ−b†
k |10〉+d2σ−b†

k |10〉

−d∗
1σ+bk |01〉+d∗

2σ+bk |01〉+d1σ−b†
k |01〉+d2σ−b†

k |01〉)

= 1p
2

(d∗
2 −d1) |10〉+ (d∗

1 −d2) |01〉

= |s〉

For equal coupling constants |d1| = |d2| the applied Hamiltonian to the singlet gives zero. Therefore, the interac-

tion Hamiltonian has no influence on this state, and is shown that there is a decoherence-free subspace for two

qubits.

3.3.2 Decoherence-free subspaces for an odd number of qubits

For an odd number of qubits there is no set {|k〉} of eigenvectors of the system operator Sα with the property

(3.3.1.1). Therefore, we must introduce another formulation for decoherence-free subspaces which is based on

the symmetries of the coupling between the system and the bath. Such a symmetric coupling to the thermal bath

can only be obtained by transforming the originally reduced system states to an encoded subspace with higher

dimensions. This definition of an encoded subspace allows a symmetric consideration of the bath’s influences

on the different states. To be more precise, as a result of the higher dimensions it is possible to encode the qubit

in different subclasses where the bath’s influences keep the state in there classes and thus this encoded space is a

decoherence-free subspace. Brooke et al [21] introduced such kinds of decoherence-free subspaces by encoding

a number of qubits.

To obtain an intuitive understanding of decoherence-free subspaces of an odd number of qubits we consider the

case of one qubit encoded with the symmetry properties of the spin-half of three qubits. The total spin of three

qubits is either S = ( 3
2

)
or S = ( 1

2

)
with the spin projection mS = ( 3

2 , −3
2 , 1

2 , −1
2

)
. The spin states in the basis |S,mS〉

are defined as {| 3
2 , −3

2 〉 , | 3
2 , −1

2 〉 , | 1
2 , −1

2 〉 , | 1
2 , −1

2 〉 , | 1
2 , 1

2 〉 , | 1
2 , 1

2 〉 , | 3
2 , 1

2 〉 , | 3
2 , 3

2 〉}. The subsystem for the logical |1〉L and

|0〉L is obtained by writing the spin basis states | 1
2 , −1

2 〉 , | 1
2 , 1

2 〉 in the Clebsch-Gordan basis.

Total spin S = 0 with spin projection ms = 0

• | 1
2

1
2 〉 −→ |0,0〉⊗ | 1

2 〉 = 1p
2

(|101〉− |011〉)
• | 1

2
−1
2 〉 −→ |0,0〉⊗ | 1

2 〉 = 1p
2

(|100〉− |010〉)
Total spin S = 1

2 with spin projection ms =± 1
2

• | 1
2

1
2 〉 −→

√
3
2 (|1,1〉⊗ | 1

2 , −1
2 〉) = 1p

6
(2 |110〉− |101〉− |011〉)

• | 1
2
−1
2 〉 −→ 1p

6
(|010〉+ |100〉)−

√
2
3 |001〉 = 1p

6
(−2 |001〉+ |010〉+ |100〉

The qubit is therefore encoded as

|1〉L =
|c〉 = 1p

2
(|010〉− |100〉)

| f 〉 = 1p
2

(|011〉− |101〉)

|0〉L =
|b〉 = 1p

6
(−2 |001〉+ |010〉+ |100〉)

|e〉 = 1p
6

(2 |110〉− |101〉− |011〉)
.
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The results are depicted in the following picture, where the states are labeled according to |S,ms〉 and the two

isolated subspaces are circled according to the logical basis.

|0〉L�

�

�

�

|e〉 = | 1
2 , 1

2 〉

|b〉 = | 1
2 ,− 1

2 〉

|1〉L�

�

�

�

|e〉 = | 1
2 , 1

2 〉

|b〉 = | 1
2 ,− 1

2 〉

|h〉 = | 3
2 , 3

2 〉

|g 〉 = | 3
2 , 1

2 〉

|d〉 = | 3
2 ,− 1

2 〉

|a〉 = | 3
2 ,− 3

2 〉

Figure 3.1: Representation of the decoherence-free subspaces for one encoded qubit by three qubits [21].

That the encoded logical |0〉L and |1〉L define a decoherence-free subspace by their symmetry properties can be

proved by applying the interaction Hamiltonian to the encoded states. Thus we consider the effect of the thermal

bath to these encoded subspaces by superpositions of these states |1〉L =α |c〉+β | f 〉 and |0〉L =α |b〉+β |e〉 with

the normalization |α|2 +|β|2 = 1. This gives for the logical |1〉L

HI |1〉L = HI (α |c〉+β | f 〉) =
3∑

i , j
[d∗

i (σ(i )
+ bk )+d j (σ( j )

− b†
k )]

1p
2

(α(|010〉− |100〉)+β(|011〉− |101〉))

= 1p
2

(d∗
1σ+bk (−α |100〉−β |101〉)+d∗

2σ+bk (α |010〉+β |011〉)+d∗
3σ+bk (β |011〉−α |101〉)

+d1σ−b†
k (α |010〉+β |011〉)+d2σ−b†

k (−α |100〉−β |100〉)+d3σ−b†
k (α |010〉−β |100〉))

= 1p
2

(α((d1 +d∗
2 +d3) |010〉− (d∗

1 +d2 +d3) |100〉)+β((d1 +d∗
2 +d3∗) |011〉− (d∗

1 +d2 +d3∗) |101〉)

= |1〉L

and the calculation for the logical |0〉L is similar

HI |0〉L = |0〉L

Thus the interaction Hamiltonian has no influence when the qubits are coupled equally to the thermal bath

|d1| = |d2| = |d3|. The interaction Hamiltonian does not lead to transitions between states which have different

symmetry. This means the bath operators b̂k , b̂†
k do not cause quantum information to decay from |1〉L to |0〉L or

vice versa. Thus these defined encoded subspaces are really decoherence-free subsystems.

But this definition of the decoherence-free subspaces has the disadvantage that the transformation to the en-

coded subspace with higher dimensions is necessary and thus this mathematical formalism cannot be used for

real physical systems.
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Chapter 4

Entanglement dynamics for two qubits

interacting with an environment

4.1 Theory of the entanglement dynamics for two qubits

The consideration of two qubits is the simplest model for entanglement; there is a fundamental description

of the full entanglement of these quantum systems. We consider a bipartite quantum system embedded in a

thermal bath, the interaction between the qubit system and the entanglement dynamics leads to an exchange in

energy and entropy and thus to entanglement effects. Such effects are related to the coupling constants d1 and

d2, which define the coupling between system and environment. The dynamics of this open quantum system is

described by the master equation which leads to the long-time behavior, the stationary solution of this reduced

qubit system. The stationary solution for two qubits depends on the pseudo-spin representation

~S := σ̂⊗1+1⊗ σ̂,

where σ̂ represents the spin state by the corresponding Pauli matrices (2.1.0.1). In the z-component the pseudo-

spin ~S decomposes into a three-dimensional triplet and a one-dimensional singlet representation of SU (2).

These two representations of the pseudo-spin ~S define two different stationary solutions and thus two differ-

ent entanglement behaviors which can easily be shown.

For equal coupling-constants d1 = d2, the dimensionality of the spin representation of two qubits in a singlet

state |s〉 = 1p
2

(|10〉− |01〉) is conserved even by the dissipative dynamics of the master equation [H ,~S2] = 0. Such

states do not radiate into the environment and are also known as dark states. We have introduced the singlet

state |s〉 as a decoherence-free subspace in the previous section and shown that if cause a dependence of the

stationary dynamics on the initial states. The entanglement as a function of time remains constant for a singlet

state.

In general the thermal bath influences the evolution of an initially pure system state to a mixed state. To be

more precise, the initial occupation changes through this influence based on the energy and the rotating-wave

approximation. The rotating-wave approximation guarantees that no stationary coherence is possible between

states with different energies. Thus the non-degenerate coherences are decoupled from the rest of the density

matrix, particularly from the diagonal elements of the density matrix and decay. The initial populations of the

excited and the ground state are distributed into the degenerate diagonal elements due to the influence of the

bath. This process depends on the bath temperature. If the bath temperature is higher the qubit can receive

energy in form of photons which leads to a higher thermal occupation of the excited state. All degenerate single

excited states have the same energy which leads to an exchange of the thermal occupation between these states.

Thus every stationary solution of the master equation has the form

29
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ρ =


a 0 0 0

0 b z 0

0 z∗ c 0

0 0 0 d

 . (4.1.0.1)

In review, the concurrence is given by the eigenvalues λi of ρ(σy ⊗σy )ρ∗(σy ⊗σy ) with C (ρ) = max{0,
√
λi −∑

i>1

√
λi } = max{0,C̃ (ρ)}. The concurrence modified C̃ (ρ) of every general stationary solution is given by

C̃ (ρ) = 2(|z|−
p

ad).

Every time dependent solution of the master equation where the concurrence is C̃ (ρ) < 0 for |z| <p
ad ends up in

a disentangled state. In summary, any state which is not an entangled state, shows a decay of the entanglement.

For example, we consider a mixed state which is defined by a superposition of a singlet state |s〉 and a triplet state

|t〉. The initial density matrix in the basis {|11〉 , |10〉 , |01〉 , |00〉} is then

ρ = ρs +ρt =


0 0 0 0

0 1
2 0 0

0 0 1
2 0

0 0 0 0

 .

The coupling leads to a separated distribution of this initial occupation, namely for the singlet part it remains

constant. On the contrary to the triplet part where the occupation is distributed into the form of the stationary

solution. Thus a superposition of a singlet and a triplet state generates entanglement which remains constant

for the singlet part.

4.1.1 Entanglement sudden death

Quantum entanglement can be described in the context of nonlocal correlations which are stronger than all

other types of correlations. Such correlations always decay as a result of noisy backgrounds which cannot be

avoided. For example, if we consider the process of spontaneous emission of an atom into the vacuum, the

noisy degrading effects through its quantum fluctuations cannot be prevented and lead to spontaneous emis-

sion of the atom. It loses its excitation and comes to its ground state after the time τ. For two qubits this effect

leads to a degraded correlation and thus to a completely disentangled state.

Many experiments of two-atom spontaneous emission with an environment show that quantum entanglement

does not always obey the half-life law. Even a very weakly dissipative environment can degrade the correlations

between the atoms and thus the entanglement decreases to zero in finite time, rather than by successive halves.

This effect is known as entanglement sudden death (ESD) [22], also called early-stage disentanglement. In our

case, the ESD is provided by the weakly dissipative processes of spontaneous emissions through the coupling

of the thermal bath which has extremely short internal correlation times. Thus the time evolution of the entan-

glement depends on the dissipative dynamics, if the perturbation of the reduced system caused by the thermal

environment is stronger, the entanglement decays faster. This means, the dissipative effects lead to a mixed state

described by the stationary solution (5.1.0.1) and as result of this the concurrence of this states shows ESD.

The effect of ESD can be prevented by isolating the information of the qubits from interacting with the environ-

ment. This is possible by introducing decoherence-free subspaces or by different symmetry properties as we

have shown in section 2.3.
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4.2 Numerical results of the occupation

We first consider the time-dependent occupation of a mixture of the states with zero excitation p0 = 0.5 and

with two excitations p2 = 0.5, where the index of the occupation describes the excitation of the corresponding

state. We assume a temperature so that the expected value of the Planck distribution of the thermal bath is given

by N = 1. As we expected this initial occupation is balanced out in the diagonal elements. The occupation of

the excited state decreases as a result of the dissipative effects through the coupling to the thermal bath. As

a consequence of this the thermal occupation of the ground state increases. This effect depends on the bath

temperature. If the bath temperature is higher the qubits can receive more energy as photons from the thermal

bath and thus the thermal occupation of the excited state will be higher. The detailed temperature dependence

of the thermal occupation is discussed for one qubit embedded in a thermal bath in the appendix.
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Figure 4.1: Time-evolution of the occupation with the initial occupation of the state with two excitations p2 = 0.5

(violet) and the state with no excitation p0 = 0.5 (green) and the diagonal elements with one excitation p1 (blue).

By comparing the distribution of occupation of the initial occupation of this state and the triplet state Figure 4.2,

we see that they reach the same occupation within time.
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Figure 4.2: Time-evolution of the occupation for two different initial states, the triplet-state (violet) and for an

initial occupation of a the state with no excitations p0 = 0.5 and the state with two excitations p2 = 0.5 (green)

for (a) the state with two excitations, (b) the diagonal elements with one excitation and (c) the state with no

excitation.

Thus the numerical result coincides with our theory and shows that this occupation corresponds to the general

stationary solution of two qubits. This means, if the steady state between the qubit system and the thermal

bath is reached, the distribution of occupation remains constant. The numerical result of the time-dependent

occupation shows that the interaction of the qubits and the environment does not only lead to a loss of the

energy of the qubit system, it can also receive energy from the thermal bath which is shown by the degenerate

non-diagonal elements which increase.
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4.3 Numerical results of the concurrences

We first consider the singlet state |s〉 = 1p
2

(|10〉+ |01〉) as an initial state and different couplings d1,d2 of the

qubits to the bath.
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Figure 4.3: The time-dependent concurrences, when the singlet |s〉 is used as the initial state and different cou-

plings for (a) constant d1 = 1 and d2 ranging from d2 = 1.5 (violet) to d2 = 4 (green) in steps of 0.5 and (b) constant

d1 = 1 and d2 ranging from d2 = 1 (violet) to d2 = 0 (green) in steps of 0.2.

For equal couplings d1 = d2 the singlet-state is a decoherence-free subspace. The numerical results show that

the thermal bath has no influence and the entanglement of this state remains. For different couplings d1 6= d2 the

concurrence as a function of time decays, the initial singlet state becomes a mixed state through the influence

of the dissipative effects given by the thermal bath. This dissipative effects increase when the coupling between

one qubit to the thermal bath is stronger and thus the ESD effect of concurrences is stronger.

The entangled GHZ-state |G H Z 〉 = 1p
2

(|00〉+e iϕ |11〉) is difficult to generate experimentally [23], because it con-

sists of a superposition of the state with no excitation |00〉 and the state with two excitations |11〉. The local phase

factor e iϕ of this state decays exponentially as a result of the rotating wave approximation. As a consequence of

this the concurrence decays exponentially, because the thermal occupation of the ground and the excited state

are balanced on the diagonal elements and have no effect of the behavior of the entanglement dynamics.
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Figure 4.4: The time-dependent concurrences of the initial GHZ-state for (a) different phase factors and (b) a

constant coupling d1 = 1 and d2 varying form d2 = 0.5 (violet) to d2 = 1.5 (green) in steps of 0.1.

The numerical results of Figure 4.2(b) show that the concurrences of the initial GHZ-state decay exponentially

with the following dependence of the couplings e2Γt where Γ= |d1|2+|d2|2. Thus for different coupling constants

d1 6= d2 the time evolution of the concurrences decay with different exponents.

The Werner-state |W 〉 = 1p
2

(|10〉+e iϕ |01〉) is another entangled state. The time-dependent concurrences of

this state depend on the thermal occupation of the non-diagonal elements of ρ given by the local phase factor

|z| = 1
2 e iϕ, C (ρ) = 2|z| = 1. Thus the initial state is determined by the angle ϕ which describes the amount of

singlet admixture of the initial state. The time-dependent dynamics of the master equation splits into two parts,

for singlet |s〉 and for triplet states |t〉.
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Figure 4.5: The time evolution of the initial Werner-state for (a) different local phase factorsϕ ranging fromϕ= 0

(violet) toϕ= 2π (blue) in steps of 0.2 and (b) couplings for a constant d1 = 1 and d2 ranging from d2 = 0.8 (violet)

to d2 = 2 (green) in steps of 0.16.

For the situation with equal coupling constants d1 = d2 = 1, we find dark states which are singlet states and thus

are conserved by the dissipative dynamics. All other states are triplet states with a stationary solution (5.1.0.1)

where |z| > p
ad and thus the concurrence shows entanglement sudden death. A slight perturbation of the

couplings d1 6= d2 Figure 4.4(b) destroys the presence of the dark states and the concurrence decays.

In addition to entangled states which show dark states or entanglement sudden death another possibility is to

consider a mixed state of a singlet |s〉 and a triplet |t〉, a decoherence-free subspace and a non-decoherence-free

subspace. The theory of the thermal occupation of this state was already described in the theory section. The

numerical result of this initial superposition shows what we expected; it generates entanglement.
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Figure 4.6: Time evolution of the concurrences of the initial superposition of the singlet state |s〉 and the triplet

state |t〉 for a constant coupling d1 = 1 and d2 varying from d2 = 1 (violet) to d2 = 0.2 (green) in steps of 0.1.

Different coupling constants d2 6= d1 destroy the presence of the decoherence-free subspace. The numerical

results show that the deviations of the coupling constants d2 do not have the same influence for d2 = 0 and

d2 = 2 and thus we see two lines (the blue line for a weaker coupling and the green line for a stronger coupling)

for the decay of the concurrences. Slight perturbations in the couplings have less influence and the concurrence

decays linearly in contrast to strong perturbations which show that the concurrences decay faster.

4.4 Lamb-Shift contribution of the master equation

The general master equation of two qubits with the basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉} lives in a product Hilbert space

C2 ⊗C2 and the density matrix is given in this basis by

ρS =


|↑↑〉〈↑↑| |↑↑〉〈↑↓| |↑↑〉〈↓↑| |↑↑〉〈↓↓|
|↑↓〉〈↑↑| |↑↓〉〈↑↓| |↑↓〉〈↓↑| |↑↓〉〈↓↓|
|↓↑〉〈↑↑| |↓↑〉〈↑↓| |↓↑〉〈↓↑| |↓↑〉〈↓↓|
|↓↓〉〈↑↑| |↓↓〉〈↑↓| |↓↓〉〈↓↑| |↓↓〉〈↓↓|

 . (4.4.0.1)
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The Lamb-Shift contribution of the master equation is calculated by the standard derivation introduced in sec-

tion 2.3 with the creation operator σ+ and the annihilation operator σ− which are matrix representations of

tensor products with the 2×2 identity matrix

∑
i , j

d∗
i σ

(i )
+ d jσ

( j )
− = d∗

1 d1(σ+σ−⊗1)+d∗
1 d2(σ+⊗σ−)+d∗

2 d1(σ−⊗σ+)+d∗
2 d2(1⊗σ+σ−)

=


Γ 0 0 0

0 Γ1 γ12 0

0 γ∗12 Γ2 0

0 0 0 0


∑
i , j

d jσ
( j )
− d∗

i σ
(i )
+ = d1d∗

1 (σ−σ+⊗1)+d1d∗
2 (σ−⊗σ+)+d2d∗

1 (σ+⊗σ−)+d2d∗
2 (1⊗σ−σ+)

=


0 0 0 0

0 Γ2 γ12 0

0 γ∗12 Γ1 0

0 0 0 Γ


where we introduced the following definitions for the coupling constants Γ = |d1|2 + |d2|2 and γ12 = d∗

1 d2. The

full expression for the Lamb-Shift Hamiltonian is

HLS =P1

∫ ∞

0
dω

[
(1+N (ωk ))

ω−ωk

]
︸ ︷︷ ︸

≈−3.2


Γ 0 0 0

0 Γ1 γ12 0

0 γ∗12 Γ2 0

0 0 0 0

+P2

∫ ∞

0
dω

[
N (ωk )

ω+ωk

]
︸ ︷︷ ︸

≈1


0 0 0 0

0 Γ2 γ12 0

0 γ∗12 Γ1 0

0 0 0 Γ

 , (4.4.0.2)

with the calculated values of the principal-value integrals from section 3.2.4.

4.5 Numerical results of the pseudo-Spin representation of the Lamb-shift

The Lamb-shift contribution (4.4.0.2) of the master equation can be interpreted as a magnetic field in the pseudo-

spin representation

~B ×~S =

γ12

γ∗12

Γ

×

σ1

σ2

σ3

=

γ
∗
12σ3 −σ3γ

∗
12

Γσ1 −σ1Γ

γ12σ2 −σ2γ12

 ,

where σ1,2,3 are the coefficients of the Pauli matrices in the pseudo-spin picture. This pseudo-spin representa-

tion provides a geometric explanation on a special kind of the Bloch sphere for two qubits. The Bloch sphere

representation is limited to a two-level system, in general it describes the dynamics of one qubit. If we consider

a four dimensional qubit system where the dynamics can be represented in a two-dimensional Hilbert space

under the assumption that all other qubit states can be ignored, we can use the Bloch sphere representation to

represent this reduced dynamics. Such kind of Bloch spheres give a basic understanding of the unitary part of

the master equation by the representation of the pseudo-spin ~S.

The relation between the unitary dynamics and the pseudo-spin representation is illustrated by the following

initial state

|ψ〉 = cos(ϕ) |10〉+ sin(ϕ) |01〉 . (4.5.0.3)
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This state is a mixture of a singlet or a triplet determined by the angleϕ. The numerical results of the concurrence

of the full master equation show what we expected. The concurrence as a function of time is constant for singlet

states, decays for triplet states and generates entanglement for superpositions of singlet and triplet states. When

comparing the whole master equation to the unitary part it is obvious that the dissipative part dominates the

dynamics.
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Figure 4.7: The time-dependent concurrences of the initial state |ψ〉 = cos(ϕ) |10〉+ sin(ϕ) |01〉 for (a) different

angles ϕ varying from ϕ= 0 (violet) to ϕ= 2π (green) in steps of 0.3. Concurrences as a function of time of only

the Lamb-Shift contribution and different couplings for (b) a constant d1 and a varying d2 from d2 = 1 (violet) to

d2 = 3 (green) in steps of 1 and (c) a constant d1 and a varying d2 from d2 = 0.8 (violet) to d2 = 1 (green) in steps

of 1.

The pseudo magnetic field defined by the Lamb-shift depends on the different coupling-constants and on the

pre-factors of the principal-value integrals. For equal coupling constants d1 = d2 the pseudo magnetic field lies

in the y-direction and leads to a rotation of the pseudo-spin ~Sy = sin(2.2ωt ) which depends on the frequency of

the magnetic-field hence on the following coupling constants ω = 2Γ = 2
(|d1|2 +|d2|2

)
. For different coupling

constants d1 6= d2 the pseudo-magnetic field in the y-direction remains, but the difference in the coupling leads

to an additional pseudo magnetic-field in the x-direction. As a consequence of this additional pseudo magnetic

field the rotation of the pseudo-spin is defined by an overlap of both fields ~S = ~Sy +~Sx , where ~Sx = sin(1.2Ωt )

depends on the frequency Ω of the magnetic-field in x-direction and thus on the coupling-constants Ω = γ∗12 =
γ12. The dynamics of the pseudo spin~S can easily be shown on the Bloch sphere representation by the two qubit

states |10〉 and |01〉.

Figure 4.8: Reduced Bloch sphere representation of two qubits for the states |01〉 and |10〉 of the pseudo spin ~S

with the influence of the pseudo-magnetic field defined by the Lamb-shift. For the left Figure a constant d1 and

a varying d2 from d2 = 1 (violet) to d2 = 3 (green) in steps of 1 and in the right a constant d1 and a varying d2 from

d2 = 0.8 (violet) to d2 = 1 (green) in steps of 1.

The concurrence of the pseudo-spin ~S is defined by its rotation C (ρ̃) = |~Sx |+ |~Sy |. This dependency of the con-

currences and the rotation of the pseudo-spin ~S can easily be shown by the example of the initial state (4.5.0.3).

We assume that the angle ϕ is zero which means that the initial state is given by |10〉. The concurrence of this
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state is zero and the pseudo-spin~S points along the x-axis. In the following, we consider the case with equal cou-

plings d1 = d2. The concurrence is then defined by the rotation of the pseudo-spin around the y-axis C (ρ̃) = |~Sy |,
to be more precise in the y-z plane. Because of the pseudo-magnetic field the pseudo-spin ~S passes through the

superposition |ψ〉 = 1p
2

(|10〉+ |01〉) where the concurrence reach the maximum possible value one and to the

state |01〉 with zero concurrence and finally returns to the initial state |10〉 while once again traversing through

superposition. It is obvious that for different couplings d1 6= d2 the pseudo-spin dynamics changes as result of

the additional pseudo-magnetic field in x-direction. For all coupling constants d2 > 1 the pseudo-magnetic field

in x-direction increases dramatically which means that the pseudo-spin rotation path is limited to the upper

hemisphere and thus does not reach the superposition. As seen in Figure 4.7(b) the amplitude of the concur-

rence decreases due to the higher coupling constant. When the coupling constant d2 < 1 the pseudo-spin path

tilts slightly towards the y-axis and thus it is unable to reach the |01〉 state. In the numerical results, Figure 4.7(c),

we can see that the concurrence is only once zero for a full rotation and thus the concurrence reaches a local

minima half way through the rotation.

Another intuitive description of the dynamics of the Lamb-shift provides the following separable product state

|ψ〉 = |ψi 〉 |ψi 〉 = cos(ϕ)2 |00〉+cos(ϕ)sin(ϕ) |01〉+sin(ϕ)cos(ϕ) |10〉+sin(ϕ)2 |11〉 which is a product of two equal

states |ψi 〉 = cos(ϕ) |0〉+ sin(ϕ) |1〉. To obtain a fundamental description of this initial state defined by the angle

ϕ, the degenerate diagonal elements with one excitation can be rewritten in terms of the triplet state |t〉

|t〉 = cos(ϕ)sin(ϕ) (|10〉+ |01〉) ,

Thus the angle ϕ define a triplet state for cos(ϕ)sin(ϕ) 6= 0 which is the case for ϕ 6= {πn
2 − π

4 } with n ∈Z. The nu-

merical result shows that these states generate entanglement. This generated entanglement given by the triplet

state decays after a certain time as a consequence of the dissipative effects which lead to a mixed state and thus

to a concurrence decay. Thus we see that a separable state which consists of a triplet part create transiently en-

tanglement. For all other states the concurrence as a function of time shows no entanglement and is constantly

zero.
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Figure 4.9: (a) The time-dependent concurrences of the initial separable state |ψ〉 = |ψi 〉 ⊗ |ψi 〉 and different

angles ϕ varying from ϕ= 1.5π (violet) to ϕ= 2π (green) in steps of 0.1. (b) The concurrences of only the Lamb-

shift contribution of the master equation and different angles ϕ varying form ϕ= 0 (violet) to ϕ= 2π (green) in

steps of 0.2.

The concurrence due to the Lamb-shift shows again the typical oscillations which depend on different angles

ϕ. But these oscillations cannot be represented on the Bloch sphere since it is impossible to reduce the four-

dimensional Hilbert space to a two-dimensional Hilbert space because we cannot ignore any qubit states.

In addition to a separable state which is a product of two equal states we consider the separable state |ψ〉 =
|ψi 〉⊗|ψ j 〉 = cos(ϕ)sin(ϕ) |00〉+cos(ϕ)2 |01〉+sin(ϕ)2 |10〉+sin(ϕ)cos(ϕ) |11〉 which is a product of the state |ψi 〉 =
cos(ϕ) |0〉+sin(ϕ) |1〉 and |ψ j 〉 = sin(ϕ) |0〉+cos(ϕ) |1〉. For this state the non diagonal elements with one excitation

depend on different pre-factors
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|01〉 ≈ cos(ϕ)2 (|t〉+ |s〉) ,

|10〉 ≈ sin(ϕ)2 (|t〉− |s〉) .

The numerical result of the time-dependent concurrence shows what we expected: any angle ϕ defines a su-

perposition of the singlet and triplet state and thus any initial state generates entanglement. If the angle ϕ has

one of the following valuesϕ= 0, π2 , 3π
2 ,2π, the initial state is defined by only one superposition of a singlet and a

triplet state. This has the consequence that in this case the occupation of the singlet part remains constant. Thus

the constant concurrence in the numerical result represents only the concurrence of the singlet part because the

triplet part decays. If we compare this result with the previous one, we notice that a superposition of a singlet

and a triplet generates more entanglement as a single triplet state.
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Figure 4.10: Concurrences of the initial separable state |ψ〉 = |ψi 〉⊗ |ψ j 〉 and different angles ϕ (a) ranging from

ϕ= 0 (violet) to ϕ= π (green) in steps of 0.12 and (b) is only the concurrences of the Lamb-shift contribution of

the master equation with the same angles ϕ as in (a).

The numerical result of the time-dependent concurrences show again oscillations which cannot be described

in the pseudo-spin representation as in the previous example. But we can see that there is only one angle ϕ

which defines an initial state where the concurrence reaches the maximal value one once and for another angle

ϕ twice.
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Chapter 5

Entanglement dynamics for three qubits

interacting with an environment

5.1 Theory of the entanglement dynamics for three qubits

In the previous chapter we have seen that the entanglement dynamics for a bipartite qubit system embedded in

a thermal environment is fully understood. In the following we extend this bipartite system to a tripartite system

and study the entanglement effect induced by the dissipative dynamics. This gives us the distinction between

the entanglement behavior of a bipartite and a tripartite qubit system which we are interested in.

Any entanglement dynamics are based on the behavior of the system dynamics. Thus we begin with a discussion

of the dynamics of the tripartite system described by the Markovian master equation. As a consequence of the

non-existing decoherence-free subspace any initial pure system state of a tripartite system are always mapped

into separable mixtures. This means, on the one hand that it is impossible to prevent the entanglement from de-

caying and on the other hand that the master equation has only one stationary solution. Any initial occupation

is distributed under the same conditions as in the bipartite case. The rotating-wave approximation guarantees

again that the non degenerate concurrences are decoupled from the rest of the density matrix. This means that

all non-degenerate coherences decay and become zero with time. The occupation of states with maximal exci-

tation of three and no excitations is distributed in the diagonal elements as a result of the thermal environment.

This occupation of the diagonal elements shows the average excitation of the qubit system depending on the

temperature. The thermal occupation of the degenerated states with one or two excitation is equal for t →∞.

With this conditions every stationary solution of the master equation for three qubits has the following form

ρ =



a 0 0 0 0 0 0 0

0 b z1 0 z2 0 0 0

0 z∗
1 c 0 z3 0 0 0

0 0 0 d 0 z4 z5 0

0 z∗
2 z∗

3 0 e 0 0 0

0 0 0 z∗
4 0 f z6 0

0 0 0 z∗
5 0 z∗

6 g 0

0 0 0 0 0 0 0 h


(5.1.0.1)

in the basis {|111〉 , |110〉 , |101〉 , |100〉 , |011〉 , |010〉 , |001〉 , |000〉}.

In contrast to the bipartite system a tripartite system provides a physical system where the entanglement dy-

namics is not fully understood yet. The main problem of such a system is that the influence of the thermal

bath leads to mixed states for which no description of the degree of entanglement exists [4]. But we can use the

39
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concurrence which gives a full description of the entanglement between each pair of qubits and consider the

bipartite entanglement of the tripartite system. This leads to a differentiation of the entanglement dynamics,

namely in pure tripartite entanglement and bipartite entanglement. The long-time behavior of the entangle-

ment dynamics between each pair of qubit is then given by tracing out the degree of freedom of the third qubit

of the stationary solution of the master equation and calculating the concurrences between the remaining two

qubits. Thus the three different concurrences CBC ,C AC and C AB , where the indices denote the different qubits,

are given by

Concurrence CBC between qubits B and C

Tr AρABC = ρBC =


a +e 0 0 0

0 b + f z1 + z6 0

0 z∗
1 + z∗

6 c + g 0

0 0 0 d +h



C̃ (ρ) = 2(|z1 + z6|−
√

(a +e)(d +h))

Concurrence C AC between qubits A and C

Tr BρABC = ρAC =


a + c 0 0 0

0 b +d z2 + z5 0

0 z∗
2 + z∗

5 e + g 0

0 0 0 f +h



C̃ (ρ) = 2(|z2 − z5|−
√

(a + c)( f +h))

Concurrence C AB between the qubits A and B

TrCρABC = ρAB =


a +b 0 0 0

0 c +d z3 + z4 0

0 z∗
3 + z∗

4 e + f 0

0 0 0 g +h



C̃ (ρ) = 2(|z3 + z4|−
√

(a +b)(g +h))

and C (ρ) = max{0,C̃ (ρ)}. The reduced density matrices ρA ,ρB and ρC of the stationary solution have the same

form like the stationary solution for two qubits and thus we can easily calculate the corresponding concurrences.

In contrast to the behavior of two qubits, the consideration of three qubits shows another dynamics and thus

other bipartite entanglement effects as a result of the coupling to the thermal bath.

5.1.1 Lamb-shift contribution of the master equation

The dynamics of three qubits embedded in a thermal bath described by the master equation is not trivial which

can be shown by considering the coherent physics alone. The Lamb-Shift contribution of the master equation

has in general the following form

d

d t
ρ =−i [HLS ,ρ].
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The full calculation of this Lamb-Shift operator HLS for three qubits is shown in the appendix 7.2.3. A funda-

mental description of this Lamb-Shift dynamics is given by the pseudo-spin representation as we showed for the

bipartite case. For the derivation of such a representation of the tripartite system we consider the degenerate

matrices of the Lamb-Shift contribution with one or two excitations

H 1
LS =

Γ1 +Γ2 γ23 γ13

γ∗23 Γ1 +Γ3 γ12

γ∗13 γ∗12 Γ2 +Γ3

 H 2
LS =

 Γ1 γ12 γ13

γ∗12 Γ2 γ23

γ∗13 γ∗23 Γ3

 ,

where the index defines the excitation. These matrices of SU (3) can be rewritten in the basis of the Gell-Mann

matrices 1 and the (3×3) identity matrix, equally the corresponding (3×3) density matrix ρ. Thus we obtain the

following representation of the Lamb-shift operator

∑
i

d

d t
Siλi =−i [HLS ,ρ] =−i

∑
j ,k

H j Sk [λ j ,λk ], (5.1.1.1)

where the
∑

i
d

d t Siλi is the spin-representation of SU (3) and H j defines the component of the generalized pseudo-

magnetic field. Thus the dependence between the pseudo-spin ~S =∑
i

d
d t Siλi and the unitary part of the master

equation interpreted as a pseudo-magnetic field can be achieved by the commutation relation of the Gell-Mann

matrices

[λi ,λ j ] = i
∑
k

f i j kλk ,

given by the structure constants f i j k which are completely antisymmetric

f 123 = 1

f 147 = f 165 = f 246 = f 257 = f 345 = f 376 = 1

2

f 458 = f 678 =
p

3

2
.

For a complete description of the pseudo-spin dynamics the pseudo-spin vector ~S must include the full infor-

mation of all possible spin interactions. Thus we define the spin interactions between each pair of qubits in the

following way

S12
x,y,z , S23

x,y,z and S13
x,y,z ,

where the numbers of the indices define the involved qubits. These spin interaction can be expressed in the

context of the Gell-Mann matrices by

S12
x =λ6 S12

x =λ1 S13
x =λ4

S12
y =λ7 S12

y =λ2 S13
y =λ5

S12
z = 1

2

(
−λ3 +

p
3λ8

)
S12

z =λ3 S13
z = 1

2

(
λ3 +

p
3λ8

)
.

1Gell-Mann matrices

λ1 =

0 1 0

1 0 0

0 0 0

 , λ2 =

0 −i 0

i 0 0

0 0 0

 , λ3 =

1 0 0

0 −1 0

0 0 0

 , λ4 =

0 0 1

0 0 0

1 0 0

 , λ5 =

0 0 −i

0 0 0

i 0 0

 , λ6 =

0 0 0

0 0 1

0 1 0

 ,

λ7 =

0 0 0

0 0 −i

0 i 0

 , λ8 = 1p
3

1 0 0

0 1 0

0 0 −2


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Then we rewrite the calculated commutation relations (5.1.1.1) in this nine-dimensional basis and obtain the

desired pseudo-spin representation

d

d t



S23
x

S23
y

S23
z

S13
x

S13
y

S13
z

S12
x

S12
y

S12
z



=



(
~B 23 ×~S23

)

(
~B 13 ×~S13

)

(
~B 12 ×~S12

)



+



− 1
2

(
(B 13 ×S12)z + (B 12 ×S13)z

)
− 1

2

(
(Bx ×Sx )23 + (By ×Sy )23

)
0

− 1
2

(
(By ×Sx )13 + (Bx ×Sy )13

)
1
2

(
(Bx ×Sy )13 + (By ×Sy )13

)
0

− 1
2

(
(B 13 ×S23)z + (B 23 ×S13)z

)
− 1

2

(
(Bx ×Sx )12 + (By ×Sy )12

)
0



.

This pseudo-spin representation shows another result as expected, we see that it gives an additional term which

cannot be written as a cross product of the pseudo-spin ~S and the pseudo-magnetic field ~B . Thus this dynamics

of the pseudo-spin shows that the spin interaction between each qubit pair has not the same effect which lead

to the assumption that the dynamics for three qubits embedded in a thermal bath is much more complicated as

in the bipartite case.

In the following, we discuss the time-dependent numerical results of the occupation and the concurrence on

this theoretical background.

5.2 Numerical results of the occupation

We first consider the time-dependent occupation of a mixture of the states with zero excitation p0 = 0.5 and

with three excitations p3 = 0.5, where the index of the occupation describes the number of excitation. The

numerical result shows what we expected, this initial occupation is distributed in the diagonal elements through

the dissipative effects.
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Figure 5.1: Time-evolution of the occupation with the initial occupation of the state with three excitation pe =
0.5 (violet) and the state with no excitation pg = 0.5 (green) and the degenerates diagonal elements with one

excitation (blue) and two excitation (blue)

Thus the occupation of the state with three excitations decays fastest because the probability that one excited

photon is emitted to a state with lower energy is greatest. These effects lead to an increase of the occupation of

the other diagonal elements, especially for the state with no excitation. As a consequence of photon emissions

from the excited states, the occupation of the degenerate state with one excitation is greater than the occupation

for two excitations. Thus the stationary solution shows the average distribution of the occupation within time

leads to a fundamental consideration of the excitations of the qubit system.

In the following, we consider the time-dependent distribution of the initial occupation of the state |100〉. The
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numerical result of this initial occupation shows two effects, a part of this occupation is distributed into the

diagonal elements with the same energy, namely |010〉 and |001〉 and the other part goes to the state with no

excitation as a result of the photon emissions processes given by the coupling to the thermal bath. Thus the sta-

tionary solution of the occupation shows that for equal couplings d1 = d2 = d3 the thermal occupation between

the state which the the same energy is equal.
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Figure 5.2: Time-evolution of the occupation with the initial occupation of an excitation of the first qubit given

by the diagonal element |100〉〈100| (violet), |010〉〈010| and |001〉〈001|(green).

5.3 Numerical results of the concurrences

We first consider the GHZ-state |G H Z 〉 = 1p
2

(|000〉+ |111〉) as an initial state and different couplings d1,d2 and

d3 of the qubits to the bath. The GHZ-state is a genuine tripartite entangled state. The numerical result of the

time-dependent concurrences shows that the bipartite entanglement of each pair of qubits remains constantly

zero C AB =CBC =C AC = 0. This means the coupling to the thermal bath does not change the genuine tripartite

entanglement to bipartite entanglement within time. Rather surprising is the fact that different couplings d1 6=
d2 6= d3 have also no influence on the bipartite entanglement.
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Figure 5.3: Time evolution of the concurrences of the initial GHZ-state and different couplings.

Another well-known pure maximally entangled state is the Werner-state |W 〉 = 1p
3

(|100〉+ |010〉+ |001〉) which

consists of degenerate states with one excitation. This state is symmetric under permutations of the qubits and

the bipartite concurrence of this initial state for each pair of qubits is the same CBC =C AC =C AB = 2
3 . In contrast

to the GHZ-state this state has not only tripartite entanglement but also bipartite entanglement. The numerical

result, Figure 5.4, of the time dependent concurrence show that this initial bipartite entanglement between the

qubit decays. This decay is a result of the dissipative dynamics which maps the initial pure system state into

a separable mixture. Therefore the reduced density matrices ρBC ,ρAC and ρAB have a stationary solution for

which the concurrences decay. For equal couplings d1 = d2 = d3 the interaction between each qubit and the

environment is the same hence the bipartite concurrences decay equally. If one coupling constant, in our case

d1 > 1, defines a stronger coupling of qubit A to the thermal bath the concurrences between this qubit and the

other two qubits B ,C changes the same. The numerical result, in Figure 5.4 (b), of these two concurrences C AB

and C AC decay faster and show earlier ESD. In this case the decay is caused by the same effect as in the bipartite
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qubit system. But for the time-dependent concurrence CBC and d1 > 1 we see a decay which is caused by the

Lamb-shift. This shows that this bipartite entanglement is also affected by this varying coupling even though

there is no direct connection.
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Figure 5.4: Time evolution of the concurrences of the initial GHZ-state and different couplings, d2 = d3 = 1 are

constant and d1 are varying from d1 = 1 (violet) to d2 = 5 (green) in steps of 0.2 for (a) CBC and (b) C AB and C AC .

This can be shown by considering the entanglement dynamics of the Lamb-Shift contribution alone. The numer-

ical results of the time-dependent concurrences, Figure 5.5, show a different behavior as in the bipartite case. For

equal couplings constants d1 = d2 = d3 = 1 the Lamb-shift operator has no influence on the differential equation

of the unitary part of the master equation d
d t ρW =−i [HLS ,ρW ] = 0 and thus we see that the concurrence remains

constant at the initial value 2
3 . For differing coupling constant, d1 > 1, the concurrence of the Lamb-shift starts

to oscillate. As we expected the concurrences C AB and CBC show the same entanglement dynamics. But these

oscillations show different entanglement behavior when compared to the bipartite case which is attributable to

the much more complicated dynamics of this unitary contribution to the master equation which we have shown

in section 5.1.1. If we consider for example the time-dependent concurrence oscillations C AC and C AB it is ob-

vious that for a slight perturbation d1 = 2 of the coupling the amplitude is much higher than for considerable

perturbations d2 > 2 but never reaches an entangled or an disentangled state. Additionally we see local minima

at 2
3 . In contrast to the time-dependent concurrence oscillation CC B which reaches a disentangled state with

d1 = 2 and remains below 2
3 . But for d2 > 2 the amplitude of the oscillations decreases. These oscillations of the

concurrence of the Lamb-shift appear in the numerical result for CBC , Figure 5.4 (a), and explain the different

decays.
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Figure 5.5: Time evolution of the concurrences of the Lamb-Shift of the initial Werner-state and different cou-

plings, d2 = d3 = 1 are constant and d1 varying from d1 = 1 (violet) to d2 = 3 (green) in steps of 1 for (a) CBC and

(b) C AB and C AC .

A similar effect can be considered when the coupling constant d1 < 1 describes a weaker coupling between the

qubit A and B ,C , see Figure 5.6. As in the case above the concurrences C AB and C AC have the same entan-

glement dynamics due to the coupling. The numerical results show, Figure 5.6 (b), that the time-dependent

concurrences C AB and C AC decay more slowly. This entanglement behavior is similar to the bipartite case which

means that we can consider the same entanglement dynamics in the context of the different coupling constants.

The concurrence CBC shows again obvious influence of the concurrence of the Lamb-shift.
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Figure 5.6: Time evolution of the concurrences due to the initial Werner-state and different couplings, d2 = d3 = 1

are constant and d1 is varying from d1 = 0.8(violet) to d1 = 1 (green) in steps of 0.2 for (a) CBC and (b) C AB and

C AC .

The time-dependent concurrences of the Lamb-shift show lower frequent oscillations as a result of the weaker

coupling d1 < 1. For both numerical results, Figure 5.7(a) and (b), we see that the amplitude increases for a

smaller coupling constant d1. For the time-dependent concurrences C AB and C AC , Figure 5.7 (b), the oscillation

is localized below the initial value 2
3 in contrast to the time-dependent concurrence CBC which is localized above

the initial value. The numerical results of the Werner-state show that a bipartite entanglement of a tripartite

entanglement has two additional effects compared to the bipartite system. The concurrence due to the Lamb-

shift show another entanglement dynamics and influences obviously the dissipative entanglement dynamics for

only one differing coupling constant.
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Figure 5.7: Time evolution of the concurrences due to the Lamb-Shift of the initial Werner-state and different

couplings, d2 = d3 = 1 are constant and d1 varying is from d1 = 0.8 (violet) to d2 = 1 (green) in steps of 1 (a) CBC

and (b) C AB and C AC .

The consideration of the singlet state between two qubits of the three qubits gives an intuitive description of the

bipartite entanglement of three qubits. The qubits are invariant under permutation and thus it does not play a

role between which qubit pair we use to define a singlet-state. For example, the initial state of the bipartite sys-

tem is given by |s〉 = 1p
2

(|100〉− |010〉) which defines a singlet-state between the qubit pair A,B . The numerical

result, Figure 5.8, of equal couplings d1 = d2 = d3 shows that the concurrence C AB of the singlet-state remains

constant. Thus the singlet-state is once again a decoherence-free subspace for the bipartite entanglement of a

tripartite system. A small perturbation of the coupling between one qubit of the singlet-state and the thermal

bath shows that the presence of the decoherence-free subspace is destroyed similarly to the bipartite system.

Additionally we can see that different perturbation show the same decay as in the bipartite system, see Figure

4.3(a) and (b). This means that the reduced density matrices ρBC ,ρAC and ρAB have two stationary solutions

as in the bipartite qubit system. Thus we can observe two different entanglement dynamics for the bipartite

entanglement, namely a constant concurrence and a decay of the concurrence.
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Figure 5.8: The time evolution of the concurrence C AB of the initial singlet state |s〉 between the qubits A,B and

different couplings, d2 = d3 = 1 and d1 varying from d1 = 0 (violet) to d2 = 2 (green) in steps of 0.1.

In addition to entangled states, we can consider the time evolution of the bipartite entanglement dynamics of

separable states. The simplest separable state is a product state consisting of three equal qubit states |ψ〉 =
|ψi 〉⊗ |ψi 〉⊗ |ψi 〉 where |ψi 〉 defines the superposition |ψi 〉 = sin(ϕ) |1〉+cos(ϕ) |0〉. The numerical results of the

time-dependent concurrences CBC ,C AC and C AB show for the same coupling constants d1 = d2 = d3 the same

entanglement dynamics, see Figure 5.9. This means that the states with same excitations show identical occu-

pations all the time. As a consequence the occupation in the reduced density matrix also act the same and thus

the entanglement dynamics between the qubits equally. We see that this dynamics causes transiently entan-

glement between the qubits but which decays afterwards. From the numerical results of the bipartite system, in

Figure 4.9(a), we can conclude due to the time-dependent dynamics of the tripartite system that the triplet states

between the qubit pairs arise generating this entanglement. The fact that these states are indeed triplet states

can be checked by the numerical implementation of the occupation of the reduced density matrices, ρBC ,ρAC

and ρAB . This result shows as well that we can generate bipartite entanglement in the tripartite case with triplet

states between the qubits. But this generated entanglement is smaller as in the bipartite case because in a tripar-

tite system every qubit has two bipartite entanglements. Although the definition of these triplet states between

the qubits is not intuitive as the tripartite dynamic of the system reflects a more complicated dynamic.
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Figure 5.9: The time-dependent concurrences between all pairs of qubits CBC ,C AB and C AC of the initial sepa-

rable state |ψ〉 = |ψi 〉⊗ |ψi 〉⊗ |ψi 〉 and different angles ϕ varying form ϕ = 0 (violet) to ϕ = π (green) in steps of

0.2.

Additionally to this entanglement dynamics, we can consider the contribution of the concurrence of the Lamb-

Shift alone. The numerical result, in Figure 5.10(a), shows surprisingly a similar entanglement behavior for cer-

tain anglesϕ and the different angles only influence the amplitude of the oscillation. But once again the complex

dynamics of the tripartite system is included for different angles, Figure 5.10(b). We can see two additional min-

ima that merge into one. In contrast to the bipartite system we see that these Lambs-shifts oscillations have a

smaller amplitude. Although in this case the concurrence of the Lamb-Shift appears not obvious.
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Figure 5.10: The time-dependent concurrences due to the Lamb-Shift between all pairs of qubits CBC ,C AB and

C AC of the initial separable state |ψ〉 = |ψi 〉⊗ |ψi 〉⊗ |ψi 〉 and different angles ϕ varying for (a) from ϕ= 0 (violet)

to ϕ= 0.2 (green) in steps of 0.015 and (b) form ϕ= 0.8 (violet) to ϕ= 1 (green) in steps of 0.015.

Another possibility is to consider the bipartite entanglement dynamics of an initial separable state which is

a product state of only two equal qubit states |ψ〉 = |ψi 〉 ⊗ |ψ j 〉 ⊗ |ψ j 〉 with |ψi 〉 = sin(ϕ) |1〉 + cos(ϕ) |0〉 and

|ψ j 〉 = cos(ϕ) |0〉+ sin(ϕ) |1〉. The numerical result, Figure 5.11, shows that for the same initial states of the qubit

B and C the concurrence show transiently entanglement. This can be explained with the tripartite dynamic of

the system which evolves such that the reduced density matrix ρBC includes the occupation of a triplet which

decays again and thus the concurrence decays as well.

For the time-dependent concurrence with different initial states of the qubits AC and AB , we can see that entan-

glement is generated and remains constant for several initial conditions, see Figure 5.11. This can be explained

with the tripartite dynamics of the full system between the qubit pairs which generates a superposition of a

singlet and a triplet state. The singlet part is preserved by the dissipative dynamics and thus the entanglement

dynamics as well. By comparing the results with the same initial superposition of the qubits in the bipartite sys-

tem, Figure 4.10, we can see that the entanglement dynamics show again influence by the Lamb-shift. This can

be analyzed more precisely when looking at the concurrence of the Lamb-shift.

0

0.01

0.02

0.03

0.04

0.05
a)

0 0.05 0.1 0.15 0.2

E
n

ta
n

gl
em

en
tE

(ρ
)

Time t

0

0.05

0.1

0.15

0.2

0.25
b)

0 0.2 0.4 0.6 0.8 1

Time t

Figure 5.11: The time-dependent concurrences of the initial separable state |ψ〉 = |ψi 〉⊗|ψ j 〉⊗|ψ j 〉 and different

angles ϕ varying form ϕ= 0 (violet) to ϕ=π (green) in steps of 0.2 for (a) CBC and (b) C AB and C AC .

The concurrence due to the Lamb-shift shows distinctly that it is being influenced by the tripartite dynamics

especially if we consider the concurrence of the Lamb-shift CBC which has a completely different entanglement

behavior as the Lamb-shift above, despite of same initial states and angles ϕ. Thus we conclude that in this case

the concurrence of the dissipative part overweighs because we see in Figure 5.11 (a) a similar result as in Figure

5.9. If we consider the concurrences of the Lamb-shift C AB and C AC we can see strong concurrence oscillations

which depends on the initial state and thus on the angle ϕ. Exactly these different oscillation can be seen in the

concurrence above, for an angle around π
2 the Lamb-shift oscillates with the highest amplitude. But in this case

we can see the combination of the concurrence of the Lamb-shift and the dissipator very well as at the beginning

the Lamb-shift part dominates and later the dissipative part.
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Figure 5.12: The time-dependent concurrences of the initial separable state |ψ〉 = |ψi 〉⊗|ψ j 〉⊗|ψ j 〉 and different

angles ϕ varying from ϕ= 0 (violet) to ϕ= 2π) (green) in steps of 1.5 for (a) CBC and (b) C AB and C AC .

From this point of view, the question comes up if it is possible to obtain a constant bipartite entanglement for

a product state of three different qubit states |ψ〉 = |ψi 〉⊗ |ψ j 〉⊗ |ψk〉 which define superpositions of singlet and

triplet states with different pre-factors given by the angleϕ. Therefore, we consider such a product state consist-

ing of the qubits state |ψi 〉 = cos(ϕ) |0〉+sin(ϕ) |1〉, |ψ j 〉 = sin(ϕ) |0〉+cos(ϕ) |1〉 and |ψk〉 = 1p
2

(|0〉+ |1〉), see Figure

5.13. The numerical result shows what we expected, the concurrences CBC ,C AB and C AC generate entanglement

which remains constant for the singlet part. Here, we see again the influence of the entanglement dynamics due

to the Lamb-shift, particularly for the time dependent concurrence C AB . But the time-dependent concurrences

CBC ,C AC and C AB of the bipartite entanglement dynamics do not show the same entanglement behavior. They

do not remain constant for the same anglesϕwhich is a consequence of the non existing decoherence-free sub-

spaces for tripartite systems.
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Figure 5.13: The time dependent concurrences CBC ,C AC and C AB (from left to right) of the initial separable state

|ψ〉 = |ψi 〉⊗ |ψ j 〉⊗ |ψk〉 and different angles ϕ for (a),(b) varying from ϕ= 2.15(violet) to ϕ= 2.6 (green) in steps

of 0.1 and (c) varying form ϕ= 2.85 (violet) to ϕ= 3.4 (green) in steps of 0.1.

In the context of decoherence-free subspaces we have introduced a decoherence-free subspace for one qubit

consisting of three qubits by the encoded states |ψ〉 = 1p
2

(cos(ϕ) |0〉L+sin(ϕ) |1〉L). The numerical result for equal

coupling constants d1 = d2 = d3 = 1 shows asymptotic entanglement for differen angles ϕ, see Figure 5.14. This

numerical result coincides with our theory of three different product states and also shows that it is impossible

for a tripartite system to obtain an equal bipartite entanglement for all three qubit pairs.
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Figure 5.14: The time evolution of the concurrences CBC ,C AC and C AB (from left to right) of the initial encoded

qubit state and different angles ϕ varying from ϕ= 0 (violet) to ϕ= 2π (green) in steps of 22.

In the last example we look at the time-dependent entanglement between the qubits B and C where at the be-

ginning qubit A has been excited. The numerical results, Figure 5.15, show that the constant concurrence C AB

between the qubits is preserved which allows us to conclude that a coherent transfer takes place between the

excitation of the first qubit and the other qubit states such that a singlet state is generated
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Figure 5.15: The time-dependent concurrence CBC of the initial state |ψ〉 = |100〉.

5.4 Theory of the entanglement dynamics of the three qubit chain

In the previous section we assumed that the coupling between each qubit and the thermal bath is defined by

the corresponding coupling-constant which leads to a symmetric coupling of the qubit system and the thermal

bath. A different approach would be to define the coupling-constants in such a way that the coupling between

the system and the thermal bath is not symmetric, but a chain.

In general, all possible coupling constants of a three qubit system can be represented by the following matrix

D123 =

 Γ1 γ12 γ13

γ21 Γ2 γ23

γ31 γ32 Γ3

 ,

where the couplings are defined by Γi = d∗
i di ,γi j = d∗

i d j and the indices of this couplings denote the corre-

sponding qubits. A qubit chain can be obtained by assuming that the coupling constants which describe a cou-

pling of the qubits A and C to the thermal bath is zero, γ13 = γ31 = 0. This can only be done under the allowance

that the coefficient matrix of the master equation remains positive semidefinite. The values of the coupling con-

stants must be chosen so that the eigenvalues of the coefficient matrix remains positive. The following coupling

representation is one possibility which fulfils this condition

D̃123 =

 1 0.5 0

0.5 1 0.5

0 0.5 1

 .
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But the decoherence-free subspace is destroyed by the different coupling constants. This means the stationary

solution of the master equation has only a unique solution for which the concurrence decay. Thus all numerical

results of the chain representation must show ESD. However, the arrangement of three qubit in a chain leads to

another occupation distribution which we will see in the following numerical result.

5.5 Numerical result of the thermal occupation

In the following, we consider the time-dependent distribution of the initial occupation of the state again with

an excitation on the first qubit ρ = |100〉〈100|. This allows us to compare the influence of the couplings of dif-

ferent qubit system representations. The numerical result of the time-dependent occupation shows a different

stationary solution as for equal couplings. This result reflects the symmetry of the chain representation, the two

qubits at the edge of the chain have the same coupling and hence an equal occupation within time. In contrast

to the qubit in the middle which has a higher thermal occupation given by another coupling to the thermal bath.

Thus this numerical result show that different couplings of the qubits to the bath influences the distribution of

the occupation.
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Figure 5.16: Time-evolution of the thermal occupation with the initial thermal occupation of an excitation of the

first qubit given by the diagonal element |100〉〈100| (violet), |010〉〈010| (blue) and |001〉〈001| (green).

5.6 Numerical results of the concurrences

We first consider the entangled Werner-state |W 〉 = 1p
3

(|100〉+ |010〉+ |001〉) in the chain representation, Figure

5.17. If we compare the numerical result of the symmetric coupling to the chain coupling, the concurrences CBC

and C AB decay faster which is a result of the stronger coupling between these pairs of qubits and the thermal en-

vironment. The time-dependent concurrence of the two qubits on the edge of the chain decays slower, because

of its weaker coupling to the thermal bath. But both numerical results show ESD as we expected.
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Figure 5.17: The time-dependent concurrences of the initial Werner-state in the chain representation for (a) C AC

and (b) CBC and C AB .

The numerical result of the encoded qubit Figure 5.16 contains the same effect of the chain representation, the
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concurrence C AC decays always weaker as the concurrences CBC and C AC . The decoherence-free space for one

qubit is destroyed by the different coupling constants and thus the concurrences decay.
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Figure 5.18: The time-dependent concurrences of the initial encoded qubit state in the chain representation and

different angles ϕ varying form ϕ= 0 (violet) to ϕ= 2π (green) in steps of 0.1 for (a) CBC (b) C AC and (c) C AB .

Another consequence of the different couplings constants is that the concurrences of the Lamb-Shift contribu-

tion starts to oscillate. The numerical result of the time-dependent concurrence of the Lamb-Shift Figure 5.18

shows that the concurrences CBC and C AB oscillate above and below the initial value. In contrast, the numeri-

cal result of the time-dependent concurrence C AC shows a small oscillation around the initial value. Also these

result show that the tripartite dynamics is much more complicated as in the bipartite system.
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Figure 5.19: The time-dependent concurrences of the Lamb-Shift of the initial encoded qubit state in the chain

representation and an angle ϕ= 0 for (a) CBC (b) C AC and (c) C AB .
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Chapter 6

Conclusion

In the second chapter the mathematical definitions of entanglement in the context of bipartite and multipartite

systems were discussed. We found that for mixed states the Schmidt decomposition is not a sufficient criterion

for separability and thus we have introduced two additional criteria, namely an operational separability, the

partial transpose criterion (PPT) and a non-operational separability criterion, the criteria of positive map. The

main part of this chapter was to present the theory of entanglement measure which started with the definition

of entanglement. As a consequence that the entanglement is a special type of correlation, the properties of en-

tanglement measures were studied in the context of different correlations. Then we defined the concurrence

which is a correct entanglement measure for the bipartite case. For a tripartite system we saw that there is no

formulation for the entanglement for mixed states.

In chapter 3 we introduced a fully quantum mechanical model: the Jaynes-Cummings model which describes

the atom-field interaction. In the following the theory of open quantum systems was treated. We began with the

unitary dynamics of a closed system and advanced this theory in the context of the semi-group formulation and

under the Markovian assumptions to the dynamics of an open quantum system. This derivation of the Marko-

vian master equation showed that the influence of the environment lead to an perturbation of first ordering. In

the next section we used this general description of the open quantum system and derived the master equa-

tion in the Lindblad form for our qubit systems under the assumption that the coupling between the system

and the bath is weak so that the Markovian assumptions were valid. After we noticed that the dynamics of an

open quantum system consists not only of a unitary part but also of a dissipative part, we dealt with how it is

possible to prevent the information given by the entanglement from decohering. In this context the theory of

decoherence-free subspaces was discussed. This theory required a distinction between qubit systems with odd

and even qubits. For an even number of qubits it is easy to find a component of an initial state which remains

constant under the dissipative dynamics. This effect is only possible for decoherence-free subspaces which are

fully conserved. We showed that the singlet state is such a decoherence-free subspace for a two qubit system

because the interaction Hamiltonian has no influence on this state. For an odd number of qubits we found that

it is not possible to define such a decoherence-free subspace. Thus we described another method to define a

decoherence-free subspace. This can be done by encoding the information in another dimension. We gave the

example of one qubit encoded by three qubits and showed that this subspace provides really the information of

decoherence.

In chapter 4 the dynamics of two qubits embedded in a thermal environment described by the master equa-

tion was considered. We started with a discussion of the long-time behavior the steady state between the qubit

system and the thermal bath. This demonstrated that the distribution of any initial occupation based on the

energy of the states and the rotating-wave approximation. Further the theory of the entanglement dynam-

ics was discussed and it was shown that the concurrence remains constant for the decoherence-free subspace

alone, all other states have a stationary solution for which the time-dependent function of the concurrences de-
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cays. In the following we described a typical effect which comes up in the context of dissipative dynamics; the

entanglement-sudden death. Afterwards we studied the numerical results with this theoretical background and

we saw that these results coincide with the theory. It proved that the entanglement dynamics is always influ-

enced by different couplings of the qubits to the thermal bath. For a stronger coupling to the thermal bath the

concurrence decays and shows entanglement-sudden-death as a result of the increasing dissipative dynamics.

For a weaker coupling the concurrence decays slower. Additionally, a different coupling destroys the presence

of the decoherence-free singlet state. In the context of entanglement dynamics we determined that the environ-

ment cannot only destroy the entanglement but also create it. For instance, a separable state which has a triplet

part transiently generates entanglement. A superposition of a singlet and a triplet part generates entanglement

which remains even constant as a consequence of the singlet part. Thus, the singlet state is the one and only

state for which the concurrence and the thermal occupation remains constant. In the last part of this chapter

we discussed the coherent physics, to be more precise the unitary part of the master equation. To obtain an in-

tuitive description of this part we made use of the pseudo-spin representation which interprets the Lamb-Shift

as a magnetic field. This allowed a geometrical illustration of the pseudo-spin on the Bloch sphere. We showed

that the concurrence due to the Lamb-shift is given by the oscillation of the pseudo-spin caused by the pseudo-

magnetic field.

In chapter 5 we extended the bipartite system in a tripartite system. We started with a discussion of the stationary

solution of this master equation which showed that the initial occupation distributes under the same condition

as in the bipartite case, the energy difference of the states and the rotating-wave approximation. Three qubits

have a unique stationary solution as a consequence of the non existing decoherence-free subspace. To obtain an

intuitive description of the dynamics of this system, the pseudo-spin representation of the Lamb-shift contribu-

tion of the master equation was derived. It turned out that the dynamics are much more complicated as in the

bipartite system, because the spin interactions between the different qubits behave not equally. In the following

we considered the bipartite entanglement between each qubit pair which allowed a differentiation of the entan-

glement dynamics, namely in tripartite entanglement and bipartite entanglement. The numerical results of the

bipartite entanglement revealed some unexpected facts. The tripartite entanglement of the GHZ-state does not

change into a bipartite entanglement through the influence of the thermal bath. Another unexpected entangle-

ment dynamics shows the concurrences due to the Lamb-shift contribution of the master equation. Because of

the numerical result of the Werner-state we recognized for different couplings that the much more complicated

tripartite dynamics affected the entanglement dynamics of the coherent physics as a consequence of the non-

trivial concurrence oscillations due to the Lamb-shift. In contrast, the concurrence of the Lamb-shift remains

constant for equal couplings. The singlet state between two qubits of the tripartite system led to another inter-

esting fact. The time-dependent concurrences of such a singlet state have the same entanglement behavior as

in the bipartite system even for different couplings. Therefore this state is again a decoherence-free subspace for

the bipartite entanglement of the tripartite system. The numerical results of different separable product states

reflected the theory of the bipartite entanglement: we found that a triplet state between two qubits transiently

generates entanglement and a superposition of a singlet and a triplet between two qubits generates entangle-

ment which remains constant for the singlet part. Furthermore, we noticed the influence of the Lamb-shift part

in the numerical result of the separable states with two different qubit states which is also a typical sign of the

tripartite dynamics. The numerical results of the logical state and the product state of different initial states

supported the fact that there are no decoherence-free subspaces of tripartite systems because it is impossible to

obtain an equal concurrence between all qubit pairs. In the last part of this thesis we considered a chain repre-

sentation of the qubits defined by different couplings. This allowed us to compare the dependency between the

couplings and the occupation and the concurrence. The numerical result showed that any initial concurrence

decays as a result of the unique stationary solution. Moreover, we saw that the thermal occupation changes for

different couplings.



Chapter 7

Appendices

7.1 General separable state

We consider a general density matrix ρ which is defined as

ρ =


a 0 0 0

0 b z 0

0 z∗ c 0

0 0 0 d

 , (7.1.0.1)

with two different solutions for the concurrence

C (ρ) =
2|z −p

ad |, for ad < bc + z

−2
p

bc < 0, for bc + z < ad
.

Hence, the mixed state is separable for bc+z < ad and can be written as a product state of all pure-state decom-

position, ρ =∑
k pk |ψk〉〈ψk |. To show that we consider a general state

|ψαβγδ〉 : = (α |0〉+β |1〉)⊗ (γ |0〉+δ |1〉)
=αγ |00〉+α |01〉+βγ |10〉+βδ |11〉 ,

with the corresponding density matrix ρ = |ψ〉〈ψ|

ρ =


|αγ|2 |α|2γδ∗ |γ|2αβ∗ αγ(βδ)∗

|α|2δγ∗ |αδ|2 αδ(βγ)∗ |δ|2αβ2

|γ|2βα∗ βγ(αδ)∗ |βγ|2 |β|2γδ∗
βδ(αγ)∗ |δ|2γα∗ |β|2δγ∗ |βγ|2

 .

The important observation is the following

|11〉ρ 〈00| =βδ(αγ)∗ and |10〉ρ 〈01| =βγ(αδ)∗

|00〉ρ 〈11| =αγ(βδ)∗ and |01〉ρ 〈10| =αδ(βγ)∗

Hence, if we set either value αβγδ = 0 other entries vanish. The other off-diagonal terms are not affected, be-

cause they are all in an absolute square. This will be used to set the respecting entries to zero.
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We are looking for two separable states whose convex combination (with pi = 1 yields to |11〉ρ 〈00| = 0, |10〉ρ 〈01| =
z and |00〉ρ 〈11| = 0, |01〉ρ 〈10| = z∗. The starting point are two states which are defined as |ψαβγδ〉 and |abcd〉.
Then the following relations are fulfilled

(1)βγ(αδ)∗+bc(ad)∗ = z

(2)βδ(αγ)∗+bd(ac)∗ = 0.

Now, to be more precise, assume z ∈R and let

γ= δ= 1p
2

a = 1p
2

,b = ip
2

then the equations (1) and (2) read

(1)
1

2
βα∗+ i

2
cd∗ = z (1)∗

1

2
αβ∗− i

2
dc∗ = z∗,

(2)
1

2
βα∗+ i

2
dc∗ = 0 (2)∗

1

2
αβ∗− i

2
cd∗ = 0.

The real part is given by (1)+ (2)∗ ⇔ Re(αβ∗) = z. Thus let α= 1p
2

e iϕ,β=α∗ then the real part can be written as

Re(αβ∗) = 1
2 cos(2ϕ) = z with

ϕ= 1

2
= arccos(2z).

The imaginary part is given by (1)− (2)∗ ⇔ Im(cd∗) = −z. Again let c = 1p
2

e iψ,d = c∗ then the imaginary part

can be written as Im(cd)∗ = 1
2 sin(2ψ) with

ψ=−1

2
arcsin(2z).

Therefore we fix the following values to the corresponding states

|ψαβγδ〉⇒α= 1p
2

e iϕ,β=α∗,γ= δ= 1p
2

|ψabcd 〉⇒ a = 1p
2

,b = i a,c = 1p
2

e−iψ,d = c∗.

The convex decomposition of this two states is given by

ρ̃ = p

4
[|ψαβγδ〉〈ψαβγδ|+ |ψabcd 〉〈ψabcd |]

= p

16




1 1 e2iϕ e2iϕ

1 1 e2iϕ e2iϕ

e−2iϕ e−2iϕ 1 1

e−2iϕ e−2iϕ 1 1

+


1 e−2iψ −i −i e−2iψ

e2iψ 1 −i e2iψ −i

i i e−2iψ 1 e−2iψ

i e2iψ i e2iψ 1




= p

16


2 1+e−2iψ e2iϕ− i e2iϕ− i e−2iψ

1+e2iψ 2 e2iϕ− i e2iψ e2iϕ− i

e−2iϕ+ i e−2iϕ+ i e−2iψ 2 1+e−2iψ

e−2iϕ+ i e2iψ e−2iϕ+ i 1+e2iψ 2


the additional non-diagonal elements are
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• 〈00| ρ̃ |01〉 = P
4 [|α|2δγ∗+|a|2dc∗] = P

16 (1+e2iψ)

• 〈00|ρ |10〉 = P
4 [|γ|2βα2 +|c|2ba∗] = P

16 (i +e−2iψ)

• |01〉ρ 〈01| = P
8 [|δ|2βα∗+|d |2ba∗] = P

16 (1+e−2iϕ)

• |10〉ρ 〈11| = P
4 [|β|2δγ∗+|b|2dc∗] = P

16 (1+e2iψ).

This non-diagonal terms can be generated to zero by adding the following decompositions of pure states:

ρ2 = P

8
[|ψA1B1C1D1〉〈ψA1B1C1D1 |+ |ψA2B2C2D2〉〈ψA2B2C2D2 |],

with −C1 = D1 = 1p
2

,−C2 = D∗
2 = 1p

2
e−iψ because B1,2 = 0, A1,2 = 1

ρ2 = P

16




1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

+


1 e−2iψ 0 0

e2iψ 1 0 0

0 0 0 0

0 0 0 0




= P

16


2 −(1+e−2iψ) 0 0

−(1+e2iψ) 2 0 0

0 0 0 0

0 0 0 0

 ,

thus ρ2 does generate the off-diagonal elements 〈10|ρ2 |11〉 = 0 and 〈11|ρ2 |10〉 = 0. But to the diagonal elements

〈11|ρ2 |11〉 ,〈10|ρ2 |10〉 the factor P/8 is added.

ρ2 = P

8
[|ψA3B3C3D3〉〈ψA3B3C3D3 |+ |ψA4B4C4D4〉〈ψA4B4C4D4 |],

with −B3 = A∗
3 = 1p

2
e−iϕ, i B4 =−A∗

4 = 1p
2

because C3,4 = 1,D3,4 = 0

ρ3 = P

16




1 0 −e2iϕ 0

0 0 0 0

−e−2iϕ 0 1 0

0 0 0 0

+


1 0 i 0

0 0 0 0

−i 0 1 0

0 0 0 0




= P

16


2 0 −(e2iϕ− i ) 0

0 0 0 0

−(e−2iϕ+ i ) 0 2 0

0 0 0 0

 .

Thus ρ3 does generate the off-diagonal elements 〈01|ρ3 |11〉 = 0 and 〈11|ρ3 |01〉 = 0. But to the diagonal elements

〈11|ρ3 |11〉 ,〈01|ρ3 |01〉 the factor P/8 is added.

ρ4 = P

8
[|ψA5B5C5D5〉〈ψA5B5C5D5 |+ |ψA6B6C6D6〉〈ψA6B6C6D6 |]

with −A∗
5 = B5 = 1p

2
e−iϕ, A6 = i B6 = 1p

2
because C5,6 = 0,D5,6 = 1
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ρ4 = P

16




0 0 0 0

0 1 0 −e2iϕ

0 0 0 0

0 −e−2iϕ 0 1

+


0 0 0 0

0 1 0 i

0 0 0 0

0 −i 0 1




= P

16


0 0 0 0

0 2 0 −(e2iϕ− i )

0 0 0 0

0 −(e−2iϕ+ i ) 0 2

 .

Thus ρ4 does generate the off-diagonal elements 〈00|ρ4 |10〉 = 0 and 〈10|ρ4 |00〉 = 0. But to the diagonal elements

〈00|ρ4 |00〉 ,〈10|ρ4 |10〉 the factor P/8 is added.

ρ5 = P

8
[|ψA7B7C7D7〉〈ψA7B7C7D7 |+ |ψA8B8C8D8〉〈ψA8B8C8D8 |],

with −D7 =C7 = 1p
2

,−D8 =C∗
8 = 1p

2
e iψ because A7,8 = 0,B7,8 = 1

ρ5 = P

16




0 0 0 0

0 0 0 0

0 0 1 −1

0 0 −1 1

+


0 0 0 0

0 0 0 0

0 0 1 −2e−2iψ

0 0 −2e−2iψ 1




= P

16


0 0 0 0

0 0 0 0

0 0 2 −(1+2e−2iψ)

0 0 −(1+2e2iψ) 2

 .

Thus ρ5 does generate the off-diagonal elements 〈10|ρ5 |11〉 = 0 and 〈11|ρ5 |10〉 = 0. But to the diagonal elements

〈11|ρ5 |11〉 ,〈10|ρ5 |10〉 the factor P/8 is added. Therefore it is shown that the given mixed state is separable and

can be written as a decomposition of the pure states defined above.

ρ = ρ1 +ρ2 +ρ3 +ρ4 +ρ5

= p1

4
[|ψαβγδ〉〈ψαβγδ|+ |ψabcd 〉〈ψabcd |]

= p2

8
[|ψA1B1C1D1〉〈ψA1B1C1D1 |+ |ψA2B2C2D2〉〈ψA2B2C2D2 |]

= p3

8
[|ψA3B3C3D3〉〈ψA3B3C3D3 |+ |ψA4B4C4D4〉〈ψA4B4C4D4 |]

= p4

8
[|ψA5B5C5D5〉〈ψA5B5C5D5 |+ |ψA6B6C6D6〉〈ψA6B6C6D6 |]

= p5

8
[|ψA7B7C7D7〉〈ψA7B7C7D7 |+ |ψA8B8C8D8〉〈ψA8B8C8D8 |]

= p

16


6 0 0 (e2iϕ+ i e−2iψ)

0 6 (e2iϕ− i e2iψ) 0

0 (e−2iϕ+ i e−2iψ) 6 0

(e−2iϕ+ i e2iψ) 0 0 6


with ϕ= 1

2 arccos(2z) and ψ= 1
2 arcsin(2z)

ρ̃ = p

8


3 0 0 0

0 3 z 0

0 z 3 0

0 0 0 3

 .
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Every mixed state in the form (7.1.0.1) which is not entangled can be represented as

ρ = p1ρ̃+p2 〈00| |00〉+p3 〈11| |11〉+p4 〈01| |01〉+p5 〈10| |10〉 ,

with the assumption 12
8 p1 +p2 +p3 +p4 +p5 = 1.

For example, a separable density matrix

ρ =


2
5 0 0 0

0 1
10 z 0

0 z∗ 1
10 0

0 0 0 2
5


can be decomposed in pure states by choosing the probabilities as p1 = 1

5 , p4,5 = 1
40 , p2,3 = 13

40 .

7.2 Results for one qubit

7.2.1 Analytical result for the master equation for one qubit interacting with a thermal

bath

The master equation for only one qubit coupled with a thermal bath is an analytically solvable problem. The

Lindblad operators are defined by the annihilation and the creation of the two-level atom operators Ak = σ̂−, A†
k =

σ̂+. We introduce the definition of super operators to simplify the representation of the differential equation of

the reduced system 1

Hρ −→ (H ⊗1)ρ

ρH −→ (1⊗H T )ρ.

This super operators define a transformation of the Hilbert space H to the Hilbert space H ⊗2 which leads the

dynamics of the reduced system ρS unaffected, because the density matrix ρ =
(
ρ11 ρ12

ρ21 ρ22

)
is transformed to

ρ = (ρ11,ρ12,ρ21,ρ22)T . The unitary contribution of the master equation, the Lamb-shift is given by [HLS ,ρ] with

HLS = dd∗σ̂+σ̂−+d∗dσ̂−σ̂+, where d defines the coupling between the qubit and the bath. In the definition of

the super operator the Lamb-shift reaches

HLS = (HLS ⊗1)ρ =
((

d∗d 0

0 d∗d

)
⊗

(
1 0

0 1

))
ρ11

ρ12

ρ21

ρ22

=


d∗d 0 0 0

0 d∗d 0 0

0 0 d∗d 0

0 0 0 d∗d



ρ11

ρ12

ρ21

ρ22


The calculation of ρHLS = (1⊗H T )ρ gives the same result and thus the Lamb-Shift for one qubit is zero

⇒[HLS ,ρ] = HLSρ−ρHLS = 0.

1Proof of the super operator representation

Assertion: The super operator of Hρ has the form H ⊗1 in every dimension.

Proof: ρ→∑
i ρ

column
i ⊗ei (Definition of the super operator)

Hρ→∑
i (Hρ)column

i ⊗ei = (H ⊗1)
∑

i ρ
column
i ⊗ei

Assertion: The super operator of ρH has the form 1⊗HT in every dimension .

Proof: ρ→∑
i ei ⊗ρr ow

i (Definition of the super operator)

ρH →∑
i ei ⊗ρr ow

i H r ow = (1⊗H r ow )
∑

i ei ⊗ρr ow
i = (1⊗HT )

∑
i ρ

column
i ⊗ei
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Thus the reduced qubit system embedded in a thermal bath can be described by first-order perturbation the-

ory of the thermal bath. The dissipative contribution of the master equation described these dissipative per-

turbation effects by spontaneous emission processes N (ωk ) and thermally induced emission and absorption

processes (1+N (ωk )). In the super operator representation the dissipator is given by

D(ρS ) = N (ωk )(d∗σ̂+ρdσ̂−− 1

2
dσ̂−d∗σ̂+ρ− 1

2
ρdσ̂−d∗σ̂+)

+ (1+N (ωk ))(dσ̂−ρd∗σ̂+− 1

2
d∗σ̂+dσ̂−ρ− 1

2
ρd∗σ̂+dσ̂−)

1
=

N (ωk )


0 0 0 dd∗

0 − 1
2 dd∗ 0 0

0 0 − 1
2 dd∗ 0

0 0 0 −dd∗

+ (1+N (ωk ))


−d∗d 0 0 0

0 − 1
2 d∗d 0 0

0 0 − 1
2 d∗d 0

dd∗ 0 0 0





ρ11

ρ12

ρ21

ρ22

 .

The full master equation is then given only by the dissipator

d

d t


ρ11(t )

ρ12(t )

ρ21(t )

ρ22(t )

=


−(1+N (ωk ))Γ 0 0 N (ωk )Γ

0 − 1
2 (N (ωk )Γ+ (1+N (ωk ))Γ) 0 0

0 0 − 1
2 (N (ωk )Γ+ (1+N (ωk ))Γ) 0

(1+N (ωk ))Γ 0 0 −N (ωk )Γ



ρ11

ρ12

ρ21

ρ22

 ,

where we introduced the following relation for the coupling-constants Γ= dd∗. This differential equation of the

master equation can be easily solved and is


ρ11(t )

ρ12(t )

ρ21(t )

ρ22(t )

=



(
N (ωk )+e(−1−2N (ωk ))t+N (ωk )e(−1−2N (ωk ))t )C1

1+2N (ωk ) − N (ωk )
(−1+e(−1−2N (ωk ))t )C2

1+2N (ωk ) ρ11(0)

e
1
2 (−1−2N (ωk )t C3 ρ12(0)

e
1
2 (−1−2N (ωk )t C3 ρ21(0)

− (1+N (ωk )(−1+e(−1−2N (ωk )t )C1
1+2N (ωk ) + (1+N (ωk )+N (ωk )e(1−2N (ωk ))t )C2

1+2N (ωk ) ρ22(0)

 ,

where C1,C2,C3 and C4 are integration constants.

7.2.2 Time-dependent occupation of the ground and the excited state for one qubit em-

bedded in a thermal bath

In this section we discuss the change of the thermal occupation caused by the dissipative effects of the thermal

bath. For only one qubit the general density matrix can be expressed by the system operators, the annihilation

operator σ̂− and the creation operator σ̂+

ρ(t ) =
(

1
2 (1+〈σ3(t )〉) 〈σ−(t )〉

〈σ+(t )〉 1
2 (1−〈σ3(t )〉)

)
.

The matrix elements of this general density matrix represents the thermal occupation of the ground state pg (t ) =
1
2 (1−〈σ3〉) and the excited state pe (t ) = 1

2 (1+〈σ3〉). We introduced the pre-factors γ0 to obtain a formulation of

the total transition rate of the spontaneous emission processesγ0N (ωk ) and the absorbtion processes (1+N (ωk ))

1We used for the first terms of the dissipator the following super operator representation

d∗σ̂+ρdσ̂− = (d∗σ̂+⊗1)(1⊗ (dσ̂T−)


ρ11

ρ12

ρ21

ρ22

 and dσ̂−ρd∗σ̂+ = (dσ̂−⊗1)(1⊗ (d∗σ̂+)T )


ρ11

ρ12

ρ21

ρ22


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γ= γ0 (2N (ωk +1)) ,

where N = N (ωk ) is the Planck distribution of the transition frequency ωk . The time-evolution of the thermal

occupation can be derived by inserting the general density matrix into the dissipative contribution of the master

equation

d

d t
ρ(t ) = γ0(1+N (ωk ))

(
− 1

2 (1+〈σ3(t )〉) 〈σ−(t )〉
〈σ+(t )〉 1

2 (1+〈σ3(t )〉)

)
+γ0N (ωk )

(
1
2 (1−〈σ3(t )〉) 〈σ−(t )〉

〈σ+(t )〉 − 1
2 (1−〈σ3(t )〉)

)

=
(
−γ〈σ3(t )〉−γ0 −γ

2 〈σ−(t )〉
−γ

2 〈σ+(t )〉 γ〈σ3(t )〉+γ0

)
,

which leads to the following differential equations of the different matrix elements

d

d t
σ̂1(t ) =−γ

2
σ̂1(t )

d

d t
σ̂2(t ) =−γ

2
σ̂2(t )

d

d t
σ̂3(t ) =−γσ̂3(t )−γ0,

The solutions of this differential equations, the stationary solutions of the master equation describes the thermal

occupation of all states. The off-diagonals 〈σ+(t )〉,〈σ−(t )〉 are coherent states which decay exponentially by the

rate γ/2. Thus the stationary solution of these matrix elements is given by

〈σ1〉s = 〈σ2〉s = 0.

The inhomogeneous solution of the differential equation of the ground and excited state is given by

〈σ3(t )〉 = ce−γt − γ0

γ
,

and thus we obtain a solution for every initial condition 〈σ(0)〉

〈σ3(t )〉 =
(
〈σ3(0)〉+ γ0

γ

)
e−γt − γ0

γ

The factor γ0
γ =− 1

2N+1 is the average photon occupation. The stationary thermal occupation of the ground and

the excited state can be calculated by this average photon occupation and by the corresponding matrix elements

of the master equation

pe (0) = 1

2
(1+〈σ3〉s ) = N

(2N +1)

pg (0) = 1

2
(1−〈σ3〉s ) = 2N

(2N +1)
.

where pe + pg = 1. With these definitions any thermal occupation of the ground and the excited state has the

following time-dependent evolution

pg (t ) = pg (0)

(
〈σ3(0)〉+ γ0

γ

)
e−γt − γ0

γ
,

pe (t ) = pe (0)

(
〈σ3(0)〉+ γ0

γ

)
e−γt − γ0

γ
.
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The expectation value of the mean particle count of the thermal bath is defined by the Planck distribution

N (ωk ) = 1

e
1

kB T Ek −1
where the energy of the system is defined by Ek = ~ωk and kB is the Boltzmann constant. Thus the particle count

is related to the temperature

T = ωk

kB ln(N +1)
.

If the temperature of the thermal bath is zero, all the thermal occupation is in the ground state after a certain

time. This situation changes for higher bath temperatures, then the qubit can receive energy form the thermal

bath which leads to a higher occupation of the excited states. The numerical results show what we accepted

for the detailed temperature dependency for the different initial thermal occupations, for the ground state it

decreases and for the excited state it increases for higher temperatures.
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Figure 7.1: Time-dependent thermal occupation for the initial thermal occupation of the excited state pe = 1 and

different temperatures in the context of the Planck distribution of the thermal bath for N = 1 (violet) to N = 10

(green) in steps of 1 for (a) the excited state and (b) the ground state.
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Figure 7.2: Time-dependent thermal occupation for the initial thermal occupation of the ground state pg = 1 and

different temperatures in the context of the Planck distribution of the thermal bath for N = 1 (violet) to N = 10

(green) in steps of 1 for (a) the excited state and (b) the ground state.

For example, we assume a temperature for which the expected value of the Planck distribution is one N (ωk ) =
1, then the time-dependent thermal occupation is given by the solution of the differential equation with the

corresponding initial conditions

Maximal thermal occupation of the ground state pg = 1.

pe (t ) = pe
(
1+e−γt ) t→∞−−−→ 1

3

pg (t ) = pgγ
(
1+e−γt (γ+γ0)

) t→∞−−−→ 2

3
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Maximal thermal occupation of the excited state pe = 1.

pe (t ) = pe
(
1+e−γt ) t→∞−−−→ 1

3

pg (t ) = pg
(
1+e−γt (γ−γ0)

) t→∞−−−→ 2

3

The numerical results coincide with the analytical results, see Figure 7.2 and Figure 7.3 the violet lines and show

that the thermal occupation of the ground and excited state is balanced through the influence of the thermal

bath between these two states in the context of the stationary solution of the thermal occupation.

7.3 Calculation of the Lamb-Shift contribution for three qubits

The coherent physic of three qubits embedded in a thermal environment is given by the Lamb-shift contribution

of the master equation. This term can be calculated by the standard derivation introduced in section 2.3.

The eigenoperators and simultaneously the Lindblad operators of the qubit system are the annihilation and

creation operators

A1 (|ω|) = d1 (σ̂−⊗1⊗1) = d1σ
(1)
− ,

A2 (|ω|) = d2 (1⊗ σ̂−⊗1) = d2σ
(2)
− ,

A3 (|ω|) = d3 (1⊗1⊗ σ̂−) = d3σ
(3)
− ,

Ai (−|ω|) = A†
i (|ω|) ,

where 1 is the (2×2) identity matrix and di defines the coupling between the qubits and the bath. This repre-

sentation in the Linblad operators splits the Lamb-Shift in two contribution -diagonal and non-diagonal terms

HLS =∑
±ω

S(|ω|)[A†
1(|ω|)A1(|ω|)+ A†

2(|ω|)A2(|ω|)+ A†
3(|ω|)A3(|ω|)]

+ A†
1(|ω|)A2(|ω|)+ A†

2(|ω|)A1(|ω|)+ A†
1(|ω|)A3(|ω|)+ A†

3(|ω|)A1(|ω|)+ A†
2(|ω|)A3(|ω|)+ A†

3(|ω|)A2(|ω|)],

where S(|ω|) is the unitary part of the reservoir correlation function. In the following we calculate the two sums

of the Lamb-shift contribution in the context with these Lindblad operators.

∑
i , j

d∗
j di

(
A∗

i (|ω|) · A j (|ω|))= d∗
1 d1

(
A†

1 (|ω|) A1 (|ω|)
)
+d∗

1 d2

(
A†

1 (|ω|) A2 (|ω|)
)
+d∗

1 d3

(
A†

1 (|ω|) A3 (|ω|)
)

+d∗
2 d1

(
A†

2 (|ω|) A1 (|ω|)
)
+d∗

2 d2

(
A†

2 (|ω|) A2 (|ω|)
)
+d∗

2 d3

(
A†

2 (|ω|) A3 (|ω|)
)

+d∗
3 d1

(
A†

3 (|ω|) A1 (|ω|)
)
+d∗

3 d2

(
A†

3 (|ω|) A2 (|ω|)
)
+d∗

3 d3

(
A†

3 (|ω|) A3 (|ω|)
)

=



Γ 0 0 0 0 0 0 0

0 Γ1 +Γ2 γ23 0 γ13 0 0 0

0 γ∗23 Γ1 +Γ3 0 γ12 0 0 0

0 0 0 Γ1 0 γ12 γ13 0

0 γ∗13 γ∗12 0 Γ2 +Γ3 0 0 0

0 0 0 γ∗12 0 Γ2 γ23 0

0 0 0γ∗12 0 γ∗23 Γ3 0

0 0 0 0 0 0 0 0


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∑
i , j

di d∗
j

(
A j (|ω|) · A∗

i (|ω|))= d1d∗
1

(
A1 (|ω|) A∗

1 (|ω|))+d1d∗
1

(
A1 (|ω|) A∗

1 (|ω|))+d1d∗
1

(
A1 (|ω|) A∗

1 (|ω|))
+d1d∗

1

(
A1 (|ω|) A∗

1 (|ω|))+d1d∗
1

(
A1 (|ω|) A∗

1 (|ω|))+d1d∗
1

(
A1 (|ω|) A∗

1 (|ω|))
+d1d∗

1

(
A1 (|ω|) A∗

1 (|ω|))+d1d∗
1

(
A1 (|ω|) A∗

1 (|ω|))+d1d∗
1

(
A1 (|ω|) A∗

1 (|ω|))

=



Γ 0 0 0 0 0 0 0

0 Γ1 +Γ2 γ23 0 γ13 0 0 0

0 γ∗23 Γ1 +Γ3 0 γ12 0 0 0

0 0 0 Γ1 0 γ12 γ13 0

0 γ∗13 γ∗12 0 Γ2 +Γ3 0 0 0

0 0 0 γ∗12 0 Γ2 γ23 0

0 0 0γ∗12 0 γ∗23 Γ3 0

0 0 0 0 0 0 0 0


The full expression for the Lamb-Shift Hamiltonian is then given by

HLS =P1

∫ ∞

0
dω

[
(1+N (ωk ))

ω−ωk

]



Γ 0 0 0 0 0 0 0

0 Γ1 +Γ2 γ23 0 γ13 0 0 0

0 γ∗23 Γ1 +Γ3 0 γ12 0 0 0

0 0 0 Γ1 0 γ12 γ13 0

0 γ∗13 γ∗12 0 Γ2 +Γ3 0 0 0

0 0 0 γ∗12 0 Γ2 γ23 0

0 0 0 γ∗13 0 γ∗23 Γ3 0

0 0 0 0 0 0 0 0



+P2

∫ ∞

0
dω

[
N (ωk )

ω+ωk

]



0 0 0 0 0 0 0 0

0 Γ3 γ23 0 γ13 0 0 0

0 γ∗23 Γ2 0 γ12 0 0 0

0 0 0 Γ2 +Γ3 0 γ12 γ13 0

0 γ∗13 γ∗12 0 Γ1 0 0 0

0 0 0 γ∗12 0 Γ1 +Γ3 γ23 0

0 0 0 γ∗13 0 γ∗23 Γ1 +Γ2 0

0 0 0 0 0 0 0 Γ


.
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