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Introduction

Clocks keep track of the passage of time by counting recurring physical events, such as the
revolutions of Earth or the swings of a pendulum [1]. Using atomic transitions as frequency
references, current state-of-the-art optical atomic clocks are capable of measuring time at an
uncertainty of a fraction of a second over the entire age of the universe [2, 3]. This exceeds
the precision with which we can determine any other physical quantity [1]. As such, these
devices allow for significant advancements at other frontiers of science, such as in the search
for variations in fundamental constants [4], or in the detection of gravitational waves [5].

The transition frequencies at the heart of atomic clocks are governed solely by quantum
theory, which makes them ideal frequency references. Despite this, the role of time itself in
quantum theory is still not well understood. Whereas other physical quantities, such as po-
sition and momentum, can be assigned a Hermitian operator, it is not possible to rigorously
define an analogous observable for time [6, 7]. Consequently, time remains a parameter that
appears in dynamical equations of motions that needs to be measured indirectly. As alluded to
above, the act of observing and quantifying the passage of time is fundamentally linked to the
usage of clocks as reference systems. Thus, fundamental questions about time and the act of
timekeeping can be addressed through the study of quantum systems that serve as clocks. By
keeping track of measurable quantities during the evolution of such systems, which is governed
by a time parameter t, allows for the latter to be estimated [8–11].

Ticking clocks provide information about the flow of time in the form of discrete “ticking”
events [12–17]. Importantly, ticking clocks emit their ticks to the outside world – its envi-
ronment – such that they are accessible to a potential observer. This necessitates that any
quantum system which models a ticking clock must be open and interact with its environment
because the unitary dynamics of a closed quantum system would not allow for a uni-directional
flow of information that breaks time-reversal symmetry. As such, any ticking clock must be
an open quantum system that displays irreversible dynamics. From a thermodynamic point
of view, this provides a connection between the task of timekeeping and the second law of
thermodynamics, which associates a net production of (irreversible) entropy with irreversible
processes. In the 18th century, the question of the maximal efficiency with which one can con-
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vert heat to work arose. Similarly, one can ask whether thermodynamics limits the accuracy
with which we can measure time.

This question has been the topic of several recent works [11, 18–20]. These works find
that there exists a fundamental connection between the accuracy of ticking clocks and their
irreversible entropy production or energy dissipation. In particular, they find that a larger
accuracy requires a larger entropy production and energy dissipation. This is in agreement
with a large class of inequalities known as thermodynamic uncertainty relations (TURs) in
non-equilibrium and stochastic thermodynamics [21, 22]. These TURs state that the accuracy
(the ratio of mean to variance) with which currents can be measured is bounded from above
by quantities that serve as a measure of thermodynamic cost, such as the entropy production.
Examples of such currents are the electric current flowing through a resistor or the stream
of particles flowing through a molecular motor. Recently, significant effort has been made to
formulate TURs for general open quantum systems and go beyond the framework of thermo-
dynamics [23, 24]. Ultimately, such relations aim to quantify the notion that the generation of
a highly accurate signal requires a large amount of resources, in particular, highly irreversible
dynamics.

In this work, we try to explore the relation between the accuracy and entropy production
per tick of ticking clocks. In contrast to previous works, we go beyond the thermodynamic
setting and instead adopt an information-theoretic perspective: a ticking clock is a quantum
system that emits temporal information to its outside [14]. We thus raise the question of
whether the theory of quantum information imposes any constraints on the relation between
the entropy production per tick of a ticking clock and its accuracy. Here, the entropy produc-
tion per tick is not thermodynamic in nature. Instead, it is an information-theoretic quantity
that measures the exchange of information of the clock with its environment during each tick.
Because this information transfer can be pinpointed as the fundamental origin of irreversibility
of the clock’s dynamics, the entropy production per tick of a clock also serves as a measure
for its irreversibility.

We rely on a ticking clock model which has been proposed recently and can be derived from
a set of axiomatic principles. This model will be introduced in Chapter I. Having established
a fundamental framework, we face the task of defining an appropriate measure for the entropy
production per tick of a ticking clock in Chapter II. To this end, we first review previous
notions of entropy production in thermodynamic ticking clocks and in general open quantum
systems. Eventually, we motivate an expression for the entropy production per tick of a ticking
clock from first principles. In Chapter III, we finally investigate the relationship between the
accuracy and our measure for the entropy production per tick of a ticking clock.



Chapter I

Ticking clock model

When investigating the task of timekeeping using ticking clocks theoretically and from an
information-theoretic perspective, it is crucial to devise an appropriate model that captures
the key characteristics of such devices. In this work, we rely on the ticking clock model intro-
duced in Ref. [16] motivated by axiomatic principles. This model both generalizes and refines
previous ticking clock models [12, 14]. In this chapter, we will introduce this ticking clock
model following Ref. [16].

First, we remind the reader of the difference between ticking clocks and other timekeeping
devices, such as stopwatches. A timekeeping device designed to measure the elapsed time
between events is considered a stopwatch. In particular, such a device will require an exter-
nal start and stop signal and thus relies on an observer who actively retrieves the temporal
information the device provides, e.g., by performing a measurement. In contrast, we think of
a ticking clock as a timekeeping device that outputs information about time in the form of
individual events, referred to as ticks, that occur at approximately regular intervals. The clock
outputs this information in an autonomous fashion which does not require any external signal.
Consider, for example, a typical wall clock. The internal mechanism of a wall clock is designed
to output ticks independent of the presence or absence of an external observer. Moreover, the
information is provided in a passive and continuous fashion, either visually through its clock
face or via its ticking sound. Importantly, the process of information retrieval, i.e., observing
whether a tick occurred or not, does not disturb the dynamics of the clock. Note that such
fundamental differences between these two types of devices should be reflected in their math-
ematical description. As such, our ticking clock model is to be distinguished from a stopwatch
model.

Here, we model a clock to be composed of two distinct parts: a clockwork (C) and a register
(R). The clockwork is referred to as the part of the clock that provides its timing – the internal
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parts of a clock which trigger a tick through their dynamics. The information transfer between
the clockwork and the observer is mediated by the register. The register’s state provides the
observer with information about the ticks of the clock and undergoes changes based on the
clockwork’s state. Meaning, the coupling of the clockwork to the register results in a change in
the state of the register at each tick. In fact, it is the change in the state of the register which
constitutes a tick. Importantly, the state of the register can be continuously measured by an
observer without affecting the dynamics of the clockwork and thus its ticks. Taking a wall
clock as an example of a typical ticking clock, we can identify its oscillator as the clockwork
and the clock face as the register, see Fig. I.1.

Figure I.1: Illustration of a wall clock in the view of our ticking clock model. The wall
clock consists of an oscillator that takes on the role of a clockwork (C) and a clock face that
serves as a register (R). The clock provides the observer information about time in the form
of a continuous stream of “tick” and “no-tick” events, where no-tick events correspond to the
silence in between the ticks [14]. The clockwork provides the timing for the clock’s ticks which
are themselves recorded in the register. These dynamics can be described by a set of quantum
channels (Mt,k

C→CR)t≥0, k∈(0,NT) which map an initial state of the clockwork that is paired with
a fixed state |k〉R of the register to a state of the clockwork and register a time interval t later
(here NT = 11).

The clock is modeled by a quantum system living in a bipartite Hilbert space HC ⊗HR,
where d = dim(HC) and NT + 1 = dim(HR) denote the dimensions of the clockwork and reg-
ister Hilbert spaces, respectively. We choose the NT + 1 orthonormal states in HR denoted by
{|0〉R, |1〉R, . . . , |NT〉R} to represent no tick, 1 tick,. . . , and NT ticks, respectively. Thus, these
register states convey the information about time provided by the clock. The register is con-
sidered to be “classical”, such that at every stage of the dynamics of the clock no coherences
establish in the chosen basis. This is motivated by the fact that the temporal information
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emitted by a clock is typically classical. The classicality of the register then guarantees that
only classical information can be obtained by measuring it. Moreover, this property allows for
the register to be continuously measured in the chosen basis without disturbing the clockwork
dynamics, because there exist no coherences which could be destroyed by a measurement to
begin with. Additionally, we consider two distinct types of registers: periodic registers and
cut-off registers. The state of a cut-off register will keep advancing as more ticks are observed
until it reaches the state |NT〉R, that is, until NT ticks are observed. After that point, the
clockwork dynamics become decoupled from the register in the sense that no further change
in the register can be inflicted, i.e., the register remains in the state |NT〉R. For a periodic
register, having reached the state |NT〉R the next tick will trigger the register to change back to
the state |0〉R. This is akin to the clock face of a typical wall clock repeating itself every 12 or
24 hours. As such, by looking at the state of the register one can only determine the number of
ticks of the clock up to multiples of its period (|n〉R = |n mod. (NT + 1)〉R ∀n ∈ Z). Neverthe-
less, an observer can still keep track of the ticks in real-time and thereby circumvent this issue.

The clock – comprised of clockwork and register – is a (generally) open quantum system. As
such, changes in its state are most generally described by completely-positive trace-preserving
(CPTP) maps [25, 26]. In particular, these CPTP maps governing the evolution of the clock
form a family parametrized by the coordinate time t ∈ R≥0:

Mt
CR→CR(·) : ρ0

CR → ρCR(t), (I.1)

where we introduce the short-hand notation

Mt,k
C→CR(·) =Mt

CR→CR((·)⊗ |k〉〈k|R) : ρ0
C → ρCR(t), (I.2)

with k = 0, 1, . . . , NT. Here, ρC, ρR, and ρCR denote arbitrary states of the clockwork, register,
and the clock (both clockwork and register), respectively. The ticking clock channel in Eq. (I.1)
specifies the evolution from an initial state of the clock, here w.l.o.g. at coordinate time t = 0,
to the state of the clock at coordinate time t. The coordinate time t serves as an (unknown)
bookkeeping parameter that increases as time passes. For these maps to govern the evolution
of a ticking clock, we will require them to satisfy a set of properties. In the following, we will
state the conditions we impose on the dynamical maps (Mt

CR→CR)t≥0 as axioms. To start,
we restrict ourselves to the particular case of ticking clocks with periodic registers.

Axiom 1 (Uniform continuity condition).

M0
CR→CR = ICR, (I.3)

lim
t→0+

‖Mt
CR→CR − ICR‖ = 0. (I.4)
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Axiom 1 ensures that the clock undergoes no evolution if no time passes and that any
change occurring in the clockwork and register happens at a finite speed.

Axiom 2 (Self-timing condition).

Mt1+t2
CR→CR =Mt1+t2

CR→CR =Mt2
CR→CR ◦M

t1
CR→CR ∀t1, t2 ≥ 0, (I.5)

where ◦ denotes the composition of quantum channels.

Axiom 2 ensures that the ticking clock channel is Markovian. Equation (I.5) is also known
as the semigroup property or divisibility condition. It ensures that the clockwork is self-timing,
meaning that no other external system can act as a source of timing. In particular, if Axiom 2
was not satisfied then the ticking clock channel to be applied in each instance would depend
on the particular value of the coordinate time itself. This would, in turn, require an additional
system that serves as a reference for time.

Axiom 3 (Leading order condition). Given a register starting in the state |k〉〈k|R, denote the
probability that the lth tick has already occurred at coordinate time t but not the (l + 1)th tick
as

p
(k)
l (t) = tr

[
Mt,k

C→CR (ρC) |l〉〈l|R
]
. (I.6)

Then

lim
t→0+

NT∑
l=0,l /∈{k,f(k)}

p
(k)
l (t)

p
(k)
f(k)(t)

= 0 ∀ρC, (I.7)

where f(k) = (k + 1) mod. (NT + 1).

Axiom 3 ensures that the clock cannot skip a tick. That is, if the clock ticked k times at
some coordinate time t and the (k+ 1)th tick occurs at a later coordinate time t′ > t, then in
the time interval between the two ticks the probability of observing the (k+ 2)th tick or later
ticks vanishes.

Axiom 4 (Time invariance symmetry condition).

trR

[
Mt,k

C→CR (ρC) |k + l〉〈k + l|R
]

(I.8)

is independent of k ∀t, where l ∈ Z such that k + l = 0, 1, . . . , NT.

Axiom 4 ensures that the clockwork dynamics are invariant under translation of the input
and output register states by the same amount. In particular, such a property is reasonable to
expect from an ordinary ticking clock: the probability that a ticking clock ticked after evolving
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for a time t should not depend on the particular state its register was initialized in.

As stated previously, Axioms 1–4 represent the necessary conditions that a clock with a
periodic register should fulfill. The reason for stating these axioms for ticking clocks with a
periodic register is due to the presence of periodic boundary conditions which makes it easier
to state the necessary conditions. One could, however, also think of formulating analogous
conditions for ticking clocks with a cut-off register. Instead, we consider the following axiom
which states the necessary conditions for a clock with a cut-off register based on Axioms 1–4
in a compact form.

Axiom 5 (Cut-off register condition). For every ticking clock channel with a cut-off register
Mt

CR→CR there exists a ticking clock channel with a periodic register M̄t
CR→CR which satisfies

Axioms 1–4 such that in the limit t→ 0+:

Mt,k
C→CR (ρC) = M̄t,k

C→CR (ρC) + o(t), (I.9)

for all k = 0, 1, . . . , NT − 1, and

trC

[
Mt,NT

C→CR (ρC)
]

= |NT〉〈NT|R + o(t) ∀ρC, (I.10)

where o(·) denotes little-o notation.

Axiom 5 captures the fact that ticking clocks with a cut-off register evolve similarly to
ticking clocks with a periodic register. The crucial difference is that when the last state of
the register |NT〉R is reached, no further change within the register can take place in case of
a cut-off register, i.e., these clocks stop ticking.

Having stated all five axioms governing the dynamics of ticking clocks, it is worth pointing
out that one could also consider other ticking clock models with altered versions of the present
axioms. For example, one may consider a ticking clock model which allows for ticking clocks
that do not fulfill the time variance symmetry condition stated in Axiom 4. That being said,
we believe that the present choice of axioms constitutes a reasonable set of properties that
characterize “accurate” ticking clocks.

Definition 1 (Ticking clock). A ticking clock is a pair (ρ0
CR, (Mt

CR→CR)t≥0), where ρ0
CR is

the state of the clockwork and register at coordinate time t = 0 and the ticking clock channels
Mt

CR→CR governing their dynamics satisfy Axioms 1–4 in case of a periodic register and
Axioms 2 and 5 in case of a cut-off register.

For ticking clocks with a cut-off register no further change in the register can happen once
it reached its last state |NT〉R, i.e., the clock stops ticking. Therefore, two ticking clocks with
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a cut-off register which only differ in the dynamics of their clockwork after that point exhibit
identical ticking statistics and can thus, for all practical means, be considered identical. This
is captured by the following definition.

Definition 2 (Clockwork equivalence). Two ticking clocks with a cut-off register are said
to be clockwork equivalent if their underlying ticking clock channels with a periodic register
M̄t

CR→CR are identical but the state of their clockwork when the input register state is |NT〉R,
given by

trR

[
Mt,NT

C→CR (ρC)
]
, (I.11)

differ for some t ≥ 0 and choices of ρC.

Now that we have established the notion of a ticking clock we can revisit the requirement
of a classical register. The condition that no coherences should develop with respect to the
chosen basis of the register {|0〉R, |1〉R, . . . , |NT〉R} requires the dynamics of the clock to be of
the following form:

Mt,k
C→CR

(
ρ0

C

)
=

NT∑
n=0

ρ̃
(n;k)
C (t)⊗ |n〉〈n|R, (I.12)

for all k = 0, 1, . . . , NT, t ≥ 0, and initial clockwork states ρ0
C, where ρ̃

(n;k)
C (t) denote arbitrary

subnormalized states of the clockwork. In the following, subnormalized quantum states will
generally be denoted by ρ̃. This is equivalent to the requirement that Mt

C→CR

(
ρ0

C

)
must

be block-diagonal in the chosen basis of the register {|0〉R, |1〉R, . . . , |NT〉R} for all t ≥ 0.
Clearly, with dynamics of the form Eq. (I.12) any measurement of the state of the register in
the basis {|0〉R, |1〉R, . . . , |NT〉R} will leave the state of the clock invariant. Thus, Eq. (I.12)
properly captures the requirement that the register of a clock should be able to be continuously
monitored without affecting its dynamics.

Definition 3 (Classical register). A ticking clock has a classical register if its ticking clock
channelsMt,k

C→CR are of the form stated in Eq. (I.12) for all k = 0, 1, . . . , NT and t ≥ 0.

As we will see later in this work, it will be useful to distinguish between “classical” and
“quantum” ticking clocks. We define a classical ticking clock as follows.

Definition 4 (Classical ticking clock). A ticking clock is considered classical if there exists
a preferred orthonormal basis {|i〉C}d−1

i=0 of HC for which the clockwork remains incoherent
during its dynamics:

trR

[
Mt

CR→CR

(
ρ0

CR

)]
=
∑
i

pi(t)|i〉〈i|C, ∀t ≥ 0. (I.13)

On the contrary, a quantum ticking clock will be any ticking clock that is not classi-
cal. Intuitively, a classical ticking clock can arise from a general quantum ticking clock if its
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internal state decoheres quickly with respect to the time scale on which the ticks are generated.

The definition of a ticking clock and the conditions its dynamics need to fulfill allow us to
give an intuitive representation for the allowed ticking clock channelsMt

CR→CR.

Proposition 1 (Ticking clock representation). The pair (ρ0
C, (Mt

CR→CR)t≥0) forms a ticking
clock (Def. 1) with a classical register (Def. 3) up to clockwork equivalence (Def. 2) if and
only if there exists a Hermitian operator H and two finite sequences of operators {Lj}NL

j=1, and
{Jj}NL

j=1, which are all independent of t, such that for all t ≥ 0 and NT ∈ N>0,

Mt
CR→CR(·) = eLCRt(·), (I.14)

LCR(·) = −i[H̄, (·)] +

NL∑
j=1

L̄j(·)L̄
†
j −

1

2
{L̄†jL̄j , (·)}+

NL∑
j=1

J̄
(l)
j (·)J̄ (l)†

j − 1

2
{J̄ (l)†

j J̄
(l)
j , (·)}, (I.15)

where H̄ = H ⊗ 1R, L̄j = Lj ⊗ 1R, J̄
(l)
j = J

(l)
j ⊗O

(l)
R , with

O
(l)
R = |1〉〈0|R + |2〉〈1|R + · · ·+ |NT〉〈NT − 1|R + l|0〉〈NT|R. (I.16)

Here, l = 0 in the case of a cut-off register and l = 1 for a periodic register. The register is
initialized in the state |0〉〈0|R such that ρ0

CR = ρ0
C ⊗ |0〉〈0|R.

In Proposition 1 we do not place any restrictions on NL ∈ N>0. Using Choi’s theorem [27],
one can show that w.l.o.g. NL = d2 − 1 [16]. Meaning, for any choice of {Lj}NL

j=1 and {Jj}NL
j=1

with NL ∈ N>0 one can find a new set of operators {L′j}
d2−1
j=1 and {J ′j}

d2−1
j=1 which result in

the same dynamics. In the following, we will refer to the set of operators {Lj} and {Jj} as
no-tick and tick operators, respectively. This nomenclature is motivated by the fact that the
tick operators are associated with the operator O(l)

R which advances the register state, i.e.,
causes ticks to be generated. On the contrary, the no-tick operators appear paired with the
identity operator 1R and thus do not cause any change in the register.

Note that the coupling of the clockwork to the register is such that the clock cannot tick
“backward” and no ticks can be skipped. This is intuitive if one associates the register with
an observer that keeps track of the ticks of the clock by counting recurring “tick” events. This
observer simply chooses not to associate backward ticks with any particular events, such as
the reverse processes of the tick events. To illustrate this, consider a typical pendulum clock
as an example. The observer has the freedom to associate any particular event with a tick:
one observer may identify a single swing of the pendulum from left to right as a tick and not
count swings from right to left as backward ticks, whereas another may identify swings of the
pendulum from left to right as forward ticks and swings from right to left as backward ticks.
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Both observers rely on the same clockwork but use different counting strategies to obtain
information about time in the form of ticks from the occurrence of certain events associated
with the clockwork. Importantly, by adopting the perspective of the former observer we do
not disregard the existence of the reverse process of the tick event – the swing from right to
left – but simply choose not to associate a backward tick with it. Similarly, the observer we
consider does not skip or miss any tick events, but continuously monitors the clockwork. Here,
w.l.o.g. we associate with any valid clockwork an observer with the above-described counting
scheme, i.e., a corresponding register.

To gain a better understanding of the dynamics of a ticking clock, it is particularly useful
to look at the form of the ticking clock channelMδt,k

C→CR (·) for a small time step δt from which
the dynamics for arbitrary coordinate times follows.

Lemma 1 (Implicit ticking clock representation). The pair (ρ0
C, (Mt

CR→CR)t≥0) forms a tick-
ing clock (Def. 1) with a classical register (Def. 3) up to clockwork equivalence (Def. 2) if and
only if there exists a Hermitian operator H and two finite sequences of operators {Lj}NL

j=1, and
{Jj}NL

j=1, which are all independent of t, k such that for all t ≥ 0 and k = 0, 1, . . . , NT,

Mt,k
C→CR

(
ρ0

C

)
= lim

N→∞,N∈N
(Mt/N,k

CR→CR)◦(N−1) ◦Mt/N,k
C→CR

(
ρ0

C

)
, (I.17)

where

Mδt,k
C→CR (·) = (·)⊗|k〉〈k|R+δtC(1,k) (·)⊗|k〉〈k|R+δtC(2,k) (·)⊗|k+1〉〈k+1|R+F δt,kC→CR (·) , (I.18)

with

C(1,k) (·) = −i [H, (·)]−
NL∑
i=1

1

2
{L†iLi + θ(k)J†i Ji , (·)}+ Li (·)L†i , (I.19)

C(2,k) (·) = θ(k)

NL∑
i=1

Ji (·) J†i , (I.20)

and F δt,kC→CR (ρC) = o(δt) entry-wise. For ticking clocks with a periodic register θ(k) = 1 for
all k, whereas θ(k) = 1 − δk,NT

in the cut-off register case, where δ·,· denotes the Kronecker
delta. The register is initialized in the state |0〉〈0|R such that ρ0

CR = ρ0
C ⊗ |0〉〈0|R.

Similar to Proposition 1, we can find a representation for the dynamics of the clockwork
itself.

Proposition 2 (Clockwork representation). Given a ticking clock (Def. 1) with a classical
periodic register (Def. 3) which is written in the representation of Proposition 1, its clockwork
channel defined as

Mt
C→C(·) = trR

[
Mt

CR→CR((·)⊗ |k〉〈k|R)
]

(I.21)
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is independent of k for all t ≥ 0 and can be written as

Mt
C→C(·) = eLCt(·), (I.22)

where LC is of the form given in Eq. (I.15) with H̄ → H, L̄j → Lj and J̄
(l)
j → Jj. For

a ticking clock with a classical cut-off register written in the representation of Proposition 1,
there exists a clock that is clockwork equivalent (Def. 2), such that its clockwork admits the
representation stated above.

While the detailed proofs of Proposition 1 and 2, as well as Lemma 1 can be found in
Ref. [16], we will review the underlying principles in the following. Any one-parameter family
of CPTP maps (Mt)t≥0 which is uniformly continuous (Axiom 1) and satisfies the semigroup
property (Axiom 2) form a so-called (quantum) dynamical semigroup [28]. Based on these
properties, it is clear that the description of the evolution in terms of the entire family of
dynamical maps is highly redundant. They allow us to write

Mt = lim
N→∞, N∈N

(Mt/N )◦N ∀t ≥ 0. (I.23)

Thus, it suffices to specify the dynamical map for an arbitrarily small time step. One can
prove that the maps of a dynamical semigroup can be written as [29]

Mt = eLt =

∞∑
n=0

tn
L◦n

n!
, (I.24)

where L is the generator of the dynamical semigroup. As such, the evolution is described by
a first-order differential equation

d

dt
ρ(t) = Lρ(t)←→ ρ(t) = eLtρ(0), (I.25)

which is called the quantum Markovian master equation [30, 31].

One can show that any generator L of a quantum dynamical semigroup admits the form [30,
31]:

L(·) = −i[H, (·)] +

d2−1∑
i=1

Ai(·)A†i −
1

2
{A†iAi, (·)}, (I.26)

whereH is a Hermitian operator and {Ai}d
2−1
i=1 are a set of arbitrary operators with d = dim(H)

being the dimension of the relevant Hilbert space H. When written in the form given in Equa-
tion (I.26), the so-called Lindlad form, the generator L is typically referred to as a Lindbladian,
where the operators {Ai} are called Lindblad or jump operators [26]. Moreover, the quan-
tum Markovian master equation is then referred to as a Lindblad master equation. Looking
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back at the representations of the ticking clock and clockwork given in Proposition 1 and 2,
respectively, we observe that in both cases the dynamics are governed by a Lindblad master
equation. In particular, any Lindblad master equation can serve as a valid description of the
dynamics of the clockwork itself. As such, a priori any general open quantum system whose
dynamics are described by a Lindblad master equation can serve as a clockwork. Note that
the Markovianity of its evolution is what justifies the identification of the clockwork as the
single source of timing for the clock. Moreover, the fact that the dynamics generated by a
Lindblad master equation are generally non-unitary and thus irreversible makes it clear that
the clockwork emits temporal information in the form of ticks in an irreversible fashion. We
see, on the other hand, that the clock itself consisting of clockwork and register only admits
a description in terms of a special class of Lindblad master equations (see Proposition 1).
Because Axioms 1 and 2 alone allow us to describe the evolution of the clock by a general
Lindblad master equation, we can see this as a consequence of the conditions imposed in
Axioms 3,4, and 5, as well as Def. 3. These restrict the interaction between clockwork and
register, as well as the form of the register itself. Therefore, these are precisely the aspects of
a ticking clock that distinguish it from any ordinary open quantum system.

A Lindblad master equation represents the most general type of Markovian and time-
homogeneous master equation describing the evolution of open quantum systems [26]. It
turns out that the Lindblad master equation allows for an accurate description of many physical
processes which justifies the assumption of Markovianity beyond the simplicity of the resulting
dynamical equations [26, 30]. In fact, one can derive the Lindblad master equation from an
underlying unitary Hamiltonian evolution a total system comprised of system and environment,
where the environment simply constitutes those parts of the total system which we decide not
to model explicitly. More precisely, there are two known types of limits – the weak and singular
coupling limits – under which a Lindblad master equation can be derived from the interaction
of the system with an infinite dimensional environment via a time-independent Hamiltonian,
i.e., under which the assumption of Markovianity is met [26, 32]. In the weak-coupling limit,
one assumes that the interaction between the system and the environment is small. This results
in the degrees of freedom of the environment changing fast with respect to the system [31].
Conversely, in the singular coupling limit, one assumes that the system couples strongly to
its environment resulting in fast system variables. In the context of our ticking clock model,
this guarantees that any ticking clock can be realized via the inclusion of a large, macroscopic
environment such that the total system evolves according to a time-independent Hamiltonian.
This is crucial, as it shows that there exists a physical realization of any ticking clock that is
autonomous. An autonomous clock contains all necessary resources for it to run and there is
no external system that provides timing [12, 18]. Note that this environment must, however,
not necessarily be thermal. In fact, the question of what minimal resources are required to
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run a given ticking clock in an autonomous fashion is still open [16, 18].

I.1 Examples of ticking clocks

To gain a better intuition on the inner workings of a ticking clock and for later reference, we
discuss two examples explicitly in this section: the so-called ladder clock and the quasi-ideal
clock.

I.1.1 Ladder ticking clock

The “ladder ticking clock” is a classical ticking clock that has been proven to be the most
accurate classical ticking clock in Ref. [14] and was first considered in Ref. [13]. Choosing
some orthonormal basis {|j〉}dj=1 for the Hilbert space of the clockwork HC, the clock can be
represented as stated in Proposition 1 with the following choice of no-tick and tick operators:

Lj = |j + 1〉〈j|, Jj = 0, (I.27)

Ld = 0, Jd = |1〉〈d|, (I.28)

with NL = d and H = 0. The clock is initialized in the state ρ0
CR = |1〉〈1|C ⊗ |0〉〈0|R. Note

that the clockwork is initialized in a pure state and that the clock is a so-called reset clock.

Definition 5 (Reset ticking clock). A ticking clock (Def. 1) which admits a representation
given by Proposition 1 is considered a reset clock if

NL∑
j=1

Jj ρCJ
†
j ∝ ρ

0
C ∀ρC, (I.29)

where ρ0
C is the initial state of the clockwork.

Looking back at the implicit ticking clock representation given in Lemma 1, we have
C(2,k) (·) = θ(k)

∑NL
j=1 Jj (·) J†j as the dynamical map associated with the generation of a tick

in each infinitesimal time step. Thus, a reset clock corresponds to a ticking clock which maps
the clockwork back to its initial state in each tick. As we will see, this makes the dynamics
and tick statistics of such clocks particularly simple.

The working principle of the ladder ticking clock is illustrated in Fig. I.2. The evolution
of the clockwork is given by a (classical) stochastic biased random walk up a d-dimensional
ladder associated with the orthonormal basis {|i〉}di=1. Given that the clock is classical, the
clockwork ρC(t) remains diagonal in the basis {|i〉}di=1 at all times and can thus be represented
state vector ~vC(t) that contains its diagonal elements. In this notation, using the representation
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Figure I.2: Illustration of the working principle of the ladder ticking clock composed of a
clockwork (C) made of a d-dimensional ladder and a register (R) depicted as a (NT + 1)-
dimensional ladder. Transitions from the top of the ladder to its ground state trigger a tick
event which results in the advancement of the register’s state, whereas transitions within the
ladder constitute no-tick events. These dynamics are governed by a particular set of quantum
channels (Mt,k

C→CR)t≥0, k∈(0,NT).

given by Proposition 2 the Lindblad master equation governing the evolution of the clockwork
of the ladder clock can be rewritten as

d

dt
~vC(t) = P~vC(t), P =



−1 0 0 · · · 1

1 −1 0 · · · 0

0 1 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1


, (I.30)

where ~vC(0) = ~v0
C = (1, 0, . . . , 0)T and P is a transition rate matrix [33].

The dynamics specified in Eq. (I.30) can be interpreted as follows. At t = 0 the clockwork
starts in the ground state of the ladder |1〉C. In each time step the population can move
up the ladder, where only adjacent states of the ladder are coupled (with periodic boundary
conditions) and the rate at which population moves from state |k〉C → |(k + 1) mod. d〉C is
given by the population of the state |k〉C. The coupling of the clockwork to the register is
such that only the transitions from the most-upper state of the ladder to its ground state
|d〉C → |1〉C are coupled to an advancement of the register, i.e., the generation of a tick. This
can be seen from the fact that this transition is mediated by the tick operator, whereas all
other transitions within the clockwork are governed by the no-tick operators, see Eq. (I.27)



I.2 Accuracy of ticking clocks 15

and (I.28).

I.1.2 Quasi-ideal ticking clock

The “quasi-ideal ticking clock” [14, 15] is a highly-accurate quantum ticking clock. The clock
can be represented as stated in Proposition 1 with the following choice of tick and no-tick
operators

Lj = 0, Jj =
√

2Vj |Ψ〉〈θj |, (I.31)

with NL = d and an initial state ρ0
CR = |Ψ〉〈Ψ|C ⊗ |0〉〈0|R. The coefficient {Vj}d−1

j=0 follow a
distribution peaked near j = d−1. Note that this clock is also a reset clock with a pure initial
state of its clockwork. The Hamiltonian is given by a truncated harmonic oscillator with level
spacing w:

H =
d−1∑
n=0

nw|En〉〈En|. (I.32)

We denote the complementary basis to {|Ej〉}d−1
j=0 obtained by taking the discrete Fourier

transform as {|θj〉}d−1
j=0 , where

|θj〉 =
1√
d

d−1∑
n=0

e−2πinj/d|En〉. (I.33)

The initial state of the quasi-ideal clock is then given as a coherent complex Gaussian super-
position of Fourier basis states

|Ψ〉 =
∑

k∈Sd(k0)

Ae
π

σ20
(k−k0)2

e2πin0(k−k0)/d|θk〉, (I.34)

with Sd(k0) denoting a set of d consecutive integers all centered around k0 ∈ R, where k0

determines the mean position of the Gaussian and σ0 denotes its width. Choosing σ0 ≈ d then
yields an initial state which is well approximated by an energy eigenstate. Moreover, wn0 is
the mean energy of the initial state with n0 ∈ (0, d−1). The dynamics of the quasi-ideal clock
(with appropriate choices of its remaining parameters) are such that the complex Gaussian
starts off highly peaked around the state |θ0〉 at t = 0. Over time it shifts to a distribution
that is highly concentrated around the state |θd−1〉 which leads to a tick generation with high
probability, thereby resetting the clock.

I.2 Accuracy of ticking clocks

A crucial characteristic of any ticking clock is its accuracy. A priori one can consider many
different measures for the accuracy of a ticking clock [12–14]. However, all measures have in
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common that they are solely a function of measurement results obtained from the register.
As such, these measures are independent of the particular dynamics of the clockwork which
generated the corresponding ticks. A good way to assess the accuracy of a ticking clock is to
look at its so-called tick delay functions {τ (k)(t)}NT

k=1. Here, τ
(k)(t) denotes the delay function

of the kth tick: the probability that (k − 1) ticks occurred during the time interval [0, t) and
the kth tick occurs in the infinitesimal time interval [t, t+δt] is then given by τ (k)(t)δt, δt > 0.

The delay function of the kth tick can be computed as

τ (k)(t) = lim
δt→0+

tr
[
1C ⊗ |k〉〈k|R

(
Mδt,k−1

C→CR

(
ρ̃

(k−1)
C (t)

)
− ρ̃(k−1)

C (t)⊗ |k − 1〉〈k − 1|R
)]

δt
,

(I.35)
where

ρ̃
(k)
C (t) = trR

[
1C ⊗ |k〉〈k|RMt,0

C→CR

(
ρ0

C

)]
. (I.36)

Intuitively, an accurate clock will have tick delay functions with a small width. That is, the
delay functions of an ideal clock which we would describe as being infinitely accurate will be
given by Dirac delta distributions τ (k)(t) = δ(t− µk), where µk denotes the expected time at
which the kth tick occurs. In general, we compute the expected time µk and the variance σ2

k

of the kth tick as
µk =

∫ ∞
0

τ (k)(t)tdt, (I.37)

σ2
k =

∫ ∞
0

τ (k)(t)(t− µk)2dt. (I.38)

Note that the tick delay functions are normalized probability densities∫ ∞
0

τ (k)(t)dt = 1, (I.39)

for all k = 1, . . . , NT.

For the rest of this work, we will be concerned with the limit NT →∞ where the distinction
between cut-off registers and periodic registers becomes irrelevant. For brevity, we will refer
to these clocks as ticking clocks throughout this work if not stated otherwise. Note that at
finite memory, the accuracy of a ticking clock is generally dependent on whether the clock has
a periodic register or a cut-off register. The crucial property of clocks with periodic registers is
that the dynamics of the clockwork at times after the first tick has occurred are still relevant
for the first tick’s statistics, i.e., its accuracy but also other quantities such as its entropy (as
we will see later). This is because for a ticking clock with a periodic register, the first tick
statistics encompasses all ticks, labeled by k, for which 1 = k mod. NT. Note that the class
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of ticking clocks with a cut-off register encompasses the class of ticking clocks with a periodic
register given that the observer keeps track of the ticks in real-time and is thus not affected by
the periodic nature of the register. In particular, by restricting ourselves to this particular class
of registers the delay functions obtained for clocks in the ticking clock model presented here
are identical in how they are related to the dynamics of the clockwork as in previous works,
such as Refs. [14, 18]. Thus, we can make use of previous results on the accuracy of ticking
clocks, in particular Ref. [14]. Using the representation given in Lemma 1, the expression for
the tick delay function given in Eq. (I.35) then reduces to

τ (k)(t) = tr

∑
j

Jj ρ̃
(k−1)
C (t)J†j

 . (I.40)

As a measure of accuracy of the kth tick, we consider the quantity Rk = µ2
k/σ

2
k [14]. We

use this measure to compare the accuracy of different clocks:

• ticking clock A has the same accuracy as ticking clock B if and only ifRA
k = RB

k ∀k ∈ N>0,

• ticking clock A is strictly more accurate than ticking clock B if and only if RA
k > RB

k ∀k ∈
N>0,

• ticking clock A is more accurate than ticking clock B if and only if RA
k ≥ RB

k ∀k ∈ N>0

but the two clocks do not have the same accuracy.

Note that this measure is invariant under rescaling of coordinate time t → t/a, a > 0. This
captures the fact that the accuracy of a clock should be the same, irrespective of whether the
expected time at which the ticks occur is small or large. Moreover, the accuracy takes on
a simple form for reset clocks. Because reset clocks reset their clockwork to its initial state
after every tick, each tick event is independently and identically distributed. Thus, the delay
function of the kth tick is given by a convolution of k delay functions of the first tick

τ (k)(t) = (τ (1) ∗ τ (1) ∗ · · · ∗ τ (1))(t)︸ ︷︷ ︸
k times

∀k ∈ N>0. (I.41)

This yields
Rk = kR1 ∀k ∈ N>0, (I.42)

meaning that the accuracy of its later ticks can solely be expressed in terms of the accuracy
of the first tick. The proof for Eq. (I.41) and (I.42) can be found in Appendix B.1. This
has the intuitive interpretation that for reset clocks R1 corresponds to the number of ticks
that the clock generates on average before the next tick has a standard deviation σ1 equal to
the mean time between ticks µ1. Also note that in this case, 1/R1 corresponds to the Allan
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variance, an accuracy measure frequently used for clocks [34], with an observation period of µ1.

In Ref. [14] it has been shown that the maximal achievable accuracy for a classical ticking
clock with a d-dimensional clockwork is given by Rk = kd and can be achieved by the ladder
ticking clock (see Section I.1.1). Moreover, it was shown that there exists a quantum ticking
clock which achieves Rk = kR1 with R1 ≥ d2−ε + o(d2−ε) for any arbitrary ε > 0 in the large
d limit. This demonstrates a quantum-over-classical advantage in the task of timekeeping.
The quantum ticking clocks that achieve such accuracy are quasi-ideal ticking clocks (see
Section I.1.2) with carefully tuned parameters. In Ref. [17] it has been shown that this quantum
bound is essentially tight when considering ticking clocks that only tick once. Note that both
the ladder ticking clocks and quasi-ideal ticking clocks are reset clocks with an initial clockwork
state that is pure. It is intuitive that reset clocks are the optimal clocks in terms of accuracy
because they generate a sequence of independent and identically distributed tick events. The
accuracy of later ticks is then solely determined by the accuracy of the first tick R1.

I.3 Classical ticking clocks

It turns out to be useful to adopt an alternative notation for describing classical ticking clocks
(Def. 4) which we hinted at in our discussion of the ladder ticking clock (see Section I.1.1).
For a classical ticking clock, the density operator of the clockwork is guaranteed to remain
incoherent throughout its dynamics. Thus, it suffices to describe the clockwork by a state
vector ~vC ∈ Rd whose entries correspond to the diagonal entries of its density matrix in the
preferred basis

ρC =

d−1∑
i=0

vC,i|i〉〈i|C ←→ ~vC =

d−1∑
i=0

vC,i~ei, (I.43)

with
∑

i vC,i = 1, vC,i ≥ 0 ∀i, and {~ei} some orthonormal basis of Rd. In the case of a classical
register (Def. 3), the joint state of clockwork and register is also diagonal when choosing the
basis of the register as {|0〉R, |1〉R, . . . , |NT〉R}. Thus, we can similarly represent the state ρCR

by a set of subnormalized state vectors {~̃v(k)
C }

NT
k=0, where ~̃v

(k)
C ∈ Rd represents the state of the

clockwork within the subspace associated with the state |k〉R of the register

ρ̃
(k)
C = trR [ρCR|k〉〈k|R]←→ ~̃v

(k)
C . (I.44)

The state of the clockwork can be retrieved as

~vC =

NT∑
k=0

~̃v
(k)
C . (I.45)
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This allows us to simplify the representations given in Proposition 1 and Lemma 1 following
Ref. [14].

Corollary 1 (Classical ticking clock representation). The dynamics of a classical ticking
clock (Def. 4) with a classical (periodic or cut-off) register (Def. 3) in the limit NT →∞ are
governed by a set of coupled first-order differential equations

d

dt
~̃v

(k)
C (t) =

N ~̃v
(0)
C (t), for k = 0

N ~̃v(k)
C (t) + T ~̃v(k−1)

C (t), for k 6= 0
, (I.46)

where N and T are two real d× d-matrices satisfying

Nij =

≤ 0, for i = j

≥ 0, for i 6= j
, Tij ≥ 0 ∀i, j, (I.47)

and
d−1∑
i=0

Nij + Tij = 0 ∀j. (I.48)

The initial conditions to Eq. (I.46) are given by

~̃v
(k)
C (0) =

~v0
C, for k = 0

0, for k 6= 0
, (I.49)

which corresponds to the choice of |0〉R as the initial register state at t = 0.

We will prove Corollary 1 in the following. Consider the representation of the ticking clock
channel for an infinitesimal time step Mδt,k

C→CR given in Lemma 1. Because we consider the
limit NT →∞, we are not concerned with the cases where the memory runs full, i.e., where the
state |NT〉R is reached. Thus, the distinction between cut-off and periodic registers becomes
irrelevant. In order for the dynamics to generate an incoherent clockwork state, we require the
clockwork state obtained by application of the channels C(1,k) and C(2,k) with a diagonal input
state to be themselves diagonal. This yields the following dynamics for the diagonal entries of
the clockwork, or equivalently the corresponding state vector,

C(1,k)(ρC)↔ N~vC, C(2,k)(ρC)↔ T ~vC, (I.50)

where
Nnm = −δn,m〈n|

∑
j

(L†jLj + J†j Jj )|n〉+
∑
j

|〈n|Lj |m〉|
2, (I.51)

Tnm =
∑
j

|〈n|Jj |m〉|
2, (I.52)
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with {|i〉}d−1
i=0 the preferred basis of the clockwork in which it remains incoherent. Given the

freedom in the choice of no-tick and tick operators specified in Lemma 1, one can check that
Eq. (I.33) and (I.34) allow for all possible no-tick and tick generators, N and T , as speci-
fied in Eq. (I.47) and (I.48). Having obtained an expression for the ticking clock channel for
an infinitesimal time step Mδt,k

C→CR (·) in vector notation, the dynamics of the clockwork can
straightforwardly be written as a set of coupled first-order differential equations (Eq. (I.46)).

Equation (I.46) corresponds to a stochastic Markovian sequence of events [14] which arises
from the general dynamics of a ticking clock governed by a quantum Markovian master equa-
tion when restricting the dynamics and the initial state to remain diagonal in some preferred
basis. We refer to the matrices N and T as no-tick and tick generator, respectively. The
dynamics given by Eq. (I.46) can be explained as follows: in each infinitesimal time step there
are two contributions to the state ~v(k)

C k > 0, being from the no-tick event governed by the
no-tick generator N and the tick event governed by the tick generator T . The tick events
are associated with a transition between different tick subspaces, whereas transitions within a
tick subspace correspond to no-tick events. Note that if we are not interested in tracking the
evolution of the clockwork with respect to the individual tick subspaces, we have

d

dt
~vC(t) = (N + T )~vC(t) = P~vC(t), (I.53)

with ~vC(0) = ~v0
C. Equation (I.53) corresponds to a forward equation describing a continuous-

time Markov chain with a transition rate matrix P = N +T [33]. This represents the classical
analogous of the clockwork representation given in Proposition 2.

Not only does this “classical” notation allow for a simplified picture of the dynamics of a
classical ticking clock, it also removes any redundancy in the description of classical ticking
clocks. The dynamics of a quantum ticking clock can be specified by choosing a Hermitian
operator H, as well as two sets of tick and no-tick operators, {Jj}d

2−1
j=1 and {Lj}d

2−1
j=1 , see

Proposition 1. On the contrary, for classical ticking clocks, it suffices to specify two real
d × d-matrices satisfying additional constraints. Thus, when analyzing and optimizing the
entropy production of classical ticking clocks we will make use of this reduction in the degrees
of freedom by adopting the classical notation.



I.3 Classical ticking clocks 21

Revisiting the ladder ticking clock discussed in Section I.1.1, it can be stated in the repre-
sentation given in Corollary 1 by choosing

N =



−1 0 0 · · · 0

1 −1 0 · · · 0

0 1 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1


, Tij =

1, if i = 0, j = d− 1

0, otherwise
, (I.54)

and ~v0
C = ~e0 = (1, 0, . . . , 0)T which represents the ground state of the ladder. The matrix N

governs the transitions within the ladder which are not connected to the generation of any
ticks, whereas T governs the transitions from the top of the ladder to its ground state and the
generation of ticks.

In analogy to Eq. (I.38) the delay function of the kth tick can then be computed as

τ (k)(t) = ‖T ~̃v(k−1)
C (t)‖, (I.55)

where ‖~v‖ =
∑

i vi and the tick generator T takes the role of the channel C(2,k) (see Eq. (I.50)).
The condition for a classical ticking clock to be a reset clock (Def. 5) can be stated as

T ~vC ∝ ~v0
C ∀~vC. (I.56)

This can be achieved by choosing T to be a rank-1 matrix, where each column is proportional
to ~v0

C. Importantly, for classical ticking clocks, one can show that reset clocks which start with
an initially pure clockwork are the most accurate classical ticking clocks.

Theorem 1 (Reset ticking clocks are most accurate). For every classical ticking clock (Def. 4)
written in the representation of Corollary 1 with accuracies {Rk}k∈N>0, there exists a classical
ticking clock with accuracies {R′k}k∈N>0 such that R′k ≥ Rk ∀k ∈ N>0. This ticking clock is a
reset clock (Def. 5) with a clockwork of the same dimension that is initialized in a pure state.
In particular, it can be constructed from the original clock by

• initializing the clockwork in a well-chosen canonical state: ~v0
C = ~ei for some i ∈ (0, d−1),

• setting all but one of the rows of the tick generator T to zero, and shifting the single non-
zero row to the location of the chosen initial canonical state, such that T ~vC ∝ ~v0

C ∀~vC.

The proof of this theorem can be found in Ref. [14]. While we expect a similar theorem to
hold in the case of general quantum ticking clocks, it has not yet been proven. In the following,
we will outline the intuition on why reset clocks should be optimal in terms of their accuracy:
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For reset clocks, one can optimize the dynamics to result in the highest accuracy of the first
tick for the given initial clockwork state and simply reset to the initial state after each tick.
The only possible way such a scheme would not be optimal is if one could tune the mean time
of the later ticks to adjust for any time gained or lost due to previous ticks occurring too early
or too late. Indeed, there exist physical systems with events that exhibit such a property,
e.g., based on electron transport [35] or photon emission [36]. It remains to be seen whether
quantum clocks with such tick events can yield higher accuracies than reset clocks. Intuitively,
determining whether previous ticks happened too early or too late itself requires an accurate
timekeeping device that needs to be incorporated into the clockwork. As such, one expects
the increased accuracy of such ticking clocks to come at the cost of a clockwork with increased
dimension.



Chapter II

Entropy production per tick of a
ticking clock

A closed quantum system undergoes unitary Hamiltonian evolution governed by Schrödinger’s
equation [25, 26, 37]. Under such dynamics, both the von Neumann entropy and energy of
the system are conserved (see Appendix A for a brief review of the properties of the von
Neumann entropy). Furthermore, because the evolution is unitary it is completely reversible,
i.e., time-reversal symmetric. This reflects the fact that the system does not interchange any
information or energy with another system. In contrast, the dynamics of an open quantum
system cannot, in general, be described by a unitary time evolution. Thus, both the von
Neumann entropy and energy of the open quantum system can undergo change. This can
be attributed to the fact that the (open) system is now coupled to another quantum system
– its environment. Any open quantum system is inevitably part of a larger closed system
undergoing unitary Hamiltonian evolution, which may be the entire universe as a whole. As a
consequence, to guarantee the conservation of energy and von Neumann entropy of this larger
closed system, any change in von Neumann entropy or energy of the open quantum system
must be compensated by a corresponding change in the remaining degrees of freedom [38, 39].

Because the von Neumann entropy of a quantum system can be interpreted as its infor-
mation content [40, 41], this establishes a global conservation law for information in quantum
theory [42]. Compare this to the second law of thermodynamics which states that the “ther-
modynamic” entropy of an isolated system can never decrease: Clausius theorem states that
the change in the system entropy ∆SS (thermodynamic notion of entropy) when exchanging
an amount of heat Q with a thermal reservoir (where a positive heat corresponds to heat flow
from system to reservoir) at temperature T is bounded by ∆SS ≥ −βQ. Here, β = 1/kBT

and kB denotes the Boltzmann constant. Equality is achieved if and only if the heat exchange
is done reversibly, whereas any irreversible process necessarily leads to ∆SS > −βQ. Thus,
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the irreversible entropy production Σ in classical thermodynamics is identified as

Σ = ∆SS + βQ ≥ 0. (II.1)

Evidently, the von Neumann entropy of the overall closed system is not a suitable candidate
for the microscopic analogous of thermodynamic entropy because it is conserved under the
unitary dynamics governing the evolution of the total system. This fact can be regarded as
the main difficulty in formulating an analogous law to the second law of thermodynamics in
non-thermodynamic, possibly microscopic, and quantum-mechanical settings [39, 43, 44]. Such
a law should quantify the irreversibility of the underlying dynamics and thus fundamentally
relies on identifying an analogous quantity to the entropy production Σ in classical thermo-
dynamics. Importantly, it may depend on the particular physical system under consideration
and the dynamical laws governing its evolution. As such, a unifying theory of (irreversible)
entropy production that applies for all kinds of processes, both classical and quantum in na-
ture, has not yet been established [45].

A ticking clock corresponds to a quantum system that is generally open and undergoes
non-unitary evolution (see Chapter I). In fact, one can regard the openness of a ticking clock
as a direct consequence of its purpose – measuring time. This necessitates the presence of
irreversible dynamics which break time-reversal symmetry and allow the ticking clock to sin-
gle out a direction of time [18]. As such, any ticking clock will generally be coupled to its
environment and participate in an exchange of information. In a thermodynamic setting, it is
the thermodynamic entropy that must inevitably increase over the course of a tick and which
quantifies the irreversibility of the clock, as we will find shortly in Section II.1. Clearly, the
identification of this quantity as the relevant measure for the irreversibility of a ticking clock
relies on the applicability of the second law of thermodynamics. In particular, there have
been several works discussing the entropy production of ticking clocks recently [11, 18–20].
However, these investigations have been restricted to certain classes of ticking clocks in a ther-
modynamic setting. Furthermore, the expressions for the entropy per tick of ticking clocks
put forward in these works were based on the particular physical realization of the ticking
clocks. The clocks studied in Refs. [11, 18, 19], for example, are all driven by heat exchange
with thermal reservoirs. In such a setup, measures for the entropy production per tick related
to the heat exchange per tick emerge naturally.

For a general ticking clock described by our ticking clock model in Chapter I, these con-
ditions may not be met. In particular, for a given ticking clock there may be various physical
realizations that do not rely on thermal baths. Thus, while the ticking clocks in Refs. [11,
18, 19] can be described using our ticking clock model, the analysis of their entropy produc-
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tion was not carried out in this general framework. In this chapter, we address the task of
devising an appropriate measure for the entropy production per tick of a ticking clock in the
context of the axiomatic framework introduced in Chapter I. This measure should apply for
any ticking clock as given by Proposition 1, where we restrict ourselves to cut-off registers,
or equivalently, periodic registers in the limit NT → ∞. The measure should therefore be
applicable independent of the specific physical realization of the ticking clock. In particular,
our notion of the entropy production per tick of a ticking clock should not be restricted to a
thermodynamic setting, i.e., a situation where the environment is given by thermal reservoirs.
Nevertheless, we can draw inspiration from this special case. Thus, we start with a review of
previous results regarding the entropy production per tick of ticking clocks and its connection
to accuracy in a thermodynamic setting.

II.1 Entropy production of thermodynamic ticking clocks

In Ref. [18], the relation between the accuracy and entropy production per tick of a ticking
clock whose clockwork is driven by the heat flow between two thermal reservoirs is studied.
It is based on the smallest quantum heat engine introduced in Ref. [46] and we will refer to it
as the “thermodynamic ticking clock” in the following. The thermal environment of the clock
allows for its entropy production to be analyzed by means of thermodynamic concepts.

Figure II.1: Illustration of the working principle of the thermodynamic ticking clock. The
clockwork (C) is composed of two qubits each coupled to a separate heat bath, as well as a
d-dimensional ladder. The clockwork is powered by the heat flow between the two heat baths
which constitute the environment (E) of the clockwork. A tick in the register (R) is triggered
by the detection of a photon that is spontaneously emitted from the top of the ladder.

Figure II.1 illustrates the working principle of the thermodynamic ticking clock. Its clock-
work consists of two qubits, each coupled to a separate thermal reservoir. One qubit, labeled
h, is connected to a hot bath at temperature Th and has an energy gap Eh. The other qubit,
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labeled c, is connected to a cold bath at temperature Tc and has an energy gap Ec < Eh. Ini-
tially, each of the two qubits is in equilibrium with its bath and thus given by a thermal state
at the corresponding bath temperature. Both baths are modeled as idealized, infinitely large
heat reservoirs. The two qubits make up a heat engine that is coupled to a third subsystem of
the clockwork with d equally-spaced energy levels, where the level spacing is Ew = Eh − Ec.
In the following, this system will be referred to as the d-dimensional ladder to which we asso-
ciate the orthonormal basis {|i〉w}d−1

i=0 . Ultimately, the heat flow induced by the temperature
difference Th − Tc between the two thermal reservoirs powers the heat engine comprised of
the two qubits. Through the coupling between the heat engine and the ladder, the heat flow
then delivers energy to cause a drift of population up the ladder. The top level of the ladder
|d − 1〉w is assumed to be out of equilibrium with respect to the photon field of the environ-
ment at temperature Tc. Thus, there may be spontaneous emission of a photon with energy
Eγ = (d− 1)Ew which results in the ladder decaying to its ground state |0〉w. The probability
of the reverse process, i.e., photon absorption from the ground state of the ladder, is negligible
given that the temperature of the environment is small compared to the energy of the photon
Eγ � kBTc. The photon is then detected via an ideal photon detector. This detection event
constitutes a tick of the clock and is coupled to an advancement of the register. Once the
ladder returns to its ground state after the clock ticks, the process repeats itself. In particular,
one assumes that the entire clockwork is reset to its initial state with vanishing correlations
between all subsystems of the clockwork and thermalized qubits

ρ0
C =

e−βhEhσ
†
hσh

Zh
⊗ e−βcEcσ

†
cσc

Zc
⊗ |0〉〈0|w, (II.2)

where Zh,c are the partition function necessary for proper normalization of the hot and cold
qubit states, σh,c = |0〉〈1|h,c + |1〉〈0|h,c, and βh,c = 1/kBTh,c. That is, one treats the ticking
clock as an approximate reset clock. In the weak-coupling limit, the two engine qubits are
only weakly perturbed by their coupling to the ladder and this assumption is valid. This clock
can be represented using Proposition 1 by choosing [16]

L1 =
√
γhσh, L2 =

√
γhe−βhEhσ

†
h, (II.3)

L3 =
√
γcσc , L4 =

√
γce−βcEcσ

†
c , (II.4)

J1 =
√

Γem|0〉〈d− 1|w, J2 = J3 = J4 = 0, (II.5)

where NL = 4, γh,c are the dissipative rates of the qubits, and Γem is the spontaneous emission
rate. The total Hamiltonian H = H0 + Hint is comprised of a free Hamiltonian H0 and an
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interaction Hamiltonian Hint which are given by

H0 =
∑

j∈{h,c}

Ej |0〉〈0|j +
d−1∑
n=0

nEw|n〉〈n|w, (II.6)

and

Hint = g

d−1∑
n=0

(|0〉h|1〉c|k + 1〉w〈0|c〈1|h〈k|w + h.c.), (II.7)

respectively. Here, g is the interaction strength with g � Ec, Eh, Ew in the weak-coupling
limit.

Because the environment is comprised of two thermal reservoirs and the clock approxi-
mately resets after each tick, the ticking clock can be seen as a thermodynamic machine that
operates in a cyclic fashion, where each cycle is terminated by a tick and all cycles are ap-
proximately identical. The entropy production of the kth tick of the ticking clock Σk can thus
be assessed by a thermodynamic analysis of a single operation cycle of the machine, that is
Σk ≈ Σ1 ∀k ∈ N>0. In each cycle of this thermal machine, a photon with energy

Eγ = (d− 1)Ew = (d− 1)Eh − (d− 1)Ec (II.8)

is emitted, where an amount of heat Qh = (d − 1)Eh is supplied to the machine by the hot
bath and an amount of heat Qc = (d− 1)Ec is dissipated into the cold bath. The heat Qc can
be identified as the minimum energy expenditure per tick of the clock, because a large part
of the photon energy Eγ can be recycled, e.g., by dumping it back into the hot bath. It is
precisely this heat dissipation in each tick of the clock with which one associates an entropy
production.

In particular, in each cycle the thermodynamic entropy of the hot bath decreases by ∆Sh =

−βhQh while the thermodynamic entropy of the cold bath increases by ∆Sc = βcQc as a result
of the heat flow from the hot bath to the cold bath. Thus, the change in thermodynamic
entropy of the total system comprised of the clockwork and thermal baths is

Σth
1 = ∆Sh + ∆Sc = βcQc − βhQh = (βc − βh)Qc − βhEγ ≥ 0, (II.9)

which can be identified as the entropy production per tick of this ticking clock [18]. Assuming
that the full amount of energy Eγ is dumped back into the hot reservoir, the entropy production
per tick is instead by

Σth′

1 = (βc − βh)Qc ∝ Qc. (II.10)

Based on Eq. (II.9) and (II.10), we see that the heat dissipated per tick Qc is closely related
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to entropy production per tick. In particular, it shows that a large amount of dissipated heat
Qc results in a large entropy production. Such an analysis is valid if the assumption that the
clock resets to its initial state after each tick hold.

Note that there will inevitably be additional energy costs in operating such a thermody-
namic clock which are not assessed here. For example, the preparation (and the inevitable
reset) of the initial state of the register represents an additional contribution to the entropy
production and energy dissipation. This can be seen as a consequence of Landauer’s erasure
principle [38, 47]. Landauer’s erasure principle states that a reduction of entropy in the de-
grees of freedom that encode information must be compensated by a corresponding increase
in entropy of the remaining degrees of freedom. Furthermore, any measurement process, here
given by the photon detection, comes at its own thermodynamic cost [48]. Additionally, one
may associate an entropy production with the irreversibility of spontaneous photon emission.
Perfect irreversibility corresponds to a vanishing rate of photon absorption Γabs → 0. The
rates of spontaneous photon emission and absorption satisfy a detailed balanced condition
Γem/Γabs = eβcEγ . Assuming a finite energy spacing of the ladder Ew (where Eγ = (d−1)Ew)
the limit Γem/Γabs → ∞ can then be achieved by requiring a vanishing background temper-
ature Tc → 0. The entropy production associated with the photon emission and absorption
events can then be expressed as ln(Γem/Γabs) = βcEγ = βc(Qh−Qc) and thus needs to diverge
for perfect irreversibility. This additional diverging contribution to the entropy production is
not taken into account for the entropy production per tick Σth

1 (Σth′
1 ) of the thermodynamic

ticking clock. In the present case, one analyses a particular source of entropy production of
the clock and energy cost – the dissipated heat – which is associated with the dynamics of
the clockwork. Given that there are other sources of entropy production and energy cost, the
presented quantities should be understood as lower bounds.

Investigating different types of such thermodynamic clocks numerically, one finds a funda-
mental trade-off between the accuracy R1 of the ticking clock (Rk ≈ kR1) and the dissipated
heat Qc per tick, or equivalently, the entropy production per tick Σth

1 (Eq. (II.9)). This trade-
off is depicted in Fig. II.2. A clock that achieves a particular accuracy must produce a minimal
amount of entropy per tick Σth

1,min. This minimal amount seems to increase with increasing
accuracy of the clock. In that sense, the entropy production per tick acts as a resource for
measuring time.

In the weak-coupling limit, where the interaction between the ladder and the engine qubits
is weak and the coherence of the ladder is negligible, the dynamics of the ladder can be
approximated well by a (classical) biased random walk. We make the simplifying assumption
that the clock ticks immediately once the population reaches the top of the ladder and that d is
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Figure II.2: Illustration of the trade-off between the entropy production per tick Σth
1 (Σth

k ≈
Σth

1 ∀k ∈ N>0), see Eq. (II.9), and accuracy R1 of thermodynamic ticking clocks (Rk ≈
kR1 ∀k ∈ N>0). For a fixed dimension d of the clockwork’s ladder, the entropy production
increases with increasing accuracy and diverges as a limiting accuracy is approached. While
a higher-dimensional ladder allows for the same accuracy to be achieved at a lower entropy
production, there seems to exist a minimal entropy production per tick Σth

1,min at a given
accuracy irrespective of the ladder dimension d. The results in panel (a) are obtained by
numerical simulations of various thermodynamic ticking clocks, where the parameters are
chosen in accordance with Ref. [18]. That is, at a fixed dimension of the ladder d we vary
the energy spacing of the cold qubit Ec. The other parameters are held fixed and are given
by kBTc = Ew, kBTh = 1000Ew and g = ~γ = ~Γem = 0.05Ew, with Ew = ~w and w =
1/0.05 rad/s. Note that this choice ensures kBTc = Ew < Eγ = (d − 1)Ew, such that the
re-absorption of a photon occurs at a vanishing probability. The results in panel (b) are
obtained using the approximation given in Eq. (II.13) which holds in the weak-coupling limit.
The remaining parameters are chosen as for panel (a). Compared to the “quantum” ticking
clocks depicted in panel (a), the ticking clocks governed by classical dynamics in panel (b)
achieve a lower maximal accuracy with the same ladder dimension (and comparable entropy
production).

large, such that the dynamics of the ladder can be well described without taking into account
its behavior at the ladder boundaries. The rates at which the population of the ladder moves
up p↑ or down p↓ then satisfy a detailed balance condition [18]

p↑/p↓ = e−βvEw , (II.11)

where

βv =
βhEh − βcEc
Eh − Ec

=
−Σth

1

Qh −Qc
. (II.12)
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In this case, the accuracy of the thermodynamic clock is given by

R1(d) = dtanh

(
Σth

1

2d

)
(II.13)

In the limit of a large ladder dimension d the accuracy is directly proportional to the entropy
production per tick

lim
d→∞

R1(d) =
Σth

1

2
. (II.14)

Equations (II.13) and (II.14) establish a direct relationship between the accuracy of ticking
clocks and its entropy production. Once more, one finds a minimal amount of irreversible
entropy per tick which is necessary to achieve a particular accuracy (see Fig. II.2(b)). This
minimal amount increases with increasing accuracy of the clock and can be achieved in the
limit d→∞. Thus, it is given by Σth

1,min(R1) = 2R1, see Eq. (II.14). Note that the exact same
relations (Eq. (II.13) and (II.14)) have been found previously for other ticking clock models
based on classical biased random walks in which the transition rates are governed by a detailed
balance condition (Eq. (II.11)) using TURs [10].

These results show that the entropy production per tick (or equivalently the dissipated heat
per tick) of thermodynamic ticking clocks serves as a fundamental resource for measuring time.
To achieve a certain accuracy, these clocks necessarily need to produce a minimal amount of
entropy production per tick (see Fig. II.2). Given that the accuracy serves as a measure of
the strength of the arrow of time provided by the ticking clock, this establishes a connection
between the arrow of time and the irreversibility of a ticking clock – the latter being quanti-
fied by the irreversible entropy production per tick. In the same turn, these results link the
second law of thermodynamics and the arrow of time. Similarly, there seems to be a minimal
energy cost (in the form of dissipated heat) which increases with increasing accuracy of such
clocks. There remains the question of whether this connection between the accuracy of a clock
and its entropy production is specific to the particular class of ticking clocks under considera-
tion or a general property of ticking clocks – and thus a fundamental aspect of measuring time.

To this end, one can think of splitting the inner workings of a ticking clock into two
fundamental processes: [11]

• a process that pushes the clockwork (or a subsystem thereof) out of equilibrium,

• a stochastic, effectively irreversible process given by an out-of-equilibrium system evolv-
ing towards equilibrium that results in a tick.

In the case of the thermodynamic ticking clocks, the ladder is pushed out-of-equilibrium with
respect to the background photon field through its interaction with the engine qubits. Even-
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tually, this results in the effectively irreversible emission of a photon and the registration of
a tick. If the probability of photon emission is temporally concentrated, this constitutes a
highly accurate clock. Here, the tick-generating process is effectively irreversible which avoids
the clock from ticking backward and singles out a particular direction of time. In fact, for
any ticking clock described by the ticking clock model in Chapter I this irreversible aspect is
inherently built into the coupling of its clockwork and register because the model does not
describe clocks that can tick backward. Note that other works consider ticking clocks that are
allowed to tick backwards [10], but nevertheless come to similar conclusions on the relationship
between their accuracy and entropy production.

From a thermodynamic point of view, biasing a process in favor of its time reverse requires
the free energy of the system to decrease during the process [11, 18]. This fundamentally
connects clocks to the second law of thermodynamics and irreversible entropy production. In
the case of thermodynamic ticking clocks, the necessary driving force is provided by the heat
flow between two thermal heat baths of different temperatures. In this case, the efficiency for
converting heat to work is ultimately limited by the Carnot efficiency [46] ηC = 1 − Tc/Th
achieved by a heat engine operating reversibly, and therefore infinitely slow. Even in the limit
Tc/Th → 0 such that ηC → 1, this would result in a clock that ticks infinitely slow. Hence,
every thermodynamic ticking clock that ticks in a finite amount of time inevitably requires a
minimal amount of heat Qc = (1−ηC)Qh to be dissipated and a minimal amount of irreversible
entropy to be produced as a consequence [18]. Note that this type of argument applies to any
clock driven by idealized thermal baths. In general, however, a ticking clock may be driven
by non-equilibrium resources. An autonomous ticking clock operating at a finite speed that
does not produce any entropy per tick would constitute an autonomous machine that operates
at a finite speed with unit efficiency. Under the assumption that no quantum machines can
operate at a finite speed and achieve unit efficiency, one expects that any autonomous ticking
clock must inevitably produce some amount of entropy per tick and dissipate some amount of
energy. We will re-examine this assumption later in this work.

This conjecture is supported by several recent works [11, 19, 20] which study various types
of ticking clocks and all find a fundamental connection between the accuracy of these clocks
and their irreversible entropy production or energy dissipation. While the precise relationship
between the accuracy and these quantities varies, all works find that a larger accuracy ne-
cessitates a larger entropy production and energy dissipation. In particular, in Ref. [19] this
relation is confirmed when investigating a nano-electromechanical clock both experimentally
and theoretically. In Ref. [20], the relationship is confirmed for escapement pendulum clocks,
quartz oscillator clocks, clocks based on lasers, nano-mechanical clocks driven by an electron
tunneling current, radiocarbon (C14) clocks, and various thermal clocks in a theoretical study.
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And Ref. [11] finds similar results for a general class of clocks driven by heat engines which
extend the thermodynamic ticking clock model of Ref. [18]. These results further enforce
the idea that entropy production and energy dissipation constitute necessary resources for the
process of timekeeping. The key challenge which remains is thus to investigate the precise con-
nection between accuracy and entropy production per tick for arbitrary ticking clocks within
the general framework provided in Chapter I.

II.2 Entropy production in open quantum systems

As pointed out earlier, there does not currently exist a unifying theory of entropy production
that is valid for general quantum (and classical) processes [39, 43, 45]. The most central
property of any measure for entropy production common to all approaches is that it should
characterize and quantify the degree of irreversibility of processes. There have been various
different approaches to devising such a quantity in the context of stochastic thermodynamics,
open quantum systems, or quantum information theory. In this section we briefly review the
progress in the field, focusing on results from open quantum systems and quantum information
theory. A more extensive review can be found in Ref. [45]. Crucially, the absence of a unified
framework underlying the concept of entropy production requires us to propose a measure of
the entropy production per tick of a ticking clock from first principles. Nevertheless, existing
approaches to identify sources of entropy production can serve as a motivation for our measure
of the entropy production per tick of ticking clocks.

II.2.1 Entropy production as correlation between system and environment

We start by analyzing a situation in which a quantum system S interacts with its environment E

via a global unitary U . We assume that the system and environment are initially uncorrelated
ρSE = ρS⊗ρE with arbitrary reduced states of system and environment ρS and ρE, respectively.
The joint state of system and environment after the interaction is given by

ρ′SE = UρS ⊗ ρEU
†. (II.15)

The reduced states of system and environment after the interaction can be obtained via a
partial trace as ρ′S = trE [ρ′SE] and ρ′E = trS [ρ′SE], respectively. In particular, such a setup has
been considered in Refs. [39, 47]. We can evaluate the von Neumann entropy of the initial and
final states as

S(ρSE) = S(ρS) + S(ρE), (II.16)

S(ρ′SE) = S(ρ′S) + S(ρ′E)− I(ρ′SE), (II.17)
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where I denotes the quantum mutual information (see Appendix A for more details on the
quantum mutual information). In the following, we will simply refer to the von Neumann
entropy as entropy if not stated otherwise. Noting that the entropy is conserved under unitary
evolution

S(ρSE) = S(ρ′SE), (II.18)

we have
S(ρ′S)− S(ρS) + S(ρ′E)− S(ρE) = I(ρ′SE) ≥ 0 (II.19)

∆SS + ∆SE = I(ρ′SE) ≥ 0, (II.20)

where ∆SS = S(ρ′S) − S(ρS) and ∆SE = S(ρ′E) − S(ρE) denote the change in entropy of the
system and environment, respectively. Equality is achieved if and only if the final state is a
product state with ρ′SE = ρ′S ⊗ ρ′E, because

S(ρ′SE) = S(ρ′S) + S(ρ′E) (II.21)

if and only if ρ′SE is a product state.

If we consider a unitary of the form U = US ⊗ UE, we have

ρ′SE = USρSU
†
S ⊗ UEρEU

†
E = ρ′S ⊗ ρ′E. (II.22)

Thus, a system S which undergoes a unitary (and thereby reversible) evolution on its own and
does not interact with the environment E cannot establish any correlations with the latter.
Moreover, intuitively the amount of correlation (or equivalently the strength of the entangle-
ment) that build up between system and environment is indicative of the strength of their
interaction. As pointed out previously, it is precisely the interaction with an environment
present in an open quantum system that makes its dynamics generally irreversible. While the
joint evolution of system and environment is unitary, and thereby reversible, the irreversibility
of the system’s evolution governed by the CPTP map E as ρ′S = E(ρS) = trE [ρ′SE] can be seen
as a consequence of tracing over the degrees of freedom of the environment. In particular,
tracing over, i.e., discarding the environment, embodies the assumption that after the inter-
action one no longer has access to its degrees of freedom. Therefore, irreversibility emerges as
a consequence of discarding any information about E from the perspective of the system S in
the form of correlations. This is illustrated in Fig. II.3.

In fact, this aspect can be viewed as a general ansatz for identifying the origins of irre-
versibility in system-environment interactions, and thus for devising a measure for the irre-
versible entropy production. Here, Eq. (II.20) can be seen as a manifestation of the second
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Figure II.3: Illustration of the setup in which the correlations between system and environment
can be pinpointed as the origin for irreversible entropy production: a system (S) and environ-
ment (E) which are initially uncorrelated undergo a joint evolution governed by the unitary
U . The resulting states of the system and environment, S′ and E′, respectively, will become
entangled (and thus correlated) through their interaction (red connection). In general, one
cannot completely restore the initial state S of the system (and its potential correlations with
other systems) via the application of a quantum channel E−1 on the system alone. That is, one
cannot revert the evolution of the system alone without accessing the state of the environment
due to the built-up correlations. The dynamics can, in general, (only) be reversed completely
by application of the inverse unitary U−1 to the joint state of system S′ and environment E′.

law of thermodynamics in the present setting with Σ = I(ρ′SE) taking the role of an irre-
versible entropy production. Starting with full knowledge of all degrees of freedom involved,
irreversibility emerges when we deem certain information irretrievable or inaccessible. Equiv-
alently, we can view this as a transition from an observer who has complete knowledge of
all involved systems as permitted by quantum theory to an observer who only has complete
knowledge of the system but not of its environment.

The assumption of an observer who has only limited knowledge about the state of the
system and environment in the form of a small set of well-defined macroscopic properties is
central to thermodynamics [49–52]. In particular, the first law itself is a reflection of this, as
it states that in a thermodynamic process not all forms of energy changes are equal. It makes
a distinction between work as the type of energy that is “useful” in an operational sense, and
heat, which is any form of energy change that is not work – and thus not useful [53–55]. This
distinction arises from the fact that the observer core to thermodynamics only has limited
knowledge, and thus control, of the microscopic degrees of freedom underlying energy in the
form of heat. This is in contrast to the macroscopic degrees of freedom underlying energy in
the form of work. Moreover, it is standard in thermodynamics to assume that the correlations
between system and environment vanish initially [47], which reflects the fact that the observer
does not have knowledge or control over them. In fact, by leveraging the (classical or quantum)
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correlations between system and environment the laws of thermodynamics can be violated, for
example in the form of heat flowing spontaneously from a cold to a hot bath [45, 50, 53, 56,
57]. Thus, by transitioning to the viewpoint of a more oblivious observer we move closer to the
framework of thermodynamics in which the concept of irreversibility emerges as the second
law. Note, however, that the procedure outlined above is not restricted to a situation where
the environment is made of ideal thermal reservoirs. In the context of information theory, the
correlations quantified by the quantum mutual information I(ρ′SE) can be interpreted as the
shared information between system and environment, or equivalently, the information about
the system which leaks to the environment as a consequence of their interaction (and vice-
versa) [25, 40]. Therefore, this procedure also establishes a direct link between irreversibility,
as measured by the irreversible entropy production, and the information which is exchanged
between system and environment in the process.

Let us assume that the environment is initially in a thermal state ρE = e−βH/tr
[
e−βH

]
,

where H is the corresponding Hamiltonian and β = 1/kBT the inverse temperature. Then,
one can show that

∆SS + β
(
tr
[
Hρ′E

]
− tr [HρE]

)
= I(ρ′SE) + S(ρ′E‖ρE) ≥ 0, (II.23)

where one can identify the change in energy of the reservoir as the amount of exchanged heat
QE = (tr [Hρ′E]− tr [HρE]) during the process. Here, S (ρ‖σ) denotes the quantum relative
entropy (see Appendix A for further details on the quantum relative entropy). Then

∆SS + βQE = I(ρ′SE) + S(ρ′E‖ρE) ≥ 0, (II.24)

or equivalently
βQE = I(ρ′SE) + S(ρ′E‖ρE)−∆SS ≥ −∆SS. (II.25)

The corresponding proof can be found in Appendix B.2. Consequently, one can identify the
following expression for the entropy production Σ in such a scenario

Σ = I
(
ρ′SE

)
+ S(ρ′E‖ρE) = ∆SS + βQE ≥ 0. (II.26)

Here, I (ρ′SE) quantifies the shared information (in the form of correlations) between system
S and environment E which is discarded when losing access to the environment, whereas
S(ρ′E‖ρE) quantifies how far the environment E evolved from its initial state. While the first
contribution to the entropy production is bounded as [58]

I(ρ′SE) ≤ 2min{S
(
ρ′S
)
, S
(
ρ′E
)
}, (II.27)
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the second term given by the quantum relative entropy is unbounded.

If the initial state of the environment is instead given by multiple uncorrelated thermal
baths ρE = ρE1 ⊗ ρE2 ⊗ ρE3 ⊗ ... at different temperatures Ti, the expression for the entropy
production in Eq. (II.26) can be rewritten as [39, 45]

Σ = ∆SS +
∑
i

βiQEi , (II.28)

where the sum runs over all thermal baths {Ei}. In that case, the second term attributed to the
change in entropy of the thermal reservoirs

∑
i βiQEi is also partially based on the contributions

of intra-environmental correlations which build up between the different thermal reservoirs as
a consequence of their common interaction with the system [45]. Equation (II.20) defines a
purely information-theoretic quantity that makes no reference to thermodynamic concepts,
such as work or heat. Nevertheless, in a thermodynamic setting, it gives rise to Eq. (II.26)
which embodies the fact that one has no access to the state of the reservoir and only possesses
knowledge of the energy that has flown into it as heat. Moreover, the standard form of the
second law of thermodynamics emerges naturally, see Eq. (II.28).

Consider the special case where the unitary map has a global fixed point ρ∗S satisfying

U (ρ∗S ⊗ ρE)U † = ρ∗S ⊗ ρE. (II.29)

Then, Eq. (II.26) can be rewritten as (see Appendix B.2 for a proof)

Σ = S(ρS‖ρ∗S)− S(ρ′S‖ρ∗S). (II.30)

Equation (II.30) has been proposed as a measure for the entropy production of quantum sys-
tems undergoing evolution according to a quantum Markovian master equation [26, 59]. Note
that in this special case the entropy production can be expressed solely based on the properties
of the system alone, irrespective of its environment. Importantly, this measure is applicable
when dealing with a large class of problems involving so-called thermal operations [60–62].
These are operations involving a thermal environment for which the map describing the joint
unitary evolution between the system and environment has a thermal state of the system as a
global fixed point.

The expression for the entropy production in Eq. (II.26) differs from Eq. (II.20) by the ad-
dition of the term S(ρ′E‖ρE) ≥ 0. Thus, Eq. (II.20) represents a lower bound to the measure of
entropy production given in Eq. (II.26). The additional contribution S(ρ′E‖ρE) is motivated by
the fact that it allows for the identification of heat flow when considering thermal environments.
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Different expressions for Σ may be applicable depending on the assumptions one makes about
the aspects of the system-environment dynamics that become inaccessible or irretrievable. For
example, the expression in Eq. (II.20) corresponds to the assumption that one loses complete
access to the correlations between system and environment, whereas Eq. (II.26) embodies the
assumption that one additionally loses the ability to perform operations on the environment
itself. Consequently, even in the case of a thermal environment Eq. (II.20) has been considered
as the relevant expression for the entropy production in some works [53]. This can be justified
as follows: consider the case of an environment which is initially prepared in a thermal state
and a joint unitary of the form USE = 1S ⊗ UE. Then, ρ′E = UEρEU

†
E and ρ′S = ρS. Even

though the state of the system remains unchanged, and thus S(ρ′S)− S(ρS) = 0, according to
Eq. (II.26) there is, in general, a non-zero amount of heat QE = tr

[
H
(
ρ′E − ρE

)]
dissipated.

This results in an entropy production of Σ = βQE associated with this process. Meaning, this
definition assigns to heat increases of the internal energy of the environment which – depend-
ing on the observer – cannot be considered to be irreversibly lost, but instead can be recovered.

Alternative, one can identify the relevant expression for the heat in this context as the dif-
ference in entropy of the environment βQ = S(ρ′E)−S(ρE). This is in the spirit of heat being
a flow of energy between environment and system, in some way different from work. Where
work is the flow of energy that is still accessible and could therefore be re-extracted. In the
context of entropy production, this re-definition of heat corresponds to dropping the second
contribution given by the quantum relative entropy in Eq. (II.26) or equivalently adopting the
expression in Eq. (II.20). Finally, note that one may attempt a comparison of the relative
importance of the two terms in Eq. (II.26) to justify this choice [39, 45, 53]. In the thermo-
dynamic limit where a thermal reservoir is assumed to remain at equilibrium ρ′E = ρE, the
contribution S(ρ′E‖ρE) vanishes and the two definitions of heat coincide [39, 45, 53, 63, 64].
This captures the fact that an ideal thermal reservoir only exchanges entropy with the system
but does not irreversibly produce it. While it was often assumed that the second contribution
given by the quantum relative entropy is also negligible for reasonably large thermal reser-
voirs [39, 45, 53], a recent study [63] shows that this is not always the case.

To conclude, we may directly apply this approach to the thermodynamic ticking clock
discussed in Section II.1 under the assumption that there exists a joint unitary evolution of
clockwork and the environment composed of the two thermal baths Eh and Ec. The initial
joint state of clockwork and environment is given by

ρtot = ρ0
C ⊗ ρEh ⊗ ρEc , (II.31)

where ρEh,c is the thermal state of the hot and cold thermal bath, respectively. An instance
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after each tick, the joint state of the clock and environment is given as

ρ′tot = ρ0
C ⊗ ρ′EhEc

, (II.32)

where we used the fact that the thermodynamic ticking clock is – to a good approximation
– a reset clock. We connect the two state ρtot and ρ′tot via a joint unitary evolution. This
allows us to apply Eq. (II.28) with ∆SS = 0. Adopting the appropriate sign convention for
the exchanged heat of the two reservoirs, we obtain

Σ = βcQc − βhQh. (II.33)

Because we assume idealized thermal baths in the thermodynamic limit, the two notions of
heat discussed above coincide and we recover the original expression for the entropy production
per tick of the thermodynamic ticking clock.

II.2.1.a Connection to Landauer’s erasure principle

In 1867 James Clerk Maxwell proposed a thought experiment that suggested a potential vio-
lation of the second law of thermodynamics: the lowering of the entropy of a gas of particles
without exerting any work on it. This violation was thought to be accomplished by Maxwell’s
demon – an entity that has knowledge of all the position and momenta of the gas parti-
cles [65]. The paradox was later resolved by the findings of Rolf Landauer who suggested that
the erasure of information (which is necessarily logically irreversible) from any information-
bearing degrees of freedom must necessarily be accompanied by an increase in entropy in the
non-information-bearing degrees of freedom [38, 66, 67]. This establishes a deep connection
between information theory and thermodynamics. For a thermal environment at temperature
T this is equivalent to the statement that an amount

βQE ≥ −∆SS (II.34)

of heat needs to be dissipated given a decrease in entropy of the system by ∆SS. This is
known as Landauer’s principle and the inequality in Eq. (II.34) is typically referred to as the
Landauer bound. Applied to Maxwell’s demon, Eq. (II.34) implies that the heat dissipated
during the inevitable reset of the demon’s memory restores the second law of thermodynamics.

For a long time, there has been no rigorous treatment of Landauer’s principle and assess-
ment of the assumptions under which the principle is valid. This has been achieved in recent
works [39, 47]. In fact, the minimal setting in which Landauer’s bound holds coincides with
the setting considered in this section: a quantum system S which interacts with an environ-
ment E via a global unitary U , where the system and environment are initially uncorrelated
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ρSE = ρS ⊗ ρE. If one wants to formulate Landauer’s principle in terms of heat exchange,
rather than entropy exchange, one needs the additional assumption of an environment that is
initially in a thermal state. This setting is minimal in the sense that, if one drops any of these
assumptions the Landauer bound can be violated [47]. Recalling the results from the previous
section, we found

∆SE = I(ρ′SE)−∆SS ≥ −∆SS, (II.35)

and
βQE = I(ρ′SE) + S(ρ′E‖ρE)−∆SS ≥ −∆SS, (II.36)

where for Eq. (II.36) we additionally assume that the environment is initialized in a thermal
state. In fact, Eq. (II.35) and (II.36) correspond to improved Landauer bounds (see Eq. (II.34))
given that they are formulated as equality constraints.

II.3 Observer-dependent clockwork states

The notion of entropy, whether information-theoretic or thermodynamically, is relative to an
observer’s knowledge [49–52, 68]. Unlike many other physical quantities, such as the energy
of a system, it is crucially dependent on the choice of observer [51]. This “anthropomorphic”
nature of entropy in contrast to the “physical” nature of quantities like energy has been well
understood for decades [51]. Clearly, an observer which has complete knowledge of the position
and velocity of each particle in a gas, such as Maxwell’s demon [65–67] after performing a mea-
surement on every gas particle, would ascribe the gas zero entropy [52]. For the macroscopic
observer who does not possess any such microscopic knowledge about the gas, the entropy of
the gas is the entropy of a thermal state (which may be arbitrarily large). This is, however, no
contradiction, because both observers would agree on each other’s assessment of the entropy
when being conditioned on each other’s knowledge [52].

The reason that entropy appears to be a property of the system alone in standard thermo-
dynamics arises from the fact, that one is concerned with a common, implicit observer which
has access to a small set of well-defined macroscopic properties of the system, but whose un-
certainty about the state of the system is otherwise maximal [49–52]. In particular, if one does
not condition the state of the system (and thereby its entropy) on the observer’s knowledge,
apparent violations of the laws of thermodynamics can be observed. Different observers may,
for example, disagree on the amount of extractable work of a thermodynamic system – and
thus on its entropy – given that they have different levels of “subjective” knowledge of the un-
derlying microstates. This is intuitive, as the amount of extractable work of a thermodynamic
system indeed varies depending on the observer’s level of knowledge about the system. In
fact, if the entropy of a macrostate did not depend on the observer’s knowledge of the under-
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lying microstates, the quantity would fail at its core thermodynamic function of quantifying
the amount of extractable work [51]. Thus, to identify the appropriate notion of the entropy
produced per tick of a ticking clock we need to decide on an appropriate observer relative to
which this entropy is assessed. Importantly, one needs to decide what level of knowledge this
observer possesses about the state of the clock itself.

Figure II.4: Illustration of the different descriptions of a ticking clock based on two observers
with different levels of knowledge. Observer A has knowledge of the coordinate time t and
can thus ascribe the clockwork (C) of a ticking clock a state ρtC at any point in time. In this
work, we instead adopt the viewpoint of observer B which does not have any knowledge of the
coordinate time but only has access to the register (R) of the ticking clock. That is, observer
B only gains information about time in the form of the ticks of the ticking clock. While
observer B cannot ascribe the clockwork a state at each point in time, his level of knowledge
allows him to distinguish between the states of the clockwork before (b) and after (a) each
tick event. Given the ticking clock just ticked for the kth time, observer B denotes the state
of the clockwork an instance before and after the tick as ρ(b,k−1)

C and ρ(a,k)
C , respectively.

Ticking clocks are devices designed to measure time and provide temporal information to
the observer in the form of ticks. Thus, the observer relative to which the entropy production
per tick is assessed should only possess as much information about time as the ticking clock
itself provides. Hence, we here consider an observer that has no knowledge of the background
coordinate time t > 0, but has access to the state of the register of the clock, i.e., its ticks.
Figure II.4 illustrate the states of the clockwork which an observer that only has access to the
state of the register can effectively distinguish, in contrast to an observer that has complete
knowledge of coordinate time. Crucially, the quantum state assigned to the clock should be
conditioned on the observer’s knowledge [49, 50]. This conditioning is performed by integrat-
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ing out coordinate time, which renders the states of the clock relative to the observer time
independent [49]. Based on these observer-dependent quantum states assigned to the clock,
an appropriate measure for the entropy production per tick can then be derived. Note that
any observer-dependent state of the clock will be of the form ρCR = ρ

(k)
C ⊗ |k〉〈k|R k ∈ N,

that is a product state of the clockwork and a fixed state of the register. This is because
at any point in time the observer measures the register to be in a fixed state. In fact, the
measurement of the register is what allows the observer to gain information about time and
construct its observer-dependent states of the clock. Thus, the expression for the entropy
production of the kth tick will, in general, be a function of the relevant observer-dependent
clockwork states of the kth tick. Looking at Fig. II.4, for the kth tick we identify these states
to be ρ(a,k−1)

C , ρ
(b,k−1)
C , and ρ

(a,k)
C , because the clockwork (from an observers point of view)

undergoes the following transition after the (k − 1)th tick:

ρ
(a,k−1)
C → ρ

(b,k−1)
C → ρ

(a,k)
C . (II.37)

It is precisely with this transition between different states of the clockwork – and the resulting
tick in the register – that we associate an entropy production. In this section, we are concerned
with finding an appropriate expression for these observer-dependent clockwork states.

For a ticking clock specified by
(
ρ0

C ⊗ |0〉〈0|R, (Mt
CR→CR)t≥0

)
, the unnormalized state of

the clockwork at coordinate time t given that the register is still observed to be in state |0〉R
is

ρ̃
(0)
C (t) = trR

[
1C ⊗ |0〉〈0|RMt,0

C→CR

(
ρ0

C

)]
. (II.38)

Given the probability density

P(0→1) (t) = lim
δt→0+

tr
(
1C ⊗ |1〉〈1|R

(
Mδt,0

C→CR

(
ρ̃

(0)
C (t)

)
− ρ̃(0)

C (t)⊗ |0〉〈0|R
))

δt
, (II.39)

the probability to observe the register in state |1〉R at time t ≥ 0 (i.e., the probability that the
clock has not yet ticked from |0〉R → |1〉R in the interval [0, t)) and observe a tick from |0〉R
to |1〉R in the infinitesimal time interval [t,t + δt] is δt · P(0→1) (t), where δt > 0. Note that
P(0→1) (t) corresponds to the delay function of the first tick of the clock τ (1)(t) (see Eq. (I.35)).

For an observer that does not have access to coordinate time t > 0, the state of the
clockwork an instance before the first tick is then appropriately described as

ρ
(b,0)
C =

∫ ∞
0

P(0→1) (t) ρ
(0)
C (t)dt. (II.40)
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This state of the clockwork is time-independent and arises from a weighting of the state ρ(0)
C (t)

for all coordinate times t ∈ [0,∞) by its probability of ticking in the next infinitesimal time
step given by P(0→1) (t) dt. Similarly, the relevant state of the clockwork an instance after the
first tick is observed can be calculated as

ρ
(a,1)
C =

∫ ∞
0

P(0→1) (t) lim
δt→0+

trR

[
1C ⊗ |1〉〈1|RMδt,0

C→CR

(
ρ

(0)
C (t)

)]
tr
[
1C ⊗ |1〉〈1|RMδt,0

C→CR

(
ρ

(0)
C (t)

)] dt, (II.41)

where

lim
δt→0+

trR

[
1C ⊗ |1〉〈1|RMδt,0

C→CR

(
ρ

(0)
C (t)

)]
tr
[
1C ⊗ |1〉〈1|RMδt,0

C→CR

(
ρ

(0)
C (t)

)] (II.42)

corresponds to the state of the clockwork an instance after the tick from |0〉R to |1〉R has been
observed in the interval [t, t + δt]. Using the expression for Mδt,0

C→CR provided in Lemma 1,
Eq. (II.42) can be written as

∑
j Jj ρ

(0)
C (t)J†j

tr
[∑

j Jj ρ
t,0
C J†j

] =
1

P(0→1)(t)

∑
j

Jj ρ̃
(0)
C (t)J†j . (II.43)

And the state of the clockwork just after the first tick (Eq. (II.41)) can then be rewritten as

ρ
(a,1)
C =

∫ ∞
0

∑
j

Jj ρ̃
(0)
C (t)J†j dt. (II.44)

The initial clockwork state at t = 0 given by ρ0
C, as well as ρ(b,0)

C (Eq. (II.40)), and ρ(a,1)
C

(Eq. (II.41)) constitute the three relevant observer-dependent clockwork states for assessing
the entropy production of the first tick of a ticking clock. Note that if the ticking clock is a
reset clock (Def. 5), we have

ρ
(a,1)
C = ρ0

C

∫ ∞
0

P(0→1)(t)dt = ρ0
C. (II.45)

Thus, we obtain the intuitive result that the observer-dependent clockwork state after the first
tick of a reset clock corresponds to the initial state of the clockwork – its reset state.

For the subsequent ticks, there may a priori be different approaches to define the relevant
observer-dependent clockwork states. Here, we discuss three different approaches explicitly.
We show how to rule out two approaches by requiring the resulting observer-dependent clock-
work states, and thus the measure for the entropy production per tick derived from these
states, to possess certain desired properties.
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Approach 1: In a first approach, the observer-dependent states of the clockwork are
defined as follows. We calculate the unnormalized state of the clockwork given that the
observer measures the register still to be in state |k− 1〉R a time interval t after the (k− 1)th
tick occurred as

ρ̃
(k−1)
C (t) = trR

[
1C ⊗ |k − 1〉〈k − 1|RMt,k−1

C→CR

(
ρ

(a,k−1)
C

)]
. (II.46)

The state of the clockwork an instance before the kth tick occurs is then defined as

ρ
(b,k−1)
C =

∫ ∞
0

P(k−1→k) (t) ρ
(k−1)
C (t)dt. (II.47)

Here,

P(k−1→k) (t) = lim
δt→0+

tr
[
1C ⊗ |k〉〈k|R

(
Mδt,k−1

C→CR

(
ρ̃

(k−1)
C (t)

)
− ρ̃(k−1)

C (t)⊗ |k − 1〉〈k − 1|R
)]

δt
,

(II.48)
which can be rewritten as

P(k−1→k) (t) = tr

∑
j

Jj ρ̃
(k−1)
C (t)J†j

 . (II.49)

Equation (II.49) corresponds to the probability density characterizing the kth ticking event.
The probability of observing the register in state |k− 1〉R a time interval t after the (k− 1)th
tick (i.e., the probability that the clock has not yet ticked from |k−1〉R → |k〉R in the interval
t) and observing a tick from |k − 1〉R to |k〉R in the infinitesimal time interval [t,t + δt] is
δt · P(k−1→k) (t), where δt > 0. Similarly, the state of the clockwork an instance after the kth
tick is

ρ
(a,k)
C =

∫ ∞
0

P(k−1→k) (t)

∑
j Jj ρ̃

(k−1)
C (t)J†j

tr
[∑

j Jj ρ̃
(k−1)
C (t)J†j

]dt, (II.50)

or equivalently

ρ
(a,k)
C =

∫ ∞
0

∑
j

Jj ρ̃
(k−1)
C (t)J†j dt. (II.51)

This first approach is based on taking ρ(a,k−1)
C as a starting state of the clockwork to assess

the relevant clockwork states of the kth tick. In particular, given that the clock is a reset clock
we have seen that ρ(a,1)

C = ρ0
C (see Eq. (II.45)). Thus, by treating a reset clock using approach

1 we have
ρ

(a,k)
C = ρ0

C, ρ
(b,k)
C = ρ

(b,0)
C ∀k ∈ N, (II.52)
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where ρ(a,0)
C = ρ0

C by definition. Recall that the entropy production of the kth tick will be
a function of the three clockwork states ρ(a,k−1)

C , ρ
(b,k−1)
C , and ρ

(a,k)
C . For a reset clock, the

three clockwork states of the kth tick are identical to the states of the first tick. Thus, for
reset clocks, the entropy production per tick will be independent of the particular tick under
consideration. This is a desirable property because the ticking events of a reset clock are in-
dependent and identically distributed. Similar to the thermodynamic ticking clock discussed
in Section II.1, one can think of reset clocks undergoing a cyclic process where the clockwork
ends up in the initial state after the completion of each tick. As such, we ascribe this ticking
process a particular entropy production per tick that is identical for all ticks.

Approach 2: In a second approach, one takes

ρ̃
(k−1)
C (t) = trR

[
1C ⊗ |k − 1〉〈k − 1|RMt,0

C→CR

(
ρ0

C

)]
(II.53)

as the state of the clockwork at coordinate time t (as measured from the initialization of the
clock at t = 0) before the kth tick occurred. Following similar steps as in the first approach,
the observer-dependent clockwork states are then calculated as

ρ
(b,k−1)
C =

∫ ∞
0

P(k−1→k) (t) ρ
(k−1)
C (t)dt, (II.54)

and
ρ

(a,k)
C =

∫ ∞
0

∑
j

Jj ρ̃
(k−1)
C (t)J†j dt, (II.55)

where

P(k−1→k) (t) = lim
δt→0+

tr
[
1C ⊗ |k〉〈k|R

(
Mδt,k−1

C→CR

(
ρ̃

(k−1)
C (t)

)
− ρ̃(k−1)

C (t)⊗ |k − 1〉〈k − 1|R
)]

δt
.

(II.56)
One can show that this second approach yields the same expression for ρ(a,k)

C as approach 1,
whereas they generally differ in their expression for ρ(b,k−1)

C . The key difference to approach 1
is, that in approach 2 we take the initial clockwork state ρ0

C as a starting state for every tick,
as opposed to the state just after the previous tick.

Earlier, we have motivated an important property of the entropy production per tick of
a ticking clock: it should be independent of the tick under consideration when considering
reset clocks. We can check whether the observer-dependent clockwork states calculated using
approach 2 allow for an expression that satisfies this property. Similar to the first approach,
we have ρ(a,k)

C = ρ0
C for a reset clock. However, in this second approach ρ(b,k−1)

C (Eq. (II.54)) is,
in general, still dependent on k. This can be seen from the fact that P(k−1→k) (t) corresponds
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the delay function corresponding to the kth tick τ (k)(t). As such, it is typically dependent on k
even for reset clocks. In Fig. B.1 in Appendix B.3, we confirm numerically that ρ(b,k−1)

C is still
dependent on k even in case of reset clocks by considering the ladder clock as an example of
a reset clock. Thus, in contrast to the first approach this second, alternative approach would
not yield an expression for the entropy per tick which is independent of the tick under consid-
eration when considering reset clocks. Consequently, approach 1 is preferred over approach 2.

Approach 3: In a third approach we define

ρ̃
(1)
C (t, t′) = trR

1C ⊗ |1〉〈1|RMt′,1
C→CR

 ∑
j Jj ρ

(0)
C (t)J†j

tr
[∑

j Jj ρ
(0)
C (t)J†j

]
 , (II.57)

where
ρ̃

(0)
C (t) = trR

[
1C ⊗ |0〉〈0|RMt,0

C→CR

(
ρ0

C

)]
. (II.58)

Equation (II.57) corresponds to the unnormalized state of the clock at coordinate time t+ t′

(as measured from the initialization of the clock at t = 0) given that the register is observed to
be in the state |1〉R and a tick from |0〉R → |1〉R was observed at coordinate time t. Because
the observer does not have any knowledge of t or t′, the state of the clock right before the
second tick is

ρ
(b,1)
C =

∫ ∞
0

∫ ∞
0

P(0→1) (t) P(1→2)
(
t, t′
)
ρ

(1)
C (t, t′)dtdt′, (II.59)

with

P(1→2)
(
t, t′
)

= lim
δt→0+

tr
[
1C ⊗ |2〉〈2|R

(
Mδt,1

C→CR

(
ρ̃

(1)
C (t, t′)

)
− ρ̃(1)

C (t, t′)⊗ |1〉〈1|R
)]

δt
. (II.60)

Similarly, the state of the clock right after the second tick is

ρ
(a,2)
CR =

∫ ∞
0

∫ ∞
0

P(0→1) (t) P(1→2)
(
t, t′
) ∑

j Jj ρ
(1)
C (t, t′)J†j

tr
[∑

j Jj ρ
(1)
C (t, t′)J†j

]dtdt′. (II.61)

Following this approach, the state of the clock an instance before and after the kth tick is then

ρ
(b,k−1)
C =

∫ ∞
0

∫ ∞
0

...

∫ ∞
0

P(0→1) (t) P(1→2)
(
t, t′
)
...P(k−1→k)

(
t, t′, ..., t(k−1)

)
ρ

(k−1)
C (t, t′, ..., t(k−1))dtdt′...dt(k−1), (II.62)
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and

ρ
(a,k)
C =

∫ ∞
0

∫ ∞
0

...

∫ ∞
0

P(0→1) (t) P(1→2)
(
t, t′
)
...P(k−1→k)

(
t, t′, ..., t(k−1)

)
∑

j Jj ρ
(k−1)
C (t, t′, ..., t(k−1))J†j

tr
[∑

j Jj ρ
(k−1)
C (t, t′, ..., t(k−1))J†j

]dtdt′...dt(k−1) (II.63)

respectively. For reset clocks, we have
∑

j Jj ρ
(k−1)
C (t, t′, ..., t(k−1))J†j ∝ ρ0

C and thus ρ(a,k)
C =

ρ0
C ∀k ∈ N, as well as ρ(b,k)

C = ρ
(b,0)
CR ∀k ∈ N. We see that this approach does yield observer-

dependent clockwork states that are independent of the tick under consideration for reset
clocks. One can show that this approach yields the same expression for ρ(a,k)

C as approach 1,
whereas it differs in its expression for ρ(b,k−1)

C (see Appendix B.3 for a proof). The crucial
differences between approaches 1 and 3 will be explored in the following.

Approach 3 can be motivated as follows: consider an observer which has witnessed the
clock tick (k − 1) times already. However, he is unaware of the specific coordinate times
St = {t, t + t′, t + t′ + t′′, ...} at which these ticks happened. Thus, he considers each pos-
sible set St of coordinate times at which these ticks may have occurred and calculates the
corresponding state of the clock before and after the kth tick accordingly (see Eq.(II.62) and
(II.63)). Integrating over all possible coordinate times for each tick, each state is weighted by
the probability of the first tick occurring in the infinitesimal time interval [t, t+δt], the second
tick occurring in the infinitesimal time interval [t+ t′, t+ t′ + δt], and so on. Clearly, because
the expression of P(k−1→k) involves a sequence of states of the clockwork corresponding to a
specific sequence of coordinate times St = {t, t+ t′, t+ t′+ t′′, ...}, it is dependent on the time
interval between all previous ticks P(k−1→k)

(
t, t′, ..., tk−1

)
.

In contrast, approach 1 can be motivated as follows: after each tick, we invoke the fact
that the observer has no knowledge of the precise coordinate time at which the tick occurred.
Thus, the appropriate state of the clock after the (k − 1)th tick for such an observer is given
by ρ(a,k−1)

C (Eq. (II.51)). Any subsequent assessment of the clock dynamics will then proceed
from this state onwards. Clearly, in this approach, we invoke the observer’s oblivion of the
exact time at which each tick happened earlier in the calculation compared to approach 3.
This renders the resulting expressions in approach 1 independent of the time interval between
previous ticks. We can therefore think of approach 1 as follows: it treats subsequent ticks
as independent, in the sense that it incorporates the action of previous ticks only in an av-
erage fashion while ignoring correlations between the ticking times (see Appendix B.3 for a
detailed comparison of approach 1 and 3). Note that this puts the analysis of all ticks on
an equal footing. The precise tick under consideration merely determines the initial state of



II.3 Observer-dependent clockwork states 47

the clockwork and register which is considered for the analysis, that is the observer-dependent
state of the clockwork just after the previous tick. Axiom 4 of our ticking clock model guar-
antees that the analysis of the entropy production per tick of the kth tick (k > 1) of a clock
then simply reduces to an analysis of the first tick (k = 1) for a different initial clockwork
state, namely the observer-dependent clockwork state after the (k−1)th tick given by ρ(a,k−1)

C .

To illustrate this, imagine the observer is handed a clock just after its (k − 1)th tick and
wants to assess the entropy production of the next tick of the clock. The observer is, however,
not aware of the fact that this clock ticked (k − 1) times beforehand already. One obtains an
ensemble description of this situation, for example, by analyzing the clock many times with
varying coordinate times St at which the first (k−1) ticks occur. This ensemble description is
appropriately reflected by ascribing the clockwork the initial state ρ(a,k−1)

C . Thus, this is iden-
tical to a situation where the observer analyses the first tick of a clock with the same clockwork
dynamics (Mt

CR→CR)t≥0 but initialized in the state ρ(a,k−1)
C , as opposed to ρ0

C. This situation
is depicted in Fig. II.5.

Figure II.5: Illustration of an observer which is handed a ticking clock after its (k− 1)th tick.
The observer-dependent clockwork state ρ(a,k−1)

C takes into account all possible times at which
the previous ticks could have occurred.

If we agree that an observer who is oblivious of the previous ticks of a clock can still assess
the entropy production per tick faithfully, we must agree that approach 1 is appropriate for
constructing the observer-dependent clockwork states. Or in other words, by adopting ap-
proach 1 we decide to construct a measure for the entropy production per tick which differs
for the various ticks only in the initial state of the clockwork. The entropy produced in the
kth tick of a clock is equivalent to the entropy produced in the first tick of the clock when
initialized in another clockwork state, being ρ(a,k−1)

C . Because we believe that this is a reason-
able property for a measure of the entropy production per tick of a ticking clock, we prefer
approach 1 over approach 3 to calculate the observer-dependent clockwork states.
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To conclude, we have motivated our choice for the relevant observer-dependent clockwork
states by requiring that a reasonable measure of the entropy production per tick of a ticking
clock satisfies the following properties:

• the entropy production per tick of a reset clock should be independent of the particular
tick under consideration,

• the entropy production of the kth tick of a ticking clock
(
ρ0

C, (Mt
CR→CR)t≥0

)
is identical

to the entropy production of the first tick of a clock with the same clock dynamics
(Mt

CR→CR)t≥0 but which is initialized in the state ρ(a,k−1)
C .

Based on the observer-dependent clockwork states calculated using approach 1 we can now
propose a measure for the entropy per tick.

II.4 Modelling a ticking clock’s environment

For ticking clocks in a thermodynamic setting, there has been significant evidence of a fun-
damental relation between their accuracy and the entropy production per tick which arises
due to heat dissipation (see Section II.1). More generally, the irreversibility of the dynam-
ics of an open quantum system, such as a ticking clock, can ultimately be attributed to the
interaction with its environment (see Section II.2.1). In particular, if there is no interaction
between system and environment, the dynamics of the system itself can still be well described
by reversible unitary dynamics. Hence, to devise a measure for the entropy production per tick
for a ticking clock

(
ρ0

C, (Mt
CR→CR)t≥0

)
, we first need an appropriate notion of its environment.

Here, we adopt the perspective of an observer who does not have explicit knowledge of
the environment generating the underlying dynamics of the clock. This is because, given
a particular ticking clock specified by

(
ρ0

C, (Mt
CR→CR)t≥0

)
, there may be several different

environments that all yield the appropriate clock dynamics. In particular, we do not want to
limit our measure of entropy production to thermal environments. Instead, because we want
to define a property based on the dynamics of the clock alone, we assign all these clocks an
equal entropy production per tick. In the following, we discuss two different approaches to
modeling the environment associated with a ticking clock. These are based on common tools
from quantum information theory used to construct quantum channels and quantum states
via dilation of the system to a larger Hilbert space, i.e., to a system that encompasses both
the ticking clock as well as its environment. Thus, we “go to the church of the larger Hilbert
space” to model the environment of a ticking clock [69, 70]. This is illustrated in Fig. II.6.
Ultimately, our measure for the entropy production per tick will be based on an environment
modeled by such an approach.
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Figure II.6: Illustration of the two procedures for modeling the environment (E) of the clock-
work (C) of a ticking clock: the dilation of (A) clockwork states, or (B) ticking channels. (A)
Given a mixed state of the clockwork ρC, its purifying system constitutes the environment.
By construction, the joint state of the clockwork and its environment is then pure |Ψ〉CE. (B)
Given that the clockwork undergoes an evolution according to a quantum channel E , the an-
cillary system which allows for this evolution to be expressed as joint unitary dynamics (with
a unitary operator U) constitutes the environment. In both approaches (A and B), the clock-
work and its environment will generally be entangled (red connection). These correlations can
be identified as the key source of entropy production (see Section II.2.1).

II.4.1 Dilation of quantum states

One way to define an environment only from the state of the clockwork is via purification [25,
69, 70]. That is, given a state of the clockwork ρC the joint state of clockwork and environment
is defined as any pure state ρCE = |Ψ〉〈Ψ|CE, such that

ρC = trE [|Ψ〉〈Ψ|CE] , ρE = trC [|Ψ〉〈Ψ|CE] . (II.64)

Here, the environment E corresponds to the purifying system of the clockwork C. A purifi-
cation represents the most general procedure for modeling a minimal environment from an
information-theoretic perspective, such that the joint system of clock and environment can be
considered closed, i.e., be described by a pure state (see Fig. II.6). In that sense, the environ-
ment encompasses all degrees of freedom other than the system itself.

Any bipartite pure state can be written in the following form using Schmidt decomposi-
tion [25, 69, 70]

|Ψ〉CE =

dmin∑
i=1

√
λi|ξi〉C ⊗ |ηi〉E, (II.65)

where {|ξi〉}C and {|ηi〉}C are two orthonormal bases of the Hilbert spaces HC and HEC of the
subsystem C and E, respectively. These two Hilbert spaces are of dimensions dC = dim(HC)

and dE = dim(HE). Here, dmin = min(dC, dE) with
∑dmin

i=1 λi = 1, λi ≥ 0 ∀i. The Schmidt
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coefficients {λi}dmin
i=1 are the eigenvalues of the reduced states of the two subsystems C and E

ρC = trE [|Ψ〉〈Ψ|CE] =

dmin∑
i=1

λi|ξi〉〈ξi|C, (II.66)

ρE = trC [|Ψ〉〈Ψ|CE] =

dmin∑
i=1

λi|ηi〉〈ηi|E. (II.67)

The two reduced states ρE and ρC have the same eigenvalues and are therefore characterized
by the same von Neumann entropy S(ρE) = S(ρC).

For any particular state of the clockwork ρC there will be multiple possible choices of
purifying systems, i.e., choices of environments E. Consider, for example, the state ρCEE′ =

|Ψ〉〈Ψ|CE ⊗ |φ〉〈φ|E′ with the purifying system now being labeled by EE’ with

ρC = trEE′ [|Ψ〉〈Ψ|CE ⊗ |φ〉〈φ|E′ ] . (II.68)

But any environment to the clockwork C in state ρC will have an entropy equal to the system’s
entropy S(ρC) as shown above via Schmidt decomposition. Furthermore, the correlations
between the clockwork and any potential environment will be given by

I(|Ψ〉〈Ψ|CE) = S(ρC) + S(ρE)− S(|Ψ〉〈Ψ|CE) = 2S(ρC) ∝ S(ρC), (II.69)

with S(|Ψ〉〈Ψ|CE) = 0. That is, for any choice of purifying system E the correlations between
system S and E will be given by 2S(ρC).

To conclude, we find that the environments of the clockwork constructed via purification
all have equal entropy and exhibit equal correlations with the clockwork because these are
properties of the clockwork itself. Given that these are the precise quantities of interest when
devising a measure of irreversibility (see Sections II.1 and II.2), all such environments are
equivalent when assessing the entropy production per tick of a ticking clock. In other words,
all choices of purifying systems reduce to the same expression for the entropy production per
tick and are thus implicitly accounted for.

II.4.2 Dilation of quantum channels

Stinespring’s representation theorem [69, 70] states that any quantum channel E , i.e., CPTP
map, between density matrices can be represented (dilated) by a joint unitary evolution on a
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larger dimensional Hilbert space which includes the environment E as an additional system:

ρ′C = E(ρC) = trE

[
UρC ⊗ |0〉〈0|EU †

]
. (II.70)

This represents a general procedure for modeling an environment given a non-unitary evolution
of an open quantum system (see Fig. II.6). Here, the environment corresponds to the addi-
tional quantum system on which the joint evolution can be represented by a unitary evolution.
Importantly, the fact that the joint evolution is unitary guarantees that no other system takes
part in the dynamics, and all resources are included in this description.

Given that the joint evolution is unitary

ρ′CE = UρC ⊗ |0〉〈0|EU †, (II.71)

we have
S(ρ′CE) = S(ρCE), (II.72)

where
S(ρCE) = S(ρC ⊗ |0〉〈0|E) = S(ρC), (II.73)

S(ρ′CE) = S(ρ′C) + S(ρ′E)− I(ρ′CE). (II.74)

Thus, the change in entropy of the environment can be expressed as

∆SE = S(ρ′E)− S(ρE) = S(ρC)− S(ρ′C) + I(ρ′CE) = I(ρ′CE)−∆SC ≥ 0, (II.75)

∆SE ≥ −∆SC, (II.76)

where ∆SC = S(ρ′C)−S(ρC) is the corresponding change in system entropy. The correlations
between system and environment are given as

I(ρ′CE) = ∆SC + ∆SE = ∆SC + S(ρ′E) ≥ 0. (II.77)

Let us purify the initial clockwork state ρC as |Ψ〉〈Ψ|CP with a purifying system P and
extend the quantum channel E to act trivially on the purifying system

E −→ E ′CE = EC ⊗ IP. (II.78)

Note that E ′ is guaranteed to be a valid CPTP map due to the complete positivity of the
channel E . By the Stinespring representation theorem, we have

ρ′CP = E ′(|Ψ〉〈Ψ|CP) = trE

[
UCE ⊗ 1P|Ψ〉〈Ψ|CP ⊗ |0〉〈0|EU †CE ⊗ 1P

]
, (II.79)



52 Entropy production per tick of a ticking clock

where
ρ′C = trP

[
ρ′CP

]
= E(ρC) = trE

[
UCEρC ⊗ |0〉〈0|EU

†
CE

]
, (II.80)

and
ρ′P = trC

[
ρ′CP

]
= I(ρP) = ρP. (II.81)

Note that the joint state of CPE after application of the unitary UCE ⊗ 1P in Eq. (II.79) is
also pure, because a unitary evolution conserves purity. Replacing C by CP in Eq. (II.75) and
(II.77) and noting that S(|Ψ〉〈Ψ|CP) = 0 = S(|Ψ〉〈Ψ|′CPE) we have

∆SE = S(ρ′CP) ≥ 0, (II.82)

and
ICP:E(ρ′CPE) = 2S(ρ′CP) ∝ S(ρ′CP) ≥ 0. (II.83)

Therefore, we see that by purifying the initial state of the clockwork and tracking the evolution
of the resulting pure state, we can directly assess the change in entropy of the environment ∆SE

(Eq. (II.75)) arising when considering the quantum channel E without any explicit reference
to the environment itself. That is, all environments and unitary operators that result in the
state ρ′CP of the system CP after a joint evolution will yield the same entropy production per
tick if the latter is given by the change in entropy of the environment, or equivalently, the
built-up correlations between the system CP and its environment E (see Eq. (II.83)). As such,
these are intrinsic properties of the clockwork and its dynamics irrespective of the particular
environment which is used in its realization [49]. Note that if the initial state of the clockwork
is already pure ρC = |Ψ〉〈Ψ|C, then S(ρ′CP) = S(ρ′C). In this special case, the relevant quantity
S(ρ′CP) corresponds to the change in entropy of the clockwork itself during the process. In
general, using the triangle inequality (see Appendix A) we have

S(ρ′CP) ≥ |S(ρ′C)− S(ρC)|. (II.84)

One may think that the restriction to pure initial states of the environment E in the
above analysis is unphysical. Firstly, note that while the actual environment responsible for
generating the dynamics may be impure, we find quantities intrinsic to the clockwork and its
dynamics by substituting this environment with an alternative environment that is initially in
a pure state and gives rise to the same dynamics. As such, it is this pure environment that is
most useful for gauging the properties of the clock irrespective of its physical implementation.
Consider, for example, the case where the evolution of the system governed by the quantum
channel E can be expressed as

ρ′C = E(ρC) = trE

[
UρC ⊗ ρEU

†
]
. (II.85)
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That is, a situation where the clockwork undergoes a joint unitary evolution with a generally
mixed state of the environment ρE. Then, we have

∆SE = S(ρ′E)− S(ρE) ≤ S(ρ′E), (II.86)

and
I(ρ′CE) = ∆SC + ∆SE ≤ ∆SC + S(ρ′E), (II.87)

where equality hold if and only if ρE is a pure state. Let us purify the initial state of the
environment ρE as |Ψ〉〈Ψ|EE′ with a purifying system labeled E′. Equation (II.85) can then
be rewritten as

ρ′C = E(ρC) = trEE′

[
UCE ⊗ 1E′ρC ⊗ |Ψ〉〈Ψ|EE′U

†
CE ⊗ 1E′

]
. (II.88)

We have
∆SEE′ = S(ρ′EE′)− S(ρEE′) = S(ρ′EE′), (II.89)

and
IC:EE′(ρ

′
CEE′) = ∆SC + ∆SEE′ = ∆SC + S(ρ′EE′). (II.90)

Here, Eq. (II.89) and (II.90) upper bound the expressions in Eq. (II.86) and (II.87), respec-
tively. Meaning, the change in entropy of the environment and the built-up correlations be-
tween the clockwork and environment given a joint unitary evolution with an initially mixed
state of the environment is upper bounded by the expressions obtained using Stinespring di-
lation, where the initial state of the environment is pure. Moreover, in the case where the
evolution can be written in the form of Eq. (II.85) one can always construct a joint unitary evo-
lution with a pure initial state of the environment obtained via purification (see Eq. (II.88)).
Here, if we purify the initial clockwork state ρC as |Ψ〉〈Ψ|CP and extend the corresponding
quantum channel, we have

S(ρ′CP) = S(ρ′EE′). (II.91)

Thus, using the triangle inequality (see Appendix A) we obtain

S(ρ′CP) ≥ |S(ρ′E)− S(ρE)|. (II.92)

So the quantity S(ρ′CP) constitutes an upper bound to the absolute change in entropy of any
environment E which may start in a generally mixed state and be sufficient to describe the
dynamics of the clockwork through joint unitary evolution.

From a point of view of the clockwork itself, one cannot distinguish between these two
situations. This becomes clear when picturing two physical scenarios: one in which the envi-
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ronment is identified as the subsystems labeled EE′ which starts in a pure state initially and
shows trivial dynamics on subsystem E′ itself. In the other scenario, the environment is only
identified as the subsystem E, which is (generally) in a mixed state initially. Because both
environments generate the same dynamics on the clockwork, there is no way judging from
the evolution of the clockwork alone whether one is currently witnessing the first or second
situation. The choice of which subsystems should constitute the environment then lies in the
hands of an observer who has, at least partial, knowledge of the environment. Note that we set
out to define an expression for the entropy production per tick of a ticking clock irrespective
of the environment which realizes the clock. Thus, such a disagreement on the identification
of subsystems as the relevant environment emerges naturally. In this work, we adopt a view-
point of an observer that has no knowledge of the environment at all, i.e., only has access to
the clock itself and its dynamics. When modeling the environment by means of Stinespring
dilation of the corresponding quantum channel with a pure initial state of the environment,
we account for both these scenarios implicitly. By doing so, we upper-bound the change in
the entropy of the environment and the built-up correlations, and thus the entropy production
per tick which will be derived from these quantities.

II.4.2.a Information leakage of noisy quantum channel

Note that S(ρ′CP) is a known quantity called “entropy exchange” [25, 71–74] (or sometimes
entropy production [75]) when analyzing the transmission through noisy quantum channels
using concepts from quantum information theory. Here, the noisy quantum channel is given
by the CPTP map E . It is called “noisy” because, in general, the evolution of the system
is not unitary and as such, the system is not isolated from its environment. As we have
seen above, the quantity S(ρ′CP) is generally not equal to the change in the entropy of the
clockwork C itself or the physical environment which realizes the dynamics via a joint unitary
evolution. Instead, it quantifies the information exchanged between the clockwork and the
“rest of the universe” during its generally non-unitary evolution. In particular, one can show
that it gains operational meaning in quantum cryptographic protocols: the entropy exchange
then upper-bounds the amount of information that an eavesdropper can potentially acquire
when the noisy quantum channel is used for communication between two parties [71]. Here,
the environment of the system includes the measurement apparatus of the eavesdropper which
disturbs the system and acts as a source of noise for the quantum channel. Moreover, consider
the entanglement fidelity Fe given as

Fe = tr
[
ρ′CP|Ψ〉〈Ψ|CP

]
. (II.93)

Equation (II.93) quantifies how well the initial entangled state |Ψ〉CP is preserved under the
evolution by the quantum channel ẼCP = EC⊗IP. Importantly, the entanglement fidelity does
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not only measure how well the state of the clockwork C is preserved under the evolution but
also how well the coherences with its purifying system P are conserved. As such, it is a strong
measure of the amount of disturbance that the state of the clockwork experiences during its
evolution. One can show that the entanglement fidelity, similar to the entropy exchange, is also
an intrinsic quantity depending only on the state of the clockwork C and on its dynamics [71].
A connection between Fe and S(ρ′CP) is given by the quantum Fano inequality

S(ρ′CP) ≤ Sbin(Fe) + (1− Fe) ln
(
d2 − 1

)
, (II.94)

where Sbin(p) = −p ln(p) − (1 − p) ln(1− p) is the binary Shannon entropy and d is the di-
mension of the clockwork Hilbert space. This inequality connects the disturbance experienced
by the clockwork, as quantified by Fe, to the information which “leaks” into the environment,
as quantified by S(ρ′CP). Looking at Eq. (II.94), if the entropy exchange is large, the entan-
glement fidelity must necessarily be small. That is, the system is disturbed strongly. This
enforces the notion that in quantum information theory, noise (or disturbance) is caused by
an information exchange with the environment of the system.

II.5 Measures of entropy production per tick of a ticking clock

In this section, we construct appropriate measures for the (irreversible) entropy production
per tick of a ticking clock based on the relevant observer-dependent states of the clockwork
motivated in Section II.3 and the corresponding environment which we construct using the
methods discussed in Section II.4. Ultimately, these measures are motivated by the findings
in Section II.1 regarding the entropy production per tick of thermodynamic ticking clocks, as
well as recent advances regarding entropy production in open quantum systems reviewed in
Section II.2.

II.5.1 Based on dilation of clockwork states

In a first approach to define a measure for the entropy production per tick, we assess the en-
vironment of the ticking clock by purifying the relevant observer-dependent clockwork states
before and after each tick, see Section II.4.1. As motivated previously, the entropy produc-
tion of the kth tick will generally depend on the following clockwork states: ρ(a,k−1)

C , ρ(b,k−1)
C ,

and ρ
(a,k)
C . The entropy of the environment of the clockwork at these instances is given by

S(ρ
(a,k−1)
C ), S(ρ

(b,k−1)
C ), and S(ρ

(a,k)
C ), respectively. This also corresponds, up to a constant

factor of 2, to the correlations between clockwork and environment, as measured by the quan-
tum mutual information (see Eq. (II.69)). Eventually, we will be interested in assessing the
change in entropy of the environment or the change in the correlations between system and
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environment during the ticking process. Naively, one can identify

Σ
(A)
k = S(ρ

(a,k)
C )− S(ρ

(a,k−1)
C ) (II.95)

and
Σ

(B)
k = S(ρ

(b,k−1)
C )− S(ρ

(a,k−1)
C ) (II.96)

as two potential quantities measuring this change. While Σ
(A)
k (Eq. (II.95)) measures these

changes by assessing the environment of the clockwork in the instances just after the (k−1)th
and kth tick, Σ

(B)
k (Eq. (II.96)) evaluates the environment of the clockwork in the instances

just after and before the (k − 1)th and kth tick, respectively. Note that these two quantities
are not guaranteed to be non-negative. Consider, for example, the case where the clockwork
is initialized in a maximally mixed state ρ0

C = 1
d1 but which resets to a pure state of the

clockwork after its first tick. Then, Σ
(A)
1 = S(1

d1) = ln(d) and Σ
(B)
1 ≤ 0 in general, where

equality can only be achieved if ρ(b,0)
C = 1

d1.

A crucial property of any measure for the entropy production per tick of a ticking clock
Σk is that it should be invariant under purification of the clockwork state ρ(a,k−1)

C . Thus, we
modify the two measures as follows:

Σ
(A)
k = S(ρ

(a,k
CP )− S(|Ψ〉〈Ψ|(a,k−1)

CP ) = S(ρ
(a,k)
CP ) ≥ 0, (II.97)

Σ
(B)
k = S(ρ

(b,k−1)
CP )− S(|Ψ〉〈Ψ|(a,k−1)

CP ) = S(ρ
(b,k−1)
CP ) ≥ 0, (II.98)

where
ρ

(b,k−1)
CP =

∫ ∞
0

P(k−1→k) (t) ρ
(k−1)
CP (t)dt, (II.99)

ρ
(a,k)
CP =

∫ ∞
0

P(k−1→k) (t)

∑
j J̃j ρ

(k−1)
CP (t)J̃†j

tr
[∑

i J̃j ρ
(k−1)
CP (t)J̃†j

]dt =

∫ ∞
0

∑
j

J̃j ρ̃
(k−1)
CP (t)J̃†j dt, (II.100)

with
ρ̃

(k−1)
CP (t) = trR

[
1CP ⊗ |k − 1〉〈k − 1|RM̃t,k−1

CP→CPR

(
|Ψ〉〈Ψ|(a,k−1)

CP

)]
. (II.101)

Here, |Ψ〉〈Ψ|(a,k−1)
CP corresponds to the purification of the clockwork state ρ(a,k−1)

C with purifying
system P

trP

[
|Ψ〉〈Ψ|(a,k−1)

CP

]
= ρ

(a,k−1)
C . (II.102)

The new ticking clock channels (M̃t
CPR→CPR)t≥0 can be obtained from the original channels

(Mt
CR→CR)t>0 via

M̃t
CPR→CPR =Mt

CR→CR ⊗ IP ∀t ≥ 0. (II.103)
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Equivalently,
M̃t,k

CP→CPR =Mt,k
C→CR ⊗ IP ∀t ≥ 0, k ∈ N. (II.104)

The corresponding representation given in Proposition 1 can be obtained by the following
substitutions

Lj,C −→ L̃j,CP = Lj,C ⊗ 1P ∀j ∈ (1, NL), (II.105)

Jj,C −→ J̃j,CP = Jj,C ⊗ 1P ∀j ∈ (1, NL), (II.106)

HC −→ H̃CP = HC ⊗ 1P. (II.107)

This property can be motivated as follows: For every ticking clock specified by

(
ρ0

C, (Mt
CR→CR)t≥0

)
, (II.108)

there exists another ticking clock specified by(
|Ψ〉〈Ψ|0CP, (M̃t

CPR→CPR)t≥0

)
, (II.109)

where the initial state of the clockwork is given by the purification of ρ0
C and P denotes the cor-

responding purifying system. The dynamics of this alternative ticking clock (Eq. (II.109)) are
characterized by the ticking clock channels (M̃t

CPR→CPR)t≥0 of the form given in Eq. (II.103),
which act trivially on the purifying system. This second type of clock undergoes the same
interactions with its environment. This is because the purifying system does not interact with
the environment at all (see Eq. (II.105),(II.106), and (II.107)) and the dynamics of the clock-
work C itself are identical for both clocks. Thus, the fundamental origin of irreversibility of
the clock’s dynamics – the non-unitary evolution of the clock – remains unchanged and any
measure of irreversibility should be identical for these two clocks. This can be ensured for
the first tick by the replacement of ρ0

C by its purification |Ψ〉〈Ψ|0CP, where the dynamics act
trivially on the purifying system. To motivate the replacement of ρ(a,k−1)

C by its purification
|Ψ〉〈Ψ|(a,k−1)

CP for the assessment of the entropy production of the kth tick (as outlined above),
we invoke our previous assumption that the entropy production of the kth tick of a ticking
clock should be identical to the entropy production of the first tick of a ticking clock with the
same dynamics, but which is initialized to the state ρ(a,k−1)

C instead of ρ0
C (see Section II.3).

Note that this also guarantees the positivity of the two measures Σ
(A)
k (Eq. (II.97)) and Σ

(B)
k

(Eq. (II.98)).

We can analyze the particular case of the thermodynamic ticking clock (see Section II.1)
for a more physical motivation of this property. For the thermodynamic ticking clock, the



58 Entropy production per tick of a ticking clock

entropy production per tick can be attributed to the heat exchange between the two thermal
baths that powers its clockwork. By purification of the initial state of the clockwork, we adopt
a perspective of an observer that has complete knowledge of the initial state of the clockwork,
i.e., an observer who also has access to the system that purifies the clockwork (which can be
seen as an origin for the impurity of the original clockwork state). Clearly, adopting such a
viewpoint does not alter the amount of heat that flows from the hot to the cold reservoir. This
is because the heat flow is directly tied to the dynamics of the clockwork which remains the
same in both perspectives.

We can further motivate this property by noting that the first measures in Eq. (II.95) and
(II.96) were proposed based on an analysis of the environment E of the clockwork obtained by
purifying the state of the clockwork before and after the kth tick as

ρ
(b,k−1)
C −→ |Ψ〉〈Ψ|(b,k−1)

CE , (II.110)

and
ρ

(a,k)
C −→ |Ψ〉〈Ψ|(a,k)

CE , (II.111)

respectively. Compare this to the second set of measures in Eq. (II.97) and (II.98) which were
motivated by assessing the environment E’ of the clockwork obtained by purifying the state
of the clockwork before and after the kth tick as

ρ
(b,k−1)
CP −→ |Ψ〉〈Ψ|(b,k−1)

CPE′ , (II.112)

and
ρ

(a,k)
CP −→ |Ψ〉〈Ψ|(a,k)

CPE′ , (II.113)

respectively. These are obtained by purifying the state ρ(a,k−1)
C first to yield |Ψ〉〈Ψ|(a,k−1)

CP .
Based on this, one can observe that the first approach (Eq. (II.95) and (II.96)) assesses the
change in entropy of the subsystems PE′, whereas the second approach only assesses the
change in entropy of the subsystem E′. This is because the entropy of any purifying system is
identical to the entropy of the system which gets purified (see Section II.4.1). We know that
the identification of the environment of a ticking clock with the subsystem E′, as opposed to
PE′, is more faithful. This is because we can exclude that subsystem P is part of the relevant
environment, as there will exist another clock that incorporates this system in its clockwork
and undergoes the same dynamics. To probe the environment constituted by the subsystem
labelled E′, as opposed to both E′ and P, we adopt the measures in Eq. (II.97) and (II.98)
instead of Eq. (II.95) and (II.96).

A priori, it is unclear which of the two quantities, Σ
(A)
k or Σ

(B)
k , in Eq. (II.97) and (II.98)
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is more appropriate for assessing the entropy production per tick of a ticking clock. Because
we model the environment based on the clockwork alone, it is crucial to pick the appropriate
clockwork states. This is illustrated by the fact that Σ

(A)
k = 0 ∀k ∈ N>0 for reset clocks which

reset to a pure state (Def. 5). An expression for the entropy production per tick of a ticking
clock with such a property is undesired. Even if we take the expression as a minimal amount
of entropy production per tick, this would result in a trivial relation between the minimal
entropy production and the accuracy of ticking clocks. Intuitively, reset clocks that reset to a
pure state are the most accurate class of ticking clocks. In particular, the ladder ticking clock
(see Section I.1.1) and the quasi-ideal ticking clock (see Section I.1.2) fall in this category. For
classical clocks, Theorem 1 formalizes this intuition. We note, however, that the dynamics of
these clocks are not unitary, and therefore not fully reversible in general. This can be seen
directly by noting that for such clocks S(ρ

(b,k−1)
CP ) 6= 0 ∀k ∈ N>0 in general, whereas entropy

is conserved under unitary dynamics. Thus, the first measure given by Σ
(A)
k fails to assess

the change in entropy of the environment or correlations based on the states of the clockwork
alone. The reason for its failure can be understood by noting that ρ(a,k)

C = ρ
(a,0)
C = ρ0

C ∀k ∈ N
for any pure state reset clock. An observer which only considers these states of the clockwork
would ascribe the clock a trivial evolution. That is, given two identical states of the clockwork
such an observer would assign the process connecting the two states a vanishing (minimal)
change in the entropy of the environment because the same mapping between states can simply
be achieved by an identity operation. What this approach fails to capture is the irreversibility
of the dynamics of these clocks leading up to a tick event.

Hence, we adopt the second measure Σ
(B)
k in the following (Eq. (II.98)). This quantity is

non-zero in general, even for reset clocks that reset to a pure state. Here, the environment of
the clockwork is evaluated just before each tick as opposed to after. Intuitively, this precisely
addresses the problem with the first measure Σ

(A)
k identified above. The transition from

ρ
(b,k−1)
C to ρ(a,k)

C involves the collapse of the clockwork state during the tick of the clock (see
Eq. (II.47) and (II.50)), i.e., the advancement of its register, given by

ρ
(k−1)
C (t) −→

∑
j Jj ρ

(k−1)
C (t)J†j

tr
[∑

j Jj ρ
(k−1)
C (t)J†j

] . (II.114)

By probing the state of the clockwork an instance before each tick, i.e., before the associated
collapse of the clockwork state, we can faithfully assess the involvement of the environment
in the evolution of the clockwork up to that point. In that sense, adopting the measure Σ

(B)
k

over Σ
(A)
k can be viewed as a necessary “trick” to appropriately model the environment and

its interactions with the clockwork when adopting the viewpoint of an observer that only has
access to the observer-dependent states of the clockwork.
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In the particular case of the thermodynamic ticking clock (see Section II.1), the ticking
event is associated with the emission and subsequent detection of a photon and a collapse of
the ladder to its ground state. The state of the clockwork an instance after this ticking event
will be (approximately) equal to the initial state of the clockwork, whereas the state of the
clockwork an instance before the tick is generally different. In particular, the population of the
ladder is not all concentrated in its ground state (otherwise the probability of ticking would
vanish). However, the amount of heat exchanged between the baths – and thus the entropy
production per tick – remains the same, independent of whether it is assessed in an instance
before or after the tick. By probing the state of the clockwork an instance after the tick
event and comparing it to its initial state, an observer may draw false conclusions about the
involvement of the environment. Instead, to properly assess the entropy production per tick
as the heat exchanged between the thermal reservoirs one evaluates the state of the clockwork
an instance before the completion of its cyclic process, i.e., an instance before the actual tick
event takes place.

To conclude, in this section, we have motivated the following expression for the entropy
production of the kth tick of a ticking clock

Σk = S(ρ
(b,k−1)
CP ) ≥ 0 ∀k ∈ N>0, (II.115)

where ρ(b,k−1)
CP is calculated according to Eq. (II.99). For this, we have postulated the following:

• The entropy production of the first tick of a ticking clock
(
ρ0

C, (Mt
CR→CR)t≥0

)
should

be identical to the entropy production of the first tick of the ticking clock(
|Ψ〉〈Ψ|0CP, (M̃t

CPR→CPR)t≥0

)
, (II.116)

where |Ψ〉〈Ψ|0CP is the purification of ρ0
C with purifying system P and the ticking clock

channel of this second clock M̃t
CPR→CPR =Mt

CR→CR ⊗ IP acts trivially on P.

The measure Σk (Eq. (II.115)) is non-negative and its minimum value of zero can only be
achieved by a pure state S(|Ψ〉〈Ψ|(b,k−1)

CP ) = 0. Note that the state |Ψ〉〈Ψ|(a,k−1)
CP is pure by

construction and thus has zero entropy. Because any unitary evolution leaves the entropy
unchanged, when observing a state ρ(b,k−1)

CP with non-zero entropy it is evident that it must
have undergone a non-unitary, and thereby irreversible, evolution in the process. In particular,
because |Ψ〉〈Ψ|(a,k−1)

CP is pure, we know that there cannot be any initial correlations with
its environment. Because purity is conserved under unitary evolution, if the state ρ(b,k)

CP is
not pure, i.e., has non-zero entropy, it must necessarily share correlations with some other
system – its environment E – during the process. If we purify the state ρ(b,k−1)

CP , we find
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ICP:E(|Ψ〉〈Ψ|(b,k−1)
CPE ) = 2S(ρ

(b,k−1)
CP ) = 2S(ρ

(b,k−1)
E ). Thus, Σk serves as a direct measure of

the correlations which build up with its environment during the process leading up to the tick
event, which is up to the instance just before the tick occurs. Looking back at Section II.2.1,
we motivated the correlations between system and environment as the source of irreversibility
of a process.

II.5.2 Based on dilation of ticking channels

Having devised a first measure for the entropy production per tick of a ticking clock (Eq. (II.115))
based on the identification of an environment via the dilation of the relevant observer-dependent
clockwork states, we here take an alternative approach based on modeling the environment via
the dilation of the quantum channels connecting these clockwork states (see Section II.4.2). In
particular, we may associate the two CPTP maps E(A)

k−1 and E(B)
k−1 (k ∈ N>0) to the transitions

between the relevant observer-dependent clockwork states

ρ
(a,k)
C = E(A)

k−1(ρ
(a,k−1)
C ), (II.117)

ρ
(b,k−1)
C = E(B)

k−1(ρ
(a,k−1)
C ). (II.118)

Based on the expressions for the observer-dependent clockwork states (see Section II.3),
we can construct the Kraus operator representation of the quantum channel E(A)

k−1 (see Ap-
pendix B.4). The derivation of the relevant observer-dependent clockwork states does, however,
not directly yield a Kraus operator representation for the channel E(B)

k−1. Nevertheless, given
that one can always find a quantum channel that maps between two valid quantum states,
such a channel exists. The channel E(B)

k−1 may, however, be dependent on the particular input
and output states. In specifying a ticking clock, one fixes the relevant observer-dependent
clockwork states. While there will still be a remaining degree of freedom in the choice of
the quantum channel E(B)

k−1, we will ensure that the quantities which may eventually serve as
measures for the entropy production per tick will be independent of this choice.

We dilate the quantum channels E(A)
k−1 and E(B)

k−1 according to Section II.4.2 to obtain

ρ
(a,k)
CE = U

(A)
k−1ρ

(a,k−1)
C ⊗ |0〉〈0|EU (A)†

k−1 , (II.119)

ρ
(b,k−1)
CE = U

(B)
k−1ρ

(a,k−1)
C ⊗ |0〉〈0|EU (B)†

k−1 . (II.120)

Thus, we naturally arrived at the setting in which the analysis of Section II.2.1 on entropy
production as correlation between system and environment took place. That is, a system
and environment which are initially uncorrelated and undergo a joint unitary evolution. In
the following, we analyze the resulting states of clockwork and environment before and after
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the application of the unitary channel according to Section II.2.1 to obtain expressions for
the corresponding changes in environmental entropy and correlations between clockwork and
environment. These are then identified as measures for the entropy production per tick of
ticking clocks.

Before moving on, note that such a procedure assumes that the environment and the clock-
work given by the state ρ(a,k−1)

C are initially uncorrelated, see Eq. (II.119) and (II.120). This
is common to the Stinespring dilation of any quantum channel [25, 69, 70]. Moreover, the
product state assumption is also standard to many other common tasks in (quantum) infor-
mation processing, such as error correction [25, 47]. In any case, it is certainly valid when
the two systems did not previously interact, i.e., never had the possibility to get correlated in
the first place. Thus, for the first tick of a ticking clock one can reasonably assume that the
environment is not correlated to the initial state of the clockwork ρ0

C. In fact, the assumption
of vanishing correlations between system and environment is crucial for the derivation of the
quantum Markovian master equations which underlies the dynamics of any ticking clock [26,
30, 31]. Imagine for a moment, that we do not assume product states for later ticks k > 1.
Then, it may happen that even though the clock is a reset clock and the relevant observer-
dependent clockwork states of the kth tick are equivalent to the clockwork states of the first
tick, we do not get the same entropy production per tick in every tick. We did, however,
postulate that the entropy per tick of a reset clock should be independent of the tick under
consideration. In any case, we can justify the product state assumption for the later ticks
k > 1 by invoking our earlier statement that the entropy production of the kth tick of a clock
should be identical to the entropy production of the first tick of a clock with the same clock
dynamics (Mt

CR→CR)t≥0, but which is initialized in the state ρ(a,k−1)
C .

Analysing the quantum channel E(A)
k−1, we obtain

S(ρ
(a,k)
CE ) = S(ρ

(a,k−1)
CE ) = S(ρ

(a,k−1)
C ), (II.121)

S(ρ
(a,k)
CE ) = S(ρ

(a,k)
C ) + S(ρ

(a,k)
E )− I(ρ

(a,k)
CE ), (II.122)

S(ρ
(a,k)
E )− S(ρ

(a,k−1)
E ) = S(ρ

(a,k−1)
C )− S(ρ

(a,k)
C ) + I(ρ

(a,k)
CE ) ≥ 0, (II.123)

I(ρ
(a,k)
CE ) = S(ρ

(a,k)
C )− S(ρ

(a,k−1)
C ) + S(ρ

(a,k)
E ) ≥ 0. (II.124)

Similarly, for the quantum channel E(B)
k−1 we have

S(ρ
(b,k−1)
CE ) = S(ρ

(a,k−1)
CE ) = S(ρ

(a,k−1)
C ), (II.125)

S(ρ
(b,k−1)
CE ) = S(ρ

(b,k−1)
C ) + S(ρ

(b,k−1)
E )− I(ρ

(b,k−1)
CE ), (II.126)
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S(ρ
(b,k−1)
E )− S(ρ

(a,k−1)
E ) = S(ρ

(a,k−1)
C )− S(ρ

(b,k−1)
C ) + I(ρ

(b,k−1)
CE ) ≥ 0, (II.127)

I(ρ
(b,k−1)
CE ) = S(ρ

(b,k−1)
C )− S(ρ

(a,k−1)
C ) + S(ρ

(b,k−1)
E ) ≥ 0. (II.128)

We can make similar arguments as in Section II.5.1 to motivate that our measure for the
entropy production of the first tick of a ticking clock

(
ρ0

C, (Mt
CR→CR)t≥0

)
should be identical

to the entropy production of the first tick of the ticking clock
(
|Ψ〉〈Ψ|0CP, (M̃t

CPR→CPR)t≥0

)
,

where ρ0
CP = |Ψ〉〈Ψ|0CP is a pure state and P denotes the corresponding purifying system

with dynamics given by M̃t
CPR→CPR = Mt

CR→CR ⊗ IP. That is, we can also motivate the
replacement of ρ(a,k−1)

C by |Ψ〉〈Ψ|(a,k−1)
CP in this approach. The corresponding modified quantum

channels are then given as Ẽ(A/B)
CP,k−1 = E(A/B)

C,k−1⊗IP. We re-evaluate the change in environmental
entropy and the correlations based on these channels and find

S(ρ
(a,k)
E )− S(ρ

(a,k−1)
E ) = S(ρ

(a,k)
CP ) ≥ 0, (II.129)

I(ρ
(a,k)
CP:E) = 2S(ρ

(a,k)
CP ) ∝ S(ρ

(a,k)
CP ) ≥ 0, (II.130)

for the channel Ẽ(A)
CP,k−1, and

S(ρ
(b,k−1)
E )− S(ρ

(a,k−1)
E ) = S(ρ

(a,k−1)
CP )− S(ρ

(b,k−1)
CP ) + ICP:E(ρ

(b,k−1)
CPE ) = S(ρ

(b,k−1)
CP ) ≥ 0,

(II.131)
ICP:E(ρ

(b,k−1)
CPE ) = 2S(ρ

(b,k−1)
CP ) ∝ S(ρ

(b,k−1)
CP ) ≥ 0, (II.132)

for the channel Ẽ(B)
CP,k−1.

Similar as in Section II.5.1, we note that ρ(a,k)
CP corresponds to a pure state when reset

clocks which reset to pure states are considered. Consequently, the quantities in Eq. (II.129)
and (II.130) vanish for such clocks and we do not regard them as faithful measures of the
entropy production per tick of ticking clocks. Instead, we rely on the expressions obtained by
analyzing the quantum channel Ẽ(B)

CP,k−1 given in Eq. (II.131) and (II.132). That is, we identify

Σk = S(ρ
(b,k−1)
CP ) as a suitable measure for the entropy production of the kth tick of ticking

clocks. This coincides with the measure identified in Section II.5.1 based on the dilation of
the observer-dependent clockwork states, see Eq. (II.115).

The change in environmental entropy ∆S
(k)
E = S(ρ

(b,k−1)
E )−S(ρ

(a,k−1)
E ) remains unchanged

irrespective of whether the channel Ẽ(B)
CP,k−1 or E(B)

C,k−1 is considered. As such, it satisfies the
assumption that the expression for the entropy production per tick should remain invariant
under purification of the initial clockwork state. In particular, we have

∆S
(k)
E = S(ρ

(b,k−1)
CP ) = S(ρ

(a,k−1)
C )− S(ρ

(b,k−1)
C ) + I(ρ

(b,k−1)
CE ) ≥ S(ρ

(a,k−1)
C )− S(ρ

(b,k−1)
C ),

(II.133)
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∆S
(k)
E ≥ −∆S

(k)
S . (II.134)

Thus the change in entropy of the environment which coincides with our measure for the
entropy production per tick satisfies Landauer’s bound. In fact, it satisfies the improved
equality version of the bound. Finally, note that for the correlations, we have ICP:E ≥ IC:E

due to the monotonicity of quantum mutual information [25, 69]. Here,

ICP:E(ρ
(b,k−1)
CPE ) = 2

(
I(ρ

(b,k−1)
CE ) + S(ρ

(a,k−1)
C )− S(ρ

(b,k−1)
C )

)
≥ 0, (II.135)

where ICP:E(ρ
(b,k−1)
CPE ) = I(ρ

(b,k−1)
CE ) in case of reset clocks which reset to a pure state.

II.5.2.a Alternative ticking channels

In principle, one can also think of a quantum channel E(C)
k−1 which connects the states of the

clockwork before and after a given tick as

ρ
(a,k)
CP = E(C)

k−1(ρ
(b,k−1)
CP ). (II.136)

Such an analysis is motivated as follows: through concatenation of the two channels Ẽ(B)
k−1 and

E(C)
k−1, one obtains a channel which maps |Ψ〉〈Ψ|(a,k−1)

CP → ρ
(a,k)
CP . This may also yield a sensible

measure for the entropy production of the kth tick. The splitting of the overall process into
two steps may allow us to capture the collapse of the clockwork during the tick event explicitly.
A similar type of analysis has been considered in Ref. [72] in the context of quantum error
correction. There, one finds that the entropy production associated with both the noise pro-
cess and restoration process is typically large, whereas the entropy production of the overall
joint process is small.

Here, we already invoke the assumption that the initial state of the clockwork is purified
beforehand as |Ψ〉〈Ψ|(a,k−1)

CP . Thus, the channel E(C)
k−1 takes in the state ρ(b,k−1)

CP , as opposed to
ρ

(b,k−1)
C (see Eq. (II.136)). In fact, the measures for the entropy production which would arise

from the analysis of the channel

ρ
(a,k)
C = E(C′)

k−1 (ρ
(b,k−1)
C ) (II.137)

vanish when considering reset clocks with reset to a pure state.

Because the quantum channel takes as input the state ρ(b,k−1)
CP obtained from |Ψ〉〈Ψ|(a,k−1)

CP

by application of the quantum channel Ẽ(B)
k−1, there exist correlations between clockwork and

environment, as calculated in Eq. (II.132). Consequently, the assumption of an initial product
state is now only valid if the quantum channel E(C)

k−1 is dilated using a separate, “second”
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environment E′ that has not previously interacted with the subsystems CP or the environment
E. Dilation of the channel E(C)

k−1 then results in

U
(C)
k−1ρ

(b,k−1)
CP ⊗ |0〉〈0|E′U

(C)†
k−1 = ρ

(a,k)
CPE′ . (II.138)

Here,

S(ρ
(a,k)
CPE′) = S(ρ

(a,k)
CP ) + S(ρ

(a,k)
E′ )− ICP:E′(ρ

(a,k)
CPE′) = S(ρ

(b,k−1)
CPE′ ) = S(ρ

(b,k−1)
CP ), (II.139)

such that

S(ρ
(a,k)
E′ )− S(ρ

(b,k−1)
E′ ) = S(ρ

(b,k−1)
CP )− S(ρ

(a,k)
CP ) + ICP:E′(ρ

(a,k)
CPE′), (II.140)

and
ICP:E′(ρ

(a,k)
CPE′) = S(ρ

(a,k)
CP )− S(ρ

(b,k−1)
CP ) + S(ρ

(a,k)
E′ ). (II.141)

If we consider the special case of reset clocks which reset to a pure state we obtain

S(ρ
(a,k)
E′ )− S(ρ

(b,k−1)
E′ ) = S(ρ

(b,k−1)
CP ), (II.142)

ICP:E′(ρ
(a,k)
CPE′) = S(ρ

(b,k−1)
CP ). (II.143)

That is, for this class of clocks the change in the entropy of the environment E′ and the built-
up correlations coincide with our previous measure Σk = S(ρ

(b,k−1)
CP ).

Adding both the changes in the entropy of environment E and E′ during the kth tick
denoted by ∆S

(k)
E and ∆S

(k)
E′ , respectively, we obtain

∆S
(k)
E + ∆S

(k)
E′ = 2S(ρ

(b,k−1)
CP )− S(ρ

(a,k)
CP ) + ICP:E′(ρ

(a,k)
CPE′), (II.144)

and adding their correlations we have

ICP:E(ρ
(b,k−1)
CPE ) + ICP:E′(ρ

(a,k)
CPE′) = S(ρ

(b,k−1)
CP ) + S(ρ

(a,k)
CP ) + S(ρ

(a,k)
E′ ). (II.145)

For reset clocks that reset to a pure state these quantities reduce to

∆S
(k)
E + ∆S

(k)
E′ = 2S(ρ

(b,k−1)
CP ), (II.146)

ICP:E(ρ
(b,k−1)
CPE ) + ICP:E′(ρ

(a,k)
CPE′) = 2S(ρ

(b,k−1)
CP ). (II.147)

Again, we recover our previous measure Σk = S(ρ
(b,k−1)
CP ) when considering reset clocks

which reset to a pure state. The addition of the contribution of the two environments E
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and E′ is motivated by the fact that the environment E participates in the process map-
ping |Ψ〉〈Ψ|(a,k−1)

CP → ρ
(b,k−1)
CP , whereas E′ interacts with the clockwork during the tick event

ρ
(b,k−1)
CP → ρ

(a,k)
CP .

We can formalize this approach and analyze the transition of the clockwork from |Ψ〉〈Ψ|(a,k−1)
CP →

ρ
(a,k)
CP by splitting it into two discrete steps, |Ψ〉〈Ψ|(a,k−1)

CP → ρ
(b,k−1)
CP and ρ(b,k−1)

CP → ρ
(a,k)
CP , as

follows

UCE,k−1 ⊗ 1PE′(|Ψ〉〈Ψ|
(a,k−1)
CP ⊗ |0〉〈0|E ⊗ |0〉〈0|E′)U †CE,k−1 ⊗ 1PE′ → |Ψ〉〈Ψ|

(b,k−1)
CE ⊗ |0〉〈0|E′ ,

(II.148)
UCE′,k−1 ⊗ 1PE(|Ψ〉〈Ψ|(b,k−1)

CE ⊗ |0〉〈0|E′)U †CE′,k−1 ⊗ 1PE → |Ψ〉〈Ψ|
(a,k)
CPEE′ . (II.149)

Here, UCE,k−1 and UCE′,k−1 are obtained from dilating the channels E(A)
k−1 and E(C′)

k−1 which map
ρ

(a,k−1)
C → ρ

(b,k−1)
C and ρ(b,k−1)

C → ρ
(a,k)
C , respectively. We obtain

S(ρ
(a,k)
EE′ ) = S(ρ

(a,k)
CP ), (II.150)

ICP:EE′(ρ
(a,k)
CPEE′) = 2S(ρ

(a,k)
CP ). (II.151)

Note that both these quantities vanish when considering reset clocks which reset to a pure
state. However, we can identify that for such clocks

I(ρ
(a,k)
EE′ ) = 2S(ρ

(b,k−1)
CP ). (II.152)

Thus, when considering the intra-environmental correlations as an additional source of entropy
production, we obtain a non-zero entropy production per tick even for such clocks. In fact,
intra-environmental correlations have been verified to play a significant role in the entropy
production of open quantum systems [63] and analysis of multi-step processes such as quantum
error correction [72]. For general ticking clocks the intra-environmental correlations are given
as

I(ρ
(a,k)
EE′ ) = S(ρ

(b,k−1)
CP )− S(ρ

(a,k)
CP ) + S(ρ

(a,k)
CPE). (II.153)

We then instead consider

Itot,k = ICP:EE′(ρ
(a,k)
CPEE′) + I(ρ

(a,k)
EE′ ) = S(ρ

(b,k−1)
CP ) + S(ρ

(a,k)
CP ) + S(ρ

(a,k)
E′ ) (II.154)

as the relevant quantity measuring the total entropy production per tick. Using the triangle
inequality (see Appendix A) we have

S(ρ
(a,k)
E′ ) = S(ρ

(a,k)
CPE) ≥ |S(ρ

(a,k)
CP )− S(ρ

(a,k)
E )| = |S(ρ

(a,k)
CP )− S(ρ

(b,k−1)
CP )|. (II.155)
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Using Eq. (II.155) we can lower bound Eq. (II.154) as

Itot,k ≥ 2max{S(ρ
(b,k−1)
CP , S(ρ

(a,k)
CP )} ≥ S(ρ

(b,k−1)
CP ) + S(ρ

(a,k)
CP ) ≥ 2min{S(ρ

(b,k−1)
CP ), S(ρ

(a,k)
CP )}.
(II.156)

Therefore, we have
Itot,k ≥ 2S(ρ

(b,k−1)
CP ), (II.157)

where equality is achieved by reset clocks which reset to a pure state. For such clocks
S(ρ

(b,k−1)
CP ) = S(ρ

(a,k)
E′ ) and S(ρ

(a,k)
E′ ) = 0. That is, ICP:EE′(ρ

(a,k)
CPEE′) = 0 and I(ρ

(a,k)
EE′ ) =

ICP:EE′(ρ
(b,k−1)
CPEE′ ) = 2S(ρ

(b,k−1)
CP ). Therefore, the quantity S(ρ

(b,k−1)
CP ) emerges as an achievable

lower bound. We observe that for reset clocks that reset to a pure state the correlations that
have built up between the subsystems CP and E leading up to the kth tick are completely
transferred from the subsystem CP to the additional environment E’ during the tick event.
This is akin to perfect quantum error correction [72], where the evolution leading up to the
tick corresponds to a noise process and the tick event corresponds to a restoration process. In
that sense, reset clocks that reset to a pure state are the most optimal class of ticking clocks.

II.5.3 Based on the second law of thermodynamics

In a third approach, we take the expression for the entropy production per tick in Eq. (II.26)
as a starting point

Σ(A) = I(ρ′CE) + S(ρ′E‖ρE) = S(ρ′C)− S(ρC) + S(ρ′E)− S(ρE) + S(ρ′E‖ρE), (II.158)

Σ(B) = I(ρ′CE) = S(ρ′C)− S(ρC) + S(ρ′E)− S(ρE). (II.159)

Here, Σ(A) and Σ(B) correspond to the two different choices for the definition of heat, where
Σ(B) neglects the contribution given by the quantum relative entropy. A priori, both expres-
sions are viable options. We have seen that these expressions gain their operational meaning
as the analogous of the second law of thermodynamics in a thermal setting, see Section II.2.1.
In particular, under the assumption of the existence of a joint unitary evolution of clockwork
and environment, we found that the expressions coincide with the entropy production per tick
of the thermodynamic ticking clocks.

Here, one may additionally account for initial correlations by replacing I(ρCE) with ∆ICE =

I(ρ′CE)−I(ρCE), as was done in previous works [45, 53, 56, 57]. By adopting this change, we can
extend the applicability of Eq. (II.158) and (II.159) to the general case where the clockwork and
environment may initially be correlated. Because the quantum mutual information vanishes
for uncorrelated product states I(ρC⊗ρE) = 0, the first term in Eq. (II.158) and (II.159) given
by I(ρ′CE) faithfully captures the novel correlations between system and environment that arise
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during the joint evolution if the two are initially uncorrelated. Lifting this assumption results
in a quantum mutual information which is generally non-zero I(ρCE) ≥ 0. Consequently, ∆ICE

now appropriately captures the change in correlations, as opposed to I(ρ′CE). Note that the
second term S(ρ′E‖ρE) in Eq. (II.158) remains unaffected by this change. Substituting I(ρ′CE)

with ∆ICE in Eq. (II.158) and (II.159), we obtain

Σ(A) = ∆ICE + S(ρ′E‖ρE) = S(ρ′S)− S(ρC) + S(ρ′E)− S(ρE) + S(ρ′E‖ρE), (II.160)

Σ(B) = ∆ICE = S(ρ′C)− S(ρC) + S(ρ′E)− S(ρE). (II.161)

Meaning, the right-hand side of the expressions for the entropy production remain the same
when adopting this change. However, in the absence of initial correlations, the entropy in
Eq. (II.158) and (II.159) is guaranteed to be non-negative. On the contrary ∆ICE can, in
general, attain negative values. Thus, the entropy in both Eq. (II.160) and (II.161) may be-
come negative in presence of initial correlations. It is well known, that initial correlations
(classical or quantum) constitute a resource of work that can, for example, be leveraged to
let heat flow from cold to hot manifesting itself as an apparent violation of the second law
of thermodynamics and inversion of the arrow of time [45, 50, 53, 56, 57]. In terms of the
entropy production, such cases are ascribed negative values.

Here, we model the environment as the purifying system of the relevant observer-dependent
clockwork states (see Section II.4.1). Intuitively, when considering reset clocks we expect the
contribution from the change in the entropy of the clockwork ∆SC = S(ρ′C)−S(ρC) to vanish
because it undergoes a cyclic process in each tick. This can be achieved by choosing

∆S
(k)
C = S(ρ

(a,k)
C )− S(ρ

(a,k−1)
C ). (II.162)

Modeling the environment as the purifying system of the clockwork states ρ(a,k)
C and ρ(a,k−1)

C ,
we obtain

Σ
(A)
k = S(ρ

(a,k)
C )− S(ρ

(a,k−1)
C ) + S(ρ

(a,k)
C )− S(ρ

(a,k−1)
C ) + S(ρ

(a,k)
C ‖ρ(a,k−1)

C ) (II.163)

and
Σ

(B)
k = S(ρ

(a,k)
C )− Sρ(a,k−1)

C ) + S(ρ
(a,k)
C )− S(ρ

(a,k−1)
C ) (II.164)

as measures for the entropy production for the kth tick of a ticking clock. Note that when
considering reset clocks which reset to a pure state both quantities (Eq. (II.163) and (II.164))
vanish. Following the arguments of the previous sections, we can address this by evaluating
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the environment an instance before the kth tick and obtain

Σ
(A)
k = S(ρ

(a,k)
C )− S(ρ

(a,k−1)
C ) + S(ρ

(b,k−1)
C )− S(ρ

(a,k−1)
C ) + S(ρ

(b,k−1)
C ‖ρ(a,k−1)

C ), (II.165)

Σ
(B)
k = S(ρ

(a,k)
C )− S(ρ

(a,k−1)
C ) + S(ρ

(b,k−1)
C )− S(ρ

(a,k−1)
C ). (II.166)

Note that if ρ(a,k−1)
C is pure, we have S(ρ

(b,k−1)
C ‖ρ(a,k−1)

C ) → ∞ in general. This is because
ρ

(b,k−1)
C is generally mixed and S (ρ‖σ) = 0 if and only if ρ = σ (see Appendix A). Thus, we

adopt the measure given by Σ
(B)
k . Ultimately, the choice between Σ

(A)
k and Σ

(B)
k boils down

to the assumptions about whether the local state of the environment is accessible or not, i.e.,
the relevant definition of heat [53].

The relevant candidate for the entropy production per tick is then given by

Σ
(B)
k = S(ρ

(a,k)
C )− S(ρ

(a,k−1)
C ) + S(ρ

(b,k−1)
C )− S

(
ρ

(a,k−1)
C

)
= ∆S

(k)
C + ∆S

(k)
E , (II.167)

where ∆S
(k)
C = S(ρ

(a,k)
C )− S(ρ

(a,k−1)
C ) and ∆S

(k)
E = S(ρ

(b,k−1)
C )− S(ρ

(a,k−1)
C ). We require that

the change in entropy of the environment ∆S
(k)
E is invariant under purification of the clockwork

state ρ(a,k−1)
C . Following the analysis in Section II.5.2, we choose ∆S

(k)
E = S(ρ

(b,k−1)
CP ) −

S(|Ψ〉〈Ψ|(a,k−1)
CP ) = S(ρ

(b,k−1)
CP ) ≥ 0. The expression for the entropy production is then given

by
Σ

(B)
k = S(ρ

(a,k)
C )− S(ρ

(a,k−1)
C ) + S(ρ

(b,k−1)
CP ) = ∆S

(k)
C + ∆S

(k)
E . (II.168)

For reset clocks ∆S
(k)
C = 0 ∀k ∈ N>0, and Eq. (II.168) reduces to

Σ
(B)
k = S(ρ

(b,k−1)
CP ), (II.169)

which corresponds to the familiar expression of the entropy production per tick obtained in
the previous sections. Note that we did not adjust the expression for the change in the entropy
of the clockwork ∆S

(k)
C . This may be motivated by the fact that it can be faithfully assessed

by an observer who has access only to the states of the clockwork. However, we argued earlier
that we expect the overall measure for the entropy production per tick to be invariant under
purification of the clockwork state ρ(a,k−1)

C . This discrepancy points to the fact that Σ
(B)
k

(Eq. (II.168)) is not a well-suited measure for the entropy production per tick. Additionally,
we note that Σ

(B)
k can assume negative values. Instead, if we also modify ∆S

(k)
C accordingly,

we obtain
Σ

(B)
k = S(ρ

(a,k)
CP ) + S(ρ

(b,k−1)
CP ) ≥ S(ρ

(b,k−1)
CP ) ≥ 0. (II.170)

Not only does this change restore non-negativity of the measure, the quantity S(ρ
(b,k−1)
CP )

emerges as a lower bound. Moreover, reset clocks that reset to a pure state achieve equality
in Eq. (II.170).
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II.5.4 Summary

To summarize the results obtained in Section II.5, we constructed the clock’s environment by
going to the church of the larger Hilbert space (see Section II.4) and identified the entropy
production per tick of the ticking clock as the emerging correlations between the clock and
environment, or equivalently, the change in entropy of the environment. We excluded several
expressions for the entropy production per tick which emerged in the process by imposing the
following condition:

• The entropy production of the first tick of a ticking clock specified by
(
ρ0

C, (Mt
CR→CR)t≥0

)
should be invariant under purification of the initial state of the clockwork. That is,
it should be identical to the entropy production of the first tick of the ticking clock(
|Ψ〉〈Ψ|0CP, (M̃t

CPR→CPR)t≥0

)
, where |Ψ〉〈Ψ|0CP is the purification of ρ0

C with purifying

system P and M̃t
CPR→CPR =Mt

CR→CR ⊗ IP ∀t ≥ 0.

Based on the dilation of the observer-dependent clockwork states (see Section II.5.1) and the
dilation of the corresponding ticking channels (see Section II.5.2) we obtained the following,
well-motivated measure for the entropy production for the kth tick of a ticking clock

Σk = S(ρ
(b,k−1)
CP ). (II.171)

In all other approaches in Section II.5.2.a and II.5.3, the measure in Eq. (II.171) emerges when
considering the particular case of reset clocks which reset to pure states. Moreover, in some
instances Eq. (II.171) also takes on the role of a lower bound. In the following, we thus refer
to Eq. II.171 as the entropy production for the kth tick of a ticking clock.

II.6 Re-analysis of thermodynamic ticking clock

Let us re-analyze the thermodynamic ticking clock (see Section II.1) in view of the measure
for entropy production per tick of a (general) ticking clock derived in Section II.5. Looking
at the representation of the thermodynamic ticking clock as given by Proposition 1, we see
that the no-tick operators {Lj} characterize the interaction of the engine qubits within the
clockwork with the thermal baths, whereas the tick operators {Jj} characterize the interaction
of the ladder within the clockwork with the photon field. The Hermitian operator H describes
the unitary part of the evolution of the clockwork, in particular the interaction of the ladder
with the engine qubits. In Chapter I, we mentioned that any ticking clock written in the
form of Proposition 1 can be realized via joint unitary evolution with an infinite-dimensional
environment based on a time-independent Hamiltonian under appropriate limits, such as the
weak-coupling or singular coupling limit.
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Consider a ticking clock written in the form of Proposition 1 with an initial state of the
clockwork ρ0

C, a set of no-tick operators {Lj} and tick operators {Jj}, as well as a Hermitian
operator H. We can construct another valid ticking clock by setting Jj = 0 ∀j and H = 0.
Without considering the explicit limits (and thus informally), we can construct a Hamiltonian
Htot governing the joint evolution of this clock and an infinite-dimensional environment with
an initial state given by ρ0

C⊗ρ0
E. Subsequently, we construct a novel ticking clock by “inclusion”

of the environment into the clockwork. That is, we choose the initial state of the clockwork
as ρ0

C ⊗ ρ0
E with vanishing no-tick operators Lj = 0 ∀j, tick operators J ′j = JC,j ⊗ 1E which

act trivially on the environment E, and a Hermitian operator H ′ = HC ⊗ 1E + HCE,tot,
where HC corresponds to the initial choice for the Hermitian operator. This corresponds to
a valid ticking clock, albeit potentially with a clockwork of dimension d → ∞. Intuitively,
what we accomplished is to account for the action of the no-tick operators {Lj} by explicitly
constructing an environment that yields the appropriate clock dynamics when undergoing
a joint unitary evolution. Because this new ticking clock has vanishing no-tick operators
Lj = 0 ∀j, we can write (see Appendix B.5 for a proof)

ρ̃
(0)
CE(t) = e−iH

′t−t/2
∑
j J
′†
j J
′
j ρ0

C ⊗ ρ0
Ee

iH′t−t/2
∑
j J
′†
j J
′
j . (II.172)

Based on this construction, we are guaranteed that ρ̃(0)
C (t) = trE

[
ρ̃

(0)
CE(t)

]
coincides with the

state of the clockwork of the original clock. The evolution specified by Eq. (II.172) is intuitive:
the clockwork undergoes joint unitary evolution with its environment E and at each point in
time a certain amount of probability is removed from the clockwork state due to the ticking
process characterized by the tick operators {Jj}. In the context of the thermodynamic ticking
clock, the unitary part of the dynamics corresponds to the unitary interaction of the thermal
baths with the clockwork which drives the ladder out of equilibrium with respect to the photon
field, whereas the spontaneous (stochastic) photon emission constitutes the ticking process. It
is the heat exchange during the unitary interaction between clockwork and environment which
constitutes the entropy production per tick in this case.

Analysing the states of clockwork and environment an instance before and after the first
tick as described in Section II.3, we obtain

ρ
(b,0)
CE =

∫ ∞
0

P(0→1)(t)ρ
(0)
CE(t)dt (II.173)

ρ
(a,1)
CE =

∫ ∞
0

P(0→1)(t)

∑
j J
′
j ρ

(0)
CE(t)J ′†j

tr
[∑

j J
′
j ρ

(0)
CE(t)J ′†j

]dt. (II.174)
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Because the tick operators {J ′j} act trivially on the environment, we have

trC

 ∑
j J
′
j ρ

(0)
CE(t)J ′†j

tr
[∑

j J
′
j ρ

(0)
CE(t)J ′†j

]
 = trC

[
ρ

(0)
CE(t)

]
= ρ

(0)
E (t), (II.175)

and thus ρ(b,0)
E = ρ

(a,1)
E . That is, the state of the environment is identical when evaluated an

instance before and after the tick, i.e., before or after the application of the tick operators.
In the thermodynamic ticking clock, the state of the environment is associated with the heat
exchanged per tick. This analysis thus confirms the intuition that the heat exchanged per tick
can be evaluated in an instance before or after a given tick. Given that this type of analysis
also applies to any clock other than the thermodynamic ticking clock, we show that the state
of the environment with which we associate an entropy production per tick is the same an
instance before or after each tick. The state of the clockwork does, however, change due to the
action of the tick operators. This is the reason why it is necessary to investigate the state of
the clockwork just before a given tick to appropriately gauge its corresponding environment,
as opposed to an instance after the tick. Furthermore, we observe that the environment with
which we associate an entropy production per tick corresponds to the system which generates
the clockwork dynamics as specified by the set of no-tick operators {Lj}, whereas the environ-
ment associated with the tick generation is related to the set of operators {Jj}. This reflects
the splitting of the inner working of a ticking clock into a process that pushes the clockwork out
of equilibrium and a stochastic, effectively irreversible process given by an out-of-equilibrium
system evolving towards equilibrium, respectively [11].

Let us purify the initial state of clockwork and environment ρ0
C ⊗ ρ0

E to obtain the pure
state |Ψ〉〈Ψ|0CP ⊗ |0〉〈0|0EE′ , where P is the purifying system of the clockwork C and E’ is the
purifying system of the environment E. Moreover, we extend the dynamics of the ticking clock
to act trivially on the purifying systems by choosing

J ′CE,j −→ J ′CE,j ⊗ 1PE′ ∀j, H ′CE −→ H ′CE ⊗ 1PE′ . (II.176)

Again, this constitutes a valid ticking clock with a representation given in Proposition 1. With

A(t) = e−iH
′t−t/2

∑
j J
′†
j J
′
j , (II.177)

we can write the evolution given in Eq. (II.172) as

|Ψ̃〉〈Ψ̃|(0)
CPEE′(t) = A(t)|Ψ〉〈Ψ|0CP ⊗ |0〉〈0|0EE′A

†(t). (II.178)

Here, |Ψ̃〉〈Ψ̃|(0)
CPEE′(t) corresponds to an unnormalized pure state. Thus, based on the Schmidt



II.6 Re-analysis of thermodynamic ticking clock 73

decomposition (see Section II.4.1) we are guaranteed that S(ρ
(0)
CP(t)) = S(ρ

(0)
EE′(t)), where

ρ
(0)
CP(t) = trEE′

[
|Ψ〉〈Ψ|(0)

CPEE′(t)
]
and ρ(0)

EE′(t) = trCP

[
|Ψ〉〈Ψ|(0)

CPEE′(t)
]
. So we can compute

S(ρ
(b,0)
CP ) = S

(∫ ∞
0

P(0→1)(t)ρ
(0)
CP(t)dt

)
, (II.179)

and
S(ρ

(b,0)
EE′ ) = S

(∫ ∞
0

P(0→1)(t)ρ
(0)
EE′(t)dt

)
. (II.180)

Note that Σ1 = S(ρ
(b,0)
CP ). While we have S(ρ

(0)
CP(t)) = S(ρ

(0)
EE′(t)), we are not guaranteed that

S(ρ
(b,0)
CP ) = S(ρ

(b,0)
EE′ ) in general. This can be seen by the fact that the state

ρ
(b,0)
CPEE′ =

∫ ∞
0

P(0→1)(t)|Ψ〉〈Ψ|(0)
CPEE′(t)dt (II.181)

is not pure in general, whereas |Ψ〉〈Ψ|(0)
CPEE′(t) is. We can, however, purify the state given

in Eq. (II.181) using the purifying system E′′ to get |Ψ〉〈Ψ|(b,0)
CPEE′E′′ . Based on this, we note

that our measure for the entropy production per tick (Eq. (II.171)) assesses the entropy of the
subsystems EE′E′′, as opposed to the subsystem EE′ alone. This difference arises from the
conditioning on the observer’s knowledge, i.e., the integration over time. One can, however,
show that

S(ρ
(b,0)
CP ) = S

(∫ ∞
0

P(0→1)(t)ρ
(0)
CP(t)dt

)
≥
∫ ∞

0
P(0→1)(t)S(ρ

(0)
CP(t))dt (II.182)

=

∫ ∞
0

P(0→1)(t)S(ρ
(0)
EE′(t))dt ≥

∫ ∞
0

P(0→1)(t)(|S(ρ
(0)
E (t))− S(ρ0

E)|)dt, (II.183)

where for the first inequality we made use of the concavity of the von Neumann entropy
and for the second inequality we use the triangle inequality to write S(ρ

(0)
EE′(t)) ≥ |S(ρ

(0)
E (t))−

S(ρ
(0)
E′ (t))| ∀t ≥ 0. Here, S(ρ

(0)
E′ (t)) = S(ρ0

E) because the dynamics act trivially on the purifying
system E′. So our measure for the entropy production Σ1 can be lower bounded by the mean
magnitude of the change in entropy of the environment E within the first tick, where the
environment E generates the dynamics of the clockwork as specified by the no-tick generators
{Lj} via a unitary interaction. Similarly, we have

S(ρ
(b,0)
E )− S(ρ0

E) ≥
∫ ∞

0
P(0→1)(t)

(
S(ρ

(0)
E (t))− S(ρ0

E)
)
dt, (II.184)

where ρ(b,0)
E = trCPE′

[
ρ

(b,0)
CPEE′

]
(see Eq. (II.181)).

Figure II.7 compares the entropy production given by our measure in Eq. (II.171) and
Σth

1 = βcQc−βhQh, which was identified as the relevant measure in the context of the thermal
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Figure II.7: Entropy production for the first tick given by our measure Σ1 (Eq. (II.171),
dashed lines, y-scale on the left-hand side) and Σth

1 = βcQc− βhQh (solid lines, y-scale on the
right-hand side) as a function of the accuracy R1 for thermodynamic ticking clocks treated in
the biased random walk approximation (Eq. (II.13)) with varying ladder dimension d. The
numerical simulations are performed as outlined in Fig. II.2 with the same choices of the
remaining parameters.

environment of thermodynamic ticking clocks (see Section II.1), for various thermodynamic
ticking clocks in the weak-coupling limit. Note that Σth

1 does not involve explicit condition-
ing of the state of the environment on the observation of a tick. Instead, the conditioning
is done implicitly. The measure Σth

1 increases steadily with increasing accuracy R1 of the
thermodynamic ticking clocks and diverges as the accuracy approaches its classically-allowed
limit of R = d, i.e., as the thermodynamic ticking clock approaches an optimal ladder clock
with a ladder of dimension d. In contrast, our entropy measure may decrease with increasing
accuracy for a fixed ladder dimension d and is strictly bounded from above by 2 ln(dC), where
dC is the dimension of the clockwork Hilbert space (see Appendix A). Nevertheless, both ex-
pressions for the entropy production per tick are strictly non-negative and seem to exhibit a
lower bound at a given accuracy that increases with increasing accuracy. Note that despite the
drastic difference in scale, our measure for the entropy production does not constitute a lower
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bound to Σth
1 . As outlined above, ultimately the differences between the two measures can be

explained by the fact that they assess the change in entropy in different (sub-)systems and rely
on a different conditioning of the entropy production on the observation of a tick. This comes
at the benefit of our measure being independent of the particular physical implementation of
a ticking clock specified by

(
ρ0

C, (Mt
CR→CR)t≥0

)
.





Chapter III

Relationship between accuracy and
entropy production of ticking clocks

In this chapter, we are concerned with investigating the relationship between the accuracy of
ticking clocks in our model (see Chapter I) and their entropy production per tick (see Chap-
ter II). The existence of a fundamental trade-off between these quantities has been investigated
in several recent works for a restricted class of (thermodynamic) ticking clocks [11, 18–20] (see
Section II.1). In particular, all these works find that there exists a minimal amount of irre-
versible entropy production per tick, or equivalently, a minimal amount of energy dissipation
per tick, which increases with increasing accuracy of these clocks. The precise relationship
between the accuracy and these quantities does, however, vary. As such, these works identified
the entropy production per tick, or equivalently, the dissipated heat per tick, of ticking clocks
as a fundamental resource for measuring time. Thereby, they establish a connection between
the arrow of time and the irreversibility of the ticking clock governed by the second law of
thermodynamics.

The question that remains is whether this connection is specific to the ticking clocks stud-
ied in these works or a general property of ticking clocks – and thus a fundamental aspect of
measuring time. To tackle this question, we have motivated an expression for the entropy per
tick of a ticking clock treated in the axiomatic framework put forwards in Chapter I. One can
verify that the ticking clocks studied in Refs. [11, 18] are, in fact, special classes of ticking
clocks of the type introduced Chapter I. Our measure for the irreversible entropy per tick
quantifies the irreversibility of the underlying clockwork dynamics arising from its interaction
with the environment and is not restricted to any particular implementation, i.e., clockwork
environment. From an information-theoretic perspective, a clock is a system that emits infor-
mation about time [14]. Our expression for the entropy production per tick of a ticking clock
quantifies the correlations which build up between the clockwork and its environment, and
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can thus be seen as a measure for the shared information between system and environment, or
equivalently, the information about the system which leaks into the environment. The finding
and characterization of a minimal entropy production per tick which increases with the ac-
curacy of ticking clocks would thus shed light on the minimal information-theoretic resources
required to measure time.

III.1 Quantum ticking clocks

We start with an investigation of the relationship between the accuracy of general quantum
ticking clocks and their entropy production per tick. In Section III.2, we will then restrict our
analysis to the set of classical ticking clocks (Def. 4).

III.1.1 Zero temporal information at vanishing entropy production per tick

Remember that the accuracy R1 of the first tick of a reset clock corresponds to the number of
ticks that the clock generates on average before the next tick has a standard deviation equal to
the mean time between ticks (see Section I.2). Consequently, if R1 < 1 our uncertainty in the
mean time between ticks is larger than the time interval itself and we effectively do not gain
any information about time from such a clock. On the contrary, a useful clock is characterized
by R1 > 1, where we get more (certain) information about time with increasing accuracy. A
ticking clock with R1 = 1 can thus be interpreted as a clock that yields no information about
time at all. Here, we show by explicit construction that a ticking clock with R1 = 1 must not
produce any amount of entropy per tick.

Consider the special class of ticking clocks for which

NL∑
j=1

J†j Jj = λ1, λ > 0, Lj = 0 ∀j ∈ (1, NL), (III.1)

with an arbitrary Hermitian operator H. Because the no-tick operators all vanish, we can
write (see Appendix B.5 for proof)

ρ̃
(k−1)
C (t) = e−λte−iHtρ

(a,k−1)
C eiHt ∀k ∈ N>0 ,∀t ≥ 0. (III.2)

We have

P(k−1→k)(t) = tr

∑
j

J†j Jj ρ̃
(k−1)
C (t)

 = λtr
[
ρ̃

(k−1)
C (t)

]
= λe−λt, (III.3)

with ∫ ∞
0

λe−λtdt = 1, (III.4)
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µ =

∫ ∞
0

tλe−λtdt = 1/λ, (III.5)

σ2 =

∫ ∞
0

(t− µ)2λe−λtdt = 1/λ2. (III.6)

Given that P(0→1)(t) coincides with the delay function of the first tick, we have R1 = µ2/σ2 =

1. To assess the entropy production per tick of this class of clocks, we calculate

ρ
(b,k−1)
C =

∫ ∞
0

P(k−1→k)(t)ρ
(k−1)
C (t)dt =

∫ ∞
0

λe−λte−iHtρ
(a,k−1)
C eiHtdt, (III.7)

and
ρ

(a,k)
C =

∫ ∞
0

∑
j

Jj ρ̃
(k−1)
C (t)J†j dt =

∫ ∞
0

e−λt
∑
j

Jje
−iHtρ

(a,k−1)
C eiHtJ†j . (III.8)

We choose Jj =
√
λ/NL1 ∀j ∈ (1, NL), which renders these clocks reset clocks and yields

ρ
(a,k)
C =

∫ ∞
0

λe−λte−iHtρ
(a,k−1)
C eiHtdt = ρ

(b,k−1)
C . (III.9)

If we set H = 0, we additionally have ρ(a,k)
C = ρ

(b,k−1)
C = ρ

(a,k−1)
C . Thus, Σk = Σ1 and

Rk = kR1 = k for all k ∈ N>0. Now, we choose the initial state to be a pure state
ρ0

C = |Ψ〉〈Ψ|0C which makes these reset clocks that reset to a pure state. We have ρ(a,k)
C =

ρ
(b,k)
C = |Ψ〉〈Ψ|0C ∀k ∈ N and all corresponding entropies vanish, resulting in Σk = Σ1 = 0.

Note that this clock is classical, because the clockwork remains incoherent throughout its
dynamics. One can check that its classical representation (see Corollary 1) is given by the
choice

~v0
C = ~e0, N = −λ1, T = λ1. (III.10)

Thus, we demonstrated that one can always find a reset clock with a clockwork of arbitrary
dimension that resets to a pure state for which Rk = kR1 = k and Σk = 0 ∀k ∈ N>0. The
delay function of the first tick τ (1)(t) = λe−λt is given by a simple Poisson distribution which
reflects the fact that the clockwork only undergoes a trivial evolution and exhibits Poissonian
tick statistics. The entropy production per tick is fundamentally linked to the non-unitary
dynamics generated by the no-tick operators {Lj}NL

j=0. The ticking clocks considered here do
not exhibit such dynamics and thus have a vanishing minimal entropy production per tick.

In the quantum case with ρ0
C = |Ψ〉〈Ψ|0C we can, for example, also consider the choice

Jj =
√
λ/d|Ψ〉〈Ψj |C ∀j ∈ (1, d), Lj = 0 ∀j ∈ (1, d), (III.11)
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with {|Ψj〉C}dj=1 some orthonormal basis of HC. Then,∑
j

Jj ρCJ
†
j = λ|Ψ〉〈Ψ|0C ∝ |Ψ〉〈Ψ|0C, (III.12)

and
d∑
j=1

J†j Jj =
d∑
j=1

λ/d|Ψj〉〈Ψj |C = λ1, (III.13)

such that these clocks are reset clocks that reset to a pure state and achieve Rk = kR1 = k.
But now let us choose H 6= 0, then

ρ
(b,k−1)
C = ρ

(b,0)
C =

∫ ∞
0

λe−λte−iHt|Ψ〉〈Ψ|0CeiHtdt, (III.14)

and ρ
(a,k)
C = |Ψ〉〈Ψ|0C. With H 6= 0, we have Σk = Σ1 = S(ρ

(b,0)
C ) 6= 0 in general, whereas

the choice H = 0 yields Σk = 0. However, for any choice of H this class of clocks still only
achieves an accuracy Rk = kR1 = k, because the delay functions governing the accuracy of the
clock are independent of H. This example illustrates the point that a large entropy production
per tick does not necessarily imply a large accuracy. The clock can produce entropy without
“using” it as a resource to improve its accuracy. In general, we will find many clocks at a given
accuracy that produce more than the conjectured minimal amount of entropy per tick. To
conclude, this motivates the idea of a minimal amount of entropy per tick at a given accuracy,
rather than a direct correspondence between the irreversible entropy production per tick and
the accuracy of ticking clocks.

III.1.2 Infinite temporal information at vanishing entropy production

In the case of general quantum ticking clocks, we are able to show that one can achieve Σk → 0

in the limit of infinite accuracy R1 →∞, where Rk = kR1. This is in contrast to the previous
conjecture that any ticking clock must produce a minimal amount of entropy per tick at a
given accuracy which increases with increasing accuracy.

To show this, consider the class of reset clocks which reset to a pure state ρ0
C = |Ψ〉〈Ψ|0C

with vanishing no-tick operators Lj = 0 ∀j ∈ (1, NL). With this choice ρ(b,k)
C = ρ

(b,0)
C , and

ρ
(a,k)
C = |Ψ〉〈Ψ|0C, as well as Rk = kR1 and Σk = Σ1. Because the no-tick operators all vanish,

we can write (see Appendix B.5 for proof)

ρ̃
(0)
C (t) = e−iHt−t/2

∑
j J
†
j Jj |Ψ〉〈Ψ|0Ce

iHt−t/2
∑
j J
†
j Jj , (III.15)
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where
ρ

(b,1)
C =

∫ ∞
0

P(0→1) (t) ρ
(0)
C (t)dt. (III.16)

Let us write

e−iHt−t/2
∑
j J
†
j Jj |Ψ〉〈Ψ|0Ce

iHt−t/2
∑
j J
†
j Jj = A(t)|Ψ〉〈Ψ|0CA†(t) = |Ψ̃〉〈Ψ̃|C(t), (III.17)

where |Ψ̃〉〈Ψ̃|C(t) corresponds to an unnormalized pure state. In the limit R → ∞, we have
P(0→1) (t)→ δ(t− µ), and thus

ρ
(b,1)
C =

∫ ∞
0

δ(t− µ)|Ψ〉〈Ψ|C(t)dt = |Ψ〉〈Ψ|C(µ). (III.18)

This results in Σk = S(ρ
(b,1)
C ) = S(|Ψ〉〈Ψ|C(µ)) = 0. Thus, in the infinite accuracy limit,

such clocks can achieve zero entropy production per tick. Note that this proof relies on the
assumption that there exists a ticking clock of this form which is capable of achieving the
infinite accuracy limit R1 → ∞. We can show by explicit construction that there exists
such a ticking clock: the quasi-ideal quantum clock [14, 15] discussed in Section I.1.2 is a
reset clock that resets to a pure state with Lj = 0 ∀j ∈ (1, NL) that has been proven to
achieve an accuracy R1 ≥ d2−ε + o(d2−ε) at large d for any arbitrary ε > 0. Hence, we obtain
the result outlined above in the limit d→∞ when considering such a quasi-ideal ticking clock.

This result can be understood as follows: the above proof exploits the fact that these
ticking clocks have vanishing no-tick operators Lj = 0 ∀j ∈ (1, NL). Meaning, the particular
interaction between clockwork and environment which we have ascribed to be the underlying
source of entropy production vanishes. These ticking clocks only interact with an environ-
ment as part of the tick-generating process, which is characterized by the set of tick operators
{Jj}NL

j=1. Note that this interaction is fundamental to any ticking clock, because ticking clocks
for which Jj = 0 ∀j ∈ (1, NL) cannot produce any ticks. On the contrary, looking at the
quasi-ideal clock, for example, we see that the interaction characterized by the no-tick op-
erators {Lj}NL

j=1 is not essential to achieve high accuracy. The question that remains is how
physical such ticking clocks are, and thus, how physical the result of a vanishing entropy pro-
duction per tick in the infinite accuracy limit is.

A ticking clock with vanishing no-tick operators entirely relies on unitary dynamics of the
clockwork generated by the Hermitian operator H during its evolution leading up to a tick.
In particular, its only interaction with an environment is during the inevitable tick-generating
process. Consider, for example, a macroscopic pendulum clock [20]. In the absence of any
dissipation, i.e., interaction with its environment (except during the inevitable readout of
the pendulum position), and for small oscillations, the pendulum dynamics are properly de-
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scribed by Hamilton’s equations of motion: the pendulum will oscillate at constant amplitude
and frequency. Consequently, this pendulum clock achieves infinite accuracy by our measure.
Moreover, because the pendulum has a well-defined position at each point, i.e., is always in
a definite state throughout its evolution, it would also produce zero entropy when naively
applying our measure. This is in close analogy to the quasi-ideal ticking clocks which achieve
zero entropy production with coherent internal dynamics at infinite accuracy.

We know, however, that any physical realization of this ticking clock, i.e., any macro-
scopic pendulum clock, will eventually stop oscillating due to internal friction, collisions with
air molecules, or other (unwanted) interactions with its environment. Instead, any sustained
oscillation requires some sort of external driving which provides the necessary work to coun-
teract the energy lost due to dissipation. In the case of the pendulum clock, one is able to
achieve sustained oscillation in the form of limit cycles. Reaching a large accuracy requires
a large driving force which, in turn, necessitates a larger heat dissipation according to the
fluctuation-dissipation theorem [76, 77]. Note that heat dissipation can be seen as a source of
entropy production. The dynamics of such a clock in the presence of dissipation necessarily
involve some non-zero no-tick operators Lj 6= 0 that characterize this inevitable interaction of
the clock with its environment.

The example of a pendulum clock illustrates the fundamental necessity of ticking clocks
with non-zero no-tick operators when trying to model physically realizable, macroscopic clocks.
We remind ourselves that the above proof relies on taking the limit d → ∞ to reach infinite
accuracy, which we expect to be a general feature independent of whether a quasi-ideal ticking
clock is considered. In the limit of large system size, the appearance of decoherence phenom-
ena becomes unavoidable [26, 77–79]. In general, macroscopic systems will never be isolated
from their environments and the loss of quantum coherence arises due to an inevitable inter-
action with the environment and the correlations that arise in the process. These correlations
lead to the emergence of classical dynamics characterized by vanishing quantum coherence
and diagonal density matrices. In fact, it is widely believed that classical physics arises from
quantum mechanics due to naturally occurring decoherence [80, 81]. In the context of our
ticking clock model, such dynamics are accounted for by the class of classical ticking clocks.
In particular, when approaching the limit d→∞, and thus the R→∞ limit, this will be the
relevant class of ticking clocks that is currently physically realizable. One can only speculate
how far technological advancements will push the limits on the size of quantum systems which
can still be controlled in a coherent manner [82]. Instead of considering ticking clocks with
partially coherent dynamics, we will restrict ourselves to the class of classical ticking clocks
which exhibit completely incoherent dynamics in the following.
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For classical ticking clocks the above proof does not apply, because one may always choose
H = 0 for such clocks. The particular case of vanishing no-tick operators then corresponds
to a diagonal no-tick generator N . Such clocks can be shown to achieve a maximal accuracy
of Rk = kR1 = k (see Appendix B.6 for a proof). As such, for classical ticking clocks the
interaction with the environment characterized by the no-tick operators {Lj}NL

j=1 becomes es-
sential to achieve high accuracy. Given that we identified this interaction as the key source of
entropy production, we expect these clocks to exhibit a fundamental trade-off between their
irreversible entropy production and accuracy.

Before moving to the classical case, we note that the above proof exposes another related
issue. We can follow the construction scheme in Section II.6 to obtain

˜ρCE
t,0 = e−iH

′t−t/2
∑
j J
†
j Jj ρ0

C ⊗ ρ0
Ee

iH′t−t/2
∑
j J
†
j Jj . (III.19)

from an arbitrary ticking clock with Lj 6= 0 ∀j ∈ {1, 2, . . . , NL}. Thus, starting from any
arbitrary ticking clock we can construct a ticking clock for which Lj = 0 ∀j ∈ {1, 2, . . . , NL}
by including the corresponding (possibly) infinite-dimensional environment in the clockwork.
Considering the specific example of the thermodynamic ticking clock, this would correspond
to the inclusion of the two heat baths in the clockwork itself. Clearly, such situations are
unphysical. However, note that the dynamics on subsystem C of this new clockwork given by
CE remain unchanged. Thereby, the accuracy of the clock remains unchanged. Thus, while
we expect to be able to construct such ticking clocks at any accuracy in the limit d→∞, zero
entropy production can still only be achieved in the limit P(0→1) (t)→ δ(t− µ), i.e., R→∞.

One can exclude the clocks arising from such a construction scheme by restricting the
clockwork dimension to be finite. Moreover, one can introduce the notion of a “minimal”
clockwork which enforces any dynamics that can be generated by an appropriate interaction
with the environment to be implemented in such a manner, rather than via inclusion of the
environment into the clockwork itself:

• Consider a ticking clock (ρ0
C, (Mt

CR→CR)t≥0) which achieves a certain accuracy {Rk}k∈N>0 .
We define its minimal implementation as the ticking clock specified by

(ρ0
Cmin

, (Mt
CminR→CminR)t≥0) (III.20)

which achieves the same accuracy, where

Mt
CminR→CminR(ρ0

CminR) = trC′(Mt
CR→CR(ρ0

CR)) ∀t ≥ 0. (III.21)

The bipartition HC = HCmin ⊗HC′ is chosen such that dim(HCmin) is minimal.
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Note that this guarantees that the two clocks yield the same dynamics on the subsystem Cmin

of the clockwork C itself which is responsible for the tick generation, i.e., can be identified
as the source of timing. Ultimately, one would then be concerned with finding the relation
between the entropy production per tick and accuracy given the minimal implementation of
each clock.

III.2 Classical ticking clocks

In this section, we will analyze the relation between the entropy production per tick and
accuracy for classical ticking clocks (Def. 4). In classical notation, the relevant observer-
dependent clockwork states (see Section II.3) can be expressed as

~v
(b,k−1)
C =

∫ ∞
0
‖T eN t~v(a,k−1)

C ‖
eN t~v

(a,k−1)
C

‖eN t~v(a,k−1)
C ‖

dt, (III.22)

~v
(a,k)
C =

∫ ∞
0
‖T eN t~v(a,k−1)

C ‖ T e
N t~v(a,k−1)

‖T eN t~v(a,k−1)
C ‖

dt =

∫ ∞
0
T eN t~v(a,k−1)

C dt, (III.23)

where ~v(a,0)
C = ~v0

C (see Appendix B.7 for a proof). The entropy of a clockwork state is then
calculated as

S(~v) =
∑
i

−vi ln(vi), (III.24)

where S(~v) denotes the Shannon entropy and ~v =
∑

i vi~ei with {~ei}
d−1
i=0 some orthonormal

basis of Rd.

Remember that our measure for the entropy production per tick devised Section II.5 satis-
fies the following property: given a ticking clock (ρ0

C, (Mt
CR→CR)t≥0), the entropy production

of its kth tick Σk corresponds to the entropy production of the first tick Σ1 of the ticking clock
given by (|Ψ〉〈Ψ|(a,k−1)

CP , (M̃t
CPR→CPR)t≥0), which we will call its “conditional” clock of the kth

tick. Hence, the entropy production of any ticking clock can be investigated by looking at
the entropy production of the first tick of its conditional clocks. Note that the accuracy of
the first tick R1 of the conditional clock is identical to the accuracy of the first tick of the
clock given by (ρ

(a,k−1)
C , (Mt

CR→CR)t≥0). This is because the accuracy is assessed based on the
dynamics of subsystem C alone, i.e., the tick operators act trivially on the purifying system
P. For a reset clock all conditional clocks are identical, which results in Σk = Σ1 ∀k ∈ N>0.
The conditional clocks are simply a special class of ticking clocks whose initial clockwork is in
a pure state: (|Ψ〉〈Ψ|0C, (Mt

CR→CR)t≥0). To start our investigation of the relation between the
entropy production per tick and accuracy of all classical ticking clocks, we thus analyze the
first tick of classical ticking clocks that are initialized in a pure state and the resulting relation
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between Σ1 and R1.

III.2.1 Analysis of first tick

The entropy production of the kth tick of a classical ticking clock is in general given by
Σk = S(~v

(b,k−1)
CP ). Because we restrict our analysis to the first tick (k = 1) of classical

ticking clocks that are initialized in a pure state, the relevant quantities to investigate are
Σ1 = S(~v

(b,0)
C ) and R1. In the following, w.l.o.g. we choose ~v0

C = ~e0 = (1, 0, . . . , 0)T.

Note that P(0→1)(t), and thus R1, as well as ~v(b,0)
C are independent of the choice of the

no-tick generator T . We can show this by rewriting P(0→1)(t) as

P(0→1)(t) = ‖T eN t~v0‖ =
∑
ij

v0
C,i(e

N t)ji‖~Tj‖, (III.25)

where ~Tj denotes the vector given by the jth column of T . By Corollary 1, this column sum
is guaranteed to satisfy

‖~Tj‖ =
d−1∑
i=0

Tij = −
d−1∑
i=0

Nij ≥ 0. (III.26)

Using Eq. (III.26) we can rewrite Eq. (III.25) as

P(0→1)(t) =
∑
ij

v0
C,i(e

N t)ji(−
∑
k

Nkj). (III.27)

Looking at Eq. (III.27), we see that P(0→1)(t) is independent of the choice of T . Moreover,
we have

~v
(b,0)
C =

∫ ∞
0

P(0→1)(t)
eN t~v0

C

‖eN t~v0
C‖
dt, (III.28)

thereby Σ1 = S(~v
(b,0)
C ) is also independent of T .

Therefore, for any valid no-tick generator N satisfying
∑d−1

i=0 Nij ≤ 0 ∀j we can construct
a valid tick generator T such that

∑d−1
k=0 Tkj + Nkj = 0 ∀j without affecting Σ1 or R1. In

particular, the choice of N only restricts the column sums of T given by

sj = ‖~Tj‖ =

d−1∑
i=0

Tij = −
d−1∑
i=0

Nij ≥ 0. (III.29)

The set of valid tick generators compatible with the no-tick generator N is given by all tick
generators T whose column sums satisfy Eq. III.29. This includes the following choice

Tr = (s1~vC,r, s2~vC,r, . . . , sd~vC,r), (III.30)
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where ~vC,r is an arbitrary normalized state vector and corresponds to the reset state of Tr.
For any arbitrary normalized state vector ~vC, we have

Tr~vC =
∑
i

vC,isi~vC,r ∝ ~vC,r. (III.31)

Any classical ticking clock initialized in a state ~vC,r with a tick generator Tr of the form in
Eq. (III.30) corresponds to a reset clock.

So when restricting our analysis to Σ1 and R1 of classical ticking clocks initialized in a pure
state, the set of no-tick generators N satisfying

∑d−1
i=0 Nij ≤ 0 ∀j constitutes our remaining

degrees of freedom. Furthermore, for each choice of N which results in some given values of
Σ1 and R1, we can choose T = Tr with ~vC,r = ~e0 and thus render the clock a reset clock for
which Σk = Σ1 and Rk = kR1. Note that there is an additional invariance under scaling: R1

and ~v(b,0)
C remain unchanged under rescaling of N and T by a positive constant a > 0 as

N ′ = aN , T ′ = aT . (III.32)

This can be shown by considering

P(0→1)(t) = ‖T eN t~v0
C‖, P(0→1)′(t) = ‖T ′eN ′t~v0

C‖, (III.33)

for which

µ′ =

∫ ∞
0

tP(0→1)′(t)dt =

∫ ∞
0

at‖T eNat~v(a,k−1)
C ‖dt = 1/a

∫ ∞
0

t′‖T eN t′~v(a,k−1)
C ‖dt′ = µ/a,

(III.34)
where we substitute at = t′. And

σ′2 =

∫ ∞
0

(t− µ′)2P(0→1)′(t)dt =

∫ ∞
0

a(t− µ/a)2‖T eNat~v(a,k−1)
C ‖dt′ (III.35)

=

∫ ∞
0

(t′/a− µ/a)2‖T eNat~v(a,k−1)
C ‖dt′ = σ2/a2. (III.36)

Thus, the accuracy R′1 = µ′2/σ′2 = µ2/σ2 = R1 remains unchanged. Similarly, we can show
that

~v
(b,k−1)′

C =

∫ ∞
0

a‖T eNat~v(a,k−1)
C ‖

eNat~v
(a,k−1)
C

‖eNat~v(a,k−1)
C ‖

dt (III.37)

=

∫ ∞
0
‖T eN t′~v(a,k−1)

C ‖
eN t

′
~v

(a,k−1)
C

‖eN t′~v(a,k−1)
C ‖

dt′ = ~v
(b,k−1)
C . (III.38)

Hence, the entropy production Σ1 also remains unchanged. We will make use of this freedom
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in scale of the generators N and T shortly.

III.2.1.a Qubit clockwork

We start with an analysis of classical ticking clocks with a clockwork of dimension d = 2,
that is a clockwork given by a qubit. Using the results obtained above, we can restrict our
investigation to the set of allowed no-tick generators parametrized as

N =

(
−a b

c −d

)
, (III.39)

where 1 ≥ a ≥ c ≥ 0, 1 ≥ d ≥ b ≥ 0. Here, we made use of the freedom in scale N = aN ′ by
choosing a = maxij{Nij} to restrict all parameters to the unit interval. Here, N ′ corresponds
to the no-tick generator before rescaling. The initial state of the clockwork is ~v0

C = ~e0 = (1, 0)T.
Without affecting Σ1 and R1, we can choose a tick generator T of the form

T =

(
a− c d− b

0 0

)
. (III.40)

This renders this set of ticking clocks reset clocks with a pure initial state. In particular, they
achieve Σk = Σ1 and Rk = R1. Moreover, any such clock is completely specified by the set of
parameters in Eq. (III.39) given by ~p = (a, b, c, d).

Solving for R1 analytically as a function of the free parameters ~p of the no-tick generator
N (Eq. (III.39)), we find

R1 =
(c+ d)2

(2c(a+ b)− c) + d2
. (III.41)

To get an analytical expression for Σ1 as a function of ~p, we first search for an expression for
v

(b,0)
C,0 . The entropy production per tick Σ1 is then given by

Σ1 = −v(b,0)
C,0 ln

(
v

(b,0)
C,0

)
− (1− v(b,0)

C,0 ) ln
(

1− v(b,0)
C,0

)
. (III.42)

We find

v
(b,0)
C,0 =

2F1[1, β − 1/2, β + 1/2, γ]δ

α(a− α+ d)(−a+ 2c+ α+ d)
+

2F1[1, 3/2 + β, 5/2 + β,−γ]δ

α(−a+ 2c+ α+ d)(a+ 3α+ d)
(III.43)

− 2F1[1, 1/2 + β, 3/2 + β,−γ](4c(−a2 + c(−2b+ d) + a(c+ d))

α(a+ α+ d)(−a+ 2c+ α+ d)
, (III.44)

where α =
√

4bc+ (a− d)2, β = a+d
2α , γ = a−2c+α−d

−a+2c+α+d , δ = (2c(−a2 +α(a− c) + c(−2b+ d) +

a(c+ d)), and 2F1[a, b; c; z] denotes the ordinary hypergeometric function [83].
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With the analytical expressions for Σ1 and R1 as a function of the matrix elements of
the tick generator N in Eq. (III.41) and (III.42), respectively, we can efficiently explore the
relation between these two quantities by sampling them over the parameter space defined by
S = {~p = (a, b, c, d)|1 ≥ a ≥ c ≥ 0, 1 ≥ d ≥ b ≥ 0}. For a 4-dimensional parameter space,
such a direct sampling is still computationally feasible. Figure III.1 shows Σ1 as a function of
R1 obtained by direct random sampling of the parameter space S. This sampling is unbiased,
meaning that each part of the entire parameter space in a uniform fashion and we start to
observe convergence of the plot at the chosen sample size. Therefore, this constitutes a faithful
characterization of the relation between Σ1 and R1 for the class of clocks under consideration.

Looking at Fig. III.1, we can confirm the existence of a minimal entropy production Σ1,min

at a given accuracy R1 which increases with increasing accuracy. Furthermore, we re-confirm
our analytical result presented in Section III.1.1 that R1 = 1 can be achieved at Σ1 = 0 even
in the classical case. We observe that at a given accuracy R1 there exists various ticking clocks
which exhibit an entropy production Σ1 larger than the minimal amount

ln(2) ≥ Σ1 ≥ Σ1,min, (III.45)

where the upper bound is given by ln(2), the maximal achievable Shannon entropy for a state
living in a two-dimensional vector space S((1/2, 1/2)T) = ln(2) (see Appendix A). Again, this
confirms that while a large accuracy necessitates a large entropy production, the inverse is not
true. Intuitively, the entropy production (quantifying the interaction of the clockwork with
the environment) serves as a resource that can, but must not necessarily, be used to improve
the accuracy of the clock by giving rise to an altered dynamic of the clockwork. The accuracy
of the sampled ticking clocks ranges from R1 = 1 to R1 = 2. This is in agreement with
Ref. [14], which proved that the maximal achievable accuracy of classical ticking clocks with
a clockwork of dimension d is R1 = d, where d = 2 in our case. In particular, this maximal
accuracy can be achieved by the ladder ticking clock discussed in Section I.1.1. Note that the
ladder ticking clock is a classical reset clock with a pure initial state of the clockwork and thus
belongs to the class of clocks we considered here. In particular, the ladder ticking clock with
a qubit clockwork is given by the choice ~pladder = (a, b, c, d) = (1, 0, 1, 1). In fact, we observe
that the ladder clock in d = 2 seems to achieve Σ1,min at R1 = 2 (see red crosses in Fig. III.1).
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Figure III.1: Entropy production of the first tick Σ1 as a function of the accuracy of the first
tick R1 for classical reset ticking clocks with a qubit clockwork that is initialized in a pure
state. Data points in black are obtained by direct random sampling (≈ 3.1× 106 samples) of
the analytical expressions given in Eq. (III.41) and (III.42) over the relevant parameter space
S = {~p = (a, b, c, d)|1 ≥ a ≥ c ≥ 0, 1 ≥ d ≥ b ≥ 0}. The red line corresponds to the minimum
entropy production per tick Σ1,min at a given accuracy for such clocks. The optimal clock
in d = 2 which achieves this lower bound is characterized by the no-tick generator given in
Eq. (III.52). The red crosses mark the entropy production per tick of ladder ticking clocks
with clockworks of various dimensions d = R1 (see Appendix B.8 for the expressions of the
accuracy and entropy production of ladder ticking clocks).

Next, given that there seems to exist a minimal entropy production Σ1,min at a given
accuracy R1 (see black data points in Fig. III.1) we are interested in finding this lower bound
and the ticking clocks which achieve it. In a first step, we try to find the lower bound and
the corresponding clocks analytically. This task can be written in the standard form of a
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continuous optimization problem as

minimize
N

Σ1 = S

(∫ ∞
0

P (0→1)(t)
eN t~e0

‖eN t~e0‖
dt

)
(III.46a)

subject to R1 = µ2
1/σ

2
1 = const. ≥ 1, (III.46b)

P (0→1)(t) = −
∑
ij

Nij(eN t)j0, (III.46c)

µ1 =

∫ ∞
0

tP (0→1)(t)dt, (III.46d)

σ2
1 =

∫ ∞
0

(t− µ1)2P (0→1)(t)dt, (III.46e)∑
i

Nij ≤ 0 ∀j, (III.46f)

1 ≤ Nij ≤ 0, for i = j, (III.46g)

1 ≥ Nij ≥ 0, for i 6= j. (III.46h)

The optimization as specified by Eq. (III.46) is then carried out at each accuracy d ≥ R1 ≥ 1.
Because we expect the lower bound of Σ1,min to increase with increasing accuracy, we can also
formulate the problem differently by replacing Eq. (III.46b) with

R1 = µ2
1/σ

2
1 ≥ const. ≥ 1. (III.47)

Alternatively, we can also remove the degree of freedom in the scale ofN by setting a particular
matrix element to a constant. This is achieved by the choice a = 1/Nij , where N = aN ′ with
N ′ as the no-tick generator before rescaling. Here, w.l.o.g. we will choose Nd−1,d−1 = −1 to
formulate the analogous optimization problem with Eq. (III.46g) and (III.46h) replaced by

Nd−1,d−1 = −1, (III.48)

Nij ≤ 0, for i = j, (III.49)

Nij ≥ 0, for i 6= j. (III.50)

The task specified in Eq. (III.46) corresponds to a nonlinear constrained optimization
problem with both equality and inequality constraints and a differentiable objective function
Σ1 [84, 85]. In general, optimization problems are hard to solve. There are, however, important
classes of problems for which algorithms exist that can yield a solution reliably and efficiently
even when optimizing over a large number of parameters subject to many constraints. These
include the class of linear, least-squares, as well as convex problems. Given that our objective
function Σ1 is not linear and also not written as a sum of squares of terms of the form ~aT

i ~p+bi,
the problem at hand does not fall into the class of linear or least-squares problems. A general
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convex optimization problem can be written in the following form

minimize
~x

f(~x) (III.51a)

subject to gi(~x) ≤ 0 ∀i ∈ (1, l), (III.51b)

hi(~x) = 0, ∀i ∈ (1,m). (III.51c)

where ~x ∈ Rn is the optimization variable, the objective function f : Rn → R is convex, the
inequality-constraint functions gi : Rn → R are convex ∀i ∈ (1, l), and the equality-constraint
functions hi : Rn → R are affine, i.e., hi(~x) = ~aT

i ~x+ bi ∀i ∈ (1,m). For a convex optimization
task, each local minimum of the objective function is guaranteed to be a global minimum. This
significantly simplifies the problem of finding a global minimum, because one can rely on local
optimization algorithms. Moreover, the properties of the constraint functions guarantee that
the set of viable optimization parameters is a convex set. Note that the problem of minimizing
a concave objective function f can simply be re-formulated as a minimization problem for the
convex function −f .

Based on the analytical expression for Σ1 (Eq. (III.42)), we can verify that it is neither
a convex nor a concave function of the matrix elements of N , similarly for R1 (Eq. (III.41)).
The accuracy R1 is also not an affine function. Therefore, we conclude that the optimization
problem outlined above (Eq. (III.46)) is not convex (concave) and thus cannot be simplified by
exploiting the beneficial properties of convexity. Unfortunately, there do not exist any efficient
methods for solving nonlinear constrained optimization problems which fall outside these cate-
gories [84, 85]. Even problems with under 10 parameters can be highly challenging and become
computationally intractable at a larger number of parameters. In general, one can distinguish
between two different approaches to finding a solution: local and global optimization. In local
optimization we search the feasible region of the parameter space for solutions that are locally
optimal, meaning that these solutions minimize the objective function when compared to the
set of all other feasible points in its vicinity. However, having found a solution that is optimal
locally we are not guaranteed that it also corresponds to the global minimum of the objective
function. This is because the latter may have multiple local minima (in contrast to convex
objective functions). On the contrary, in global optimization strategies, we seek to find the
global minimum. Clearly, these methods will be computationally demanding in comparison
and become intractable at a large number of parameters.

Firstly, note that one possible global optimization method is simple sampling of the param-
eter space [84, 85]. Given a dense enough coverage of the parameter space, one can guarantee
to have found the global minimum. Clearly, this approach is computationally demanding and
inefficient. Straightforward extensions of this approach are random search algorithms. These
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are based on generating a set of random starting points and subsequently using local opti-
mization method from each of the starting points to find local minima. The best guess for the
global minimum is then given by the lowest-lying local minimum discovered in the process.
Such a random search is faster but suffers from the same issues as direct sampling when a
large parameter space needs to be searched. For the optimization task at hand, sequential
least-squares programming (SLSQP) has been proven to be successful as a local optimization
method to use for random search. In particular, the algorithm uses gradient information and
is capable of dealing with nonlinear optimization problems with both inequality and equal-
ity constraints [86, 87]. Here, we use the implementation provided by the NLopt library [88].
SLSQP is akin to sequential quadratic programming [89] (SQP), where the quadratic program-
ming subproblem is replaced by a linear least-squares subproblem under appropriate matrix
factorization. In sequential quadratic programming, one solves a sequence of simplified op-
timization subproblems, where the simplification arises via a quadratic approximation of the
objective function and a linearization of the constraint functions.

A global optimization method that has also been proven effective in solving our problem at
hand is the direct search method called Nelder–Mead [90]. The method relies on the construc-
tion of a simplex, a particular polytope with d+ 1 vertices spanning d dimensions, where the
objective function is evaluated at its vertices. Based on these evaluations, new test points are
constructed that then replace the old vertices. This is done iteratively, such that the simplex
eventually shrinks and a desired termination condition is met. Note that the method does not
take in any gradient information. It has, however, been proven to work well in practice for
problems with few local minima. Here, we use the implementation of the Nelder-Mead algo-
rithm provided in Mathematica [91]. Note that we have run tests using all suitable algorithms
available both in the SciPy [92] and NLopt [88] library for nonlinear optimization, as well as
in Mathematica [91] and found the above-mentioned methods to be most suited for the task
at hand. Finally, note that given an analytical expression of the objective function and the
constraint functions, one can also think of finding an exact solution analytically. A common,
general approach is cylindrical algebraic decomposition [93–95]. This does, however, require
both the objective and constraints to be real algebraic functions. This is not the case here,
because our objective function involves the ordinary hypergeometric function [83] which can
only be expressed algebraically in special cases [96].

Using the approaches to solve the optimization task (Eq. (III.46)) described above, we
find the ticking clocks with the following no-tick generator N to be both locally and globally
optimal

N =

(
−a 0

a −1

)
, (III.52)
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where a ≥ 1. That is, we find that these clocks achieve Σ1,min at a given accuracy R1 over
all clocks under consideration. In Fig. III.1, we plot the entropy production Σ1,min(a) and
accuracy R1(a) of these optimal clocks for a ≥ 1 in red. Based on the direct sampling of the
relevant parameter space, we can reconfirm the optimality of these clocks.

We can obtain analytical expressions for the entropy production per tick Σ1,min and its
accuracy R1 of these optimal clocks as a function of the free parameter a from Eq. (III.41)
and (III.42) with the choice ~p = (a, b, c, d) = (a, 0, a,−1). Here, we do not show the analytical
expression for the entropy production per tick explicitly. The accuracy of these clocks is given
by

R1(a) =
(1 + a)2

1 + a2
∀a ≥ 1. (III.53)

Solving for a ≥ 1, we obtain

a(R1) =
1

R1 − 1
+

√
1

(R1 − 1)2
− 1. (III.54)

Substituting the parameter a(R1) (Eq. (III.54)) in the expression given in Eq. (III.42), we
can obtain an analytical expression for the minimal entropy production as a function of the
accuracy Σ1,min(R1), see red line in Fig. III.1. For the choice a = 1, the no-tick generator
in Eq. (III.52) coincides with the no-tick generator of a ladder clock with a qubit clockwork
(Eq. (I.54)). Whereas in the limit a → ∞, we approach R1 = 1 and Σ1 = 0. As an event
generator, we can w.l.o.g. choose

T =

(
0 1

0 0

)
. (III.55)

This renders these clocks reset clocks with a pure initial state of the clockwork that achieve
Σk = Σ1,min at Rk = kR1. Hence, the ladder clock with a qubit clockwork is a ticking clock
achieving Σ1,min(R1 = 2) and is optimal in that regard.

III.2.1.b Clockworks of dimension d > 2

After this analysis of clocks with a qubit clockwork, we extend our investigation to clocks
with clockworks of larger dimension d > 2. A priori, one may expect that these clocks can be
analyzed in the same manner as outlined above. Indeed, one can use a parametrization of the
no-tick and tick generators analogous to Eq. (III.39) and (III.40). Moreover, the minimization
task specified in Eq. (III.46) remains the same, albeit for no-tick generators of larger dimension.
However, the increased dimension and the resulting increase in free parameters cause problems.
In particular, we were not able to obtain an analytical expression for the entropy production
per tick Σ1 as a function of the free parameters of the no-tick generators for d > 2. This
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is because we were not able to find an analytical expression for the integrals involved in
calculating

~v
(b,0)
C =

∫ ∞
0

P (0→1)(t)
eN t~e0

‖eN t~e0‖
dt. (III.56)

Nevertheless, one can solve the corresponding integrals numerically.

Starting with d = 3, in a first step we again attempt at a direct exhaustive sampling of
the parameter space. Random, unbiased sampling of the entire parameter space becomes less
efficient due to the increased number of free parameters at d > 2. Specifically, one has diffi-
culties in randomly sampling highly accurate clocks. The results obtained via direct, unbiased
sampling are depicted in Fig. III.2. These results demonstrate that such an approach fails
at covering parts of the plot at high accuracy 2 ≤ R1 ≤ 3. Intuitively, this issue arises from
the fact that most clocks are not accurate, i.e., accurate clocks require a more carefully tuned
no-tick generator N . Thus, when sampling N uniformly only a small portion of the samples
will fall into the small part of the parameter space populated by highly accurate clocks. To
resolve these issues, we need to bias our sampling towards more accurate clocks.

We found that an efficient way to achieve such biasing is by using the global optimization
technique called simulated annealing to maximize R1 subject to the constraints on N as given
in Eq. (III.46). In fact, using this method we are eventually able to sample clocks which
achieve the maximal achievable accuracy of R1 = d. The method is based on an adaptation of
the Metropolis-Hastings algorithm [97]. Here, we briefly explain the working principle behind
the method. Further details can be found in Refs. [98–100]. At the core of the method lies
a parameter T which takes the role of a temperature. Having initialized the method at a
no-tick generator N associated with a particular accuracy R1 and large temperature T , we
obtain a new trial generator N ′ by addition of a perturbation ∆N which is sampled from
a “visiting” distribution that is itself a function of T . In particular, the probability of sam-
pling perturbations of large magnitude |∆N| from the visiting distribution decreases with
decreasing T . Next, one computes the accuracy R′1 associated with the trial generator N ′. If
∆R1 = R′1−R1 > 0, the algorithm takes N ′ as a new starting point, otherwise, the algorithm
remains at the current starting point with a certain “rejection” probability characterized by
a distribution which is dependent on T and ∆R1. The rejection probability increases with
decreasing T and decreasing ∆R1. Subsequently, the process is repeated. When running the
algorithm, T (n) is readjusted in each step to decrease with the total number of previous iter-
ations n ∈ N. There are various implementations of this scheme that differ in their choices of
visiting distributions, distributions governing the rejection, as well as schedulers for the tem-
perature parameter T . Here, we use the default implementation of dual annealing in SciPy
with random initialization, but without any local optimization step and stopping criteria [92].
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Figure III.2: Entropy production of the first tick Σ1 as a function of the accuracy of the first
tick R1 for classical reset ticking clocks with a clockwork of dimension d = 3 which is initialized
in a pure state. Data points in black are obtained by direct random sampling (≈ 1.3 × 106

samples) of the no-tick generator in d = 3, as well as direct sampling of the latter over a grid
with 11 grid points per entry of the no-tick generator (≈ 1.4× 106 samples). Additionally, we
re-plot all the data points from Fig. III.1 because they also constitute valid ticking clocks when
considering a clockwork of larger dimension. The red dashed line corresponds to the minimum
entropy production per tick Σ1,min at a given accuracy for clocks with a qubit clockwork, see
Fig. III.1, which is achieved by clocks of the form given in Eq. (III.52). The red crosses mark
the entropy production per tick of ladder ticking clocks with clockworks of various dimensions
d = R1 (see Appendix B.8).

Finally, note that we have run tests using all algorithms available in both the SciPy [92] and
NLopt [88] library for nonlinear optimization and found this scheme based on simulated an-
nealing to be most suited for the task at hand.

Once we performed sampling using simulated annealing as outlined above, we use the sam-
pled no-tick generators as starting points for a second step: given an initial choice of no-tick
generator N we add to it a small perturbation ∆N that is generated in a random fashion to
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obtain N ′ and evaluate its accuracy R′1 and entropy production Σ′1. Next, one either (a) takes
N ′ as a new starting point regardless of the computed accuracy R′1, or (b) takes N ′ as a new
starting point only if it yields a higher accuracy ∆R1 = R′1−R1 > 0, and otherwise N remains
as a starting point. Subsequently, the process is repeated. Here, we implemented and applied
this scheme both with options (a) and (b) for choosing the subsequent starting point. This
approach helped substantially in reaching full coverage of the parameter space, particularly at
high accuracy R1. Finally, we also apply this scheme to randomly generated starting points,
as opposed to points generated via simulated annealing, with option (b). Figure III.3 shows a
plot of Σ1 against R1 of sampled clocks with a clockwork of dimension d = 3 obtained using
all the above-mentioned sampling methods.

Note that the black data points shown in Fig. III.3 hint at the existence of a minimal
entropy production per tick Σ1,min which increases with increasing accuracy R1, even for
clocks with a clockwork of dimension d = 3. We attempt to find Σ1,min for such clocks. To
start, we make a naive ansatz and extend the class of clocks which were found to be optimal
for d = 2 to d > 2 as follows

Nqopt =



−a 0 0 · · · 0 0 0

a −a 0 · · · 0 0 0

0 a a · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · a −a 0

0 0 0 · · · 0 a −1


, (III.57)

where a ≥ 1. We will call this class of clocks quasi-optimal. The analytical expression for the
accuracy of the quasi-optimal clocks with a clockwork of dimension d ≥ 2 is

R1,qopt =
((d− 1) + a)2

(d− 1) + a2
. (III.58)

These clocks attain the maximal achievable accuracy of R1 = d for the choice a = 1. In
this case, these clocks have identical no-tick generators (Eq. (III.57)) as ladder ticking clocks
(Eq. (I.54)). And in the limit a → ∞, these clocks approach R1 = 1. We do not, however,
find an analytical expression for the entropy production per tick Σ1,qopt of the quasi-optimal
clocks for d > 2 due to the reasons outlined above. In Fig. III.3 we show Σ1,qopt as a function
of R1 for d = 3 in green, where Σ1,qopt is calculated numerically for a given choice of a. While
these clocks achieve a low entropy production at a given accuracy, we identify several clocks
that achieve a lower entropy production at the same accuracy (see Fig. III.3). In conclusion,
quasi-ideal clocks cannot reach Σ1,min(R1) in d = 3, whereas they were indeed optimal in d = 2.
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Figure III.3: Entropy production of the first tick Σ1 as a function of the accuracy of the first
tick R1 for classical reset ticking clocks with a clockwork of dimension d = 3 which is initialized
in a pure state. Data points in black (≈ 1.0 × 106 samples) are obtained by biased sampling
of the no-tick generator in d = 3 using simulated annealing, as well as related random biased
sampling strategies (see main text). Additionally, we re-plot all the data points from Fig. III.1
and Fig. III.2. The red dashed line corresponds to the minimum entropy production per tick
Σ1,min at a given accuracy for clocks with a qubit clockwork, see Fig. III.1, achieved by an
optimal clock of the form given in Eq. (III.52). The green line corresponds to Σ1,qopt(R1) for
the quasi-optimal ticking clock with a clockwork of dimension d = 3, see Eq. (III.57). The
red crosses mark the entropy production per tick of ladder ticking clocks with clockworks of
various dimensions d = R1 (see Appendix B.8).

To find Σ1,min(R1) in d = 3 and the clocks which achieve it, we apply nonlinear optimization
methods, here SLSQP, to minimize Σ1 similar as in d = 2 (see Eq. (III.46)). For a given choice
of R1, the optimization method yields the particular no-tick generator Nopt achieving Σ1,min

at R1. We find that clocks achieving Σ1,min(R1) all have a no-tick generator of the following
form

Nopt =

−a1 0 0

a1 −a2 0

0 a2 −1

 , (III.59)
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with a1, a2 ≥ 0 and a1 6= a2 in general. We call this class of clocks optimal. Note that from
running the optimization algorithm we do not obtain an analytical expression for the functional
relationship of a1 and a2. In Fig. III.4 we show Σ1 as a function of R1 for various different
clocks in d = 3 which is a refined version of Fig. III.3. The additional points are obtained by
random sampling of clocks with a no-tick generator of the from given in Eq.(III.59), as well
as points obtained by resampling these points using the schemes described above. Clocks of
the form given in Eq. (III.59) are found to achieve Σ1,min(R1) in d = 3. In particular, they
achieve a slightly lower entropy production at a given accuracy compared to the quasi-optimal
clocks of the form given in Eq. (III.57), i.e., clocks of the form as in Eq. (III.59) but restricted
to a = a1 = a2, a ≥ 1. Finally, note that the class of clocks as specified by Eq. (III.59) still
corresponds to an intuitive extension of the optimal clocks in d = 2.

Figure III.5 show the relation between Σ1 and R1 for various different clocks with clock-
works of dimension d = 4. These plots are generated following the same procedure as for
Fig. III.4. Again, the minimal entropy production per tick at a given accuracy is achieved by
the optimal class of clocks with a no-tick generator of dimension d = 4 of the form

Nopt =



−a1 0 0 · · · 0 0 0

a1 −a2 0 · · · 0 0 0

0 a2 −a3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 −ad−1 0

0 0 0 · · · 0 ad−1 −1


(III.60)

with a1, a2, . . . , ad−1 ≥ 0, where a1 6= a2 6= . . . 6= ad−1 in general. We observe that the minimal
entropy production per tick at a given accuracy decreases slightly with increasing dimension
of the clockwork d. Because clocks with clockworks of larger dimension can always reproduce
the results of clocks with clockworks of smaller dimension by acting trivially on a particular
subspace, the minimal entropy production per tick at a given accuracy can only decrease when
increasing d. Ultimately, we are interested in the minimal entropy production per tick at a
given accuracy irrespective of the clockwork dimension, i.e., in the limit d→∞.

We stop our analysis at d = 4, but based on the results obtained for clockworks of dimension
d = 2, 3, 4 we make the following conjectures: For the first tick of classical ticking clocks
with a pure initial clockwork state, there exists a fundamental trade-off between entropy
production Σ1 and accuracy R1. In particular, there exists a minimal entropy production per
tick Σ1,min(R1) which increases with increasing accuracy. At a fixed dimension of the clockwork
d, the no-tick generators of the clocks which achieve this lower bound are of the form given in
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Figure III.4: Entropy production of the first tick Σ1 as a function of the accuracy of the first
tick R1 for classical reset ticking clocks with a clockwork of dimension d = 3 which is initialized
in a pure state. Data points in black (≈ 0.3× 106) are obtained by random sampling and re-
sampling of the no-tick generators of the (optimal) form given in Eq. (III.59) (see main text).
Additionally, we re-plot all the data points from Fig. III.1,III.2, and III.3. The red dashed
line corresponds to the minimum entropy production per tick Σ1,min at a given accuracy for
clocks with a qubit clockwork, see Fig. III.1, achieved by an optimal clock. The green line
corresponds to Σ1,qopt(R1) for the quasi-optimal ticking clock with a clockwork of dimension
d = 3, see Eq. (III.57). Here, the red line corresponds to the minimal entropy production
Σ1,min(R1) for clocks with a clockwork of dimension d = 3 achieved by optimal clocks of the
form given in Eq. (III.59). The red crosses mark the entropy production per tick of ladder
ticking clocks with clockworks of various dimensions d = R1 (see Appendix B.8).

Eq. (III.60). An increased clockwork dimension d generally yields a lower value of Σ1,min(R1)

at each R1. Thus, lifting the restriction of fixed clockwork dimension d, we expect the minimal
entropy production per tick Σ1,min(R1) to be achieved by clocks of the form in Eq. (III.60)
with d→∞. Consequently, because classical internal Hamiltonian dynamics can be recovered
in this limit, we expect that such clocks must also produce a non-zero amount of entropy
per tick. Remember that a naive application of our measure to clocks that evolve according
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to Hamiltonian dynamics and thus have a well-defined position at each point, i.e., is always
in a definite state throughout their evolution, yields zero entropy production per tick (see
Section III.1.2). Intuitively, the non-zero entropy production obtained here can be associated
with a large number of microscopic degrees of freedom of such clocks that are not explicitly
considered in the “coarse-grained” picture where classical Hamiltonian dynamics emerge.

Figure III.5: Entropy production of the first tick Σ1 as a function of the accuracy of the first tick
R1 for classical reset ticking clocks with a clockwork of dimension d = 4 which is initialized in
a pure state. Data points in black (≈ 1.1×106 samples) are obtained using sampling strategies
analogous to Fig. III.4 with no-tick generators in d = 4 (see main text). Additionally, we re-plot
all the data points from Fig. III.1,III.2,III.3 and III.4. The entropy production of quasi-optimal
ticking clocks (Eq. (III.57)) is depicted in green, whereas the entropy production of optimal
ticking clocks (Eq. (III.60)) is shown in red. The red crosses mark the entropy production per
tick of ladder ticking clocks with clockworks of various dimensions d = R1 (see Appendix B.8).
Here, the minimal entropy production per tick Σ1,min at a given accuracy in d = 4 is achieved
by optimal ticking clocks of the form given in Eq. (III.60).
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III.2.2 Implications for later ticks of arbitrary classical ticking clocks

We have successfully investigated the relationship between Σ1 and R1 of classical ticking clocks
that are initialized in a pure state. Recall that this analysis was motivated by the fact that the
entropy production of the kth tick Σk of a ticking clock corresponds to the entropy production
of the first tick of its conditional clock of the kth tick, where conditional clocks are simply a
special class of ticking clocks that are initialized in a pure state. Thus, we have effectively
investigated the relationship between Σ1 and R1 of all conditional clocks lying at the heart
of every ticking clock. Meaning, a ticking clock can simply be seen as a particular sequence
of conditional clocks. Now, what conclusions about the relationship between {Σk}k∈N>0 and
{Rk}k∈N>0 for any type of classical ticking clock can we draw from these results?

First off, for any clock with a pure initial clockwork state that achieves a given Σ1 and R1 in
its first tick, we have shown that we can construct another clock with a pure initial clockwork
state with a suitable choice of tick generator T that achieves Σk = Σ1 and Rk = kR1, where
Σ1 and R1 remain unchanged. In particular, this type of construction applies to any clock
investigated in Section III.2.1. That is, to every conditional clock, there exists a ticking clock
that realizes an infinite sequence of this conditional clock. Remember that for reset clocks
that reset to a pure clockwork state all measures considered in Section II.5 coincide. For the
optimal conditional clocks that achieve Σ1,min(R1), which we identified in the previous section,
there thus exists a ticking clock that realizes an infinite sequence of this optimal conditional
clock with Σk = Σ1,min and Rk = kR1. We call this class of ticking clocks optimal in the
following. Intuitively, we expect these to be the ticking clocks that produce the minimal
entropy production per tick at a given accuracy, i.e., the clocks which are most efficient at
converting the resource of entropy into temporal information. Specifically, for any optimal
clock one cannot find any other classical ticking clock that produces less entropy per tick but
is equally or more accurate. In the following, we will explore whether this statement is true.
We have stated how to compare clocks based on their accuracy in Section I.2. Here, we define
a similar notion for the entropy production per tick:

• ticking clock A produces an equal amount of entropy per tick as ticking clock B if and
only if ΣA

k = ΣB
k ∀k ∈ N>0,

• ticking clock A produces strictly less entropy per tick than ticking clock B if and only if
ΣA
k < ΣB

k ∀k ∈ N>0,

• ticking clock A produces less entropy per tick than ticking clock B if and only if ΣA
k ≤

ΣB
k ∀k ∈ N>0, but the two clocks do not produce an equal amount of entropy per tick.

First, let us show that there exists no other reset clock which is more optimal. A reset clock
necessarily has Σk = Σ1 ∀k ∈ N>0 and Rk = kR1 ∀k ∈ N>0. Therefore, an equal or higher
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accuracy can only be achieved by R1 ≥ R1,opt, where R1,opt denotes the accuracy of the corre-
sponding optimal clock, and a lower entropy production necessitates Σ1(R1) < Σ1,min(R1,opt),
respectively. By construction of the optimal class of ticking clocks, if R1 = R1,opt we have
Σ1(R1) ≥ Σ1,min(R1,opt). Moreover, we assume that Σ1(RA

1 ) ≥ Σ1(RB
1 ) if RA

1 > RB
1 , i.e., we

assume that the minimal entropy production per tick increases monotonically with increasing
accuracy. Thus, if R1 > R1,opt we have Σ1(R1) ≥ Σ1,min(R1) ≥ Σ1,min(R1,opt). Therefore, we
showed that no other reset clock can produce less entropy per tick at equal or higher accuracy
than the optimal class of ticking clocks. Note that we did not make the assumption that the
reset clocks start with an initial state of the clockwork that is pure. This result is intuitive
and can be interpreted as follows: any reset clock realizes a sequence of identical conditional
clocks with a fixed entropy production and accuracy for their first tick. So for a reset clock
to produce less entropy, its (unique) conditional clock would need to produce less entropy.
However, this necessitates a lower accuracy of the conditional clock. This is directly linked to
the overall accuracy Rk = kR1, where R1 is the accuracy of the first tick of its conditional clock.

Let us entertain the possibility of a more optimal non-reset ticking clock. To that end,
we note that reset clocks, in particular reset clocks which reset to a pure clockwork state,
are the most accurate type of classical clocks. This statement was formalized in Theorem 1.
That is, for every classical clock there exists a reset clock that resets to a pure clockwork state
with the same clockwork dimension that upper bounds its accuracy, i.e., achieves a higher
accuracy. One can construct such a clock from the original clock by making a suitable choice
of the initial pure state of the clockwork and changing the tick generator T to reset to that
state. That is, to maximize the accuracy one constructs a ticking clock that realizes an in-
finite sequence of the conditional clock which yields the maximal accuracy for its first tick.
We can build on this intuition by proving the following statement: if a non-reset clock were
to achieve a lower entropy production than the optimal class of (reset) clocks, it would have
to do so by incorporating conditional clocks into its sequence that are less accurate than the
(unique) conditional clock of the corresponding optimal reset clock. Consider such a non-reset
clock with entropy production {Σk}k∈N>0 and accuracy {Rk}k∈N>0 . There exists an optimal
clock which achieves Σk = Σ1,min(R1,opt) at Rk,opt = kR1,opt, where R1 = R1,opt. If the
non-reset clock produces less entropy per tick it must have Σk ≤ Σ1,min(R1) ∀k ∈ N>0. This
necessitates R(c,k)

1 ≤ R1 ∀k ∈ N>0, where R
(c,k)
1 denotes the accuracy R1 of the conditional

clock of its kth tick, where R1 = R
(c,1)
1 . This follows from the fact, that if R(c,k)

1 > R1 then
by construction Σk(R

(c,k)
1 ) ≥ Σ1,min(R

(c,k)
1 ) ≥ Σ1,min(R1) = Σ1,min(R1,opt). That is, a lower

entropy production in the kth tick compared to the optimal clock would necessitate a lower
accuracy R(c,k)

1 < R1 = R1,opt of the conditional clock of its kth tick compared to the optimal
conditional clock.
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The irregularity of the tick events of non-reset clocks also comes at an entropic cost. Con-
sider a non-reset clock with entropy production {Σk}k∈N>0 and accuracy {Rk}k∈N>0 . Using the
construction scheme in Theorem 1, we can always find a reset clock with a pure initial clock-
work state that upper bounds its accuracy R′k = kR′1 ≥ Rk ∀k ∈ N>0 with possibly different
entropy production {Σ′k}k∈N>0 . Now, we can replace this reset clock with one of optimal en-
tropy production Σ′k = Σ1,min(R′1) ∀k ∈ N>0 at the same accuracy R′k = kR′1 ≥ Rk ∀k ∈ N>0.
This can always be done because the class of optimal reset clocks spans the entire range of
achievable accuracies R1. Similarly, we can always find an optimal reset clock which lower
bounds the accuracy of the non-reset clock R′′k = kR′′1 ≤ Rk ∀k ∈ N>0 with optimal entropy
production Σ′′k = Σ1,min(R′′1) ∀k ∈ N>0. Because R′′1 ≤ R′1, we have Σ1,min(R′′1) ≤ Σ1,min(R′1)

and thus Σ′′k ≤ Σ′k ∀k ∈ N>0. So for every non-reset clock whose accuracy and entropy
production vary for the different ticks, i.e., Rk 6= kR1 and Σk 6= Σ1, we can find optimal
reset clocks which lower and upper bound the accuracy of the non-reset clock while achieving
optimal entropy production. The tick events of these clocks are independent and identically
distributed, i.e., these clocks deliver temporal information in the most regular fashion. Here,
the reset clock which upper bounds the accuracy necessarily produces more entropy per tick
compared to the reset clock which constitutes a lower bound to the accuracy of the non-reset
clock. Finally, note that one can also construct optimal reset clocks for any arbitrary accuracy
R′′′1 in between the two bounds, such that R′k = kR′1 ≥ R′′′k = kR′′′1 ≥ R′′k = kR′′1 ∀k ∈ N>0,
whose entropy production is also bounded from above and below as Σ′′k ≤ Σ′′′k ≤ Σ′k ∀k ∈ N>0.

Let us investigate the particular case of non-reset clocks further. For this, we analyse the
sequence of states {~v(a,k)

C }k∈N through which such a ticking clock cycles. The state of the
clockwork after the kth tick ~v(a,k)

C can be computed as

~v
(a,k)
C =

∫ ∞
0
T eN t~v(a,k−1)

C dt, (III.61)

where ~v(a,0)
C = ~v0

C by definition. Using ~v(a,k−1)
C =

∑
i v

(a,k−1)
C,i ~ei we can write Eq. (III.61) as

~v
(a,k)
C =

∑
i

v
(a,k−1)
C,i

∫ ∞
0
T eN t~eidt. (III.62)

We denote ~v(a)
C,i =

∫∞
0 T e

N t~eidt and thus

~v
(a,k)
C =

(
~v

(a)
C,0, ~v

(a)
C,1, . . . , ~v

(a)
C,d−1

)
~v(a,k−1). (III.63)

Note that ~v(a,k−1) are normalized state vectors and

P =
(
~v

(a)
C,0, ~v

(a)
C,1, . . . , ~v

(a)
C,d−1

)
(III.64)
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is a valid left stochastic matrix, i.e., a real square matrix with unit column sum. Thus, the
sequence of states {~v(a,k)

C }k∈N0 is governed by a Markov chain where ~v(a,k)
C is computed from

~v
(a,k−1)
C via Eq. (III.63) and does not depend on ~v(a,n)

C with n < k − 1. The transition matrix
of the Markov chain is given in Eq. (III.64). Given that we deal with discrete events – the
ticks – it is a discrete-time Markov chain. Moreover, it has a finite state space whose dimen-
sion is given by the Hilbert space dimension of the clockwork. Because the transition matrix
(Eq. (III.64)) is independent of the tick under consideration, the Markov chain is also time-
homogeneous. Therefore, the sequence of states {~v(a,k)

C }k∈N0 is governed by a discrete-time,
time-homogeneous Markov chain with a finite state space whose transition matrix is stated in
Eq. (III.64).

There are many known results for these classes of Markov chains which we will briefly
explore [101–103]. First, we restrict ourselves to the case of a two-dimensional state space,
i.e., a qubit clockwork. We can parametrize the transition matrix (Eq. (III.64)) as

P =

(
a 1− b

1− a b

)
, (III.65)

where 1 ≥ a, b ≥ 0. This Markov chain has a limiting transition matrix given by [103]

lim
k→∞

Pk = Plim =
1

a+ b

(
a a

b b

)
, (III.66)

for all valid (a, b) except for the choice (a, b) = (0, 0). Thus, for any valid initial state of the
clockwork ~v0

C, we have

lim
k→∞

~v
(a,k)
C = ~v

(a,lim)
C = lim

k→∞
Pk~v0

C = Plim~v
0
C =

1

a+ b
(a, b)T. (III.67)

Note that the limiting transition matrix Plim is itself a valid transition matrix for which

Plim = lim
k→∞

Pk = lim
l→∞
P l+1 = PPlim, (III.68)

such that
~v

(a,lim)
C = Plim~v

0
C = PPlim~v

0
C = P~v(a,lim)

C . (III.69)

Therefore, there exists a valid Markov chain with transition matrix Plim which remains in
the same state throughout, i.e., is stationary, if initialized in ~v0

C = ~v
(a,lim)
C . In the case where

(a, b) = (0, 0), the transition matrix is given by

P =

(
0 1

1 0

)
, (III.70)
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where P2 = 1. For any initial state ~v0
C = (x, 1− x)T (1 ≥ x ≤ 0) one thus obtains

~v
(a,k)
C =

(x, 1− x)T, for even k,

(1− x, x)T, for odd k.
(III.71)

A ticking clock with such a transition matrix would therefore cycle between the same two
states and exhibit oscillatory behavior, whereas all other choices of transition matrices – and
thus ticking clocks – would eventually settle to a fixed state ~v(a,lim)

C . The question remains
what transition matrices can be realized by ticking clocks. In particular, does there exist a
ticking clock that exhibits such oscillatory behavior?

To answer this question, we parametrize the generators of any arbitrary classical ticking
clocks with a qubit clockwork as

N =

(
−a b

c −d

)
T =

(
e f

a− c− e d− b− f

)
, (III.72)

where 1 ≤ a, b, c, d, e, f ≤ 0 with a− c− e ≥ 0 and d− b− f ≥ 0. We solve for the transition
matrix P (Eq. (III.64)) explicitly and obtain

P =

(
af+be
ad−bc

de+cf
ad−bc

1− af+be
ad−bc 1− de+cf

ad−bc

)
. (III.73)

Thus, the following choice of generators

N =

(
−a 0

0 −d

)
, T =

(
0 d

a 0

)
, (III.74)

where 1 ≥ a, d ≥ 0, yields the oscillatory behavior governed by the transition matrix

P =

(
0 1

1 0

)
. (III.75)

Note that this clock’s accuracy is upper bounded by Rk = k ∀k ∈ N>0 (see Appendix B.6 for a
proof). So similar to general Markov chains with a two-dimensional state space, we can observe
that all ticking clocks with a qubit clockwork fall into two classes: clocks with are guaranteed
to reach a fixed state ~v(a,lim)

C after many ticks limk→∞ ~v
(a,k)
C = ~v

(a,lim)
C , or clocks which exhibit

oscillatory behavior and cycle between two fixed states indefinitely (see Eq. (III.71)).

Note that the conditional clocks for the ith and jth tick of a given ticking clock will be
identical if the corresponding states ~v(a,i)

C and ~v(a,j)
C are identical. Thus, the entropy production
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for these two ticks of the ticking clock will be identical Σi = Σj . The results above imply that
the first class of ticking clocks with a qubit clockwork settles to a fixed conditional clock in the
limit of many ticks and thus settles to produce a fixed entropy per tick Σlim = limk→∞Σk after
many ticks. Note that for any ticking clock of this class there exists another ticking clock with
the same ticking clock channels but whose clockwork is initialized in ~v0

C = ~v
(a,lim)
C , for which

~v
(a,k)
C = ~v

(a,lim)
C ∀k ∈ N0. That is, for every ticking clock which reaches a limiting behavior

after many ticks there exists another ticking clock that achieves this limiting behavior from
the first tick onwards. In particular, this clock is comprised of identical conditional clocks
and will thus have Σk = Σlim ∀k ∈ N0, where Σlim is the limiting entropy production of the
original clock. Such a clock can operationally be constructed from the original one by letting
it tick many times and reach its limiting behavior. On the contrary, there exists a second class
of ticking clocks that cycle between two, possibly distinct, conditional clocks whose entropy
production shows the same oscillatory behavior. These clocks produce an equal amount of
entropy in all even (Σ2) and odd ticks (Σ1).

Following standard results from Markov chain literature [101–103], we can divide all pos-
sible ticking clocks with clockworks of arbitrary dimension d > 2 into three types of classes:

1. reset clocks or non-reset clocks which are initialized in the stationary distribution such
that P~v0

C = ~v0
C,

2. non-reset clocks (which do not belong to class 1) for which limk→∞ Pk~v0
C converges to a

fixed state in the limit of many ticks ~v(a,lim)
C , where ~v(a,lim) may depend on the choice of

~v0
C,

3. non-reset clocks which show periodic behavior in the limit of many ticks, i.e., they cycle
between p different states limk→∞{Ppk~v0

C,Ppk+1~v0
C, . . . ,Ppk+(p−1)~v0

C}, where p is their
period.

Based on our previous discussion, we note that this classification places restrictions on the
entropy production per tick of ticking clocks, see Fig. III.6. Let us first discuss the ticking
clocks which belong either to class 1 or 2: ticking clocks of class 1 will realize an infinite
sequence of the same conditional clock, whereas a ticking clock of class 2 approaches a fixed
conditional clock in the limit of many ticks. As such, they will either already produce a fixed
amount of entropy per tick (class 1) or approach a fixed entropy production per tick in the
limit of many ticks (class 2). Moreover, any clock of class 2 has an analog in class 1 with the
same generators but a different, well-chosen initial state ~v0

C = ~v
(a,lim)
C . This analogous clock

in class 1 can be constructed operationally from the clock of class 2 by letting it tick many
times and reach its long-term behavior. Subsequently, the clock is handed to another observer
who starts counting ticks from zero onwards and assigns the state of the clockwork of the
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Figure III.6: Illustration of all three possible behaviors of the entropy production per tick
Σk of ticking clocks in the limit of many ticks, i.e., k → ∞. Ticking clocks of class 1 are
characterized by a constant entropy production Σk = Σ1 ∀k ∈ N>0, whereas ticking clocks
of class 2 approach a constant entropy production Σlim in the limit of many ticks. Ticking
clocks of class 3 will inevitably exhibit an oscillatory entropy production in the limit of many
ticks. However, their entropy production may also already show oscillations from the first tick
onwards.

handed clock as an initial state. Next, let us analyze clocks belonging to class 3 in a similar
manner. Ticking clocks of class 3 will cycle between d, possibly different, conditional clocks
in the limit of many ticks. As such, they will approach a cyclic pattern of entropy production
which repeats itself every d ticks. For any such ticking clock we can find a clock that realizes
this oscillatory behavior starting from the first tick onwards. This clock can be operationally
constructed, as outlined above in the case of clocks belonging to class 2.

While we have analyzed all potential behaviors of ticking clocks in the limit of many
ticks, one may still ask whether there exist ticking clocks that achieve all these behaviors.
In particular, do there exist clocks with higher dimensional clockworks d > 2 that can show
oscillatory behavior in their entropy production? We can show that there exist such clocks by
explicit construction. An example of such a clock in d = 3 with a period p = 3 is given by the
following choice of generators

N =

−a 0 0

0 −b 0

0 0 −c

 , T =

0 0 c

a 0 0

0 b 0

 , (III.76)

where a, b, c ≥ 0. This results in

P3k+1 =

0 0 1

1 0 0

0 1 0

 , P3k+2 =

0 1 0

0 0 1

1 0 0

 , P3k+3 =

1 0 0

0 1 0

0 0 1

∀k ∈ N. (III.77)
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Note that this clock’s accuracy is upper bounded by Rk = k ∀k ∈ N>0 (see Appendix B.6 for
a proof). Another example of a clock that shows oscillatory behavior but necessarily cycles
between states ~v(a,k)

C of different entropy with a period p = 2 is given by the following choice
of generators

N =

−a 0 0

0 −b 0

0 0 −c

 , T =

 0 b c

aα 0 0

a(1− α) 0 0

 , (III.78)

where a, b, c ≥ 0 and 1 ≥ α ≥ 0. This clock’s accuracy is also upper bounded by Rk = k ∀k ∈
N>0 (see Appendix B.6 for a proof). We then have

P2k+1 =

 0 1 1

α 0 0

1− α 0 0

 , P2k+2 =

1 0 0

0 α α

0 1− α 1− α

 ∀k ∈ N. (III.79)

Let us parametrize the initial clockwork state as ~v0
C = (x, y, 1 − x − y)T, where 1 ≥ x, y ≥

0, 1 ≥ x+ y. Thus, we have

~v
(a,k)
C =

(1− x, αx, (1− α)x)T, for odd k,

(x, α(1− x), (1− α)(1− x))T, for even k.
(III.80)

We can, for example, construct a clock that swaps between states of different entropy by the
choice ~v0

C = (1, 0, 0)T. This results in ~v(a,k)
C = (0, α, (1−α))T for odd k and ~v(a,k)

C = (1, 0, 0)T for
even k. Consequently, the clock will exhibit an oscillatory behavior in its entropy production.



Conclusion and outlook

In this work, we successfully motivated an information-theoretic measure for the entropy pro-
duction Σk of the kth tick of a ticking clock from first principles. Our expression quantifies
the degree of correlations that build up between the clock and its environment during each
tick. As such, it measures the amount of information that the clock exchanges with its outside
world. This viewpoint is further strengthened by the fact that Σk gains operational meaning
in quantum cryptographic protocols, where it serves as an upper bound on the amount of in-
formation that an eavesdropper can potentially acquire when the quantum channel governing
the ticking process is used to transmit information. It is precisely this exchange of information
that we can identify as an origin of irreversibility of the dynamics of ticking clocks. Crucially,
this information content is appropriately conditioned on the knowledge of a typical observer
which utilizes the ticking clock to gain information about time. Moreover, the measure applies
to any ticking clock modeled in the framework proposed in Ref. [16] irrespective of the physical
realization of the clock, i.e., the nature of its environment. This aspect allowed us to go beyond
the investigations of previous works, which were largely restricted to a thermodynamic setting.

Next, we analyzed the relationship between the entropy production per tick and the accu-
racy of the most general class of quantum ticking clocks. We proved analytically by explicit
construction that there exist quantum ticking clocks that operate at a vanishing entropy pro-
duction per tick while being infinitely accurate. Thus, for this general class of ticking clocks,
we showed that the minimal amount of entropy that needs to be produced in each tick to
achieve a given accuracy vanishes in the infinite accuracy limit. On the contrary, we were not
able to construct classical ticking clocks that are capable of achieving this limit. This result
can be understood when taking note of the fact, that the clocks which achieve a vanishing
entropy production per tick as their accuracy approaches infinity rely on coherent unitary
clockwork dynamics leading up to each tick. Furthermore, the dimension of their clockwork is
also required to approach infinity. Hence, to realize such clocks in a lab one would need a large
(macroscopic) quantum system with coherent dynamics. It remains to be seen at what rate
quantum computing technology and the field of quantum control advance in the upcoming
years [104, 105], and thus whether this regime can be approached in practice. If so, this would
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constitute a drastic quantum-over-classical advantage in the task of timekeeping: a quantum
ticking clock would be capable of achieving a similar or higher accuracy while utilizing fewer
information-theoretic resources in each tick.

Restricting our analysis to classical ticking clocks, we numerically confirmed the existence
of a fundamental trade-off between the entropy production per tick and the accuracy of clocks
with a clockwork of dimension d < 5. That is, to achieve a certain accuracy all such ticking
clocks must produce a minimal amount of entropy per tick which increases with increasing
accuracy. Moreover, we found a set of optimal ticking clocks that achieve this lower bound.
Their generators take on a simple, sparse form. Thus, we successfully characterized the min-
imal information-theoretic resources required for these clocks to achieve a certain level of
accuracy. In contrast to quantum ticking clocks which may exhibit coherent dynamics, the
dynamics of classical ticking clocks are – by construction – completely incoherent and stochas-
tic. These results further underpin the fact of our measure for the entropy production per tick
quantifies the exchanged information between the clock and its outside. This is because in
quantum mechanics noise arises due to information exchange with the outside, as can be seen
from the quantum Fano inequality (see Eq. (II.94)). As such, classical ticking clocks must
rely on an interaction with the environment leading up to each tick to achieve high accuracy.
Our results show that there exists a minimal interaction “strength” at a given accuracy which
must necessarily increase with increasing accuracy. In the future, it would be interesting to
investigate the relation between the entropy production per tick and the accuracy of quantum
ticking clocks with a limited clockwork dimension and contrast it to the results obtained for
classical ticking clocks. As such, one may find a quantum-over-classical advantage even for
low-dimensional clockworks.

We found that the minimal entropy production per tick of classical ticking clocks at a given
accuracy decreases with increasing clockwork dimension d. Ultimately, we are interested in
the lower bound which emerges in the d → ∞ limit. Here, we have conjectured that there
exists such a lower bound that increases with increasing accuracy and that the optimal clocks
which achieve it have a no-tick generator of the form given in Eq. (III.60). A major task
that remains for future works is to leverage these numerical insights and analyze the minimal
entropy production per tick in the d→∞ limit analytically.

Finally, note that our ticking clock model assumes a perfect coupling of the clockwork
to the register. That is, the ticking clocks do not tick backward and do not skip a tick.
As pointed out previously, one can w.l.o.g. assume such a coupling for any valid clockwork.
Nevertheless, it would be of interest to investigate the entropy that needs to be produced in
order to implement such an ideal register that replaces an attentive observer. That is, analyze
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the entropic cost associated with moving from a non-ideal to an ideal register, i.e., the tick-
counting process. This would serve as an additional source of entropy production in ticking
clocks described by our ticking clock model in addition to the entropy production per tick.
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Appendix A

Quantum information and entropy

Here, we provide a brief overview of quantum information-theoretic quantities utilized in this
work, such as the von Neumann entropy, quantum mutual information, or quantum relative
entropy, and their properties. For more details, see Refs. [25, 69, 70, 106].

Von Neumann entropy: The von Neumann entropy S(ρ) of a density matrix ρ acting on
states in a Hilbert space H of dimension d = dim(H) is given by

S(ρ) = −tr [ρ ln(ρ)] =

d−1∑
i=0

−λi ln(λi) ≥ 0, (A.1)

where the eigendecomposition of the density matrix is ρ =
∑d−1

i=0 λi|i〉〈i| with eigenvalues
{λi}d−1

i=0 and eigenbasis {|i〉}d−1
i=0 . In the following, we list a few useful properties of the von

Neumann entropy:

• The von Neumann entropy of a pure state is zero S(|Ψ〉〈Ψ|) = 0.

• For a Hilbert space H of fixed dimension d = dim(H), the von Neumann entropy is
upper bounded by ln(d) which is achieved by the maximally mixed state ρ = 1/d.

• The von Neumann entropy is invariant under unitary transformation S(UρU †) = S(ρ).
This follows from the fact that ρ′ = UρU † =

∑d−1
i=0 λiU |i〉〈i|U † =

∑d−1
i=0 λi|i′〉〈i′|, where

{|i′〉}d−1
i′=0 is another orthonormal basis of H. The density matrix ρ′ has the same eigen-

values as ρ, and thus the same von Neumann entropy.

• The von Neumann entropy is subadditive, that is S(ρAB) ≤ S(ρA) + S(ρB). Note
that if the joint state is a product state ρAB = ρA ⊗ ρB we achieve equality, because
S(ρA ⊗ ρB) = S(ρA) + S(ρB).



116 Quantum information and entropy

• The von Neumann entropy obeys a triangle inequality

|S(ρA)− S(ρB)| ≤ S(ρAB) ≤ S(ρA) + S(ρB), (A.2)

where the right-hand side follows from subadditivity.

• The von Neumann entropy is concave and thus satisfies

S(
∑
i

piρi) ≤
∑
i

piS(ρi), (A.3)

where {pi}Ni=1, N ∈ N>0 is a normalized probability distribution and {ρi}Ni=1 are a set
of density matrices. That is, we have

∑
i pi = 1 and pi ≥ 0 ∀i.

Quantum mutual information: Consider density matrices ρAB acting on a bipartite Hilbert
space HAB = HA ⊗HB. The quantum mutual information IA:B(ρAB) is then given by

IA:B(ρAB) = S(ρA) + S(ρB)− S(ρAB) ≥ 0, (A.4)

where S denotes the von Neumann entropy and ρA/B = trB/A [ρAB] denotes the reduced state
of system A/B, respectively. For brevity, we write IA:B(ρAB) = I(ρAB) when it is clear with
respect to what bipartition of the Hilbert space the quantum mutual information is computed.

Quantum relative entropy: The quantum relative entropy S(ρ‖σ) of the density matrix ρ
with respect to the density matrix σ is given by

S(ρ‖σ) = −tr [ρ ln(σ)]− S(ρ) ≥ 0. (A.5)

Here, both density matrices act on states in a Hilbert space H. We have S(ρ‖σ) = ∞ when
supp(ρ) ∩ ker(σ) 6= 0, where supp(ρ) denotes the support of ρ and ker(σ) is the kernel of σ.
Thus, given that σ is a pure state σ = |Ψ〉〈Ψ| then S(ρ‖σ) 6=∞ if and only if σ = ρ.
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Additional proofs

B.1 Delay functions and accuracy of ticking clocks

In this section, we prove that for reset ticking clocks the delay function of the kth tick is given
by a convolution of k delay functions of the first tick, which yields Rk = kR1 ∀k ∈ N>0. Based
on the implicit clockwork representation given in Lemma 1, one can write the dynamics of a
ticking clock as follows

d

dt
ρ̃

(k)
C (t)) =

C(1,0)(ρ̃
(0)
C (t), for k = 0

C(1,0)(ρ̃
(k)
C (t)) + C(2,0)(ρ̃

(k−1)
C (t)), for k 6= 0

, (B.1)

with initial conditions

ρ̃
(k)
C (0) =

ρ0
C, for k = 0

0, for k 6= 0
, (B.2)

where ρ̃(k)
C = trR [ρC|k〉〈k|R] , k ∈ N. Here, we made use of the fact that we consider ticking

clocks with registers in the limit NT → ∞, where the distinction between cut-off registers
and periodic registers becomes irrelevant. This can be seen as the quantum analog of the
representation given in Corollary 1 for classical ticking clocks.

The solution for the clockwork states in the first two tick subspaces, k = 0 and k = 1, are

ρ̃
(0)
C (t) = etC(1,0)(ρ0

C), (B.3)

and
ρ̃

(1)
C (t) =

∫ ∞
0

e(t−t′)C(1,0) ◦ C(2,0) ◦ et
′C(1,0)(ρ0

C)dt′. (B.4)

If the clock is a reset clock, we have C(2,0) ◦ et
′C(1,0)(ρ0

C) ∝ ρ0
C because C(2,0)(ρC) ∝ ρ0

C ∀ρC.
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Given that τ (k)(t) = tr
[
C(2,0)(ρ̃

(k−1)
C (t))

]
, we can write

C(2,0) ◦ et
′C(1,0)(ρ0

C) = τ (1)(t′)ρ0
C, (B.5)

and

τ (2)(t) = tr

[
C(2,0)

(∫ ∞
0

e(t−t′)C(1,0) ◦ C(2,0) ◦ et
′C(1,0)(ρ0

C)dt′
)]

(B.6)

=

∫ ∞
0

tr
[
C(2,0)

(
e(t−t′)C(1,0)(ρ0

C)τ (1)(t′)dt′
)]

(B.7)

=

∫ ∞
0

τ (1)(t− t′)τ (1)(t′)dt′ = (τ (1) ∗ τ (1))(t). (B.8)

The proof for τ (k)(t) with k > 2 then follows by induction. For classical ticking clocks, one
can obtain analogous expressions by making the following substitutions

ρC ←→ ~vC, C(1,0) ←→ N , C(2,0) ←→ T , tr [·]←→ ‖ · ‖, (B.9)

i.e., one replaces Eq. (B.1) and (B.2) by the analogous expressions given in Corollary 1.

Given the tick delay functions {τ (k)(t)}k∈N>0 of a ticking clock, its accuracy {Rk}k∈N>0 is
completely specified. Note that the tick delay functions are normalized probability densities.
We compute the expected time µk and the variance σ2

k of the kth tick as

µk =

∫ ∞
0

τ (k)(t)tdt, (B.10)

σ2
k =

∫ ∞
0

τ (k)(t)(t− µk)2dt, (B.11)

where the accuracy of the kth tick is then given by Rk = µ2
k/σ

2
k. Consider the case where the

delay function of the kth tick is given by a convolution of k tick delay functions of the first
tick

τ (k)(t) =

∫ ∞
0

dtk−1· · ·
∫ ∞

0
dt2

∫ ∞
0

dt1τ
(1)(t1)τ (1)(t2 − t1)τ (1)(t3 − t2) . . . τ (1)(t− tk−1)

(B.12)

= (τ (1) ∗ τ (1) ∗ · · · ∗ τ (1))(t)︸ ︷︷ ︸
k times

. (B.13)

One can calculate the moments of this delay function through direct integration as

µk = kµ1, (B.14)
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〈t2〉k = k〈t2〉1 + k(k − 1)µ2
1, (B.15)

σk =
√
kσ1, (B.16)

and thus Rk = µ2
k/σ

2
k = kµ2

1/σ
2
1 = kR1.

B.2 Entropy production as correlation between system and en-
vironment

Here, we provide the additional proofs for the expressions stated in Section II.2.1 on entropy
production as correlation between system and environment.

Thermal environment: We start from Eq. (II.20), which states

∆SS + ∆SE = I(ρ′SE) ≥ 0. (B.17)

We consider the special case where the environment is initially in a thermal state ρE =

e−βH/tr
[
e−βH

]
, with H as the corresponding Hamiltonian and β = 1/kBT the inverse tem-

perature. Then one can rewrite Eq. (B.17) as

I(ρ′SE)−∆SS = ∆SE = S(ρ′E)− S(ρE) = −tr
[
ρ′E ln

(
ρ′E
)]

+ tr

[
ρE ln

(
e−βH

tr [e−βH ]

)]
(B.18)

= −tr
[
ρ′E ln

(
ρ′E
)]

+ tr
[
ρE

(
−βH − 1 ln

(
tr
[
e−βH

]))]
(B.19)

= −tr
[
ρ′E ln

(
ρ′E
)]
− βtr

[
ρEH

]
− ln

(
tr
[
e−βH

])
+ βtr

[
Hρ′E

]
− βtr

[
Hρ′E

]
(B.20)

= βtr
[
H(ρ′E − ρE)

]
− tr

[
ρ′E ln

(
ρ′E
)]

+ tr

[
ρ′E ln

(
e−βH

tr [e−βH ]

)]
(B.21)

= βQE − S(ρ′E‖ρE), (B.22)

where we identified the change in energy of the reservoir as the amount of exchanged heat
QE =

(
tr [Hρ′E]− tr[HρE]

)
during the process, and S (ρ‖σ) denotes the quantum relative

entropy. By reordering Eq. (B.22), one obtains the desired result

∆SS + βQE = I(ρ′SE) + S(ρ′E‖ρE) ≥ 0. (B.23)
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Global fixed point: We start from Eq. (II.26) which states

Σ = I(ρ′SE) + S(ρ′E‖ρE) = ∆SS + βQE. (B.24)

We consider the special case where the unitary map has a global fixed point ρ∗S that satisfies

U (ρ∗S ⊗ ρE)U † = ρ∗S ⊗ ρE. (B.25)

Let us rewrite the expression for the entropy production in Eq. (B.24) as

Σ = I(ρ′SE) +S(ρ′E‖ρE) = ∆SS + ∆SE− tr
[
ρ′E ln(ρE)

]
−S(ρ′E) = ∆SS + tr

[
(ρE − ρ′E) ln(ρE)

]
,

(B.26)
where we can write the second term as

tr
[
(ρE − ρ′E) ln(ρE)

]
= trSE

[
(ρS ⊗ ρE − ρ′SE)1S ⊗ ln(ρE)

]
. (B.27)

Taking the logarithm on both sides of Eq. (B.25) we obtain

1S ⊗ ln(ρE) = U †1S ⊗ ln(ρE)U + U †ln(ρ∗S)⊗ 1EU − ln(ρ∗S)⊗ 1E. (B.28)

Plugging the expression in Eq. (B.28) into Eq. (B.27) and tracing out the environment E we
obtain

tr
[
(ρE − ρ′E) ln(ρE)

]
= trS

[
(ρ′S − ρS) ln(ρ∗S)

]
. (B.29)

Then, plugging Eq. (B.29) into Eq. (B.26) we obtain

Σ = ∆SS + tr
[
(ρ′S − ρS) ln(ρ∗S)

]
, (B.30)

which can be rewritten as
Σ = S(ρS‖ρ∗S)− S(ρ′S‖ρ∗S). (B.31)

Equation (B.31) is the desired expression given in Eq. (II.30).
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B.3 Distinct approaches to calculate observer-dependent clock-
work states

Here, we provide additional results on the three distinct approaches to calculate observer-
dependent clockwork states discussed in Section II.3. Figure B.1 shows that when ρ(b,k−1)

C is
calculated using approach 2 (Eq. (II.54)), it is still dependent on k for ladder ticking clocks.
This is in contrast to approach 1 (Eq. (II.47)).

Figure B.1: Entropy production per tick Σk = S(ρ
(b,k−1)
CP ) for k = 1, 2, 3 of ladder ticking

clocks with clockworks of various dimensions d = R1 based on the state of the clockwork an
instance before the kth tick ρ(b,k−1)

CP obtained using approach 1 (black, Eq. (II.47)) or approach
2 (red, Eq. (II.54)), see Section II.3. Here, the ladder ticking clock serves as an example of a
reset clock for which we expect the entropy production to be the same for all ticks. Because
the ladder clock resets to a pure clockwork state, we have Σk = S(ρ

(b,k−1)
CP ) = S(ρ

(b,k−1)
C ).

Note that the entropy production per tick obtained in approach 1 is independent of the tick
under consideration, whereas the entropy production per tick obtained in approach 2 depends
on k.

Next, we contrast the expressions for the observer-dependent clockwork states ρ(b,k)
C and
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ρ
(a,k)
C obtained by following approach 1 and 3. Starting with the first tick where both ap-

proaches agree, we have

ρ
(a,1)
C =

∫ ∞
0

∑
j

Jj ρ̃
(0)
C (t)J†j dt, (B.32)

where
ρ̃

(0)
C (t) = tr

[
1C ⊗ |0〉〈0|RMt,0

C→CR(ρ0
C)
]
. (B.33)

Then, for the second tick following approach 1 we have

ρ
(b,1)
C =

∫ ∞
0

P(1→2)(t′)ρ
(1)
C (t′)dt′ (B.34)

as the state of the clockwork an instance before the second tick. The state an instance after
the second tick is given by

ρ
(a,2)
C =

∫ ∞
0

∑
j

Jj trR

[
1C ⊗ |1〉〈1|RMt′,1

C→CR

(
ρ

(a,1)
C

)]
J†j dt

′. (B.35)

Plugging the expression for ρ(a,1)
C given in Eq. (B.32) into Eq. (B.35), we obtain

ρ
(a,2)
C =

∫ ∞
0

∑
j

Jj trR

1C ⊗ |1〉〈1|RMt′,1
C→CR

∫ ∞
0

∑
j

Jj ρ̃
(0)
C (t)J†j dt

 J†j dt′ (B.36)

=

∫ ∞
0

∫ ∞
0

tr

∑
j

Jj ρ̃
(0)
C (t)J†j

∑
j

Jj trR

[
1C ⊗ |1〉〈1|RMt′,1

C→CR

(
ρ

(1′)
C (t)

)]
J†j dtdt

′,

(B.37)

where ρ̃(1′)
C (t) =

∑
j Jj ρ̃

(0)
C (t)J†j . Here, we used

ρ̃
(1)
CR(t′) = trR

[
1C ⊗ |1〉〈1|RMt′,1

C→CR(ρ
(a,1)
C )

]
, (B.38)

and

P(1→2)(t′) = tr

∑
j

Jj ρ̃
(1)
C (t′)J†j

 . (B.39)

Similarly, following approach 3 the state of the clockwork an instance before the second
tick is calculated as

ρ
(b,1)
C =

∫ ∞
0

∫ ∞
0

tr

∑
j

Jj ρ̃
(1)
C (t, t′)J†j

 tr

∑
j

Jj ρ̃
(0)
C (t)J†j

 ρ(1)
C (t, t′)dtdt′, (B.40)
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where P(0→1)(t) = tr
[∑

j Jj ρ̃
(0)
C (t)J†j

]
and P(1→2)(t, t′) = tr

[∑
j Jj ρ̃

(1)
C (t, t′)J†j

]
. With that,

we can rewrite Eq. (B.40) as

ρ
(b,1)
C =

∫ ∞
0

∫ ∞
0

P(0→1)(t)P(1→2)(t, t′)ρ
(1)
C (t, t′)dtdt′. (B.41)

The state an instance after the second tick is given by

ρ
(a,2)
C =

∫ ∞
0

∫ ∞
0

tr

∑
j

Jj ρ̃
(1)
C (t, t′)J†j

 tr

∑
j

Jj ρ̃
(0)
C (t)J†j

 ∑
j Jj ρ̃

(1)
C (t, t′)J†j

tr
[∑

j Jj ρ̃
(1)
C (t, t′)J†j

]dtdt′
(B.42)

=

∫ ∞
0

∫ ∞
0

tr

∑
j

Jj ρ̃
(0)
C (t)J†j

∑
j

Jj ρ̃
(1)
C (t, t′)J†j dtdt

′ (B.43)

=

∫ ∞
0

∫ ∞
0

tr

∑
j

Jj ρ̃
(0)
C (t)J†j

∑
j

Jj trR

[
1C ⊗ |1〉〈1|RMt′,1

C→CR

(
ρ

(1′)
C (t)

)]
J†j dtdt

′.

(B.44)

Here, we used
ρ̃

(1)
C (t, t′) = trR

[
1C ⊗ |1〉〈1|RMt′,1

C→CR

(
ρ

(1)
C (t)

)]
, (B.45)

and ρ̃(1′)
C (t) =

∑
j Jj ρ̃

(0)
C (t)J†j . Thus, we can verify that both approaches yield the same state

ρ
(a,2)
C (compare Eq. (B.36) and (B.44)). Similarly, one can then show that both approaches

yield the same states ρ(a,k)
C ∀k > 2.

Now, let us compare the expressions for the state of the clockwork an instance before the
second tick ρ(b,1)

C . We start by rewriting the expression obtained using approach 1 given in
Eq. (B.34) as

ρ
(b,1)
C =

∫ ∞
0

P(1→2)
(
t′
)
ρ

(1)
C (t′)dt′ =

∫ ∞
0

tr

∑
j

Jj ρ̃
(1)
C (t′)J†j

 ρ(1)
C (t′)dt′, (B.46)

with

P(1→2)(t′) = lim
δt→0+

tr
[
1C ⊗ |2〉〈2|R

(
Mδt,1

C→CR

(
ρ̃

(1)
C (t′)

)
− ρ̃(1)

C (t′)
)]

δt
. (B.47)

This yields

ρ
(b,1)
C =

∫ ∞
0

lim
δ→0+

tr
[
1C ⊗ |2〉〈2|RMδt,1

C→CR

(
ρ

(1)
C (t′)

)]
δt

ρ̃
(1)
C (t′)dt′. (B.48)
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We rewrite ρ̃(1)
C (t′) as

ρ̃
(1)
C (t′) = trR

[
1C ⊗ |1〉〈1|RMt′,1

CR→CR

(
ρ

(a,1)
C

)]
(B.49)

=

∫ ∞
0

P(0→1)(t)trR

1C ⊗ |1〉〈1|RMt′,1
C→CR

 ∑
j Jj ρ

(0)
C (t)J†j

tr
[∑

j Jj ρ
(0)
C (t)J†j

]
 dt (B.50)

=

∫ ∞
0

P(0→1)(t)ρ̃
(1)
C (t, t′)dt. (B.51)

Plugging Eq. (B.51) into Eq. (B.48) we have

ρ
(b,1)
C =

∫ ∞
0

∫ ∞
0

P(0→1) lim
δ→0+

tr
[
1C ⊗ |2〉〈2|RMδt,1

C→CR

(
ρ

(1)
C (t′)

)]
δt

ρ̃
(1)
C (t, t′)dtdt′. (B.52)

We write

lim
δt→0+

tr
[
1C ⊗ |2〉〈2|RMδt,1

C→CR

(
ρ

(1)
C (t′)

)]
δt

=
tr
[∑

j J
†
j Jj

∫∞
0 P(0→1)(t)ρ̃

(1)
C (t, t′)dt

]
tr
[∫∞

0 P(0→1)(t)ρ̃
(1)
C (t, t′)dt

] , (B.53)

to obtain

ρ
(b,1)
C =

∫ ∞
0

∫ ∞
0

P(0→1)
tr
[∑

j J
†
j Jj

∫∞
0 P(0→1)(t)ρ̃

(1)
C (t, t′)dt

]
tr
[∫∞

0 P(0→1)(t)ρ̃
(1)
C (t, t′)dt

] ρ̃
(1)
C (t, t′)dtdt′. (B.54)

We identify P(1→2) (t, t′) = tr
[∑

j J
†
j Jj

∫∞
0 P(0→1)(t)ρ̃

(1)
C (t, t′)dt

]
and rewrite Eq. (B.54) as

ρ
(b,1)
C =

∫ ∞
0

(∫ ∞
0

P(0→1) (t) P1→2
(
t, t′
)
dt

) (∫∞
0 P(0→1) (t) ρ̃

(1)
C (t, t′)dt

)
(∫∞

0 P(0→1) (t) tr
[
ρ̃

(1)
C (t, t′)

]
dt
)dt′. (B.55)

Defining P (1→2)
eff (t′) =

∫∞
0 P(0→1) (t) P1→2 (t, t′) dt, and ρ

(1)
C,eff(t′) =

(∫∞
0 P(0→1)(t)ρ̃

(1)
C (t,t′)dt

)
(∫∞

0 P(0→1)(t)tr
[
ρ̃
(1)
C (t,t′)

]
dt
) ,

we have
ρ

(b,1)
C =

∫ ∞
0

P
(1→2)
eff (t′)ρ

(1)
C,eff(t′)dt′. (B.56)

Compare Eq. (B.56), the expression for ρ(b,1)
C obtained using approach 1, to the expression for

ρ
(b,1)
C obtained with approach 3 (see Eq. (B.41)) given by

ρ
(b,1)
C =

∫ ∞
0

∫ ∞
0

P(0→1)(t)P(1→2)(t, t′)ρ
(1)
C (t, t′)dtdt′. (B.57)
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Clearly, the two expressions for ρ(b,1)
C (and equally for ρ(b,k)

C , k > 1) obtained via approach 1
and 3 will generally differ. Approach 1 yields an expression (Eq. (B.56)) which can be obtained
by “coarse-graining” of the expression obtained by approach 3 (Eq. (B.57)). That is, given the
expression in Eq. (B.57) we can cast it into an expression that only depends on t′ by replacing
the weight P(0→1) (t) P(1→2) (t′, t) with P

(1→2)
eff (t′) by integrating out the coordinate time t.

Similarly, we replace the corresponding state ρ(1)
C (t, t′) by integration out the coordinate time

t. That is, we integrate over all possible times t at which the first tick occurred.

B.4 Kraus operator representation of ticking channels

Here, we provide explicit Kraus operator representations of the ticking channels discussed in
Section II.5.2. In, particular we consider the CPTP map E(A)

k−1 specified by

ρ
(a,k)
C = E(A)

k−1(ρ
(a,k−1)
C ). (B.58)

To start, we can rewrite the state ρ(a,k)
C as follows

ρ
(a,k)
C =

∫ ∞
0

P(k−1→k) (t)

∑
j Jj ρ̃

(k−1)
C (t)J†j

tr
[∑

j J
†
j Jj ρ̃

(k−1)
C (t)

]dt (B.59)

=

∫ ∞
0

∑
j

Jj trR

[
1⊗ |k − 1〉〈k − 1|RMt,k−1

C→CR

(
ρ

(a,k−1)
C

)]
J†j dt. (B.60)

Using the Kraus representation theorem [25, 69, 70], for every quantum channelMt,k
C→CR there

exists a Kraus operator representation of the form

Mt,k
C→CR (ρC) =

NT∑
l=0

NO∑
x=1

K(k)
x (l, t)ρCK

(k)
x

†
(l, t)⊗ |l〉〈l|R, (B.61)

where 1 ≤ NO ≤ d2 with d = dim(HC). Here, {K(k)
x (l, t)}NO

x=1 is a set of operators satisfying∑NO
x=1K

(k)
x

†
(l, t)K

(k)
x (l, t) = 1, i.e., a valid set of Kraus operators. The Kraus operators depend

on the input and output state of the register, k and l, respectively, as well as the coordinate
time t. Note that to obtain Eq. (B.61), we invoked the fact that the register is classical (Def. 3)
and remains incoherent at all times in the chosen basis. Plugging Eq. (B.61) into Eq. (B.60),
we obtain

ρ
(a,k)
C =

∫ ∞
0

∑
jx

JjK
(k−1)
x (k, t)ρ

(a,k−1)
C K(k−1)

x

†
(k, t)J†j dt. (B.62)
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We can use Axiom 4 to see that the Kraus operators must only depend on the difference
between the input and output state of the register. This allows us to write

ρ
(a,k)
C =

∫ ∞
0

∑
jx

JiK
(0)
x (1, t)ρ

(a,k−1)
C K(0)

x

†
(1, t)J†i dt = E(A)

k−1(ρ
(a,k−1)
C ). (B.63)

We see that ρ(a,k)
C can be obtained from ρ

(a,k−1)
C via application of a quantum channel E(A)

k−1, i.e.,
a CPTP map, whose Kraus operator representation is given in Eq. (B.63). Complete positivity
of the map is guaranteed by the fact that the map admits a Kraus operator representation.
Thus, it remains to be shown that the map is indeed trace-preserving. This follows from the
fact that ρ(a,k)

C is properly normalized for any arbitrary normalized input state ρ(a,k−1)
C by

construction.

B.5 Observer-dependent clockwork states for ticking clocks with
vanishing no-tick operators

Here, we discuss the form of the relevant observer-dependent clockwork states for ticking clocks
with vanishing no-tick operators Lj = 0 ∀j ∈ (1, NL). We have

ρ
(b,k−1)
C =

∫ ∞
0

P(k−1→k) (t) ρ
(k−1)
C (t)dt, (B.64)

and

ρ
(a,k)
C =

∫ ∞
0

P(k−1→k) (t)

∑
j Jj ρ̃

(k−1)
C (t)J†j

tr
[∑

j Jj ρ̃
(k−1)
C (t)J†j

]dt, (B.65)

where

P(k−1→k) (t) = tr

∑
j

Jj ρ̃
(k−1)
C (t)J†j

 , (B.66)

with
ρ̃

(k−1)
C (t) = trR

[
1C ⊗ |k − 1〉〈k − 1|RMt,k−1

C→CR

(
ρ

(a,k−1)
C

)]
. (B.67)

Using Axiom 4, we can rewrite Eq. (B.67) as

ρ̃
(k−1)
C (t) = trR

[
1C ⊗ |0〉〈0|RMt,0

C→CR

(
ρ

(a,k−1)
C

)]
, (B.68)

which simply corresponds to the state ρ̃(0)
C (t) for a ticking clock initialized in the state ρ0

C =

ρ
(a,k−1)
C . Thus, we can use Eq. (B.3) from Appendix B.1 to write

ρ̃
(k−1)
C (t) = etC(1,0)(ρ

(a,k−1)
C ). (B.69)
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Recall that the map C(1,0) given in Lemma 1 has the following form

C(1,0) (·) = −i [H, (·)]−
∑
j

1

2
{L†jLj + J†j Jj , (·)}+ Lj (·)L†j . (B.70)

If all no-tick operators vanish, C(1,0) reduces to

C(1,0) (·) = −i [H, (·)]−
∑
i

1

2
{J†i Ji , (·)}. (B.71)

Let us propose the following ansatz for the form of ρ̃(k−1)
C (t):

ρ̃
(k−1)
C (t) = etC(1,0)(ρ

(a,k−1)
C ) = e−iHt−t/2

∑
j J
†
j Jj ρ

(a,k−1)
C eiHt−t/2

∑
j J
†
j Jj . (B.72)

Taking the derivative of Eq. (B.72) with respect to coordinate time t we have

d

dt
ρ̃

(k−1)
C (t) = −i

[
H, ρ̃

(k−1)
C (t)

]
−
∑
i

1

2
{J†i Ji , ρ̃

(k−1)
C (t)} = C(1,0)(ρ̃

(k−1)
C (t)). (B.73)

Moreover, evaluating Eq. (B.72) at t = 0 yields ρ̃(k−1)
C (0) = 1ρ

(a,k−1)
C 1 = ρ

(a,k−1)
C . Thus, we

recover the appropriate derivative and initial conditions as specified in Eq. (B.1) and (B.2) in
Appendix B.1, respectively. Therefore, for ticking clocks with vanishing no-tick operators we
can write

ρ̃
(k)
C (t) = e−iHt−t/2

∑
j J
†
j Jj ρ

(a,k)
C eiHt−t/2

∑
j J
†
j Jj ∀k ∈ N. (B.74)

B.6 Accuracy of classical ticking clocks with a diagonal no-tick
generator

Here, we discuss the accuracy of classical ticking clocks whose no-tick generator N is diagonal.
The delay function of the first tick is then given by

τ (1)(t) = ‖T eN t~v0
C‖ =

∑
i

v0
C,ie
−Niit‖T ~ei‖ =

∑
i

v0
C,i(−Nii)eNiit, (B.75)

where the diagonal elements are non-positive Nii ≤ 0. Denoting τ
(1)
i (t) = (−Nii)eNiit as

individual delay functions, we have

τ (1)(t) =
∑
i

v0
C,iτ

(1)
i (t). (B.76)

Lemma 4 in Ref. [14] on the accuracy of delay functions which are themselves given as a
linear combination of delay functions states that R(τ (1)(t)) ≤ maxi R(τ

(1)
i (t)). Equality
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can be achieved by choosing an appropriate pure state of the clockwork as an initial state.
By direct integration we have µ(τ

(1)
i (t)) = 1/(−Nii) and σ2(τ

(1)
i (t)) = 1/N 2

ii. Therefore
R(τ

(1)
i (t)) = 1 ∀i. So the maximal achievable accuracy for the first tick of these clocks is given

by R1 = 1. Using Theorem 1, we have Rk ≤ kR1 = k. This is because any pure state reset
clock with a diagonal no-tick generator can still only achieve a maximal accuracy of the first
tick of R1 = 1, and thus Rk = kR1 = k.

B.7 Observer-dependent clockwork states for classical ticking
clocks

Here, we discuss how to express the observer-dependent clockwork states for classical ticking
clocks in “classical” notation. For general quantum ticking clocks we have

ρ
(b,k−1)
C =

∫ ∞
0

P(k−1→k) (t) ρ
(k−1)
C (t)dt, (B.77)

and

ρ
(a,k)
C =

∫ ∞
0

P(k−1→k) (t)

∑
j Jj ρ̃

(k−1)
C (t)J†j

tr
[∑

j Jj ρ̃
(k−1)
C (t)J†j

]dt, (B.78)

where

P(k−1→k) (t) = tr

∑
j

Jj ρ̃
(k−1)
C (t)J†j

 , (B.79)

with
ρ̃

(k−1)
C (t) = trR

[
1C ⊗ |k − 1〉〈k − 1|RMt,k−1

C→CR

(
ρ

(a,k−1)
C

)]
. (B.80)

Using Axiom 4, we can rewrite Eq. (B.80) as

ρ̃
(k−1)
C (t) = trR

[
1C ⊗ |0〉〈0|RMt,0

C→CR

(
ρ

(a,k−1)
C

)]
, (B.81)

which simply corresponds to the state ρ̃(0)
C (t) for a ticking clock initialized in the state ρ0

C =

ρ
(a,k−1)
C . Thus, we can use Eq. (B.3) from Appendix B.1 to write

ρ̃
(k−1)
C (t) = etC(1,0)(ρ

(a,k−1)
C ). (B.82)

From Corollary 1, we have that the state ~̃v(0)
C (t) evolves according to

d

dt
~̃v

(0)
C (t) = N ~̃v(0)

C (t), (B.83)
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where ~̃v(0)
C (0) = ~v0

C. Solving this first-order differential equation, we obtain

~̃v
(0)
C (t) = eN t~v0

C. (B.84)

So the classical analogue of ρ̃(k−1)
C (t) is given by

~̃v
(k−1)
C (t) = eN t~v

(a,k−1)
C . (B.85)

The probability density P(k−1→k) (t) simply corresponds to the delay function of the first tick of
a ticking clock with the same dynamics whose clockwork initialized in the state ρ0

C = ρ
(a,k−1)
C

instead. In classical notation, the delay function of the first tick can be computed as (see
Section I.3)

τ (1)(t) = ‖T ~̃v(0)
C (t)‖ = ‖T eN t~v0

C‖. (B.86)

Therefore, in classical notation we have

P(k−1→k) (t) = ‖T eN t~v(a,k−1)
C ‖. (B.87)

Thus, the state just before the kth tick can be written as

~v
(b,k−1)
C =

∫ ∞
0

P(k−1→k) (t)~v
(k−1)
C (t)dt =

∫ ∞
0
‖T eN t~v(a,k−1)

C ‖
eN t~v

(a,k−1)
C

‖eN t~v(a,k−1)
C ‖

dt. (B.88)

Similarly, the observer-dependent state after the kth tick is given by

ρ
(a,k)
C =

∫ ∞
0

P(k−1→k) (t)
T ~̃v(k−1)

C (t)

‖T ~̃v(k−1)
C (t)‖

dt =

∫ ∞
0
T ~̃v(k−1)

C (t)dt =

∫ ∞
0
T eN t~v(a,k−1)

C dt, (B.89)

where ~v(a,0)
C = ~v0

C by definition.

B.8 Accuracy and entropy production of ladder ticking clock

Here, we provide expressions for the accuracy and entropy production per tick of a ladder
ticking clock (see Section I.1.1). Note that the ladder ticking clock is a reset clock that resets
to a pure clockwork state. Therefore, Rk = kR1 and Σk = Σ1 = S(ρ

(b,0)
C ) for all k ∈ N>0.

Given the no-tick generator N and tick generator T of the ladder ticking clocks (Eq. (I.54)),
we can write

eN t~v0
C = eN t~e0 = e−t(1, f2(t), ..., fd(t))

T, (B.90)

with fk(t) = tk−1

(k−1)! and τ (1)(t) = ‖T eN t~e0‖ = e−tfd(t). A direct calculation then yields
µ1 = d, σ2

1 =
√
d, and thus R1 = d.
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The entropy production of the first tick of ladder clocks is given by Σ1 = S(~v
(b,0)
C ), where

~v
(b,0)
C =

∫ ∞
0
‖T eN t~e0‖

eN t~e0

‖eN t~e0‖
dt. (B.91)

The individual elements of the state ~v(b,0)
C can thus be computed as

v
(b,0)
C,k∈(1,d) =

∫ ∞
0

e−2t t
d−1

Γ(d, t)

tk−1

(k − 1)!
dt, (B.92)

where Γ(d, t) =
∫∞
t xd−1e−x is the incomplete Gamma function. Because the dimension of

the clockwork d is an integer, we can simplify this expression as Γ(d, t) = (d− 1)!e−t
∑d−1

n=0
tn

n! .
Figure B.2 shows the entropy production of the first tick Σ1 as a function of the accuracy of
the first tick R1 = d for ladder ticking clocks with clockworks of dimension d ∈ (2, 100). Here,
the entropy production is calculated based on Eq. (B.92).

Figure B.2: Entropy production of the first tick Σ1 as a function of the accuracy of the first tick
R1 for ladder ticking clocks (see Section I.1.1) with clockworks of varying dimension d = R1

(d ∈ (2, 100)). Because ladder clocks are reset clocks, we additionally have that Σk = Σ1 and
Rk = kR1 = kd for all k ∈ N>0.
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