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Abstract

In the present thesis we study the fragmentation of a Bose-Einstein conden-
sate and its stability in a double-well potential. We provide an analytical discus-
sion as well as numerical results using the multiconfigurational time-dependent
Hartree for bosons (MCTDHB) method which is first derived. We study the de-
pendence of the excited fraction of particles of the system on the barrier height
of the potential. A new regime for strong particle interaction is found, where
the condensate does not fragment even for high barriers. We moreover discuss
the evolution of a condensed state as the potential is dynamically transformed
from a single to a double well, particularly for the systems in the newly found
regime [Phys. Rev. Lett. 99, 030402 (2007)]. We then discuss how this regime
compares to the so called "counterintuitive" regime, where the final state is not
the fragmented ground state of its system, even for very slow ramping times.
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Chapter 1. Introduction

Chapter 1

Introduction

A Bose-Einstein condensate (BEC) is a state of bosons usually at very low tem-
peratures. It was first considered for a gas of non-interacting bosons, which is
described in many textbook of statistical mechanics, see e.g. [1, 2]. In this sys-
tem, below a finite transition temperature TC , a macroscopical fraction of all
atoms occupy the single-particle quantum ground state. This phenomenon is a
consequence of the symmetry of the wave function under the interchange of two
identical bosons.

It was soon pointed out that a repulsive interparticle interaction favors the
condensation into a single state, since it prevents fragmentation into several (al-
most) degenerate states [3]. Because single-particle states are not well-defined
for interacting particles, a more general criterion for BEC was needed. Such a
criterion was provided by Penrose and Onsager in 1956 [4].

A BEC is called fragmented if more than one quantum mechanical states are
occupied by a macroscopic fraction of the system particles. This is in contrast
to a simple (or coherent) BEC, where only the ground state is macroscopically
occupied [3].

BECs serve as a versatile toolbox to study generic quantum systems and phe-
nomena [5, 6] since they have been realized in trapped ultracold atomic gases
[7–9] very close to absolute zero. They have also been intensively investigated
in theoretical works [10–12]. A particularly interesting system is the splitting of
a BEC when a single trap is deformed into a double well [13–15]. For interact-
ing BECs this can lead to a transition from a condensed to a fragmented state
[16]. Studying such systems helps us understand and ultimately manipulate
many-body quantum states.

It is important to note that in the thermodynamic limit frequently taken in
statistical approaches, condensation of the ideal Bose gas only occurs in three
dimensions. For fewer dimensions the presence of an external potential is neces-
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sary for condensation, although not all forms of potentials lead to BEC. Conden-
sation has been rigorously proven in 2D and 3D traps for repulsive interactions
[17]. Furthermore, it has been shown that finite particle number effects can
lead to condensation of systems for which it otherwise (N → ∞) would not be
possible to do so, e.g. the 1D harmonic potential [18].

In this work, we study the ground state of bosons in a double-well and the
dynamics of splitting a BEC initially in a single well with a time-dependent bar-
rier. For this purpose we use the Multiconfigurational Time-Dependent Hartree
for Bosons (MCTDHB) method to numerically solve the underlying many-body
problem. We investigate the impact of the barrier height on the system, namely
on the density, orbitals, occupations, one- and two-body correlation functions
in real and momentum-space as well as its fragmentation. We find that, for
high mean-field interaction strengths, fragmentation disappears for all barrier
heights. We also study the adiabatic nature of the ramp-up procedure of the bar-
rier. Interestingly, we find a counterintuitive regime [19], where the final state
of the evolution of the BEC is not the previously found fragmented ground state,
if the ramp-up process of the barrier is sufficiently slowly.

The work is structured as follows. In Chapter 2 we derive the equations
of motion of the MCTDHB method and provide an analytical discussion of
double-well potentials. In Chapter 3 we apply MCTHDB to a system in a one-
dimensional double-well potential. We first study the ground state of a double-
well system and subsequently investigate how this relates to the evolution of a
state with an increasing barrier. An review of our results is provided in Chap-
ter 4.
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Chapter 2. Analytical discussion and numerical method

Chapter 2

Analytical discussion and numerical
method

In this chapter we derive the equations of motion of the MCTDHB method and
introduce some relevant quantities of interest. We also provide an analytical
discussion of the many-body ground state in a double-well potential.

2.1 MCTDHB: A numerical method for the many-
body problem

2.1.1 Hamiltonian

We start with the dimensionless time-dependent Schrödinger equation

Ĥ |ψ〉 = i∂t |ψ〉 (2.1)

where |ψ〉 denotes a state of N interacting structureless bosons. The many-body
Hamiltonian Ĥ is assumed to be

Ĥ(r1, r2, ..., rn; t) =
N∑
j=1

ĥ(rj; t) +
N∑

i>j=1

Ŵ (rj − ri; t). (2.2)

Here ĥ(r; t) = T̂ (r; t) + V̂ (r; t) is the one-body Hamiltonian containing a term T̂

for kinetic and a term V̂ for potential energy, whereas Ŵ (rj − ri; t) denotes the
pairwise interaction between the ith and jth bosons.

We introduce a complete set of time-dependent orbitals {φk(r; t)}, which are
normalized and orthogonal at any time t:∫

φ∗k(r; t)φj(r; t) dr = δjk. (2.3)

3



2.1. MCTDHB: A numerical method for the many-body problem

Furthermore we can introduce a set of bosonic annihilation operators b̂k(t) cor-
responding to the respective orbitals,

b̂k(t) =

∫
φ∗k(r; t)Ψ̂(r) dr, (2.4)

where Ψ̂(r) is the field operator in second quantization.

The Hamiltonian can now be expressed in terms of the operators b̂k and b̂†k:

Ĥ =
∑
k,q

hkq b̂
†
kb̂q +

∑
k,q,s,l

Wksqlb̂
†
kb̂
†
sb̂q b̂l. (2.5)

Here hkq and Wksql are the matrix elements of the one-body Hamiltonian ĥ

hkq(t) =

∫
φ∗k(r; t)ĥ(r)φq(r; t) dr, (2.6)

and the two-body operator Ŵ

Wksql(t) =

∫ ∫
φ∗k(r; t)φ

∗
s(r
′; t)Ŵ (r− r′)φq(r; t)φl(r; t) drdr′. (2.7)

So far all quantities have been dimensionless. To get a dimensional Hamilto-
nian of the same form, we substitute ri → ri = riL where L is a suitable length
scale. Choosing L = 1µm and using the bosonic isotope 87Rb, the time is ex-
pressed in units of mL2

~ = 1.37ms and, correspondingly, the scale of energy is
~2
mL2 = 116 Hz, where m denotes the mass of a single rubidium atom [20].

2.1.2 Derivation of equations of motion

In this section, we recapitulate the derivation of MCTDHB, as detailed in
Ref. [20]. To solve the many-body Schrödinger equation, we use a multicon-
figurational time-dependent ansatz,

|ψ〉 =
∑
~n

C~n(t) |~n; t〉, (2.8)

with |~n; t〉 =
1√

n1!n2!...nM !

[
b†1(t)

]n1
[
b†2(t)

]n2

...
[
b†M(t)

]nM

|vac〉 . (2.9)

~n = (n1, n2, ..., nM) is an "occupation-number vector" of the M orbitals. Note
that n1 + n2 + ... + nM = N is the total number of particles and is preserved.
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Chapter 2. Analytical discussion and numerical method

|~n; t〉 are the so called time-dependent permanents. The ansatz for the wave
function in Eq. (2.8) is an exact expansion in the limit of M → ∞, since the
set of permanents then spans the whole Hilbert space. Practically the M → ∞
limit is of course not possible to compute, and we need to reduce the size of the
Hilbert space for realistic computations. This is where the advantage of allowing
time-dependent permanents comes into effect; it allows us to greatly reduce the
number of orbitals that have to be computed, while still retaining an accurate
(i.e.,close to exact) description of the many-body system [21].

Further, we introduce the matrix elements of the reduced one-body and two-
body density matrices

ρkq = 〈ψ| b̂†kb̂q |ψ〉 , (2.10)

ρksql = 〈ψ| b̂†kb̂
†
sb̂q b̂l |ψ〉 . (2.11)

Using the above definitions, the functional action of the time-dependent
Schrödinger equation [22] is given by

S[{C~n}, {φk(r; t)}] =

∫
dt

(
〈ψ| Ĥ − i∂t |ψ〉+

∑
i,j

µij(t)(〈φi|φj〉 − δij)

)
. (2.12)

The µij(t) are Lagrange multipliers, which are introduced to ensure the or-
thonormality of the orbitals φk(r; t) at all times t. Using the principle of station-
ary action [22] with respect to both sets of parameters, we can derive equations
of motion using the usual Lagrangian formalism. A detailed derivation can be
found e.g. in Ref. [20]. This leads to the following equation:

H(t)C(t) = i∂tC(t), (2.13)

where H~n~n′(t) = 〈~n; t| Ĥ − i∂t |~n′; t〉 , (2.14)

and i |∂tφ〉 = P̂

(
ĥ |φj〉+

M∑
k,s,q,l

ρ−1jk ρksqlŴsl |φq〉

)
, (2.15)

with P̂ = 1−
M∑
j

|φj〉 〈φj|. (2.16)

Equation (2.13) defines a linear first-order differential equation in time. The
matrix H(t) depends on time, since it is composed of time-dependent perma-
nents, which can be seen in Eq. (2.14). Furthermore Eq. (2.15) and (2.16)
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2.1. MCTDHB: A numerical method for the many-body problem

describe a system of coupled non-linear differential equations. Importantly,
Eq. (2.15) and (2.13) are coupled through the matrix elements hkq, Wksql, ρkq
and ρksql, see Eq. (2.6), (2.10) and (2.11).

2.1.3 Numerical implementation

We use a discrete variable representation (DVR) of N functions on a grid. The
orbitals are represented by their values on the grid points xα, i.e.,

φ(x)→ φ = (w
1/2
1 φ(x1), w

1/2
2 φ(x2), ..., w

1/2
N φ(xN))T , (2.17)

where wα are weights defined by the quadrature, for more details see e.g.
Ref. [23].

We note here that the software implementation used, MCTDH-X, is freely
available online [24]. It also implements the generalization of the method to
fermionic systems which reflects in its name.

2.1.4 Quantities of interest

In the following we discuss some quantities necessary in order to analyze our
system. As we, in this thesis, will only investigate one-dimensional systems in
Chapter 3, the subsequent quantities are also restricted to the one-dimensional
case. For a consistent notation, we replace r with x. First we look at the reduced
one-body and two-body density matrices, which take on the form

ρ(1)(x, x′; t) =
M∑
k,q

ρkq(t)φ
∗
k(x
′; t)φq(x; t) and (2.18)

ρ(2)(x1, x2, x
′
1, x
′
2; t) =

M∑
k,s,q,l

ρksql(t)φ
∗
k(x
′
1; t)φ

∗
s(x
′
2; t)φq(x1; t)φq(x2; t). (2.19)

We note the special case x = x′ for the reduced one-body density which leads
to

ρ(x) =
M∑
k,q

ρkq(t)φ
∗
k(x; t)φq(x; t). (2.20)

which is simply called density.
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Chapter 2. Analytical discussion and numerical method

Furthermore by choosing x′1 = x1 and x′2 = x2 in Eq. (2.19) we obtain the
two-body density,

ρ(2)(x1, x2) =
M∑

k,s,q,l

ρksql(t)φ
∗
k(x1; t)φ

∗
s(x2; t)φq(x1; t)φq(x2; t). (2.21)

A further quantity of interest is the excited fraction. It quantifies the fraction of
bosons which do not occupy the eigenfunction of the reduced one-body density
corresponding to its largest eigenvalue. Consequently, we need to determine
the eigenvalues of the matrix-elements ρkq, which are called natural occupations
ρ
(NO)
k and are normalized to unity. This gives us the excited fraction

F = 1− ρ(NO)
1 . (2.22)

For a simple BEC F ≈ 0, i.e.,only ρ(NO)
1 is macroscopic. Generally a value of

the excited fraction F significantly different from zero, however, does not nec-
essarily imply a fragmented system. This can be the case when a large number
of states are occupied microscopically. Since we will herein consider only two
orbitals, we can directly use the excited fraction as a measure for the fragmenta-
tion.

We define the first-order and second-order normalized correlation functions
as [25]:

g(1)(x, x′) =
ρ(1)(x, x′)√

ρ(1)(x, x)ρ(1)(x′, x′)
and (2.23)

g(2)(x1, x2, x
′
1, x
′
2) =

ρ(2)(x1, x2, x
′
1, x
′
2)√

ρ(1)(x1, x1)ρ(1)(x2, x2)ρ(1)(x′1, x
′
1)ρ

(1)(x′2, x
′
2)
. (2.24)

respectively. Analogously, one can define these correlations in momentum space.
By applying a Fourier transform to the orbitals F(φk(x; t)) = φ̃k(k; t) we obtain
the reduced one-body and two-body densities in momentum space

ρ(1)(k, k′; t) =
M∑
k,q

ρkq(t)φ̃
∗
k(k
′; t)φ̃q(k; t), (2.25)

ρ(2)(k1, k2, k
′
1, k
′
2; t) =

M∑
k,s,q,l

ρksql(t)φ̃
∗
k(k
′
1; t)φ̃

∗
s(k
′
2; t)φ̃q(k1; t)φ̃q(k2; t). (2.26)
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2.2. Fragmentation in a double-well potential

This leads to the correlation functions expressed in momentum space

g(1)(k, k′) =
ρ(1)(k, k′)√

ρ(1)(k, k)ρ(1)(k′, k′)
, (2.27)

g(2)(k1, k2, k
′
1, k
′
2) =

ρ(2)(k1, k2, k
′
1, k
′
2)√

ρ(1)(k1, k1)ρ(1)(k2, k2)ρ(1)(k′1, k
′
1)ρ

(1)(k′2, k
′
2)
. (2.28)

The correlation functions g(1) and g(2) give a measure for the first and second-
order coherence of the system. For g(1)(x, x′) ≈ 1 [g(2)(x1, x2, x′1, x

′
2) ≈ 1] every-

where a system is approximately first- (second-) order coherent. If this is the
case, the same needs to hold true analogously for the correlation functions in
momentum space as well, i.e.,g(1)(k, k′) ≈ 1 [g(2)(k1, k2, k′1, k

′
2) ≈ 1]. The same is

also true in reverse. [20].

The second-order correlation functions depend on four parameters and are
therefore hard to visualize. For this reason, we will only plot the diagonal el-
ements g(2)(x1, x2, x1, x2) and g(2)(k1, k2, k1, k2), respectively. By restricting our-
selves to diagonal terms we, however, cannot conclude with certainty that the
system is second-order coherent, even if g(2) ≈ 1 everywhere in the plot [20].
More detailed studies in the full (x1, x2, x

′
1, x
′
2) space are needed.

2.2 Fragmentation in a double-well potential

In this section we show analytically how fragmentation of the ground state can
occur in a double-well potential [26, 27].

2.2.1 Model

We start by simplifying the general ansatz of the many-body wave function of
Eq. (2.8) to a single permanent,

|ψs/d〉 = |~n〉 , (2.29)

where the permanent |~n〉 is defined in Eq. (2.9). Since we are only interested
in the ground state, we will drop all time-dependencies for the remainder of
this section. Furthermore we will only consider the special cases of M = 1 and
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Chapter 2. Analytical discussion and numerical method

M = 2 orbitals. For the single-orbital case (M = 1) our ansatz for the N -body
wave function is now reduced to the Hartree-Fock state

|ψs〉 = |N〉 =
1√
N !

[
b†0

]N
|vac〉 =

(∫
φ0(r)Ψ̂

†(r) dr
)N

√
N !

|vac〉 , (2.30)

which we will also refer to as single (or coherent) condensate. For two orbitals
the state now explicitly reads

|ψd〉 = |N1, N2〉 =

(∫
φ0(r)Ψ̂

†(r) dr
)N1

√
N1!

(∫
φ0(r)Ψ̂

†(r) dr
)N2

√
N2!

|vac〉 , (2.31)

where N1 +N2 = N . In the following, we will refer to states of this form as dual
condensates.

2.2.2 Analysis of energies

We now consider a system of N interacting bosons in an arbitrary external po-
tential as described by the Hamiltonian given in Eq. (2.6). The interparticle
interaction is chosen to be a repulsive contact interaction

Ŵ (rj − ri) = λ0δ(rj − ri), (2.32)

with λ0 ≥ 0. Under the assumption that all orbitals are real, we find the expec-
tation value of the energy (Gross-Pitaevskii energy[28]) for a single condensate
|ψs〉,

Es = Nε(φ0) +
1

2
λ0N(N − 1)

∫
φ4
0(r) dr, (2.33)

where ε(φ) =
∫
φ(r)ĥφ(r)dr is the single-particle energy of the orbital φ(r). For

the dual condensate |ψd〉

Ed =N1ε(φ1) +N2ε(φ2) +
1

2
λ0N1(N1 − 1)

∫
φ4
1(r) dr

+
1

2
λ0N2(N2 − 1)

∫
φ4
2(r) dr + 2λ0N1N2

∫
φ2
1(r)φ

2
2(r) dr,

(2.34)

We now further assume that both condensates have approximately the same
density everywhere, i.e.,N1φ

2
1(r)+N2φ

2
2(r) ' Nφ2

0(r). This implies that the single-
particle energies ε of the condensates are approximately equal. Moreover, for a
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2.2. Fragmentation in a double-well potential

large number of particles N , the quadratic terms of the interaction energy will
dominate. We find

Equad
s =

1

2
λ0N

2

∫
φ4
0(r) dr, (2.35)

Equad
d '1

2
λ0N

2

∫
φ4
0(r) dr + λ0N1N2

∫
φ2
1(r)φ

2
2(r) dr. (2.36)

Evidently, there is an extra term in the interaction energy of the dual conden-
sate. This additional contribution to the energy was first identified by Nozières
[3] and used as an argument against the fragmentation of condensates. This
argument, however, works only under the assumption that φ1(r) and φ2(r) have
a substantial density overlap. If the density overlap is negligible, the additional
quadratic term in interaction energy of the dual condensate in Eq. (2.36) in com-
parison to the energy of a single condensate Eq. (2.35) vanishes. Therefore, to
determine which configuration is energetically more favorable we now must also
analyze terms of the interaction energy linear to N ,

Elin
s =− 1

2
λ0N

∫
φ4
0(r) dr, (2.37)

Elin
d =− 1

2
λ0N1

∫
φ4
1(r) dr− 1

2
λ0N2

∫
φ4
2(r) dr. (2.38)

2.2.3 Emergence of fragmentation

We will now show how the above contributions favors the dual condensate when
in a double-well potential. Consider an arbitrary symmetrical double-well poten-
tial, with a double minimum along the x-axis. We will focus on the limiting case
of an infinitely strong barrier, which results in all states having zero amplitudes
at x = 0. Together with the symmetry of the system, this implies that the ground
state of the single condensate is twofold degenerate. A symmetric and an anti-
symmetric solution exist, i.e.,

φs/a(x, y, z) = ±φs/a(−x, y, z), (2.39)

with exactly the same single-particle energy ε = 〈φ|H |φ〉. Using the symmetric
and antisymmetric wave functions, we can construct two new wave functions

φl/r(r) =
1√
2

[φs(r)± φa(r)], (2.40)
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Chapter 2. Analytical discussion and numerical method

which are strictly confined to the left and to the right well of the potential.
Using these two wave functions as orbitals for our dual condensate ansatz with
N1 = N2 = N/2 and using the fact that φ2

s ≡ φ2
a it is easy to calculate the

single-particle energy as well as the quadratic terms of the interaction energy.
We find that Eqs. (2.35) and (2.36) are the same for both the single and the
dual condensate. However, calculating the linear contribution of the interaction
energy in Eq. (2.37) of the single condensate and comparing it to Eq. (2.38) we
find

Elin
d = −1

2
λ0N1

∫
(

1√
2

[φs(r) + φa(r)])
4dr− 1

2
λ0N2

∫
(

1√
2

[φs(r)− φa(r)])4 dr

= −1

2
λ0(N1 +N2)

∫
1

4
(φ4

s(r) + 6φ2
s(r)φ

2
a(r) + φ2

a(r)) dr

= −λ0N
∫
φ4
s(r) dr

= 2Elin
s .

(2.41)

Since this term is strictly negative we have Elin
s < Elin

d . The dual (frag-
mented) condensate is energetically favorable overall, if the orbitals can be writ-
ten as in Eq.(2.40). The orbitals φl/r have, however, a higher single-particle
energy than φa/s because they are more localized. A sufficiently high interac-
tion strength is therefore necessary for the dual condensate to overcome this
additional cost.

Solutions of the many-body problem calculated with the MCTDHB method
might differ from the solution provided in this section, even if we restrict it to
M = 2 orbitals. The ansatz for the wave-function used with MCTDHB [Eq. (2.8)]
is more general and allows the occupation of multiple permanents.
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Chapter 3. Numerical results

Chapter 3

Numerical results

This chapter provides an application of the previously derived MCTDHB method.
In Section 3.1 we study the fragmentation in a double-well potential. In Sec-
tion 3.2 we study a dynamical system with a barrier increasing in time.

3.1 Ground state

3.1.1 Double-well potential

We restrict ourselves to the one-dimensional case, i.e.,r = x and k = k, and
M = 2 orbitals for simplicity. It has been shown that two orbitals are sufficient
to adequately describe the many-body physics of a fragmented condensate in a
double-well [21]. We use a discrete variable representation (as mentioned in
Section 2.1.3) of 256 functions on a grid of extent from −12 to 12. To ensure
convergence, we checked that the density at the edge of the grid was always less
than 10−10. Furthermore we ensured that the relative energy difference to be
smaller than 10−10 between 256 and 512 functions. We investigate the ground
state of N bosons in an harmonic trap with a Gaussian shaped barrier,

V̂ (x) =
x2

2
+ V0 exp

(
− x2

2σ2

)
. (3.1)

Here, we choose σ = 2. See Figure 3.1 for a visualization of the potential
for different barrier heights V0. The kinetic energy is defined as T̂ (x) = 1

2
∂2x.

V0 denotes the time-independent height of the Gaussian barrier. We choose the
repulsive contact interaction

W (xi − xj) = λ0δ(xi − xj), (3.2)

13
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Figure 3.1 Illustration of the external potential. The shown potentials corre-
spond to barrier a barrier thickness of σ = 2. Note that the minima of the
potentials are shifted upwards from 0 as V0 increases.

where λ0 = 0.1 is the interaction strength. We will continue with an investigation
of the system behavior as a function of the barrier height V0 and the number of
bosons N .

3.1.2 Eigenfunctions of the double-well potential

In the top row of Fig. 3.2 the first (left) and second (right) natural orbital are
shown as a function of the barrier height. They are symmetric and antisym-
metric, respectively. For small barriers the second orbital is almost 0 where the
potential is minimal, in contrast to the first orbital which has the shape of a
Gaussian. Its node also causes a greater kinetic energy 〈φ2| T̂ |φ2〉 of the second
orbital, since it is proportional to the second derivative of the orbital. Both ef-
fects lead to a higher value for the single-particle energy of the second natural
orbital h22 = 〈φ2| ĥ |φ2〉 compared to the first one h11 = 〈φ1| ĥ |φ1〉. This also
explains why the occupation of the second orbital is very small in the case of
small barriers, since the interaction between atoms is weak and not sufficient to
render occupying the higher lying state energetically favorable.

For finite barrier heights, the first natural orbital develops a local minimum at
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Figure 3.2 Density of different orbitals as a function of the position x and
the barrier height V . In the top row φNO1 (left) and φNO2 (right) are plotted.
In the bottom row two superpositions of these orbitals are plotted, namely
φl = 1√

2
(φNO1 + φNO2 ) (left) and φr = 1√

2
(φNO1 − φNO2 ) (right). With increasing

barrier height these orbitals are getting fully localized in one of the wells each.
In consequence there is no overlap between the two orbitals and a fully frag-
mented state can be energetically favorable.

the center of the barrier to minimize the potential energy. Therefore, we have a
decreasing energy gap ∆ε = 〈φ1| ĥ |φ1〉−〈φ2| ĥ |φ2〉 for increasing barrier heights.
This single-particle picture does not explain why the fragmentation of the system
happens. The reason lies in the interaction energy, which can be decreased by
occupying natural orbitals with higher energy, leading to an overall favorable
energy configuration for the fragmented state [20]. This can be seen with the
ansatz using two localized orbitals φl = 1√

2
(φNO1 +φNO2 ) and φr = 1√

2
(φNO1 −φNO2 ).

For high barriers, these two orbitals are almost completely spatially separated in
each well, i.e.,there is no overlap of the orbitals. As discussed in Sec. 2.2, this
configuration is favorable for a fragmented BEC and our numerical results are
consistent with this analytical model (compare Fig. 3.2 bottom row). Note that
an ansatz with the particles being equally distributed between φl and φr is not
actually the solution of the many-body Hamiltonian, which can be seen from the
fact that spatially separated orbitals are not the natural orbitals. Therefore the
simplification in our model (Sec. 2.2 and [26]) to describe the many-body wave
function with only one permanent is not able to perfectly explain the physics of
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this system.
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Figure 3.3 Density (upper row) and momentum density (lower row) for barrier
heights 0, 12, 16, 25 from left to right. With increasing barrier height the density
splits into two parts, localized in each well. The momentum density is Gaussian-
like for both very low and high barrier height, but is modulated by an oscillation
during the transition to fragmentation.

The first row of Fig. 3.3 shows the one-particle density at different barrier
heights. It changes from a single Gaussian-like peak in the purely harmonic
potential to two separate peaks, which are increasingly separated from each
other. It is, however, not possible to infer fragmentation from the density alone.

In the second row the one-particle momentum distribution is shown. It starts
with a Gauss-like distribution at V0 = 0. At V0 = 12 an oscillatory pattern is
developed as the system spreads out over two wells. At the maximum considered
barrier height of V0 = 25, the distribution again takes the form of a Gaussian,
but broader than the one of the state with V0 = 0. This can be explained with the
two narrower peaks of the position space density distribution, compared to the
broader peak at V0 = 0, since both are connected through Fourier transformation
[20].

In Fig. 3.4 both the first and second-order coherence are shown, for the same
barrier heights as in Fig. 3.3. To avoid numerical errors, the coherence is only
plotted in regions where the density is bigger than 0.1%. The same rule is later
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Figure 3.4 First and second-order correlation functions |g(1)(x1, x′1)|2 and
g(2)(x1, x2, x1, x2) (upper and lower row, respectively) in real space for barrier
heights 0, 12, 16, 25 from left to right. In the first order coherence a transition
from an initially coherent condensate to two first order incoherent samples hap-
pens between barrier heights 12 and 16. In contrast, the second-order coherence
remains close to 1 at all barrier heights.

applied to the correlation functions in momentum space in Fig. 3.5. For V0 = 0,
the harmonic trap, the first order coherence |g(1)(x1, x′1)|2 is very close to 1 for
the whole system, i.e., it is coherent to first order. At a barrier height of V0 = 12

the coherence between the two opposing peaks is already slightly decreased,
whereas the peaks stay coherent within themselves. For even higher barriers the
coherence between the peaks further decreases towards 0.

The second row of Fig. 3.4 shows the second-order coherence of the system.
It stays close to 1 for all barrier heights. This, however, does not mean that our
system is second-order coherent, since g(2)(x1, x2, x1, x2) only captures the values
on the diagonal. Therefore, off-diagonal values could still be vastly different
from 1.

In Fig. 3.5 first and second-order coherence are shown, but this time in mo-
mentum space. Only barrier heights of V0 = 0, 25 are plotted. It is seen that
first and second-order coherence of the system is lost for high barrier heights
(Fig. 3.5, right column). Note that g(2)(k1, k2, k1, k2) depends on all values of
ρ(2)(x1, x2, x

′
1, x
′
2), and therefore provides us with additional information about

the off-diagonal terms of g(2)(x1, x2, x′1, x
′
2) which we do not see in Fig. 3.4 [20].
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Figure 3.5 Same graph as Fig. 3.4 in momentum space (upper row |g(1)(k1, k′1)|2
and lower row g(2)(k1, k2, k1, k2), with barrier heights of V0 = 0 in the left column
and V0 = 25 in the right one. Both first and second-order coherence exhibit
complex patterns. At a barrier height V0 = 0, the condensate is almost coherent
around the center of the potential. This coherence is lost at V0 = 25 for both first
and second-order coherence.

3.1.3 Disappearance of fragmentation

We now consider the same system with not only as a function of the barrier
height, but also as a function of the number of particles. The results are plotted
in Fig. 3.6. From this plot we can identify four distinct regions with different
characteristics:

I In the region with small particle numbers and low barrier height, the or-
bitals are still similar to the single-particle solutions of the harmonic po-
tential. In the single-particle picture, most particles populate the ground
state while the first excited state is only very sparsely populated due to its
higher kinetic energy and thus the condensate is coherent.

II In this region with moderate barrier heights and/or higher particle num-
bers, we still find one orbital to be much more populated than the other,
i.e., the condensate is not fragmented. In contrast to region I, however, the
less populated orbital has a lower single-particle energy ε2 = 〈φ2| ĥ |φ2〉.
There are two factors that make this possible. First, the higher the barrier
the smaller the energy gap is between the first and second single-particle
eigenstates of the system. Second, in systems with more particles the over-
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Figure 3.6 Fragmentation as a function of particle number N and barrier height
V0 (top) and difference of the one-particle energies h11 and h22 in units of h11 as
a function of particle number N and barrier height V0 (bottom). Comparing both
plots it is apparent that for fragmented states the energy difference vanishes. A
transition is visible inside the simple BEC for high particle numbers: at a barrier
height where we would expect the condensate to fragment when extrapolating
from lower particle numbers, the second orbital has lower one-particle energy for
sufficient barrier heights and interaction energies. See text for further discussion.

all interaction energy gets proportionally bigger. The form of the highly
populated orbital therefore increasingly deviates from an eigenstate of the
single-particle Hamiltonian to also lower the interaction energy, at the cost
some of some additional single-particle energy.

III For high barriers, the single-particle ground state of the double-well is al-
most twofold degenerate. As discussed earlier in Section 2.2, the ground
state of the condensate is fully fragmented in this case, which we also find
numerically. There is, however, an important difference between the an-
alytical and the numerical solution. Namely, in contrast to the analytical
solution, the orbitals are not spatially separated, but rather are just sym-
metric and antisymmetric versions of each other. The ansatz with only one
permanent does not work with these orbitals, since they overlap and there-
fore would have a higher energy than the single condensate. To see how
this solution is actually energetically favorable, one would need to analyze
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3.2. Dynamics

how the coefficients C~n in Eq. (2.8) are structured. This difference also
explains why the transition between Region II and Region III is somewhat
smooth rather than instantaneous, which one would expect due to the to-
tally different nature of the spatially fragmented state. But considering the
numerical solution we get the following picture for the transition: With
increasing barrier height the difference between the single-particle states
gets smaller. Since the highly populated orbital is deformed to lower the
interaction energy, the second orbital actually has a lower single-particle
energy. It becomes therefore more and more energetically favorable to
populate the second orbital.

IV The fourth region emerges for high barrier heights and particle numbers.
Intuitively we would expect the ground state to be fragmented here based
on the results with fewer particles and our analytical model. Numerically,
however, we find that the ground state is of similar nature as in Region II.
This indicates that the analytical model cannot be applied to regions where
the mean-field interaction is very strong.

Regimes I-IV provide a complete characterization of the fragmentation of one-
dimensional BEC in double-wells. See also complementary results on the system
in Appendix A.

3.2 Dynamics

3.2.1 Potential

In this section we consider a double-well potential with a time-dependent barrier.
For that purpose, we change the potential as defined in Eq. 3.1 to include a
barrier with a time-dependent height h(t):

V̂ (x, t) = A
x2

2
+ V0h(t) exp

(
− x2

2σ2

)
, (3.3)

h(t) =

{
t/Tramp t < Tramp

1 t ≥ Tramp
. (3.4)

First, we look at a system with A = 1 and σ = 2 for different barrier heights
V0 and ramp times Tramp. For any fixed time t Eq. (3.3) thus is equivalent to
potentials in the form of Eq. (3.1) that were discussed in Sec. 3.1. We also use
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the same contact interaction as in Sec. 3.1 with λ0 = 0.1. This allows us to
directly compare resulting states after the ramping up of the barrier with the
already examined ground states.

3.2.2 General results
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Figure 3.7 Natural occupation numbers ρ1(t) and ρ2(t) as a function of time for
the ramp times 300 (top) and 1500 (bottom) in a system withN = 500 bosons and
barrier height V0 = 30. The state approaches the ground state of the double-well
potential, which has ρ1 ≈ ρ2 ≈ 0.5. There are, however, signification oscillations
even for Tramp = 1500.

In Fig. 3.7 we can see the evolution of the natural occupation number as
a function of time for the ramp times 300 and 1500 in a system with N = 500

bosons. We start with a slightly depleted BEC, ρ1(0) = 99.79% and ρ2(0) = 0.21%.
From there on, ρ2(t) increases continuously until the state becomes twofold
fragmented. The occupation numbers, however, continue to oscillate around
ρ1 ≈ ρ2 ≈ 0.5, which indicates that the system is not in the ground state [20].

Significant oscillations are still visible for Tramp = 1500. This Tramp corre-
sponds to 2.06 s for a system composed of 87Rb atoms. This is already on the
order of the lifetime of a BEC [14], but still is far from being ideally adiabatic.

We now consider systems with N = 600 bosons and a maximal barrier height
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Figure 3.8 Excited fraction as a function of time t for different ramp-up times
Tramp, and constant V0 = 30 and N = 600. For fast ramp-up times the resulting
state oscillates around a fully fragmented state, while for slow times the sys-
tem remains in the coherent ground state with only small fragmentations. For
intermediate ramp-up times the behavior is chaotic, as the system ends up in ei-
ther one of these states even for small changes of Tramp. The white dashed lines
indicate the time evolutions plotted in Fig 3.9.

of V0 = 30. The resulting excited fractions are plotted in Fig. 3.8 as a function of t
and Tramp. For relatively large ramp times the state again approaches the ground
state of the resulting double-well system, which in this case is not fragmented.
As in the previous case, oscillations of a magnitude of roughly 1% are present.

For relatively fast ramp-up times (Tramp ≈ 50), the evolution of the system
looks similar to the ones plotted in Fig. 3.7. The excited fraction of the initially
only slightly depleted cased increases as the barrier is ramped up, and ends in
a fully fragmented configuration with oscillations. This fragmented state is not
the ground state of the system, but rather an excited state with a slightly higher
energy. Because the barrier is ramped up quickly, we add additional energy to the
system; as seen in Fig. 3.7 the amount is substantial and we are far away from
the adiabatic regime. This added energy is larger than the energy difference
between the ground state and a fully fragmented excited state which explains
the behavior.

Interestingly there is no single ramp-up time at which the system switches
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Chapter 3. Numerical results

between the two behaviors as one naively could expect. Rather it changes multi-
ple times as the ramp-up time is increased. To illustrate this, the time-evolution
of natural occupation numbers for two specific configurations with Tramp = 95

and Tramp = 105 are plotted in Fig. 3.9. Note that it is the state with the higher
ramp-up time Tramp = 105 which tends towards the fully fragmented state, while
the state with Tramp = 95 remains in the coherent ground state with only small
oscillations. The reasons for this to be possible likely lies within the small oscil-
lations which occur during the ramp-up of the barrier. Depending on the height
of the barrier at a specific point the oscillations can be amplified, providing the
additional energy to deviate from the ground state.
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Figure 3.9 Natural occupation numbers ρ1(t) and ρ2(t) as a function of time for
the ramp times 95 (blue) and 105 (red) in a system with N = 600 bosons and
barrier height V0 = 30, which corresponds to two horizontal lines in Fig. 3.8.
Counter-intuitively a state with the faster ramp time Tramp = 95 oscillates around
the coherent ground state, while Tramp = 105 oscillates around an excited, frag-
mented state.

3.2.3 Inverse regime

We now consider a similar system with A = 0.5 and a stronger interaction,
λ = 0.35. The results for Tramp = 25, 500 are plotted in Fig. 3.10. In the case
of Tramp = 25 there is no significant qualitative difference to the system ex-
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Figure 3.10 Natural occupation numbers ρ1(t) and ρ2(t) as a function of time
for Tramp = 25, 500 but for stronger interaction λ = 0.35 (instead of 0.1) and a
logarithmic vertical scale. The case of Tramp = 25 is qualitatively the same as seen
before. For the longer time Tramp = 500 the system lies in a "counterintuitive"
regime, where the system does not evolve towards the fragmented ground state
and stays coherent.

amined before in Sec 3.2.2 and Figs. 3.8 and 3.9. For a longer ramp time of
Tramp = 500 the system does, however, not tend towards a fragmented state
and remains condensed, i.e., only one eigenvalue of the reduced density-matrix
macroscopically. The regime where this occurs has been coined "counterintu-
itive" or "inverse" regime [19]. An explanation for this inverse regime is given in
the paper by Streltsov et al. [19]. At the beginning virtually only the condensed
ground state is populated, which remains true for slow ramp-up times. Now, af-
ter some time and at a certain barrier height, a fragmented eigenstate becomes
energetically favorable, but the system cannot abruptly change its properties.
This is the reason it largely remains coherent. For fast ramp-up times, however,
a large enough fraction of the condensate is in an excited state, which makes it
possible to evolve towards the fully fragmented ground state.

We were not able to find this inverse regime for any Tramp and particle num-
ber in the potential with the interaction strength studied in the previous Sec 3.2.2
and Figs 3.8 and 3.9. The existence of the inverse regime therefore depends on
the exact double-well potential considered.
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Chapter 4

Summary

We have investigated the ground state of a BEC in a double-well potential by
solving the many-body Schrödinger equation using the MCTDHB method. Quan-
tities like the particle density, first and second-order coherence functions in real
and momentum space, as well as the fragmentation of the system were studied.
We also provided an analytical discussion of the double-well potential and the
occurrence of fragmentation in such a system.

Numerically, we found four distinct regions in the studied potential, depend-
ing on the number of particles and the height of the barrier. For small barrier
height there were two regions were the ground state is coherent. These regions
are distinguished by the single-particle energies of the orbitals. In the third re-
gion for high barriers, the ground state is fragmented, as expected from the
analytical model and previous works. The fourth region for high barriers and
particle numbers was found to again be not fragmented. This is surprising, as
one would expect the fragmented region to extend to arbitrary particle numbers.

For a double-well potential the first order coherence of the system is lost in
the fragmented region. The second-order coherence, however, is maintained, at
least for the values on the diagonal.

We studied a double-well with a time-dependent barrier. It was shown, that
even for very slow ramp-up times of the order of the lifetime of a BEC, the process
is not fully adiabatic. After the ramp-up, the system still exhibited oscillations
of the occupation numbers, and therefore was not in the ground state anymore.
If further the final state of the potential lies in the newly found coherent region
for high barriers, the initial state would only evolve towards the ground state for
slow ramp-up times. For fast ramp-up times the state tended towards an excited,
fragmented state.

In comparison a "counterintuitive" regime is found for a different system as in
Ref. [19], where the initial state does not evolve towards the fragmented ground
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state for slowly increasing barriers as well. Here it rather stayed in a low-lying,
condensed excited state. This is in contrast to the case where the condensate
stays in the ground state for slow ramp-up times, which is coherent at all times.

Some questions still remain open. First, the numerical solution differs from
the analytical solution which was provided. A better understanding of this dif-
ference would likely provide further insight on the transition of the coherent to
the fragmented state, as well as why fragmentation disappears for high particle
numbers. Furthermore it is possible that the inverse regime is related to the
newly found coherent region, as the time-evolutions plotted in Chapter 3 have
great similarities, and the interaction energy is of similar order. Lastly it would
be interesting to investigate how a different than a linear ramp-up function in-
fluences the dynamics of the system.
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Appendix A

Ground state

In this appendix, we collect results complementary to our findings in Sec. 3.1 of
this thesis.
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Figure A.1 Minimum barrier heights at which the excited fraction F ≥ 0.25

as a function of the particle number N and the interaction strength λ0. White
indicates that there was no barrier height at which the exited fraction F exceeded
the threshold of 0.25.
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Figure A.2 The excited fraction as a function of the contact interaction strength
λ0 and the barrier height for a constant particle number of Npar = 100. Note that
the minimum value of λ0 calculated was 0.0001. For non-interacting systems
(i.e.,λ0 = 0) the fragmentation disappears (F = 0).
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Figure A.3 The excited fraction plotted as a function of barrier height and the
particle number in the same potential as in Section 3.1. The single-particle con-
tact interaction constant λ0 was chosen to be 0.02. Fragmentation disappears
for strong mean-field interactions, even at high barriers. Note that the step
at N ≈ 3000 is caused by the low resolution of this plot. The disappearance
of fragmentation appears at roughly the same mean-field interaction strength
(N − 1)λ0 ≈ 60 as in Fig. 3.6.
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Appendix B

Dynamics

In this appendix, we collect results complementary to our investigation of the
dynamics of BECs in time-dependent double-wells in Sec. 3.2 of this thesis.
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Figure B.1 Fragmentation as a function of time t for different particle numbers
N , and constant V0 = 30, ramp-up time Tramp = 750 and contact interaction
strength λ0 = 0.1. For N ≥ 600 the state remains coherent. Comparing with
Fig 3.6 we find that the system therefore oscillates around the ground state for all
particle numbers N , as for N ≥ 600 the ground state is coherent. This behavior is
consistent with Fig. 3.6, i.e., fragmentation also disappears in the dynamic case
for slow ramp-up.
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