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Abstract

We investigate the superfluid drag that occurs between the components of a two-species
Bose-Einstein condensate in quasi two-dimensional optical lattices. This drag couples
the two different superfluid velocities in the free energy, which are used to describe such
a system. We derive an analytic expression of the drag in the limit of weak interac-
tions by solving the Bose-Hubbard Hamiltonian in the Bogoliubov approximation and
subsequent expansion of the free energy in the superfluid velocities. This expression is
evaluated numerically for different lattice geometries by calculating the bandstructures
and Bose-Hubbard interaction parameters using a plane-wave expansion of the single-
particle Hamiltonian. The numerical approach allows us to investigate shallow optical
lattices, where to our knowledge the superfluid drag has so far not been studied.

Although quantitatively the superfluid drag varies with the lattice geometry, we
find its qualitative behavior to be very general. The drag shows a non-monotonic
dependence on the lattice depth, which is the result of two competing effects: when
increasing the lattice depth, the drag is enhanced by the increase in the interspecies
interaction energy while at the same time it is reduced by the decrease in the kinetic
energy. Furthermore, we found the mass ratio which maximizes the drag to be depen-
dent on the lattice depth, a result which is in contradiction to previous findings in the
literature.
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Chapter 1

Introduction

At temperatures below 1µK, an ensemble of atoms is termed ultracold and its behavior
is predominantly determined by quantum-statistical effects. The experimental realiza-
tion of a gas of ultracold atoms therefore allows for the investigation of a macroscopic
number of particles, whose behavior is determined by quantum mechanics. In such a
system, the collective quantum behavior appears in the phenomena of Bose-Einstein
condensation (BEC) and superfluidity [1].

The manifestation of the underlying statistics is of course heavily dependent on the
environment imposed by any external potential such as an optical lattice. In this case,
the potential is created by interfering laser beams. The resulting intensity landscape
imposes a potential landscape on the atoms via the Stark shift. Optical lattices have
many favorable features such as the absence of defects and the ability to dynamically
control relevant parameters; therefore they constitute a versatile tool for controlling
the properties of ultracold atomic gases [2].

In this work, we study the phenomenon of superfluid drag in optical lattices, an
effect that occurs in a two-component superfluid. In the continuum, this effect was first
investigated by Andreev and Bashkin in the context of 3He -4He mixtures [3]. They
found, that the motion of one superfluid component drags along the second component
in a dissipationless fashion. Although a microscopic theory of the drag between two
weakly interacting Bose gases was developed in the continuum limit [4], there is not
much literature on superfluid drag in optical lattices. For the special case of the three-
dimensional cubic lattice, the drag was investigated in the framework of the tight-
binding approximation by Linder and Sudbø [5]. Just recently, the superfluid drag
of weakly interacting bosons was investigated in n-dimensional cubic lattices and the
obtained results qualitatively agree with ours [6]. For a system of strongly interacting
bosons, the superfluid drag was investigated by means of Monte Carlo simulations [7].

Our goal was to generalize the work of Linder and Sudbø [5] to different lattice
geometries and to shallow optical lattices. In particular, we derive an expression for
the superfluid-drag coefficient valid for an arbitrary lattice, which is then evaluated
numerically for different lattice geometries. This derivation proceeds by diagonalizing
the Bose-Hubbard Hamiltonian that describes a two-component BEC in an optical
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CHAPTER 1. INTRODUCTION 4

lattice using the Bogoliubov approximation. The superfluid-drag coefficient can then
be derived by expanding the free energy in the superfluid velocities. The resulting
expression depends on the bandstructures and the Hubbard-interaction parameters
which are obtained numerically by means of a truncated plane-wave expansion of the
single-particle Hamiltonian. Using this numerically exact approach, instead of the
tight-binding approximation, we obtain results that are reliable even in the limit of
shallow optical lattices, where superfluidity is assured for both commensurate and
incommensurate filling.

As a result of the interplay between the interaction and kinetic energies, we find
a non-monotonic dependence of the superfluid-drag coefficient on the optical lattice
depth. In contrast to Ref. 5, where the mass ratio which maximizes the superfluid drag
was found to be around unity for an arbitrary lattice depth, we find that the optimal
mass ratio depends on the lattice depth.

In addition to the two-dimensional square lattice, we investigate the drag in the
particularly interesting three-beam lattices (3BLs). These are two-dimensional optical
lattices created by three in-plane laser beams [8]. One special case of 3BLs is the trian-
gular optical lattice, which has lately received attention in connection with the experi-
mental observation of the transition from a superfluid to a Mott-insulator (SF-MI) [9].

The thesis is organized as follows, the remainder of this chapter provides the back-
ground knowledge. In Sec. 1.1, BEC is discussed, Sec. 1.2 gives an introduction to
superfluidity and superfluid drag, in Sec. 1.3 we discuss some general principles of ul-
tracold atoms, Sec. 1.4 introduces the optical lattices which provide the environment
where we investigate the superfluid drag, in Sec. 1.5 we discuss some basic properties
of the Bose-Hubbard model which is used to describe ultracold atoms in optical lat-
tices and in Sec. 1.6 we give a short overview of the experimental progress that has
been made towards the observation of the superfluid drag. In Ch. 2 and 3 we present
the actual work we have done. Chapter 2 gives a derivation of an expression for the
superfluid-drag coefficient, which is valid for an arbitrary lattice geometry, and Ch. 3 is
devoted to the numerical evaluation of this expression. We present our results in Ch. 4
and, finally, conclude in Ch. 5.

A more condensed form of our findings is published and can be found in Ref. 10.
For convenience we set ~ = 1 throughout this thesis.

1.1 Bose-Einstein condensation

BEC was predicted by Albert Einstein in 1924, based on ideas developed by Satyendra
Nath Bose. In a system of bosons, below the transition temperature, a macroscopic
fraction of the particles occupy a single-particle state. The quantum mechanical proper-
ties of this state, which are usually too small to have any noticeable effect, are therefore
amplified in a BEC and can be made visible.
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CHAPTER 1. INTRODUCTION 5

1.1.1 Definition

A definition of BEC can be given in terms of the single-particle reduced density matrix
ρ1. In terms of the boson field operators ψ(r) [ψ†(r)], which annihilate [create] a boson
at position r, its matrix elements are given by

g(r, r′) ≡ 〈r′|ρ1 |r〉 ≡ 〈ψ
†(r)ψ(r′)〉. (1.1)

The last expression shows, that ρ1 is a hermitian operator and can therefore be diago-
nalized with real eigenvalues

g(r, r′) =
∑
i

〈r′|χi〉 〈χi| ρ1 |χi〉 〈χi|r〉 =
∑
i

Niχ
∗
i (r)χi(r

′), (1.2)

where |χi〉 denote the eigenstates of the single-particle reduced density matrix and its
eigenvalues fulfill the condition

∑
iNi = N , N being the total number of particles.

A system shows BEC if there is one extensive eigenvalue N0 of order N , while all the
others are of order one. The macroscopically occupied single-particle state is then given
by χ0(r).

1.1.2 The order parameter

To describe BEC and the closely related superfluid phase, it is convenient to introduce
an order parameter Ψ(r) which steadily rises from zero below the critical temperature.
The simplest definition of the order parameter is given in terms of the extensive eigen-
value of the single-particle reduced density matrix and the corresponding eigenstate

Ψ(r) =
√
N0χ0(r) =

√
n0(r)eiφ(r), (1.3)

with
∫
dr n0(r) = N0.

Based on the idea of spontaneously broken gauge symmetry, another definition that
is widely used in the literature can be motivated by the concept of off-diagonal long
range order (ODLRO). In a translation invariant system, the eigenfunctions of the
single-particle reduced density matrix are plane waves and its matrix elements read

g(r − r′) = 〈ψ†(r)ψ(r′)〉 = n0 +
∑′

k

nke
−ik(r−r′), (1.4)

where nk = Nk/V are the occupation numbers in k-space divided by the system volume.
When taking the limit

∣∣r − r′∣∣ → ∞, the matrix element therefore converges to the
value n0 which is non-zero in a BEC and the system is said to exhibit ODLRO. In this
limit, it seams plausible to treat the points r and r′ as statistically independent and
the above average reduces to the product of two independent averages which we can
identify as the order parameter

〈ψ†(r)〉〈ψ(r′)〉 = n0,

Ψ(r) ≡ 〈ψ(r)〉 =
√
n0(r)eiφ(r).

(1.5)
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CHAPTER 1. INTRODUCTION 6

In the second equation we have reintroduced the space dependence of n0 to generalize
the order parameter to the non-translational invariant case. In a lattice, the plane
waves have to be replaced by Bloch waves. Consequently g(r, r′) oscillates around a
non-zero value as one takes the limit

∣∣r − r′∣∣ → ∞ and the order parameter can be
defined as in the last expression.

To obtain a value other than zero, the above averages have to be taken over an
ensemble which respects the broken gauge symmetry. As in a ferromagnet, where the
rotational invariance is spontaneously broken, the ergodic hypothesis does not hold
anymore. Whereas in a ferromagnet one has to restrict oneself to states in which
the magnetization has small deviations from a preferred direction, in a superfluid the
ensemble only contains states with small deviations from a preferred phase field φ(r),
which is connected to the superfluid flow pattern [11].

Motivated by single-particle wave mechanics, one can define a condensate density
and velocity

ρc(r) = |Ψ(r)|2,

vs(r) =
1

m
∇φ(r).

(1.6)

Note that the condensate density is not equal to the superfluid density but the con-
densate velocity is the same as the superfluid velocity [12]. The superfluid density and
velocity and their interpretations are discussed in more detail in the next chapter.

1.2 Superfluidity

The term superfluidity stands for a complex of phenomena, including lack of viscosity
and the support of heat waves, which occur in some substances below a critical temper-
ature (T . 2.17 K for 4He). Although its relation to BEC is still a subject of debate,
the two phenomena are closely related and can in many cases be interpreted as two
sides of the same coin.

1.2.1 The one-component superfluid

A phenomenological description of the superfluid state is given by the “two-fluid” model
which describes the system as a mixture of a superfluid part, flowing dissipationless,
and a normal part, which behaves as an ordinary liquid [13]. The two parts do not
exchange momentum and are characterized by their densities ρs, ρn, with the total
mass density being their sum, and velocities vs, vn. The connection to BEC is given
by the above definition of the superfluid velocity in terms of the gradient of the order
parameter, Eq. (1.6). Although the condensate moves with the superfluid velocity,
the superfluid density is not simply the density of the condensed atoms. In 4He for
example, the superfluid density approaches the total density as the temperature goes
to zero, while only about 10% of the particles are part of the condensate because of the
strong interparticle interactions. The superfluid velocity is a property of a quantum
mechanical state but in contrast to, e.g., the velocity of a single particle in a box, it is
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CHAPTER 1. INTRODUCTION 7

not subject to large fluctuations since a macroscopic number of particles occupy this
state. It can therefore be seen as an essentially classical variable which describes the
quantum mechanical state the system finds itself in [12].

In order to introduce the superfluid velocity in a system, we use an approach de-
veloped by Leggett, which is based on the Hess-Fairbank effect and also provides a
definition of superfluidity [14]. Equation (1.6) immediately leads to ∇ × vs = 0 and
the application of Stokes theorem shows that the integral of vs around a closed loop is
zero ∮

∂S
vs · dl =

∫
S
∇× vs · dS = 0. (1.7)

On a nodal line, a region infinite in one dimension on which |Ψ(r)| = 0, the phase
φ is not defined and therefore Stokes theorem can not be applied for paths ∂S which
encircle a nodal line. However, it still holds that the phase φ is single valued modulo
2π. This leads to the Onsager-Feynman quantization condition∮

vs · dl =
1

m

∮
∇φ · dl = n

2π

m
. (1.8)

Consider a torus with major radius R and minor diameter d (Fig. 1.1) with d/R→ 0,

Figure 1.1: Image of a torus which provides the container for the superfluid in the Hess-
Fairbank effect.

which acts as the container of the superfluid. When the torus is rotated with angular
velocity ω, in equilibrium, the classical fluid angular velocity will simply be ω but a
superfluid has to obey the above quantization condition

n
2π

m
=

∮
vs · dl = R

∫ 2π

0
vs,θ · dθ = 2πR · vs,θ = 2πR2 · ωs,

⇒ ωs = n
1

mR2 = n · ωc.
(1.9)

It can be shown, that the equilibrium angular velocity is given by the value for n which
is closest to ω/ωc [14]. Rotating the torus with a small angular velocity ω < ωc/2 thus
leads to a rotation of the normal mass density, while the superfluid part stays at rest.
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CHAPTER 1. INTRODUCTION 8

In the frame of reference co-rotating with the torus, only the superfluid mass density is
in motion with velocity ωR. When staying in the frame of reference in which the torus
is at rest, introducing a finite ω therefore leads to a finite velocity only in the superfluid
part. The resulting change in the free energy can be interpreted as the kinetic energy
of the superfluid mass density (neglecting a centrifugal term)

∆F =
1

2
Vρs(ωR)2, (1.10)

where V denotes the system volume. Thus the superfluid density can be obtained by
calculating the difference in energy between the system at rest in the reference frame
at rest (the lab frame) and the rotating system in the rotating frame of reference. In
the rotating frame, the system is governed by the time independent Hamiltonian [12]

Hrot = H0 − ω ·L, (1.11)

where H0 is the many-body Hamiltonian for the system at rest and L denotes the total
angular momentum. Note that even though Hrot describes the system in the rotating
frame, it is expressed through the coordinates of the lab frame. The above Hamiltonian
can be brought back to H0 by a gauge transformation [15]

Hrot → H0,

ψN → e−imωR
2 ∑

i θiψN .
(1.12)

Here ψN denotes the N particle wavefunction which fulfills the single valued boundary
conditions

ψN(θ1, ..., θi + 2π, ..., θN ) = ψN({θi}), (1.13)

where θi is the angular coordinate of the ith particle. The above gauge transformation
changes the boundary conditions, such that the wave function picks up a phase when
taking one particle around the torus. The problem of finding the groundstate energy
of Hrot therefore reduces to finding the groundstate energy of H0 subject to twisted
boundary conditions

ψN(θ1, ..., θi + 2π, ..., θN ) = e−i2πmωR
2

ψN({θi}). (1.14)

In Eq. (1.12) we have again neglected a centrifugal term, such that the change in free
energy is exactly given by Eq. (1.10). Thus changing the boundary conditions from
single valued to twisted leads to a change in the free energy which can be interpreted
as the kinetic energy of the superfluid part.

Using the following substitutions, we can generalize the above approach to an ar-
bitrary geometry

2πR→ L,

ωR→ vs,

∆ϕ = 2πmωR2 → mvsL,

(1.15)
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CHAPTER 1. INTRODUCTION 9

Changing the boundary conditions from single valued (∆ϕ = 0) to twisted

ψN(r1, ..., ri + Lû, ..., rN ) = e−i∆ϕψN({ri}), (1.16)

where û denotes the direction of the superfluid velocity, leads to a change in the free
energy

∆F =
1

2
Vρs

(
∆ϕ

mL

)2

=
1

2
Vρsv

2
s . (1.17)

To calculate the superfluid density, one therefore has to calculate the change in the
free energy upon twisting the boundary conditions and compare it to the last expres-
sion. Per definition, a system shows superfluidity if the change in the free energy, and
therefore the superfluid density, is finite.

The connection between the above approach of introducing a superfluid velocity and
a similar method which uses a twist in the boundary conditions of the order parameter
[16] remains an open question to us and is discussed in Appendix E.

1.2.2 The two-component superfluid

Since superfluid drag occurs in two-component superfluids, we have to generalize the
concepts from the last subsection to the two-component case. Such a mixture was first
discussed by Andreev and Bashkin in the context of 3He -4He [3]. In analogy to the
two-fluid model, they describe the system using three-fluid hydrodynamics including
two non-dissipative superflows vsA, vsB and one normal flow vn. The superfluid drag is
the effect, that the superflow of one component takes part in the mass-density current
j of the other component

jα = ρnαvn + ρsαvsα + ρdvsᾱ,

ρα = ρnα + ρsα + ρd,
(1.18)

where α ∈ (A,B) denotes one component, ᾱ the other one, and ρα is the total mass
density of component α. The coefficients in the mass-density current are the normal
mass density, the superfluid density and the superfluid-drag coefficient respectively.
For a finite ρd, the mass current densities of both components are finite, even in the
situation where only one of the superflows is non-vanishing. In order to obtain a kinetic
energy that is positive definite, the superfluid-drag coefficient has to fulfill the condition

ρ2
d < ρsAρsB, (1.19)

but it can in principle take either positive or negative values. Physically, the superfluid
drag can be envisioned as follows. As a result of the interspecies interaction, the
particles of one component are dressed by particles of the other component and drag
them along in a non-dissipative fashion. The free energy of such a two-component
superfluid can be expanded in the velocities and, for small velocities, it reads [3]

F = F0 +
1

2
V
[
ρnv

2
n + ρsAv

2
sA + ρsBv

2
sB + 2ρdvsAvsB

]
, (1.20)
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CHAPTER 1. INTRODUCTION 10

with F0 being the part of the free energy that does not depend on the velocities and
ρn = ρnA+ρnB. The superfluid drag therefore couples the two superflows of the system.

A question of experimental relevance is: what happens when we fix one of the
superfluid velocities but let the system come to equilibrium in terms of the other one?
The answer can be found by minimizing the free energy with respect to vsB while
keeping vsA fixed (

∂F

∂vsB

)
vsA

= ρsBvsB + ρdvsA = 0,

⇒ vsB = − ρd
ρsB

vsA.

(1.21)

The term in the free energy corresponding to the superfluid drag induces a superflow
of component B in the direction opposite to the one of component A. For vn = 0, this
leads to the mass-density currents

jA =

(
ρsA −

ρ2
d

ρsB

)
vsA,

jB = 0.

(1.22)

If we fix vsA, the moving A-particles will drag along particles of component B but at
the same time, a superflow in B in the direction opposite of vsA will be induced such
that the total mass-density current of component B is zero. However, the B-superflow
also drags along particles of component A leading to a “second order“ reduction of its
mass-density current.

We now generalize Leggetts approach of twisting the boundary conditions to the
two-component case. Since the system supports two superflows, the phase twist de-
pends on the particle component. Changing the boundary conditions from single valued
(∆ϕα = 0) to twisted

ψN(rα1, ..., rαi + Lûα, ..., rαNα , {rᾱj}) = e−i∆ϕαψN({rαi, rᾱj}), (1.23)

where ûα denotes the direction of the superflow of component α, leads to a change in
the free energy

∆F =
1

2
V
[
ρsAv

2
sA + ρsBv

2
sB + 2ρdvsAvsB

]
. (1.24)

The superfluid velocities are given by the relation

vsα =
∆ϕα
mαL

ûα. (1.25)

1.3 Ultracold atoms

The term ultracold atoms usually implies ultracold alkali atoms, since they can be
readily produced and manipulated experimentally. An atomic beam with a relatively
high density can be generated by heating an alkali metal in an oven with a small
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CHAPTER 1. INTRODUCTION 11

opening. Their strong cyclic transition from the ground state to the excited state,
the ns → np transition of the single valence electron, allows for manipulation of the
atoms by laser light in the visible spectrum, where enough laser power is available [17].
The alkalis have an odd number of electrons, thus all the isotopes with an odd mass
number are comprised of an even number of fermions and are therefore bosonic, e.g.
133Cs, 87Rb, 85Rb, 41K, 23Na, and 7Li.

Since the successes of laser- and evaporative-cooling techniques, there has been
tremendous progress in the study of interactions in the ultracold regime both in ex-
periment and in theory. From a theoretical point of view, justified approximations
in Bose-condensed alkali atoms significantly simplify their description. The two-body
potential for states with finite angular momentum contains a centrifugal energy barrier
which is around 1 mK. At ultracold temperatures, scattering in finite angular momen-
tum states is therefore frozen out and only s-wave scattering is of importance [18].
Scattering is thus determined by the s-wave scattering length as, which is positive for
repulsive and negative for attractive interactions. For repulsive interactions, it can be
visualized as the radius of a hard-sphere potential which would lead to the same scat-
tering wavefunction. Since as is usually much smaller than all the other length scales in
the system (thermal de Broglie wavelength, interparticle spacing, and zero-point length
of the trap), the gas parameter na3

s (n is the density) is much smaller than one and
the strong but short-ranged interactions only rarely lead to scattering events. In order
to avoid the calculation of the complicated short-range correlations, it is convenient
to integrate out the finite-momentum degrees of freedom which leads to an effective
contact interaction [19]

U(r − r′) = γδ(r − r′), with γ =
2π

m
as, (1.26)

where m is the reduced mass.
Since the value of as depends very sensitively on the involved hyperfine states and

external fields, it can in general not be predicted accurately but has to be measured [20].
Its field dependence can however be used to tune the scattering length via Feshbach
resonance by varying an external parameter such as the magnetic field. A Feshbach
resonance occurs if there is a bound state (with energy Eres), provided by a poten-
tial which corresponds to a different set of quantum numbers (channel), close to the
energy of the approaching particles (E0) as illustrated in Fig. 1.2. Because of energy
conservation, the two particles together need to have the same energy before and after
the scattering event and can therefore only leave through the same channel as they
enter (the open channel). They can however virtually scatter in and out of a bound
state provided by a closed channel. This leads to second order corrections in their
potential energy when they are close to each other. These corrections are negative
when Eres > E0 which leads to an effective attraction and thus a negative scattering
length. If Eres < E, second order perturbation gives a positive energy shift, leading to
an effective repulsion. Around such a resonance, the scattering length is therefore of
the form

as ∝
1

E − Eres
. (1.27)
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CHAPTER 1. INTRODUCTION 12

Figure 1.2: Taken from [19]. Two potentials corresponding to two different channels. The
energy of the approaching atoms in the open channel is shifted by nearby bound states in the
closed channel.

By applying an external field, one can tune E − Eres and therefore also the scattering
length. Since as diverges at resonance, one can in principle sweep it from −∞ to ∞,
switching the interactions from attractive to repulsive. However, If the magnitude of
as becomes too large, rapid three-body processes destroy the atom gas [1].

1.4 Optical lattices

Two different types of forces act on an atom in a light field, the scattering force and the
dipole force. The dissipative scattering force is based on absorption and subsequent
spontaneous emission of photons and can be used to cool atoms. The dipole force on
the other hand is a conservative force, based on stimulated emission and can be used to
trap atoms and to create optical lattices [17]. It has its origin in the interaction between
the induced dipole moment of the atom and the electric field of the light. Since the
dipole force is conservative, it can be written as the gradient of a potential Vdip, which
is termed optical lattice because it is proportional to the light field intensity

Vdip = −1

2
α〈E(r, t)2〉t , (1.28)

where α is the real part of the polarizability, which depends on the frequency of the
light, E is the electric field, and 〈...〉t denotes the time average. The resulting shift in the
atomic energy levels is known as the AC-Stark shift. Close to an atomic resonance, the
polarizability is positive for frequencies below resonance (red detuning) and negative
for frequencies above resonance (blue detuning). The atoms therefore accumulate in
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CHAPTER 1. INTRODUCTION 13

the intensity maxima for red detuning, while for blue detuning they are attracted by
the intensity minima of the light field [19].

In this work, we have investigated the superfluid drag in three different two-
dimensional lattice potentials which are shown in Fig. 1.3. One of them is the well
known lattice of square geometry created by counterpropagating laser beams of equal
wavelength and intensity in all dimensions [cf. Fig. 1.3 (c)], here denoted four-beam
square lattice (4BSL). Adding up the electric fields of the laser beams and averaging
over time leads to the potential (omitting an unimportant constant term)

V 4B(r) =
V0

2

[
cos(2kLx) + cos(2kLy)

]
, (1.29)

here kL = 2π/λL is the wave vector of the lasers and V0 = −αI0/2ε0c is the light-
shift strength parameter with the light field intensity I0, the speed of light c and
the vacuum permittivity ε0. Since this potential is separable [it can be written as
V (r) = Vx(x) + Vy(y)], the eigenfunction of its single particle Hamiltonian can be
written as a product ψ(r) = ψx(x)ψy(y), turning the single-particle eigenvalue equation
into a one-dimensional problem. In addition to its mathematical simplicity, this optical
lattice is also the least demanding one in terms of experimental realization.

To investigate the influence of the lattice geometry on the superfluid drag, we
investigated two additional optical lattices which are created by three in-plane laser
beams of equal wavelength and intensity. The three-beam lattice of triangular geometry
[3BTL, Fig. 1.3 (a)] and of square geometry [3BSL, Fig. 1.3 (b)]. These three-beam
lattices are thoroughly discussed in Ref. 8. The wave vectors which are needed to
create the lattices can be parametrized as

ki ≡ kL
(

cos θi
sin θi

)
(i = 1, 2, 3), (1.30)

their reciprocal-lattice basis vectors are given by the relation

bi ≡ ki − ki+1 (i = 1, 2), (1.31)

and the resulting optical-lattice potential reads (again omitting a constant)

V 3B(r) =
V0

2

[
cos(b1 · r) + cos(b2 · r) + cos([b1 + b2] · r)

]
. (1.32)

The explicit wave vectors and lattice vectors of the 3BTL and 3BSL are given in
Appendix A.

When filling an optical lattice with two different species, e.g. two different atomic
species or two hyperfine states, in general the potential does not have the same form
for the two because the light-shift strength parameter depends on the polarizability of
the individual state. By modifying the laser polarizations, it is therefore possible to
create lattices which strongly depend on the internal states involved. This allows for
state selectively moving the lattice [2] or the formation of antiferromagnetic ordering
[21]. In this work, however, we only consider systems where the lattice potential is
approximately equal for both species. This is not an unreasonable assumption since
such systems are experimentally accessible [22].

13



CHAPTER 1. INTRODUCTION 14

Figure 1.3: Laser configurations and the resulting optical-lattice potentials, with their minima
set equal to zero, in units of the recoil energy ER = k2L/2m, the kinetic energy an atom receives
upon absorbing a photon from the lattice. (a) 3BTL, (b) 3BSL, (c) 4BSL. For these plots
V0 = −ER/2.

1.5 The Bose-Hubbard model

In this chapter, we sketch the derivation of the Bose-Hubbard Hamiltonian, which
is used to describe a system of ultracold atoms in an optical lattice [23]. Using the
effective contact interaction, Eq. (1.26), the Hamiltonian of a system of two different
kinds of bosons in an optical-lattice potential V (r) may be written as:

H =
∑
α

∫
dr ψ†α(r)

[
− ∇

2

2mα
− µα + V (r)

]
ψα(r)

+
1

2

∑
αβ

γαβ

∫
dr ψ†α(r)ψ†β(r)ψβ(r)ψα(r).

(1.33)

with α, β ∈ (A,B) denoting boson components, µα the chemical potential and V (r) the
optical lattice potential. The interaction parameters (in three dimensions) are given
by:

γαβ =

{
4πaα/mα, if α = β,

2π(mA +mB)aAB/(mAmB), if α 6= β,
(1.34)

where the parameters aα, aAB are the respective intra- and interspecies s-wave scat-
tering lengths. Here we neglect a slowly varying trapping potential, which in practice
has to be used to confine the particles, such that they do not escape the region of the
optical lattice. Furthermore, we assume that all particles are in the lowest band. This
is a good description of the system if kBT � Egap and nUαβ � Egap [8], where Egap is
the energy gap to the first excited band, n is the average site occupation and Uαβ is the
on site interaction which will be defined later [cf. Eq. (1.39)]. At T = 0, our numerical

14



CHAPTER 1. INTRODUCTION 15

calculations show that these conditions are fulfilled at least to a lattice depth as shallow
as one recoil energy for the 3BLs.

We expand the boson field operators in the Wannier functions of the lowest band

ψα(r) =
∑
i

biαWα(r −Ri), (1.35)

where Ri is the lattice vector of site i. This leads to the Hamiltonian

H = −
∑
ij,α

Jijαb
†
iαbjα +

1

2

∑
ijkl
αβ

Uijklαβb
†
iαb
†
jβbkβblα , (1.36)

with the parameters

Jijα = −
∫
drW ∗α(r −Ri)

[
− ∇

2

2mα
− µα + V (r)

]
Wα(r −Rj),

Uijklαβ = γαβ

∫
drW ∗α(r −Ri)W

∗
β (r −Rj)Wβ(r −Rk)Wα(r −Rl).

(1.37)

Here the diagonal and off-diagonal elements of Jijα correspond to the on-site energies
and the tunneling amplitudes respectively.

Note that experimentally, only quasi two-dimensional systems can be created in
our three-dimensional world. To describe such a system, the above expressions should
therefore be evaluated with three-dimensional quantities and some care has to be taken
when reducing the system to quasi two-dimensionality (cf. Sec. 3.2).

Numerically, we find that the overlap of the Wannier functions at different lattice
sites is sufficiently small to neglect all inter-site interactions (they are about two orders
of magnitude smaller than on-site interactions). This approximation, together with the
discrete translational invariance of the system (note that this implies Jijα = Jjiα ∈ R)
leads to the Bose-Hubbard Hamiltonian

H = −
∑
ij,α

Jijαb
†
iαbjα +

1

2

∑
i,αβ

Uαβb
†
iαb
†
iβbiβbiα , (1.38)

with interaction parameters that are no longer dependent on the lattice sites

Uαβ = γαβ

∫
dr |Wα(r)|2

∣∣Wβ(r)
∣∣2 . (1.39)

In this work we only consider repulsive interactions, i.e. Uαβ > 0 for all α, β.
The above Hamiltonian describes particles on a lattice which gain kinetic energy

by hopping from one lattice site to another and provide interaction energy when occu-
pying the same site. Increasing the lattice depth confines the particles leading to an
exponential decrease in the kinetic energy and an algebraic increase in the interaction
energy (see Fig. 1.4). At a commensurate filling of the lattice, when the interaction
becomes sufficiently large compared to the tunneling between sites, the system orders

15
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Figure 1.4: Taken from [8]. Bose-Hubbard parameters for the three-beam triangular lattice
(3BTL), three-beam square lattice (3BSL) and the four-beam square lattice (4BSL). (a) J
corresponds to the nearest neighbor hopping amplitude, (b) U to the interaction parameter of
a single species residing in the lattice.

itself in a state where each site is occupied by the same integer number of particles
and a SF-MI transition occurs. In experiments, the trapping potential leads to a local
variation of the chemical potential which can lead to a local commensurate filling and
several SF and MI phases can be observed at the same time as illustrated in Fig. 1.5.

1.6 Experimental status

Although systems in which superfluid drag occurs can be experimentally realized, it
has so far not been measured. Especially for ultracold atoms this is not surprising
since in such systems the superfluid density has not been measured either (although
a proposal for such an experiment exists [25]) and the drag is an even less tangible
quantity. Performing experiments on the superfluid drag requires the mixture of two
superfluids. This can be achieved by Bose condensing two different atomic species or
two internal hyperfine states of the same atomic species. Since in our work we neglect
interconversion of the two components, the hyperfine states would need to be separated
by an energy barrier which they can not overcome. To achieve a stable mixture, the
interactions have to fulfill the following condition

U2
AB < UAUB, (1.40)

or else the interspecies interaction becomes too strong compared to the intraspecies in-
teractions and phase separation occurs. In the case of two different atomic species this
poses a problem since the above relation is usually not fulfilled [26, 27]. Using Feshbach
resonances, it is possible to tune the s-wave scattering length to values where the two
species mix. By this method, tunable miscibility has been achieved for 85Rb -87Rb by
the Wieman group [28] and for 41K -87Rb by the Inguscio group [29]. In an optical lat-
tice however, only a phase separated mixture of 41K -87Rb has so far been realized [22].
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Figure 1.5: Taken from [24]. (a) Phase diagram for the Bose-Hubbard model, n denotes the
number of particles per site. (b) in a trapping potential, the chemical potential varies in space
leading to different, spacially separated phases. The red arrow illustrates how the chemical
potential decreases away from the trap center.

In the case of two different hyperfine states of 87Rb, phase separation seems to
be less of a problem. The first mixture of two internal hyperfine states was therefore
already realized in 1997 [30] and by now these mixtures have been observed not only
in cubic [31] but also in spin dependent hexagonal optical lattices [21].
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Chapter 2

Derivation of the superfluid-drag
coefficient

In this chapter, we present a derivation of an expression for the superfluid-drag coeffi-
cient in an arbitrary lattice, analogous to Ref. 5 where this has been done for a cubic
lattice. This expression is written in dependence of the band dispersion, its derivative
and the Hubbard-interaction parameters, which will be calculated numerically. We use
a numerical approach, in contrast to tight binding, mainly because it should not be
taken for granted that tight binding leads to reliable results in the limit of a weak
optical lattice, which ensures the superfluid phase.

To switch from the real-space lattice description to momentum space, we use the
Fourier-transformed boson operators

biα =
1√
N

∑
k

bkαe
−ikri , (2.1)

where N is the number of lattice sites. Inserting this relation into Eq. (1.38) leads to
(the calculation is given in Appendix B.1)

H =
∑
k,α

εkαb
†
kαbkα +

1

2N

∑
αβ

Uαβ
∑
k1...k4

b†k1α
b†k2β

bk3β
bk4α

δk1+k2,k3+k4
. (2.2)

The parameter εkα is the aforementioned band dispersion and Uαβ are the Hubbard-
interaction parameters which will be calculated numerically.

2.1 The Bogoliubov approximation

In order to diagonalize the Hamiltonian, we use the Bogoliubov approximation to re-
place the Hamiltonian with a bilinear operator. Considering the case where the k = 0
state is macroscopically occupied, the corresponding boson creation and annihilation

18
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operators commute to a very good approximation. Thus we can replace them by c-
numbers [19]

〈b0αb
†
0α〉 = 〈b†0αb0α〉+ 1 ≈ 〈b†0αb0α〉 = N0α,

b0α ≈ b
†
0α ≈

√
N0α .

(2.3)

Therefore, the interaction terms which involve more k = 0 states dominate over the
terms involving more k 6= 0 states. This justifies neglecting all the terms which are
of higher order then bilinear in the remaining creation-/annihilation operators. The
resulting Hamiltonian reads

H = H0 +
∑′

k

[
HAB +

∑
α

Hα

]
, (2.4)

where the primed sum runs over all k-states except k = 0. The different terms are
explicitly given by

H0 =
∑
α

[
ε0αNα +

N2
α

2N
Uα

]
+
NANB

N
UAB ,

Hα = (εkα − ε0α + nαUα)︸ ︷︷ ︸
E
α
k

b†kαbkα +
nα
2
Uα

(
bkαb−kα + b†kαb

†
−kα

)
,

HAB =
√
nAnB UAB

(
b†kAbkB + b†kBbkA + bkAb−kB + b†kAb

†
−kB

)
.

(2.5)

Here nα ≡ Nα/N is the particle density of component α and for simplicity we omit
double indices, Uα ≡ Uαα. The derivation of Eq. (2.4) can be found in Appendix B.2.

Since the Bogoliubov approximation relies on the macroscopic occupation of the
ground state, it is not suitable to describe a large depletion of the condensate and
therefore only holds in the SF phase for weakly interacting bosons.

2.2 Matrix notation and diagonalization

The problem of diagonalizing a bilinear Hamiltonian of an assembly of bosons using
the following matrix notation is discussed in more detail in Ref. 32. Upon defining the
column vector

|bk〉 ≡
(
bkA, bkB, b

†
−kA, b

†
−kB

)
, (2.6)

and the respective row vector

〈bk| ≡ |bk〉
† =

(
b†kA b†kB b−kA b−kB

)
, (2.7)

the Hamiltonian in Eq. (2.4) can be written in a compact matrix notation:

H = H0 −
1

2

∑′

k,α

Eαk +
1

2

∑′

k

〈bk|Mk |bk〉 . (2.8)
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Here we introduced

Mk =


EAk FAB FA FAB
FAB EBk FAB FB
FA FAB EA−k FAB
FAB FB FAB EB−k

 , (2.9)

where Fα = nαUα, FAB =
√
nAnB UAB, E

α
k = εαk + Fα and εαk = εkα − ε0α.

Note that εαk, and therefore also Eαk , are by construction invariant under the trans-
formation k→ −k [cf. (B.4)]. Diagonalization of the Hamiltonian given by Eq. (2.8) is
equivalent to expressing it in the form

H = H0 −
1

2

∑′

k,α

Eαk +
1

2

∑′

k

〈βk| Dk |βk〉 , (2.10)

where the diagonal matrix Dk contains the excitation energies. By demanding preser-
vation of the bosonic commutation relations, it turns out that it is not the matrixMk

which has to be diagonalized in order to retrieve Dk as explained in the following.
In the vector representation of the creation/annihilation operators, the bosonic

commutation relations can be expressed as

|bk〉 〈bk| −
(
|b†k〉〈b

†
k|
)T

= σ3, (2.11)

where the 4×4 matrix σ3 is given by

σ3 =

(
12 02

02 −12

)
. (2.12)

Note that |b†k〉 means taking the Hermitian conjugate of the elements of |bk〉, it is
therefore still a column vector and not equal to |bk〉

† = 〈bk| but equal to 〈bk|
T .

We demand that the new basis |βk〉, which is related to the old one by a transfor-
mation matrix |βk〉 = T †k |bk〉, also satisfies the bosonic commutation relations:

σ3 = |βk〉 〈βk| −
(
|β†k〉〈β

†
k|
)T

= T †k |bk〉 〈bk|Tk −
(
T Tk |b

†
k〉〈b

†
k|T
†T
k

)T
= T †k

[
|bk〉 〈bk| −

(
|b†k〉〈b

†
k|
)T]

Tk = T †kσ3Tk

⇒ T−1
k = σ3T

†
kσ3.

(2.13)

Here we used |β†k〉 = T Tk |b
†
k〉 which follows from |b†k〉 = 〈bk|

T . Eqs. (2.8, 2.10) imply the
relation

TkDkT
†
k =Mk, (2.14)

from which one obtains, using Eq. (2.13),

Tk (Dkσ3)T−1
k = TkDkT

†
kσ3 =Mkσ3

⇒ T−1
k (Mkσ3)Tk = Dkσ3.

(2.15)
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This means that the matrix Tk diagonalizesMkσ3. The resulting matrix Dkσ3 contains
the excitation spectrum with the two lower entries being negative because the matrix
Dk has only positive entries.

Evaluating the determinant |Mkσ3 − Ek14| = 0 yields four distinct eigenvalues
Ek = ±Ekσ, σ = ±1. As mentioned above, only the positive eigenvalues are of physical
interest. When there are no superflows, they read

E0
kσ =

1√
2

{
εAk

(
εAk + 2FA

)
+ εBk

(
εBk + 2FB

)

+ σ

√[
εAk

(
εAk + 2FA

)
− εBk

(
εBk + 2FB

)]2
+ 16F 2

ABε
A
k ε

B
k

}1/2

.

(2.16)

Because εαk = εkα − ε0α one can easily see that this two-component spectrum has
no gap, i.e. Ekσ → 0 as k → 0. This implies that the Bogoliubov approximation
can not describe the gapped Mott phase because it is restricted to a small depletion
of the condensate. When the interspecies interaction become to strong, i.e. when the
inequality (1.40) is no longer fulfilled, the above expression becomes imaginary and
phase separation occurs.

By inserting the diagonalized matrix

Dk = diag(Ek+, Ek−, E−k+, E−k−), (2.17)

in Eq. (2.10) we obtain the Hamiltonian

H = H0 −
1

2

∑′

k,α

Eαk +
∑′

k,σ

Ekσ
(
β†kσβkσ +

1

2

)
. (2.18)

2.3 Superfluid velocity and superfluid drag

At zero temperature, the free energy is equal to the expectation value of the Hamilto-
nian and there are no quasiparticles excited, i.e., 〈β†kσβkσ〉 = 0. The free energy thus
reads

FT=0 = 〈H0〉+
1

2

∑′

k

[
Ek+ + Ek− − E

A
k − E

B
k

]
. (2.19)

To find the superfluid-drag coefficient ρd, we expand Eq. (2.19) in the superfluid ve-
locities and compare it to the free energy of a two-component superfluid with small
superfluid velocities, Eq. (1.20).

As discussed in Sec. 1.2.2, introducing superfluid velocities can be achieved by twist-
ing the boundary conditions, which means that the many-body wavefunction picks up
a phase when a particle is taken from one side of the (periodic) system to the other.
Due to the discrete translational symmetry of the system, the phase accumulated by
taking a particle from one lattice point to the next always has to be same. The twist
in the boundary conditions can therefore be achieved by the transformation

b†jαbiα → e−i
∆ϕα
L
ûα(rj−ri)b†jαbiα. (2.20)
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The accumulated phase, when taking a particle from site i to site j, corresponds to the
phase shift per length, multiplied with the separation of the two sites in the direction
of the superflow. On the single particle operators, this transformation has the effect

biα → ei
∆ϕα
L
ûαribiα = eimαvsαribiα

=
1√
N

∑
k

bkαe
−i(k−mαvsα)ri ,

(2.21)

where we used Eq. (1.25) to introduce the superfluid velocity and Eq. (2.1) to switch to
momentum space. The last transformation simply corresponds to a shift of the k-vector.
The bare-particle energies can then be Taylor-expanded around k. Introducing small
superfluid velocities in the individual boson components therefore leads to a change in
momentum and energy

k→ k −mαvsα,

εαk → εαk −mαvsα ·∇kε
α
k +O(v2

sα).
(2.22)

We expand the bare-particle energies only to linear order in vsα since we are only
interested in the term of the free energy that is bilinear in the two superfluid velocities.

To find the expansion of the excitation spectrum Ekσ, we expand the characteristic
polynomial ofMkσ3 in powers of vsα along the lines of Ref. 33. We can then evaluate
the free energy given by Eq. (2.19). Comparison to Eq. (1.20) leads to the following
superfluid-drag coefficient (a derivation is given in Appendix B.3)

ρd =
1

V
∑′

k

2mAmBF
2
ABε

A
k ε

B
k

E0
k+E

0
k−

[
E0
k+ + E0

k−

]3

(
∂kuε

A
k

)(
∂kuε

B
k

)
, (2.23)

where û denotes the direction of the superfluid flow (the two components are assumed
to flow in the same direction), ∂ku ≡ û ·∇k and E0

kσ is the excitation spectrum for the
two components at rest, given by Eq. (2.16). The denominator in the last expression
penalizes k-states corresponding to high energies, such that only states which have
a realistic probability of being occupied make a relevant contribution to the drag at
T = 0.

The superfluid drag is independent of the sign of the interspecies interaction and
vanishes if it goes to zero or if one of the particle densities or masses goes to zero. Since
the excitation spectrum itself depends on the interaction parameters, the masses, and
the bare-particle bandstructures, the drag depends on these quantities in a non-trivial
way. However, at least when these quantities are small, one can say that the drag
increases with increasing interspecies interactions and with the particle masses. It also
increases with the bare-particle bandwidth which is a measure of the kinetic energy
and manifests itself in the above expression via the bandstructure and its directional
derivative. These observations are consistent with the physical picture, where a particle
of one component is being dressed by particles of the other component; the drag is more
efficient when the interaction between the two components is stronger or when their
mobility is higher. With increasing masses, more mass density gets dragged along,
leading to an enhanced drag.
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Chapter 3

Numerical evaluation of the
superfluid drag

We evaluate the superfluid-drag coefficient for different, experimentally implementable
lattice geometries in two dimensions. In contrast to Ref. 5, where this has been done for
the three dimensional cubic lattice using the tight-binding approximation, we calculate
the bandstructures and Hubbard-interaction parameters numerically. This allows us to
probe weak lattice potentials, where to our knowledge the physics of the drag has not
been investigated so far. Some considerations about the numerical procedures described
in this chapter are discussed in Appendix C. For simplicity, the index α is omitted in
this chapter whenever single-species properties are discussed.

3.1 Calculation of the bandstructures

The bandstructure illustrates the energy eigenstates of a single particle in the lattice.
In order to diagonalize the single-particle Hamiltonian numerically, we expand it in
plane waves and truncate it to an operator of finite dimensionality. The numerical
diagonalization procedure was carried out using the EISPACK library [34].

In a periodic potential V (r), the single-particle Hamiltonian reads (omitting the
chemical potential which we assume to be a constant)

H1 = − 1

2m

(
∂2

∂x2 +
∂2

∂y2

)
+ V (r), (3.1)

with eigenfunctions given by the well known Bloch states

Ψnk(r) =
1√
V
eik·runk(r), (3.2)

where the quantum number k runs over all allowed values in the first Brillouin zone
and n denotes the discrete band index. The function unk(r) has the same periodicity
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as the lattice and can therefore be expanded in Fourier coefficients, corresponding to
different reciprocal-lattice vectors G′ ∈ G

unk(r) =
∑
G

′∈G

Cnk,G′eiG
′·r, (3.3)

whereby the following relation holds∑
G∈G

∣∣Cnk,G∣∣2 = 1. (3.4)

The Bloch eigenvalue problem thus assumes the form

H1

∑
G

′∈G

Cnk,G′
∣∣k +G′

〉
= εnk

∑
G

′∈G

Cnk,G′
∣∣k +G′

〉
, (3.5)

where |k〉 is shorthand for V−1/2eik·r. Applying 〈k +G| on the above equation and
using the orthonormality of the plane-wave basis leads to the eigenvalue equation∑

G
′∈G

〈k +G|H1

∣∣k +G′
〉︸ ︷︷ ︸

(Hk)
G,G

′

Cnk,G′ = εnkCnk,G . (3.6)

The bandstructure εnk and the plane-wave coefficients Cnk,G, can therefore be obtained
by diagonalizing the matrix Hk.

Finite dimensionality of this eigenvalue problem is achieved by taking into account
only a finite number of reciprocal-lattice vectors NG. In our case, NG & 100 leads
to the requisite numerical precision in the energies and Bloch functions of the lowest
band for all the lattices. Note that the number of reciprocal-lattice vectors determines
the number of bands the calculation obtains. To resolve the higher bands, one would
therefore need to take into account a higher number of reciprocal-lattice vectors.

The diagonal matrix elements of Hk can directly be calculated using the identity

1

V

∫
dr eik·r = δk,0 , (3.7)

which leads to 〈
k +Gl,p

∣∣H1

∣∣k +Gl,p

〉
=

1

2m

∣∣k +Gl,p

∣∣2 , (3.8)

where the integers l, p denote the expansion of G in the reciprocal-lattice basis vectors

Gl,p = lb1 + pb2 . (3.9)

The diagonal matrix elements for the different lattices are explicitly given in Appendix
A. The off-diagonal matrix elements can also easily be calculated and read〈

k +Gl1,p1

∣∣H1

∣∣k +Gl2,p2

〉
=
〈
k +Gl1,p1

∣∣V (r)
∣∣k +Gl2,p2

〉
,〈

k +Gl1,p1

∣∣V 3B(r)
∣∣k +Gl2,p2

〉
=
V0

4

(
δl1,l2±1δp1,p2

+ δl1,l2δp1,p2±1 + δl1,l2±1δp1,p2±1

)
,〈

k +Gl1,p1

∣∣V 4B(r)
∣∣k +Gl2,p2

〉
=
V0

4

(
δl1,l2±1δp1,p2

+ δl1,l2δp1,p2±1

)
,

(3.10)
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Figure 3.1: Numerically calculated band structures along points of high symmetry, with a
light-shift strength parameter V0/ER = −1, showing the first 5 bands. (a) Bandstructure for
the 3BTL in agreement with the one presented in [9]. (b) Bandstructure for the 3BSL and (c)
for the 4BSL. The insets show the points of high symmetry in the respective Brillouin zones.

where the respective potentials are given by Eqs. (1.29, 1.32). Note that for the 3BLs
only the diagonal and not the off-diagonal matrix elements depend on the specific lattice
geometry. Furthermore, all the matrix elements are real quantities which makes Hk a
symmetric matrix. The numerical diagonalization procedure for NG = 121 obtains the
bandstructures depicted in Fig. 3.1.

The bands of the 4BSL are much broader than the ones of the 3BLs (note the
different scale). This implies that the atoms have a higher mobility in this lattice. Since
the drag increases with the kinetic energy [cf. Eq. (2.23)], the effect is more pronounced
in the 4BSL than in the other lattice geometries. This is partly due to the smaller
lattice spacing of the 4BSL (see Fig. 1.3) and consistent with the fact that the SF-MI
transition happens at around |V0| = 10ER for this potential whereas it occurs already
at around |V0| = 4 ER for the 3BLs. Furthermore, Fig. 3.1 (c) shows that the single-
band approximation, Eq. (1.35), is not a good approximation for the 4BSL at lattice
depths as shallow as |V0| = 1 ER, because the lowest and the first excited bands have
an energy overlap. However, since all the interesting physics happens at deeper lattices
for the 4BSL, our findings are not based on results obtained at such shallow lattices.
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Comparing Figs. 3.1 (b) and (c) shows that some degeneracies which are present in
the square lattice produced by four laser beams are lifted in the one created by three
laser beams (e.g. in first and second excited bands between the Γ and the M point).
This is related to the lower symmetry in the 3BSL compared to the 4BSL. Whereas the
4BSL is symmetric under rotation of 90◦, the 3BSL is only symmetric under rotation
of 180◦.

3.2 Calculation of the Hubbard-interaction parameters

Since we are only interested in the lowest band, we omit the band index in this subsec-
tion. In order to calculate the Hubbard-interaction parameters, Eq. (1.39), one has to
construct localized Wannier functions by an appropriate superposition of Bloch waves.
The latter are determined through the plane-wave coefficients Ck,G , obtained by the
EISPACK routine. Their following relationships have been numerically confirmed up
to an acceptable precision [δk,k′ only holds if k and k′ are sufficiently far apart from
each other and O(10−2) terms are neglected]

Ψk(r) = Ψk+G(r) for G ∈ G,∫
V
drΨ∗k(r)Ψk′(r) = δk,k′ .

(3.11)

Here the volume V is N times the volume of the Wigner-Seitz cell and N is the number
of k-values included in the calculation.

The Wannier function centered around the lattice site R is given by

W (r −R) =
1√
N

∑
k

e−ik·RΨk(r). (3.12)

Because for each value of k, the Bloch function is only defined up to an overall phase,
the above definition of the Wannier function is not unique. One therefore has to choose
a gauge

Ψk → eiφ(k)Ψk, (3.13)

which leads to localized Wannier functions. This problem has been discussed by Kohn
for an isolated band in a one dimensional potential with inversion symmetry [35] and by
des Cloizeaux for the more general case of a multidimensional potential with inversion
symmetry [36]. A summary of their findings can be found in Ref. 37. The problem
essentially boils down to finding a gauge for which the Bloch functions are continuous
not only for k ∈ R but also in a strip of the complex plane |Im{k}| < A, for some
finite and positive A. A recipe for finding this gauge is given in Ref. 37 and a program
which finds the maximally localized Wannier functions by minimizing their spread was
developed by Marzari et al. [38, 39].

Here a much simpler gauge transformation [40] was used

Ψk(r)→ exp [−iIm{ln Ψk(0)}]Ψk(r). (3.14)
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Figure 3.2: Numerically calculated Wannier functions at r = 0 for V0/ER = −9. (a) 3BTL,
(b) 3BSL, and (c) 4BSL.

This transformation does not lead to the maximally localized Wannier functions, which
decay exponentially as r → ∞. However, by constructing Bloch functions which all
have the same phase at r = 0, this procedure results in Wannier functions that are
sufficiently localized to neglect inter-site interactions. The Wannier functions are shown
in Fig. 3.2 and their orthonormality relation was numerically reproduced [neglecting
O(10−2) terms] ∫

V
drW ∗(r −R)W (r −R′) = δR,R′ . (3.15)

Because the Wannier functions are fairly localized, the volume of integration can be
reduced drastically without affecting the results in a notable way. Since the absolute
value squared of the Wannier functions on the closest neighboring sites is about two
orders of magnitude lower than their maximum value (this also holds for lattices as shal-
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low as |V0| = 1 ER), nearest-neighbor interactions are about two orders of magnitude
lower than on-site interactions and can safely be neglected [cf. Eq. (1.39)].

To derive the superfluid drag in the experimentally relevant case of a quasi two-
dimensional system, one should start with the three-dimensional Hamiltonian and inte-
grate out the third dimension in accordance with the experimental way of implementing
the quasi two-dimensionality. Motivated by recent experiments [9], we choose a one-
dimensional optical lattice in the z-direction for this purpose. The resulting transverse
potential reads V (z) = Vz sin2(kLz) and is created by a laser of the same wavelength as
used for the in-plane lattice with an increased light-shift strength parameter Vz = 30ER.
This makes the lattice sufficiently deep to cut the system into slices which are decou-
pled, such that in each of the slices the degrees of freedom in the z-direction are frozen
and the dynamics is two-dimensional. As explained in Appendix D, the only conse-
quence relevant for the superfluid drag is a modification of the Hubbard-interaction
parameter.

Approximating the confining potential around one of the minima leads to a har-

monic potential with mass dependent frequency ωz =

√
2Vzk

2
L/m. If the scatter-

ing lengths are small compared to the corresponding oscillator length lz =
√

1/mωz,
we can assume that the two-body collisions are not affected by the confinement and
Eq. (1.39), with three-dimensional Wannier functions, gives the correct interaction pa-
rameters Uαβ . In our case, this condition is readily fulfilled; for 87Rb: lz ≈ 70 nm and
as ≈ 5 nm. In order to derive an expression in terms of the numerically calculated
two-dimensional Wannier functions, we write their three-dimensional counterparts as
a product of an in-plane part and a Gaussian in the z-direction (cf. App. D)

Wα(r, z) = Wα(r)
(mαωzα

π

)1/4
exp

(
−mαωzα

2
z2
)
, (3.16)

where r is a two-dimensional vector and we only distinguish between two- and three-
dimensional Wannier functions by their arguments. Here we have reintroduced the
index α to stress their dependence on the component mass. The z-dependence of Uαβ
can then easily be integrated out and we are left with

Uαβ = γαβ

√
mαωzαmβωzβ

π(mαωzα +mβωzβ)

∫
dr |Wα(r)|2

∣∣Wβ(r)
∣∣2 . (3.17)

The two-dimensional Wannier functions W (r) are illustrated in Fig.3.2. By evaluat-
ing the last expression, we were able to reproduce the dependence of the interaction
parameter on the lattice depth calculated by Blakie and Clark [8], depicted in Fig. 1.4.
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Chapter 4

Results

In the following, we present our findings for the superfluid drag in different lattice
geometries, for weak and strong interspecies scattering. To obtain a dimensionless
quantity, we normalize the superfluid drag by ρA = NAmA/V. Superfluidity at all
lattice depths is assured by choosing an incommensurate filling nA = nB =

√
2. The

intraspecies scattering lengths are set to aAA = 100 a0 (a0 is the Bohr radius) and
aBB = 65 a0. For all the lattices we choose the superfluid flows to be co-directed in
the x-direction defined in Fig. 1.3. For the laser wavelength, which determines the
lattice spacing, we choose λL = 1064 nm. The results obtained for the superfluid
drag are shown in Fig. 4.1. Figures (a), (c), and, (e) correspond to weak interspecies
interactions and Figs. (b), (d), and, (f) to strong ones, just before phase separation
occurs [i.e., just before the inequality (1.40) is violated].

Qualitatively, all the lattices show a similar behavior in the superfluid drag for both
weak and strong interspecies interactions. Quantitatively however, Fig. 4.1 shows that
the drag is much more pronounced for strong interspecies interactions in all the lat-
tices, consistent with the discussion at the end of Ch. 2. To illustrate the qualitative
behavior of the superfluid drag, Fig. 4.2 shows cuts through Fig. 4.1 (b) for experi-
mentally relevant mass ratios. For a fixed mass ratio, the drag increases upon raising
|V0| from zero, reaches its maximum and then decreases. A similar behavior can be
observed when increasing the mass ratio at a fixed lattice depth. This non-monotonic
dependence on the lattice depth emerges from an interplay of the kinetic and interac-
tion energies. On the one hand, Eq. (2.23) shows that the interspecies interactions give
a quadratic contribution to the superfluid drag. However, increasing the (inter- and
intraspecies) interactions also increases the quasiparticle energies in the denominator
which decreases the drag. On the other hand, the bare particle energies and their
derivatives in the numerator of Eq. (2.23) imply that the drag grows with the kinetic
energy. The behavior of the interaction and kinetic energies when increasing the lattice
depth are illustrated in Fig. 1.4. In a shallow lattice, the kinetic energy is high and the
interaction energy low since the particles are fairly delocalized. Upon increasing the
lattice depth, the atoms get confined at their sites, leading to reduced tunneling and
an enhanced on-site interaction.
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Figure 4.1: Superfluid drag for different lattices and interaction strengths: (a) and (b) three-
beam triangular lattice (3BTL), (c) and (d) three-beam square lattice (3BSL), (e) and (f) four-
beam square lattice (4BSL). The left column [(a), (c), (e)] corresponds to weak interspecies
interactions aAB = 30 a0, the right column [(b), (d), (f)] to strong ones aAB = 64 a0. Note the
different scales for the color scheme.

30



CHAPTER 4. RESULTS 31

Figure 4.2: Superfluid drag in a 3BTL as a function of the lattice depth V0 for fixed mass ratios
corresponding to the mixtures 87Rb -85Rb (mB/mA ≈ 1, solid), 87Rb -41K (mB/mA ≈ 2.2,
dashed) and 87Rb -23Na (mB/mA ≈ 3.8, dotted). Component B corresponds to 87Rb in all
three cases. The interspecies scattering length is set to aAB = 64 a0.

For a shallow lattice, the drag shows a growth with increasing |V0|, which results
from the increasing interspecies interaction [cf. Fig. 1.4 (b)], for a deep lattice potential
the drag shows an exponential decay due to the suppressed kinetic energy [cf. Fig. 1.4
(a)]. When assuming the normalization ρA to be constant, increasing the mass ratio
only increases mB. The non-monotonic dependence of the drag on the mass ratio then
results from the linear dependence of the numerator on mB and the reduced kinetic
energy for high masses. The fact that the similar dependence on the lattice depth and
the mass ratio is a general feature of the drag explains its qualitative similarity for
different lattices and interaction strengths.

In a more general way [i.e. without using Eq. (2.23)] this similarity can be explained
by the behavior of the relative lattice depths V0/E

α
R. As discussed in Appendix C.3,

it is this quantity which defines the single-particle states. The recoil energy merely
rescales the energy of these states [cf. Eq. (C.9)]. On increasing |V0|, the relative lattice
depths for both components increase, while for increasing mB/mA, only the relative
lattice depth of component B increases when keeping EAR constant. This implies a
similar behavior of the drag on the lattice depth and the mass ratio.

When interchanging the labels of the two components, the drag should of course be
invariant which means that its values at mB/mA and mA/mB are connected by some
mapping procedure. Interchanging all the component-dependent quantities yields

ρd
ρ0

(
mB

mA
,
V0

EAR

)
=
mB

mA

ρd
ρ0

(
mA

mB
,
mB

mA
· V0

EAR

)
, (4.1)

which is fulfilled in the above plots.

31



CHAPTER 4. RESULTS 32

Figure 4.3: Superfluid drag for the cubic lattice using tight-binding and the harmonic approx-
imation in (a) two dimensions (4BSL) and (b) three dimensions. The interspecies scattering
length is aAB = 64 a0.

In contrast to the results of Ref. 5, we find that the mass ratio which maximizes
the drag depends on the lattice depth, varying significantly from unity as one goes
to shallower lattices (|V0| . 1 ER for the 3BLs). For a shallow lattice, a high mass
ratio seems to be favorable for the drag as illustrated in Fig. 4.2. For lattices deeper
than |V0| ≈ 1.2 ER, our results agree with Ref. 5 and we find the optimal mass ratio
to be unity. This mismatch for weak lattice potentials is not due to our different
numerical approach but because of a mistake in Eq. (53) in Ref. 5, which leads to
tunneling amplitudes that decay much too fast with the lattice depth. The deviation
from an optimal mass ratio equal to one is then only visible at a much shallower lattice,
where they did not discuss their results because of the questionable validity of the tight-
binding approximation. To confirm this, we plotted the drag for the cubic lattice in two
and three dimensions in the tight-binding, i.e. only nearest neighbor hopping, and the
harmonic approximation where the Wannier functions are the Gaussian groundstates
for the quadratically approximated lattice sites (see Fig. 4.3). As expected, the mass
ratio which maximizes the drag differs from unity at shallow lattices in accordance with
our numerical approach.

Although the qualitative behavior of the drag seems to be very general, there are
significant quantitative differences in the lattice geometries. Comparing the 3BSL with
the 4BSL, one notices that in the 4BSL the superfluid drag is much larger over a broader
range of lattice depths. This is because of the higher kinetic energy in the 4BSL which
was already observed in the bandstructures in Sec. 3.1. Figure 1.4 shows that for the
4BSL, the kinetic energy decreases much slower with the lattice depth compared to
the 3BLs, while the Hubbard-interaction parameters increase the same for all lattices.
Since the drag increases with both the kinetic and the interaction energy, it is much

32



CHAPTER 4. RESULTS 33

Figure 4.4: Superfluid drag in a 3BTL (not normalized with nA) as a function of the particle
densities for A =85Rb and a lattice depth V0 = −1.2 ER which maximizes the drag for this
mass ratio (see Fig. 4.2). The other parameter values are the same as in Fig. 4.1 (b). The
arrows denote what happens to the drag when increasing either one of the particle densities.
The slope along the density of the more weakly interacting component (here component B,
green arrow) turns out to be always larger then the slope along the density of the more strongly
interacting component (here component A, red arrow).

more pronounced in the 4BSL than in the 3BLs.
A possible explanation as to why the drag is stronger in the 3BSL than in the 3BTL

can be given if one envisions the drag as being mediated by component A particles,
dressed by a cloud of component B particles and vice versa. In this case one could
argue that the higher coordination number of the 3BTL leads to more events whereby
one of the particles within the cloud splits off the dressed particle.

In the tight-binding approximation (cf. Fig. 4.3), the quantitative value for the drag
in the 4BSL is almost an order of magnitude smaller than what our numerical approach
produced. This probably results from our Wannier functions, which of course are much
less localized than Gaussians, and from the fact that we include hopping to arbitrary
lattice sites. In three dimensions, we find a much smaller drag as compared to two
dimensions. This is because the localization in one dimension increases the interspecies
interaction, without having an important influence on the mobility of the atoms in the
plane. Furthermore, as in the 3BTL, the increased coordination number possibly leads
to a reduced drag.
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In Fig. 4.4, the superfluid drag is shown in dependence of the densities of the two
components. We choose NmA/V for the normalization constant, such that it is in-
dependent of the densities. Although the drag varies with the densities, the curves in
Fig. 4.2 only get shifted in the vertical direction upon changing them. This implies that
for a fixed mass ratio, the lattice depth V0 which maximizes the drag is independent of
the particle densities nα and therefore a function of the mass ratio and the scattering
lengths only. The dependence of the drag on the densities, Fig. 4.4, varies significantly
when changing the mass ratio or the lattice depth. However, comparing the density de-
pendence at the lattice depths which maximize the drag for the respective mass ratios,
we find that it hardly changes at all.

Furthermore, we note that for two components with the same scattering length
and mass, the density dependence has a mirror symmetry along the diagonal (there is
nothing that distinguishes the two components). Since the density dependence does
not change from one mass ratio to the other, when comparing it at lattice depths which
maximize the drag, this symmetry occurs for all mass ratios when the scattering lengths
are equal and the lattice depth is set to maximize the drag. Finally, we found that
the drag always increases upon increasing the particle numbers when nA ≈ nB. For
two species with different scattering lengths, increasing the number of the more weakly
interacting particles always seems to be more favorable (see arrows in Fig. 4.4).
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Conclusions and outlook

We have studied the superfluid drag between the components of a two-species BEC in
optical lattices. For this purpose, we have generalized an expression for the superfluid-
drag coefficient to an arbitrary lattice geometry. This expression gives some insight
in the general behavior of the drag on various parameters, such as the interaction and
kinetic energies. We have evaluated this expression for different lattice geometries using
a numerically exact approach to calculate the bandstructures and Hubbard-interaction
parameters. This assures that our results are valid until the lattice depths become so
shallow that the single-band approximation fails (< 1ER for the 3BLs). To clarify the
dependence of the superfluid drag on the lattice geometry, we have presented results for
rectangular and non-rectangular lattices with separable and non-separable potentials.

We have found the qualitative behavior of the drag to be very general. As expected,
the drag increases with kinetic energy, since it is easier to drag along mobile atoms,
as well as with the interspecies interaction energy which is the source of the superfluid
drag. These two effects lead to a non-monotonic dependence of the drag on the lattice
depth V0: upon increasing the lattice depth from zero, the drag increases due to the
increasing interspecies interaction, then it reaches its maximum and finally it decreases
with increasing |V0| because of the reduction in the kinetic energy.

In contrast to previous findings [5], we found the mass ratio which maximizes the
drag to be dependent on the lattice depth. Our tight-binding calculations show that
this discrepancy is not due to our numerical approach but emerges from a mistake in
their work. The tight-binding calculations also imply that the drag is enhanced with
reduced dimensionality because the confinement increases the interspecies interaction
energy.

Quantitatively, the drag varies with the lattice geometry. The 4BSL has the largest
drag because the atoms have an increased kinetic energy as compared to the other
lattices. In the 3BTL the drag is the lowest, which might be because of its higher
coordination number. A decrease in drag with an increase in the coordination number
is also consistent with the low drag in three dimensions.

Finally, we have also examined the dependence of the drag on the component den-
sities and have found the lattice depth which maximizes the drag for a given mass ratio
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to be independent of the densities. Furthermore, it seems to be always more favorable
to increase the density of the more weakly interacting particles, which could be an
advantage in drag experiments since the more strongly interacting particles are usually
lost more easily in the preparation process.

Here we have only investigated the superfluid drag for the case of co-directed su-
perflows in the x-direction. It would be interesting to generalize this work to other
directions, as well as to superflows which are not co-directed. In the latter case how-
ever, our expression for the drag, Eq. (2.23), does not hold anymore. Since the drag in
a lattice in general depends on both of the flow directions, it might be best represented
by a tensor, where the indices denote the superfluid directions.

Another continuation of this work would be the investigation of superfluid drag
in the strong interaction limit. This would be particularly interesting since in the
limit of hardcore intraspecies and softcore interspecies interactions, a negative drag
was found by means of Monte Carlo simulations [7]. An analytic expression for the
drag in the limit of strong interactions could maybe shed some light on this change of
sign, which possibly implies a vanishing drag at some point in parameter space. Since
the Bogoliubov approximation only works for weak interactions, one would have to use
a different method for solving the Hamiltonian. Some efforts in this direction using
a Gutzwiller-mean field approach unfortunately were unfruitful. This approach is not
suitable because it neglects terms where tunneling of both species occurs, which are
the source of the superfluid drag.

Another intriguing challenge would be to come up with a scheme to measure the
drag coefficient. In order to achieve this, one would need to be able to fix both superfluid
velocities at different values. For measuring the superfluid density in ultracold atoms,
a scheme exists which uses light of non-vanishing angular momentum to introduce the
superfluid velocity [25]. Although this has not been experimentally realized so far, one
could maybe generalize the scheme to the two-species case and thus come up with a way
to measure the drag. Another possibility would be to utilize the above mentioned point
of vanishing drag once one understands its origin and location in parameter space.

Although the superfluid drag seems to be not a particularly tangible quantity, we
hope that our study will motivate drag experiments with ultracold atoms in optical
lattices.
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Appendix A

Optical lattice potentials

A.1 The three-beam triangular lattice

A 3BTL is created if the three laser beams mutually enclose angles of 120◦

θ1 = 0, θ2 =
2

3
π, θ3 =

4

3
π. (A.1)

Their wave vectors are explicitly given by

k1 = kL

(
1
0

)
, k2 =

kL
2

(
−1√

3

)
, k3 = −kL

2

(
1√
3

)
, (A.2)

leading to the reciprocal-lattice basis vectors

b1 =
kL
2

(
3

−
√

3

)
, b2 = kL

(
0√
3

)
. (A.3)

The primitive direct-lattice vectors follow through the relation ai · bj = 2πδi,j

a1 =
λL
3

(
2
0

)
, a2 =

λL
3

(
1√
3

)
, (A.4)

implying a lattice spacing of a = 2λL/3.
The diagonal matrix elements of the single-particle Hamiltonian for this potential

can be obtained by evaluating Eq. (3.8)

〈
k +Gl,p

∣∣H1

∣∣k +Gl,p

〉
= ER

(kx
kL

+
3

2
l

)2

+

(
ky
kL
−
√

3

2
l +
√

3p

)2
 . (A.5)

Figure A.1 (a) shows the resulting bandstructure up to the fourth excited band and
Fig. 3.1 (a) shows the bandstructure along high symmetry directions

Γ =

(
0
0

)
, M =

kL
4

(
3√
3

)
and K = kL

(
1
0

)
. (A.6)

The directional derivative (in the kx-direction) of the lowest band, which is also needed
to evaluate Eq. (2.23), is shown in Fig. A.1 (b).
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Figure A.1: (a) Numerically calculated band structure including the lowest five bands for the
3BTL with a light-shift strength parameter V0/ER = −1. (b) Lowest band (below) together
with its derivative with respect to kx (above) for V0/ER = −1. The scale is chosen arbitrary
and different for both curves in order to visualize them more clearly.

A.2 The three-beam square lattice

A 3BSL is created by the angles

θ1 =
π

4
, θ2 =

3π

4
, θ3 =

5π

4
. (A.7)

Their wave vectors are explicitly given by

k1 = kL

(
1
1

)
, k2 = kL

(
−1
1

)
, k3 = −k1, (A.8)

leading to the reciprocal-lattice basis vectors

b1 =
√

2kL

(
1
0

)
, b2 =

√
2kL

(
0
1

)
. (A.9)

The primitive direct-lattice vectors follow through the relation ai · bj = 2πδi,j

a1 =
λL√

2

(
1
0

)
, a2 =

λL√
2

(
0
1

)
, (A.10)

implying a lattice spacing of a = λL/
√

2.
The diagonal matrix elements of the single-particle Hamiltonian for this potential

can be obtained by evaluating Eq. (3.8)

〈
k +Gl,p

∣∣H1

∣∣k +Gl,p

〉
= ER

[(
kx
kL

+
√

2l

)2

+

(
ky
kL

+
√

2p

)2
]
. (A.11)
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Figure 3.1 (b) shows the bandstructure along high symmetry directions

Γ =

(
0
0

)
, M =

kL√
2

(
1
1

)
and X =

kL√
2

(
1
0

)
. (A.12)

A.3 The four-beam square lattice

The 4BSL is created by four lasers beams mutually enclosing angles of π/2. This setup
leads to the reciprocal-lattice basis vectors

b1 = 2kL

(
1
0

)
, b2 = 2kL

(
0
1

)
. (A.13)

The primitive direct-lattice vectors follow through the relation ai · bj = 2πδi,j

a1 =
λL
2

(
1
0

)
, a2 =

λL
2

(
0
1

)
, (A.14)

implying a lattice spacing of a = λL/2.
The diagonal matrix elements of the single-particle Hamiltonian for this potential

can be obtained by evaluating Eq. (3.8)

〈
k +Gl,p

∣∣H1

∣∣k +Gl,p

〉
= ER

[(
kx
kL

+ 2l

)2

+

(
ky
kL

+ 2p

)2
]
. (A.15)

Figure 3.1 (c) shows the bandstructure along high symmetry directions

Γ =

(
0
0

)
, M = kL

(
1
1

)
and X = kL

(
1
0

)
. (A.16)
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Auxiliary calculations for the
derivation of the superfluid-drag
coefficient

B.1 Transformation from real space to momentum space

Inserting the relation (2.1) into the Hamiltonian given by Eq. (1.38) yields

H =
1

N

∑
ij,α

∑
k,q

Jijαe
i(kri−qrj)b†kαbqα

+
1

2N2

∑
i,αβ

Uαβ
∑
k1...k4

ei(k1+k2−k3−k4)rib†k1α
b†k2β

bk3β
bk4α

.
(B.1)

In a system with discrete translational invariance, Jijα can only depend on the difference
ρ = ri − rj and not on the individual lattice sites. The Hamiltonian can therefore be
rewritten in the following way

H =
∑
k,α

∑
q,ρ

Jραe
iqρ 1

N

∑
i

ei(k−q)rib†kαbqα

+
1

2N2

∑
i,αβ

Uαβ
∑
k1...k4

ei(k1+k2−k3−k4)rib†k1α
b†k2β

bk3β
bk4α

.
(B.2)

Using the identity
1

N

∑
i

eikri = δk,0, (B.3)

the Hamiltonian can be brought into the form of Eq. (2.2):

H =
∑
k,α

∑
ρ

Jραe
ikρ

︸ ︷︷ ︸
εkα

b†kαbkα +
1

2N

∑
αβ

Uαβ
∑
k1...k4

b†k1α
b†k2β

bk3β
bk4α

δk1+k2,k3+k4
. (B.4)
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B.2 Application of the Bogoliubov approximation

In order to derive the Hamiltonian in Eq. (2.4) from Eq. (B.4), we bring the interaction
term into bilinear form and pull the ground state (k = 0) out of the sum over k. The
kinetic part of the Hamiltonian is already bilinear so we only separate the k = 0 state
from the sum:

Hkin =
∑
k,α

εkαb
†
kαbkα

=
∑
α

[
ε0αN0α +

∑′

k

εkαb
†
kαbkα

]

=
∑
α

[
ε0αNα +

∑′

k

(εkα − ε0α)b†kαbkα

]
,

(B.5)

where we used the relation

N0α = Nα −
∑′

k

b†kαbkα . (B.6)

The interaction term is a little bit more complicated. We use the Bogoliubov approxi-
mation, Eq. (2.3), and only keep the bilinear terms. Taking into account the Kronecker
delta we are then left with the terms:

1. {ki} = 0

2. k1 = 0, k2 = k, k3 = 0, k4 = k

3. k1 = k, k2 = 0, k3 = k, k4 = 0

4. k1 = 0, k2 = k, k3 = k, k4 = 0

5. k1 = k, k2 = 0, k3 = 0, k4 = k

6. k1 = k, k2 = −k, k3 = 0, k4 = 0

7. k1 = 0, k2 = 0, k3 = k, k4 = −k

Inserting these allowed combinations for k into the interaction part of the Hamiltonian
leads to
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Hint =
1

2N

∑
αβ

Uαβ
∑
k1...k4

b†k1α
b†k2β

bk3β
bk4α

δk1+k2,k3+k4

=
1

2N

∑
αβ

Uαβ

{
N0αN0β +

∑′

k

[
N0αb

†
kβbkβ +N0βb

†
kαbkα+

√
N0αN0β

(
b†kβbkα + b†kαbkβ + bkβb−kα + b†kαb

†
−kβ

)]}

=
NANB

N
UAB +

∑
α

(
N2
α

2N
Uα

)
+
∑′

k

{
√
nAnB UAB

(
b†kAbkB + b†kBbkA+

bkBb−kA + b†kAb
†
−kB

)
+
∑
α

[nα
2
Uα

(
2b†kαbkα + bkαb−kα + b†kαb

†
−kα

)]}
.

(B.7)

For the last equality we used relation (B.6) and only kept the parts bilinear in the
creation/annihilation operators. H = Hkin+Hint now directly leads to the Hamiltonian
given by Eq. (2.4).

B.3 Expansion of the excitation spectrum

The aim of this Appendix is to find an expression for the free energy, Eq. (2.19), up to
bilinear order in the superfluid velocities by expanding Ekσ. Under the transformation
given in Eq. (2.22), the matrixMk adopts the form

Mk =


EAk − s

A
k FAB FA FAB

FAB EBk − s
B
k FAB FB

FA FAB EAk + sAk FAB
FAB FB FAB EBk + sBk

 , (B.8)

where sαk = mαvsα · ∇kε
α
k, Fα = nαUα, FAB =

√
nAnB UAB, E

α
k = εαk + Fα and

εαk = εkα − ε0α. Furthermore we made use of the fact that Eαk = Eα−k and sαk = −sα−k
(because the nabla operator is linear in k). The characteristic polynomial which defines
Ekσ is given by

|Mkσ3 − Ek14| = 0. (B.9)

As a next step we expand the characteristic polynomial in powers of sαk, using the
notation

Ek = E0
k + E1

k + E2
k +O([sαk]2), (B.10)

where the superscript denotes the order in sαk and order two means bilinear. The
resulting equation in zeroth order leads to the excitation spectrum in the absence of
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superfluid velocities, Eq. (2.16). The terms linear in sαk result in

E1
kσ =

εBk

(
εBk + 2FB

)
− εAk

(
εAk + 2FA

)
− σ

[(
E0
k+

)2
+
(
E0
k−

)2
]

2σ

[(
E0
k+

)2
+
(
E0
k−

)2
] sAk +

[
A↔ B

]
,

(B.11)
and the bilinear part of the spectrum reads

E2
kσ =


(
E0
k+

)2
−
(
E0
k−

)2

E0
kσ

− 4σE0
kσ

 4F 2
ABε

A
k ε

B
k[(

E0
k+

)2
−
(
E0
k−

)2
]3 s

A
k s

B
k . (B.12)

All linear terms in sαk cancel under the sum of Eq. (2.19) because sαk is an odd function
of k. Additionally all the terms independent of sαk are comprised by the F0 term. We
therefore only have to consider terms bilinear in the superfluid velocities. Inserting
Eq. (B.12) in the free energy, we obtain

FT=0 = F0 + 2
∑′

k

F 2
ABε

A
k ε

B
k

E0
k+E

0
k−

[
E0
k+ + E0

k−

]3 s
A
k s

B
k +O([sαk]2). (B.13)

If we assume that the the two velocities are parallel to each other (e.g., in the direction
of one of the lattice vectors), we can use sαk = mα

(
∂kuε

α
k

)
vsα to rewrite the free energy

FT=0 = F0 + 2
∑′

k

mAmBF
2
ABε

A
k ε

B
k

E0
k+E

0
k−

[
E0
k+ + E0

k−

]3

(
∂kuε

A
k

)(
∂kuε

B
k

)
vsAvsB +O(v2

sα). (B.14)

Comparing this equation to Eq. (1.20), one can directly read off the superfluid-drag
coefficient given in Eq. (2.23).
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Appendix C

Numerical considerations

C.1 Discretization of the first Brillouin zone

In order to evaluate sums and integrals in k-space and to calculate the bandstruc-
tures, Fig. 3.1, the first Brillouin zone (BZ) of the respective lattice is represented by
a mesh of discrete points. For evaluating the directional derivative of the lowest band,
Fig. A.1 (b), points outside the BZ were included in the mesh in order to be able to
apply the symmetrized derivative at all relevant k-points

∂E(kx, ky)

∂kx
≈
E(kx + ∆k, ky)− E(kx −∆k, ky)

2∆k
. (C.1)

Discrete values of k imply boundary conditions in real space. Our discretization is
chosen to fill out the BZ in a uniform way and to exhibit the symmetry of the respective
lattice (see Fig. C.1 for the 3BTL). For the 3BTL, this does not correspond to the
quantization which is expected by applying periodic boundary conditions given by

kx
kL

=
3l

2
√
N
,

ky
kL

=

√
3

N

(
p− l

2

)
, l, p ∈ Z. (C.2)

For an infinitely large lattice, the mesh should become infinitely dense and all results
should be independent of the boundary conditions. By making our mesh sufficiently
dense and the volume we use for the integrals sufficiently large, we thus expect our
numerical results to give reasonable values. However, it may well be that our results
could be improved by creating a mesh which satisfies Eq. (C.2) and using a consistent
volume as “all space”.

C.2 Numerics and units

When doing numerical calculations, one obviously needs to work with unitless num-
bers. It is therefore important to keep track of the units, such that the output of the
calculation, a bare number, is interpreted correctly. In general, we express all energies
in units of the recoil energy of component A, all reciprocal-space vectors in units of
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Figure C.1: Discretization of the first BZ for the 3BTL. The mesh is chosen to have a
homogeneous density and to respect the symmetry of the optical lattice.

the magnitude of the laser wave vector kL and all real-space vectors in units of its
wavelength λL.

C.2.1 Wannier functions

Using Eqs. (3.2, 3.12), the Wannier function centered at the origin can be written as

W (r) =
1√
VN

∑
k

eik·ruk(r). (C.3)

A volume that is consistent with there being N allowed k values is

V = NVWS, (C.4)

where VWS is the volume of the Wigner-Seitz cell. For definiteness lets consider the
3BTL, where

VWS =
2

3
√

3
λ2
L,

⇒W (r) =
1

λLN

√
3
√

3

2

∑
k

eik·ruk(r).

(C.5)

Since one usually does not want to define λL at this stage, the quantity that is calculated
numerically is W (r) · λL (that is why the absolute square of the Wannier functions in
Fig. 3.2 is given in units of λ−2

L ).
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C.2.2 Integrals

When evaluating integrals numerically, the integration over some volume is replaced
by a discrete sum ∫

V
dx dy →

∑
#

∆x∆y, (C.6)

where # is the number of summands. Again choosing the volume of integration to be
N times the Wigner-Seitz cell, we replace the finite element ∆x∆y and obtain

∆x∆y =
V
#

=
NVWS

#
,

⇒
∫
V
dx dy → NVWS

#

∑
#

.
(C.7)

Since the Wigner-Seitz cell is proportional to λ2
L for all lattices, we always divide

the integral by this factor before evaluating it. When performing an integration over
the absolute value squared of a Wannier function, the factors λL cancel out and the
result does not depend on the laser wavelength. However, for the Hubbard-interaction
parameters, where Wannier functions to the power of four are involved, Eq. (1.39), the
result is proportional to λ2

L.

C.2.3 Derivatives

When evaluating the numerical derivative, Eq. (C.1), we want to express kx, ky and
∆k all in units of kL. Since the energy only depends on k/kL [cf. Eqs. (A.5, A.11,
A.15)], this only matters for the denominator and implies that we have to multiply the
derivative with kL before evaluating it if we do not want to specify kL at this stage.

C.3 From component A to component B

For the numerical calculations, we want to express all the quantities in terms of the
recoil energy of component A to have dimensionless quantities

EAR =
k2
L

2mA
, EBR = EAR

mA

mB
. (C.8)

If component A experiences the relative potential V0/E
A
R , component B therefore feels

the relative potential V0/E
A
R ×mB/mA.

Examining its matrix elements, Eqs. (3.10, A.5, A.11, A.15), it can easily be verified
that the single-particle Hamiltonian for all the lattices can be written as the recoil
energy times an operator which only depends on the ratio V0/ER

H(V0, ER,k) = ER · H̃(V0/ER,k). (C.9)
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The eigenvalues of H are thus just the eigenvalues of H̃ times ER, while the eigenstates
of the two operators are the same. This leads to the following relations between the
physical quantities and the numerically obtained ones

εAk

EAR
= ε̃k

(
V0

E
A
R

)
,

εBk

EAR
=
mA

mB
ε̃k

(
mB
mA

V0

E
A
R

)
,

WA = W̃
(
V0

E
A
R

)
, WB = W̃

(
mB
mA

V0

E
A
R

)
,

(C.10)

where the quantities with a tilde are calculated using eigenvalues and eigenstates of H̃
and the arguments in brackets correspond to the variable V0/ER in Eq. (C.9) which
should be used when solving H̃.
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Appendix D

The quasi two-dimensional system

Imposing two-dimensionality by a deep one-dimensional optical lattice, as explained in
the text, has an influence on both the bandstructure and the Hubbard-interaction pa-
rameters when going from the three-dimensional microscopic Hamiltonian, Eq. (1.33),
to the two-dimensional lattice representation, Eq. (1.38).

The single particle Hamiltonian in three-dimensions is given by

H3D
1 = H1 −

1

2m

∂2

∂z2 + Vz sin2(kLz), (D.1)

where H1 is the single particle Hamiltonian in two dimensions, Eq. (3.1). Since the
z-dependent terms of this Hamiltonian are separated from the r = (x, y)-dependent
terms, its eigenfunctions can be written as products and its eigenenergies as sums
(omitting the band index)

Ψk,kz(r, z) = Ψk(r)Ψkz
(z),

εk,kz = εk + εkz .
(D.2)

Because the dynamics in the z-direction are frozen, this leads to a constant offset in
the bandstructure εkz=0 which in general depends on the component mass. However,
since the spectrum of the quasiparticles only depends on εk,0 = εk,0 − ε0,0 = εk, this
only affects the ground state energy and has no influence on the superfluid drag.

Equation (D.2) implies that also the Wannier functions can be written as a product,
which leads to a modification of the Hubbard-interaction parameters as discussed in
the text [cf. Eq. (3.17)].
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Appendix E

Introducing the superfluid velocity
via the order parameter

Fisher et al. [16] introduced a finite superfluid velocity by twisting the boundary con-
ditions of the order parameter. It has not become completely clear to us how this is
related to twisting the boundary conditions of the many-body wavefunction. When
defining the order parameter through the single-particle wavefunction of Eq. (1.3), the
two approaches are clearly not equivalent in the case of a finite depletion of the con-
densate. This can be illustrated for the simplified case of a two particle system with a
one particle “condensate” and depletion. The “condensed” particle occupies the single-
particle wavefunction which defines the order parameter while the remaining particle
is in the state χ1 which fulfills single valued boundary conditions

ψ2(r1, r2) ∝ [Ψ(r1)χ1(r2) + χ1(r1)Ψ(r2)] ,

⇒ ψ2(r1 + Lû, r2) ∝
[
e−i∆ϕΨ(r1)χ1(r2) + χ1(r1)Ψ(r2)

]
.

(E.1)

If the order parameter is defined through the expectation value of the boson annihilation
operator and if one expresses this operator in terms of a density and a phase operator
[41], denoted here by a hat,

ψ(r) = eiφ̂(r)
√
n̂(r), (E.2)

then twisting the boundary conditions of the order parameter twists the boundary
conditions of the bosonic field operators and therefore of every single-particle state. In
this case a twist in the boundary conditions of the order parameter corresponds to the
same effect on the many-body wavefunction ψN . Note that the same does not hold for
the more common definition

ψ(r) = Ψ(r) + δψ̂(r), (E.3)

where δψ̂(r) is the operator for the fluctuations of the bose field operator around a
mean value Ψ(r).
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