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1 Introduction

In condensed matter physics a large variety of systems, as for example crystalline solids, magnets, su-
perconductors, superfluids, liquid crystals etc. are investigated and one aims to know how electrons and
atoms in the quantum world can originate their properties. Since the last century these quantum states
can be classified by the principle of spontaneous symmetry breaking [1]. For instance, a superconductor
breaks the gauge symmetry, which leads to phenomena as flux quantization and Josephson effects. There
exists a state which does not follow this principle: the quantum Hall state. This 2D state is insulating in
the bulk, but along the edge, electric current can be carried. This unidirectional current causes a quan-
tized Hall effect. The quantum Hall state is the first example of a quantum state which is topologically
distinct from all states of matter known before.
To distinguish such different quantum states, a mathematical concept is used: the concept of topological
invariance. Mathematicians classify different geometrical objects in terms of this concept into broad
classes. A popular example are 2D surfaces, which are classified by the number holes in them (also called
genus). For example, the surface of a square is topologically equivalent to the surface of a circle or a
triangle. Similarly one can smoothly deform a coffee cup into a donut, which in this terms also means
they are topologically equivalent: both have one hole.
The key concept which is used in physics for this topological classification is the “smooth deformation”.
To be more precise, one can consider a Hamiltonian of many particle systems with an energy gap. A
smooth deformation then is defined as a change in the Hamiltonian which does not close the bulk gap.
This concept can be applied to insulators as well as to superconductors with a full energy gap but not to
gapless states as for example metals. If two gapped states are in a different topological class, one gapped
state cannot be deformed into the other gapped state unless a quantum phase transition occurs where
the system becomes gapless.
Mathematicians expressed the concept of genus in terms of an integral over the local curvature of the
surface. This integral is called the topological invariant. Similarly topologically quantized physical
quantities can be expressed as invariant integrals over the frequency momentum space. Such an integral
uniquely determines the nature of the quantum states enabling it to serve as a topological order param-
eter.

In 2005 Kane and Mele [2] found such a topological invariant that could be computed for any 2D
material. This allows to predict, whether a material has a stable edge state and it enabled them to show
that there have to exist realistic 2D materials with a stable edge state. Soon after, Bernevig, Hughes and
Zhang predicted theoretically that a 2D topological insulator would be realized in HgTe/CdTe quantum
wells [3]. König et al. observed this experimentally in 2007. In 2006 it was found that the 2D topological
insulator can be generalized to 3D ([4], [5], [6]). Eventually, in 2008 the first 3D topological insulator,
the semiconducting alloy Bi1−xSbx, was experimentally identified [7].

These new 2D and 3D quantum states are invariant under time-reversal (TR) symmetry, and spin-
orbit coupling (SOC) plays an essential role. All TR invariant insulators in nature without ground state
degeneracy can be distributed into two classes which are classified by a Z2 topological order parameter.
One class is formed by the topologically trivial states, which are gapped inside the bulk and on the
surface. The other class represents the topologically nontrivial insulators which have a full insulating
gap in the bulk, but gapless edge or surface states.
In a nutshell, topological insulators are new states of quantum matter whose electronic structure cannot
be adiabatically connected to conventional insulators and semiconductors. They are characterized by a
full insulating gap in the bulk and gapless edge or surface states which are protected by TR symmetry.
Moreover, they exhibit certain qualities, which make them particularly interesting for research.

Some of these exciting qualities we will employ in this thesis. We aim to calculate the Josephson
effect on topological insulator surfaces. We use not only the conductive property of the surface states,
but also the special form of the proximity-induced topological superconductivity and ferromagnetism. It
is a very convenient circumstance, that the surface states of the topological insulator can be described
by a simple 2× 2 Dirac Hamiltonian.
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To introduce the reader into the topic, the thesis begins with a theory part explaining topological
insulators, the BCS theory of superconductivity, proximity effects and Andreev reflection. In the main
part we provide a derivation of the Hamiltonians of the topological insulator surface states which are
used to calculate the Josephson effect. Afterwards we investigate the Josephson effect in topological
insulator planar, step and edge junctions and finally in ferromagnetic topological insulator planar and
step junctions.
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2 Theory

2.1 2D topological insulators: HgTe/CdTe

To understand the concept of a 3D topological insulator we will begin with the simpler case of a 2D
topological insulator. The explanation of the topological band structure in 2D can then be generalized
to the band structure in 3D.

The first 2D topological insulator was discovered in HgTe/CdTe quantum wells theoretically in 2006
by Bernevig, Hughes, and Zhang [3] and experimentally in 2007 by König et al. [8]. They observed an
insulating state which is conducting only through 1D edge channels. Furthermore, the state is strongly
influenced by a TR symmetry-breaking magnetic field.
In this section we will make a brief introduction to 2D topological insulators and we will discuss
HgTe/CdTe quantum wells as a concrete example.

2.1.1 2D topological insulators

A 2D topological insulating state, also called quantum spin Hall (QSH) insulator state is characterized
by three specific features: it is invariant under TR, it has a charge excitation gap in the bulk and it
has topologically protected 1D gapless edge states that lie inside the bulk insulating gap. By topolog-
ically protected edge states we refer to the fact, that the TR symmetry prevents the edge states from
backscattering. The absence of backscattering relies on the destructive interference between all possible
backscattering paths taken by the edge electrons. This destructive interference is due to the helical
nature of the edge states which means: at a given edge, two spins with opposite spin polarization coun-
terpropagate, thus the spin is correlated with the direction of motion [9].
A key to understand these topological nontrivial edge states is the analysis of the TR symmetry. TR sym-
metry is represented by an anti unitary operator T = eiπσy/2K with the Pauli matrix σy and the complex
conjugation K. For a spin-1/2 particle the TR operator has the property T 2 = −1 which is due to the fact
that TR leads to a spin flip. There exists a theorem, Kramers’ theorem, which states that all eigenstates
of a TR invariant Hamiltonian are at least twofold degenerate (up and down spins in absence of SOC).
Kramers’ theorem can be explained with the anti unitary TR operator T . For a TR invariant system,
two states |χ〉 and T |χ〉 have the same energy. If we can prove, that they are two different quantum
states, it proves Kramers’ theorem. Thus, we assume a non degenerate state |χ〉 existed and we assume,
that the state T |χ〉 with the same energy is the same state. Then T 2 |χ〉 = T c |χ〉 = c∗T |χ〉 = |c|2 |χ〉
for a constant c. This is not allowed because |c|2 6= −1 = T 2 for spin-1/2 particles. Consequently, these
two states have to be different, implying that the edge states occur in Kramers doublets.

We can group TR invariant Hamiltonians in two topological classes. We try to understand this with
the energy dispersion illustrated in Fig. 1. The Fig. shows half of the Brillouin zone: 0 < k < π/a,
where k is the crystal momentum along the edge. Due to TR symmetry we know that the other half,
−π/a < k < 0, is a mirror image. Furthermore, the conduction and the valence bands of the bulk,
separated by an energy gap, are drawn. Depending on the Hamiltonian near the edge there may be
edge states inside the gap. We assume there are such edge states inside the gap. Kramers’ theorem
now requires that they are twofold degenerate at TR invariant crystal momenta k. As TR symmetry
transfers k to −k, we have two such TR invariant points: k = 0 and k = π/a. Away from these points,
SOC splits the degeneracy.
In a next step we want to connect these special points. There are two ways to do this: we can connect
them pairwise, as in Fig. 1(a) or not pairwise as in Fig. 1(b). In the first case, we can push the bound
states out of the gap by shifting the Fermi energy EF . This is not possible in the second case, as EF is
intersected an odd number of times. Each intersection of EF at k has a partner at −k. We can count
the number of Kramers’ pairs nk intersecting EF . This number can be related to the change in a Z2

topological invariant ν across the interface: nk = δν mod2.
The topological properties of the 2D topological insulator are mathematically characterized by this Z2

topological invariant ν: states with an even number of Kramers’ pairs of edge states at an edge are
topologically trivial (ν = 0), those with an odd number are nontrivial (ν = 1).
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Figure 1: Energy dispersion in half of the Brillouin zone. Γa at k = 0 and Γb at k = π/a are the two
Kramers’ degenerate points. Away from these points the degeneracy is lifted by SOC. The points can
be connected in two ways such that the Fermi energy EF is intersected (a) an even number of times and
(b) an odd number of times. Adapted from Ref. [10].

2.1.2 HgTe/CdTe quantum wells

As an example of a 2D topological insulator, the topological insulator in HgTe/CdTe quantum wells
is reviewed. The basic electronic structure of the bulk HgTe and CdTe can be depicted by a model
introduced by Bernevig, Hughes, and Zhang (BHZ) in 2006 [3]. It describes the physics of the subbands
of the quantum wells which are relevant for the QSH effect. Both, HgTe and CdTe, crystallize in zinc
blende lattice structure (diamond lattice formed by two interpenetrating fcc lattices shifted along the
body diagonal and each sublattice is made of a different atom). The important bands near the Fermi
level are close to the Γ point in the Brillouin zone.

Figure 2: Energy bands: red Γ8/H1 and blue Γ6/E1. (A) Bulk energy bands of HgTe and CdTe near
the Γ point. (B) The quantum well in the normal regime E1 > H1 and d > dc (left) and in the inverted
regime H1 > E1 and d > dc (right). Adapted from Ref. [3].

In Fig. 2(A) the energy bands near the Γ point of HgTe and CdTe are shown. CdTe has a s-type
Γ6 conduction band and a p-type Γ8 valence band which is split into two bands (with total angular
momentum J = 3/2 and J = 1/2) due to SOC. In HgTe the p-levels rise above the s-levels due to the
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heavy element Hg, thus it has an inverted band structure.
Now the HgTe is sandwiched between layers of CdTe. This is shown in Fig. 2(B). When the thickness
d of the HgTe layer is smaller than a critical thickness dc = 6.3nm, the 2D electronic states (E1, H1)
bound to the quantum well have the normal band order. But for d > dc the 2D bands invert. In [11]
they demonstrate with a simple model why quantum wells with d > dc are expected to be TR invariant
2D topological insulators with protected edge states.
BHZ showed that the band inversion as a function of the thickness d signals a quantum phase transition
between the trivial insulator and the QSH insulator. The system can be approximated by constructing
an effective Hamiltonian considering bulk symmetries. The opposite parity of the s- and p-states results
in the crossing of the bands at dc and the energy gap vanishes at d = dc. This signals a phase transition
in which the Z2 topological invariant ν changes.

In the basis {|E1+〉 , |H1+〉 , |E1−〉 , |H1−〉}, where |E1±〉 are the Kramers’ partners of the s-type elec-
tron band and |H1±〉 are the Kramers’ partners of the heavy-hole band (compare Fig. 2), the model
takes the following form:

H(k) =

(
h(k) 0

0 h∗(−k)

)
, (1)

h(k) = ε(k)I2×2 + di(k)σi, (2)

with the 2× 2 identity matrix I2×2 and the Pauli matrices σi. di(k) can be expanded:

d1 + id2 = A(kx + iky), d3 = M −B(k2
x + k2

y), ε(k) = C −D(k2
x + k2

y). (3)

A, B, C and D are expansion parameters that depend on the heterostructure [3]. M is the mass or gap
parameter, which is the energy difference between the E1 and H1 levels at the Γ point and thus the
most important quantity. When the thickness d gets bigger than the critical thickness dc, the sign of M
changes, signifying that the E1 and H1 bands cross at d = dc.

Eventually we understand 2D topological insulators and know how they can be realized. The whole
concept can now be transferred to 3D topological insulators.

2.2 3D topological insulators: Bi2Se3

The topological characterization of the QSH insulator state has a natural generalization in three di-
mensions. This was discovered in 2006 ([4], [5], [6]). In contrast to the QSH insulator, 3D topological
insulators are characterized by four Z2 topological invariants (ν0; ν1, ν2, ν3). In this chapter some basics
about 3D topological insulators are summarized and explained.

2.2.1 Strong and weak topological insulators

Figure 3: 2D surface Brillouin zone with the Fermi circles (red). (a) illustrates a weak topological
insulator, where the Fermi circle encloses an even number of Dirac points Γ. In (b) the simplest case
of a strong topological insulator (one enclosed Dirac point) is shown. In (c) the corresponding energy
relation is drawn. Adapted from Ref. [10].

The surface states of a 3D crystal can be described with a 2D crystal momentum. We analyze the 2D
surface states the same way as we did in the 2D case with the 1D edge states. To provide support, we
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use Fig. 3, where the Fermi surfaces in the surface Brillouin zone are shown. In 2D the surface Brillouin
zone has four TR invariant points Γ1,2,3,4 where the surface states must be Kramers degenerate. Away
from these points the degeneracy is lifted by SOC. A line joining a pair Γa and Γb can be crossed by the
surface Fermi surface an even or an odd number of times, which is determined by the four topological
invariants. If it is odd, then the surface states are topologically protected, like in the 2D case.
Still, there exist several possibilities for nontrivial 3D topological insulators. A possible Fermi surface is
illustrated in 3(a). A single surface band intersects the Fermi energy between Γ1 and Γ2 and between
Γ3 and Γ4. This state is called a weak topological insulator. It can be constructed by stacking layers of
2D quantum spin Hall insulators. If we stack the layers along the y−direction, we would get something
like the Fermi surface illustrated in Fig. 3(a). We can interpret the indices (ν1, ν2, ν3) as Miller indices
describing the orientation of the layers. The important topological invariant is ν0 which determines,
whether an even or an odd number of Kramers’ points is enclosed by the surface Fermi circle. This
weak topological insulator has ν0 = 0 as the Fermi circle encloses Γ1 and Γ3. If the surface Fermi circle
encloses an odd number of Kramers’ degenerate Dirac points, it is called a strong topological insulator
and we have the topological invariant ν0 = 1. This is illustrated in Fig. 3(b), where only the Γ1 point
is enclosed. In Fig. 3(c) we can see the energy dispersion which takes a cone form due to Kramers’
degeneracy. Strong topological insulators of the form shown in Fig. 3 are the simplest, as there is
only one Dirac point encircled by the Fermi energy. We can describe this topological insulator by the
Hamiltonian

H = −i~vFσ · ∇, (4)

where σ is the vector of Pauli matrices which characterizes the spin. The electronic structure of the
surface of a topological insulator is quite similar to that of graphene, but instead of the two Dirac points
and the spin degeneracy in graphene, there is just a single Dirac point without spin degeneracy in a
topological insulator. This appears to violate Kramers’ theorem, but it is solved as the partner Dirac
points reside on opposite surfaces.

The 2D topological metal formed by the surface states of a strong topological insulator is quite unique.
In contrast to an ordinary metal, which has up and down spins at every point of the Fermi surface, the
surface states of the strong topological insulator are not spin degenerate. TR symmetry requires that
states with momentum k and −k have opposite spin. Thus the spin must rotate with k around the
Fermi surface. This is shown in Fig. 3(b) by the arrows. If an electron goes around the Fermi circle,
it gains a so-called Berry phase of 0 or π. If an electron circles a Dirac point, its spin rotates by 2π,
leading to a π Berry phase. Due to the fact that the surface is connected to the bulk, the metallic surface
state cannot vanish, even when disorder or impurities at the surface lead to scattering of the surface states.

To find 3D topological insulators one searches for insulators where the conduction and the valence
bands have opposite parity and a ’band inversion’ occurs when the strength of some parameter (for
example the SOC) is tuned. On the basis of such an analysis, in 2008 a Princeton University group led
by Hasan [7] could experimentally identify the first 3D topological insulator, the semiconducting alloy
Bi1−xSbx. But the surface states in Bi1−xSbx are very complicated and cannot be described by simple
model Hamiltonians. For this reason, this work focuses on the Bi2Se3 topological insulator which can be
described by a simple low-energy effective Hamiltonian.

2.2.2 Low-energy effective model of the Bi2Se3 topological insulator

In this section, the effective model of the Bi2Se3 topological insulator is explained (also valid for Bi2Te3

and Sb2Te3) in form of a summary of the paper “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3

with a single Dirac cone on the surface” from Haijun Zhang et al., 2009 [12]. A detailed description of
the models can be found in Ref. [13].
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Figure 4: (a) Crystal structure of Bi2Se3. A quintuple layer with Se1–Bi1–Se2–Bi1’–Se1’ is indicated by
the red square. (b) Top view along the z−direction. The triangle lattice in one quintuple layer has three
different positions, denoted as A, B and C. (c) Side view of the quintuple layer structure. Adapted from
Ref. [12].

Bi2Se3 has a rhombohedral crystal structure with the space group D5
3d (R3m) with five atoms in one

unit cell (see Fig. 4). It has a three-fold rotation symmetry about the z−axis and a two fold rotation
symmetry about the x−axis. It consists of five-atom layers arranged along the z−direction, known as
quintuple layers. These layers consist of two equivalent Se atoms, Se1 and Se1’, and two equivalent Bi
atoms, Bi1 and Bi1’, and a third Se atom, Se2. The coupling between two atomic layers within one quin-
tuple layer is strong and the coupling between two quintuple layers is much weaker and predominantly of
the Van der Waals type. There exists an inversion symmetry, where the Se2 site is the inversion center.
This enables the construction of eigenstates with definite parity.

To get a physical picture of the band structure one looks at the atomic orbitals of Bi and Se. Bi
has the electron configuration 6s26p3 and Se has 4s24p4. Only the outermost shells are considered (p-
orbitals) and the others are neglected. Within one quintuple layer there are five atoms in one unit cell
and each has three orbitals: px, py and pz. Figure 5 shows the orbitals of Bi and Se at the Γ point. In
order to construct a low-energy effective Hamiltonian, we need to identify the low lying states at the
Γ point. We do this in several steps where we examine one interaction at one time and search for the
states nearest the Fermi energy. The states farther away can then be neglected as their contribution to
a low-energy effective Hamiltonian is negligible. We proceed as follows:

1. At first, the spin is neglected. As all Se layers are separated by Bi layers, the strongest coupling is
the coupling between Bi and Se layers. This coupling causes level repulsion such that the Bi energy
levels are pushed up and form two hybridized states, while the Se energy levels are pushed down
and yield three states. Due to inversion symmetry, the system can be described by bonding and
antibonding states with definite parity. If the coupling between the Bi states is taken into account,
the bonding and antibonding states are split and the antibonding state has higher energy than the
bonding state. The only states which are considered are denoted as |P1+

α 〉 (α = x, y, z) which is
the bonding state of Bi and |P2−α 〉 which is the antibonding state of Se. These are the states found
near the Fermi surface and the others can be neglected. They are marked green in Fig. 5 at stage
(I) and (II).

2. As the crystal has a layered structure, the z−direction is different than the x− or y−direction.
The resulting energy splitting between pz and px,y yields that the conduction band mainly consists

9



Figure 5: Atomic px,y,z orbitals of Bi and Se of Bi2Se3 at the Γ point. The stages (I), (II) and (III)
represent the effect of turning on chemical bonding (I), crystal-field splitting (II) and SOC (III). The
index j = x, y, z (in eg. P1±j and P2±j ) denotes the momentum px,y,z. The blue dashed line represents
the Fermi energy. Adapted from Ref. [12].

of |P1+
z 〉 while the valence band is dominated by the |P2−z 〉 orbital (see Fig. 5 between stage (II)

and (III)).

3. Finally, SOC is included into the atomic picture. The states are all doubly degenerate: |P1+
ασ〉

and |P2−ασ〉 with the spin σ =↑, ↓. The SOC Hamiltonian is given by HSO = λLS with the orbital
angular momentum L, spin angular momentum S and the SOC parameter λ. We transform the px
and py orbitals to px±iy with definite orbital angular momentum:

|Λx+iyσ〉 = − 1√
2

(|Λxσ〉+ i |Λyσ〉), (5)

|Λx−iyσ〉 =
1√
2

(|Λxσ〉 − i |Λyσ〉), (6)

where Λ = P1+, P2−. The spin orbit Hamiltonian mixes spin and orbital angular momenta but
preserves the total angular momentum. After some calculation it can be seen that SOC couples
|Λz ↑〉 (|Λz ↓〉) and |Λx−iy ↓〉 (|Λx−iy ↑〉) such that it leads to a level repulsion between the states
resulting in the band diagram of stage (III) in Fig. 5. The states relevant to a low-energy effective
Hamiltonian are |P2−z σ〉 and|P1+

z σ〉. We can see, that the order of these levels is reversed. This
band inversion happens when the SOC is strong enough (λ > λc). It resembles the quantum phase
transition in the HgTe/CdTe quantum wells discussed before.

The topological nature is determined by the physics near the Γ point. We write down a low-energy
effective model to characterize the low-energy and long-wavelength properties of the system by using the
symmetries of the atomic structure.
As basis we choose the four low-lying states: (|P1+

z ↑〉, |P2−z ↑〉, |P1+
z ↓〉, |P2−z ↓〉). The important

symmetries of the system are:

1. TR symmetry with the representation T = K · iσy ⊗ I2×2,

2. inversion symmetry with the representation I = I2×2 ⊗ τz,

3. three-fold rotation symmetry C3 along the z−axis with the representation C3 = ei(π/3)σz⊗I2×2 .
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K is the complex conjugation, σx,y,z are the Pauli matrices in the spin space and τx,y,z are the Pauli
matrices in the orbital space. If one requires these three symmetries and keeps only the terms up to
quadratic order in k, the following effective Hamiltonian can be obtained:

H(k) = ε0(k)I4×4 +




M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz
A2k+ 0 −A1kz −M(k)


 (7)

where k± = kx± iky, ε0(k) = C +D1k
2
z +D2k+k−, M(k) = M −B1k

2
z −B2k+k−, and k+k− = k2

x + k2
y.

(The exact derivation is described in Ref. [13] as well as a derivation using the k ·p perturbation theory.)

H. Zhang et al. [12] fitted the energy spectrum of the effective Hamiltonian with that of their ab
initio calculation and received the following parameters for the effective model for Bi2Se3: M = 0.28
eV, A1 = 2.2 eVÅ, A2 = 4.1 eVÅ, B1 = 10 eVÅ2, B2 = 56.6 eVÅ2, C = −0.0068 eV, D1 = 1.3 eVÅ2,
D2 = 19.6 eVÅ2.
There exists a straightforward procedure to obtain the effective Hamiltonian describing the surface states
[14]. The effective Hamiltonian describing carriers in the (x− y) plane in a topological insulator is then
given by [14]

Hxy = εxy0 + ~vxyF (σxky − σykx), (8)

where εxy0 = C + (D1/B1)M is the Dirac point energy. ~vxyF = A2

√
1− (D1/B1)2 represents the Fermi

velocity in the (x− y) plane, and σi, (i = x, y, z) denote the usual Pauli matrices. The (y− z) plane can
be described by

Hyz = εyz0 + ~vyzF (σy
A1

A2
kz − σzky), (9)

with εyz0 = C + (D2/B2)M and ~vyzF = A2

√
1− (D2/B2)2 and the (x− z) plane by

Hxz = εxz0 + ~vxzF (σx
A1

A2
kz − σzkx), (10)

with εxz0 = C + (D2/B2)M = εyz0 and ~vxzF = A2

√
1− (D2/B2)2 = ~vyzF . Note that there is a factor

A1

A2
in front of kz in Hyz and Hxz. This signifies that in the (y − z) and (x − z) plane the topological

insulator has an elliptical Dirac cone. In the (x− y) plane, on the other hand, the Dirac cone is circular.
In addition, this prefactor implies that the Fermi velocity in z−direction is different from the Fermi
velocity in x− and y−direction.
There is so far no derivation of the Hamiltonians describing the (y − z) and (x − z) planes published,
this is why we will provide a detailed derivation in chapter 3.

Since we now have the required knowledge about topological insulators, we can continue with the theory
of superconductivity which will provide us the tools to calculate the Josephson effect on the surface of
topological insulators.

2.3 Superconductivity

The goal of this section is to understand the proximity-induced superconductivity in a topological in-
sulator surface. We will begin with a short introduction to the BCS theory of superconductivity, then
we derive the Bogoliubov-de-Gennes equation and finally we discuss the superconductivity for spinless
fermions in 2D which can be directly related to the proximity-induced superconductivity on the surface
of topological insulators.
Most of this section is based on “Introduction to Superconductivity” by M. Tinkham [15].

2.3.1 BCS theory of superconductivity

To explain the phenomenon of (type I) superconductivity, Bardeen, Cooper and Schrieffer created the
BCS theory in 1957 [16]. Their theory is based on the following knowledge:

11



1. There is a critical temperature Tc above which the superconductor is a normal material. In the
normal state (T > Tc) the specific heat C(T ) is linearly dependent on T : C(T ) = γT . For T < Tc, in
contrast, the specific heat is dominated by an exponential dependence on T : C(T ) = γTcae

−bTc/T ,
where a and b are constants. This jump in the specific heat at T = Tc is a second order phase
transition.

2. Resistivity ρ vanishes for T < Tc, which also means that the electric field E vanishes (because the
current I = E/ρ can not be infinite).

3. Meissner effect: a superconductor is a perfect diamagnet: no magnetic field B can penetrate.

4. Isotope effect: the critical temperature Tc depends on the mass M of the ion, meaning supercon-
ductivity cannot be explained by electrons alone.

5. Bardeen-Pines & Fröhlich proposed a theory which states that for small energy transfers, phonon
mediated electron-electron interaction can be attractive.

The last point is closely related to the problem Cooper solved: what is the ground state of two attractive
electrons in the presence of a dormant Fermi sea? Let’s assume, the formation of a bound pair of two
electrons near the dormant Fermi sea lowers the energy. Consequently, pairs of electrons would condense
until an equilibrium point is reached leading to a new ground state. As it happens, this is exactly the
case. Cooper discovered these bound pairs of two electrons, therefore they are called Cooper pairs.
Since the Cooper pairs are the basis in understanding superconductivity, we want to derive them, by
answering Coopers question of the ground state of two attractive electrons in the presence of a dormant
Fermi sea. We start by splitting the wave function into an orbital and a spin part:

Ψ(r1, r2) = ψ(r1, r2) · χ(σ1, σ2), (11)

where r1 and r2 are the positions of the two electrons. In the ground state we expect the total momentum
to be 0, thus, we can write the orbital wave function as

ψ(r) =
∑

k

gke
ikr, r = r1 − r2. (12)

Fermionic wave functions are always antisymmetric. If we assume that the antisymmetry comes from
the orbital part, we will see that ψ(r) → 0 for r → 0. Since we have attractive electrons, ψ(0) should
be finite. Consequently, the sign change must come from the spin part, meaning it must be in a singlet
state:

χ =
1√
2

(|↑↓〉 − |↓↑〉). (13)

With the Schrödinger equation we get

2Ekψ(r1, r2) + V (r1 − r2)ψ(r1, r2) = (2EF + E)ψ(r1, r2), (14)

where the factor 2 arises from the two electrons at the same energy. The total energy is 2EF + E and
E is the extra energy to the Fermi energy. Our aim is to get energy E < 0, such that the ground state
energy is lowered by having two electrons in the presence of a dormant Fermi sea. By including the
orbital wave functions we can write

∑

k

2Ekgke
ikr + V (r)

∑

k

gke
ikr =

∑

k

(2EF + E)gke
ikr. (15)

Integration over the normalization volume Ω (operate 1
Ω

∫
d3re−ik

′r on the equation) results in

(E − 2ξk)gk =
∑

k′

Vkk′gk′ with Vkk′ =
1

Ω

∫
d3rV (r)ei(k−k

′)r and ξk = Ek − EF . (16)

Vkk′ is the matrix element of the interaction potential. It characterizes the strength of the potential for
scattering a pair of electrons with momenta (k′, −k′) to momenta (k, −k). To show the existence of
a bound-pair state, we have to find a set of gk satisfying Eq. (16). To simplify the problem, Cooper
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introduced a very serviceable approximation, the “on shell” approximation, where he uses a cut-off energy
~ωc to define the potential:

Vkk′ =

{
−V |Ek − EF | ≤ ~ωc and |Ek′ − EF | ≤ ~ωc,
0 otherwise.

By solving Eq. (16) for gk

gk =
V

2ξk − E
∑

k′

∗
gk′ , (where the * indicates that the summation is only over the shell,) (17)

and applying the summation over the shell, we finally get

1

V
=
∑

k

∗ 1

2ξk − E
≈ D(EF )

∫ ~ωc

0

dξ
1

2ξ − E =
1

2
D(EF ) ln

(
E − 2~ωc

E

)
, (18)

whereD(EF ) is the density of states at the Fermi energy. This diverges whenever E = 2ξk. In most classic
superconductors we have D(EF )V < 0.3. This allows the use of the “weak-coupling approximation”,
which is valid for small potentials D(EF )V � 1. The energy is then approximated by

E ≈ −2~ωc exp(− 2

D(EF )V
). (19)

No matter how thin the shell is, there is always a negative energy solution (as the shell is around the
Fermi energy and thus the Fermi energy is always in the shell). Thus, we found a bound state which
lowers the energy of the system meaning that, if we want to minimize the ground state energy, we should
pair up the electrons. This results in Cooper pairs, with the Cooper pair wave functions

ψ(r) =
∑

k

gke
ikr, (20)

or in second quantization

|ψ〉 =
∑

|k|>kF

gkc
†
k↑c
†
−k↓ |F 〉 , (21)

where kF is the Fermi momentum and |F 〉 the Fermi sea. In this form it is obvious that pairs of time-
reversed states are always occupied together. In the presence of N electrons (N is even) we have N/2
Cooper pairs:

|ψ(N)〉 = (
∑

k

gkc
†
k↑c
†
−k↓)

N/2 |vacuum〉 . (22)

To know this state, we need to know a large number of gk’s since there are a lot of k values. Because there
are so many particles, BCS argued, it would be a good approximation to use a Hartree self-consistent
field or mean-field approach. There the occupancy of each state k is taken to depend only on the average
occupancy of the other states. Using this, BCS wrote the ground state:

|ψBCS〉 = Πk(uk + vkc
†
k↑c
†
−k↓) |vacuum〉 with |uk|2 + |vk|2 = 1. (23)

|vk|2 is the probability that the state (k ↑,−k ↓) is occupied and |uk| the probability that this state is
unoccupied. This BCS ground state should minimize the energy of the system. To verify this, we use
the minimal model Hamiltonian which still describes all the interactions of the system:

H − EF N̂ =
∑

k,σ

ξkc
†
k,σck,σ +

∑

k,k′

Vkk′c
†
k,↑c

†
−k,↓c−k′,↓ck′,↑, (24)

where N̂ is the electron number operator. We want to minimize

〈ψBCS |H − EF N̂ |ψBCS〉 . (25)
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By evaluating this, substituting uk = sin(θk) and vk = cos(θk) and taking the derivative with respect to
θk, we finally get

tan(2θk) =

∑
k′ Vkk′ sin(2θk′)

2ξk
= −∆k

ξk
(26)

with ∆k = −1/2
∑

k′ Vkk′ sin(2θk′) and Ek =
√
ξ2
k + ∆2

k, which leads to sin(2θk) = 2ukvk = ∆k

Ek
and

cos(2θk) = v2
k − u2

k = − ξk
Ek

. This results in the BCS gap equation

∆k = −1

2

∑

k′

∆k′√
ξ2
k′ + ∆2

k′

Vkk′ . (27)

The trivial solution ∆k = 0 of this equation describes the normal state. We are looking for nontrivial
solutions, which describe the superconducting state. In the discussion of Vkk′ , we suggested that the
relevant energy is |Ek − Ek′ |. To get a simple solution, we need to make the stronger restriction that
|Ek − EF | and |Ek′ − EF | are separately smaller than ~ωc. Inserting this Vkk′ in Eq. (27) we can see
that this is satisfied by

∆k =

{
∆0 |Ek − EF | < ~ωc,
0 |Ek − EF | > ~ωc.

For this approximation the gap equation can be solved and results in

∆0 =
~ωc

sinh( 1
D(EF )V )

D(EF )�1≈ 2~ωce−(V D(EF ))−1

, (28)

where D(EF ) � 1 means that the attractive interaction is very small. We find that ∆0 � ~ωc � EF ,
v2
k = 1

2 (1− ξk
Ek

) and u2
k = 1

2 (1 + ξk
Ek

).

After this brief introduction to the BCS theory of superconductivity we want to present equations which
are very suitable to calculate systems with superconducting regions. These equations are the so-called
Bogoliubov-de-Gennes equations.

2.3.2 Bogoliubov-de-Gennes (BdG) equations

The BdG equations are convenient equations in which the direct relation between the electron and hole
wave functions of a system can be seen. In this chapter we derive the BdG equations in real space. This
derivation is also applicable in the presence of a magnetic field. The method presented is a generaliza-
tion of the Hartree-Fock equations to the case of superconductivity. It was first published in the book
“Superconductivity of Metals and Alloys” from Pierre de Gennes [17] and this chapter is based on this
book.

At first we write the Hamiltonian of the electron system. The operators Ψ(rσ) and Ψ†(rσ) are de-
fined as

Ψ(rσ) = eikrcrσ,

Ψ†(rσ) = e−ikrc†rσ,
(29)

where σ =↑, ↓ is the spin index. They satisfy the anticommutation relations {Ψ(r1σ1),Ψ(r2σ2)} =
{Ψ†(r1σ1),Ψ†(r2σ2)} = 0 and {Ψ†(r1σ1),Ψ(r2σ2)} = δσ1σ2

δ(r1− r2). In terms of Ψ(rσ) and Ψ†(rσ) we
can write the Hamiltonian H as

H =
∑

σ

∫
Ψ†(rσ)H(r)Ψ(rσ)dr (30)

H is the electron Hamiltonian defined in the section before. As in the book of de Gennes we can write
the electron Hamiltonian with the vector potential A and the spin independent potential U0(r):

H(r) =
1

2m

(
−i~∇− eA

c

)2

+ U0(r)− EF , (31)
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with the charge of the electron e and the velocity of light c. We include an interaction by adding an
average potential which acts only on one particle at a time. Thus, we insert a potential U and a pairing
potential ∆(r) and we get the effective Hamiltonian Heff

Heff =

∫ (∑

σ

Ψ†(rσ)H(r)Ψ(rσ) + U(r)Ψ†(rσ)Ψ(rσ)

)
+ ∆(r)Ψ†(r ↑)Ψ†(r ↓) + ∆∗(r)Ψ(r ↓)Ψ(r ↑)dr.

(32)
We aim to determine the eigenstates of Heff. The Hamiltonian is diagonalized by performing a unitary
transformation:

Ψ(r ↑) =
∑

n

(γn↑un(r)− γ†n↓v∗n(r)),

Ψ(r ↓) =
∑

n

(γn↓un(r) + γ†n↑v
∗
n(r)).

(33)

γnσ and γ†nσ are new operators which also satisfy the fermion anticommutation relations. The transfor-
mation has to diagonalize the effective Hamiltonian, such that

Heff = Eg +
∑

nσ

εnγ
†
nσγnσ. (34)

Eg is the ground state energy and εn is the energy of the excitation n. By taking the commutator we
get

[Heff, γnσ] = −εnγnσ,
[Heff, γ

†
nσ] = εnγ

†
nσ.

(35)

We also calculate the commutators

[Ψ(r ↑),Heff] = [H + U(r)]Ψ(r ↑) + ∆(r)Ψ†(r ↓),
[Ψ(r ↓),Heff] = [H + U(r)]Ψ(r ↓)−∆∗(r)Ψ†(r ↑).

(36)

By replacing the Ψ operators by the Eqs. (33) and using the anticommutation relations of the fermions
and the commutation relations of Eq. (35) and finally by comparing the coefficients of γn and γ†n we get
the Bogoliubov equations:

ε

(
u(r)
v(r)

)
=

(
[H + U(r)] ∆(r)

∆∗(r) −[H + U(r)]∗

)(
u(r)
v(r)

)
. (37)

It can be seen that the BdG equations take the same form for both spins. Thus, we can write them in a
Nambu basis where the spins are included:

ε




ψ↑
ψ↓
ψ†↑
ψ†↓


 =

(
H0(r) ∆(r)
−∆(r)∗ −H∗0 (r)

)



ψ↑
ψ↓
ψ†↑
ψ†↓


 . (38)

H0 is the free fermion Hamiltonian. For p-wave superconductivity in 2D (which we will get when using
the proximity effect on the surface of a topological superconductor, as explained later) we have the gap
matrix ∆(r) = ∆iσy where ∆ = ∆0e

iφ is independent of r [18]. In the Nambu basis which we use in
this project, the BdG equations take the form:

ε




ψ↑
ψ↓
ψ†↓
−ψ†↑


 =

(
H0(r) ∆
−∆∗ −σyH∗0 (r)σy

)



ψ↑
ψ↓
ψ†↓
−ψ†↑


 =

(
H0(r) ∆
∆∗ −T H0(r)T −1

)



ψ↑
ψ↓
ψ†↓
−ψ†↑


 = H(r)




ψ↑
ψ↓
ψ†↓
−ψ†↑


 ,

(39)
with the gap matrix ∆ = ∆0e

iφ · I2×2 and the TR operator T = iσyK (more details in Appendix A).

Furthermore, we will identify this basis with electron and hole wave functions: (ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑)

ᵀ =
(Ψe,Ψh)ᵀ. Solving the BdG equations leads to two sets of energy eigenstates, because with the Nambu
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states, we have artificially doubled the dimension of the Hamiltonian and consequently also doubled the
number of eigenstates. The solutions with negative energies would represent electrons with k < kF and
holes with k > kF , which contradicts the conventional definition of electrons and holes in a normal metal.
Therefore it is usual to use only positive energy solutions, which represent a complete set of solutions.
Since the number of independent solutions remains the same, there must be a symmetry relation between
the eigenstates. This symmetry is the particle-hole symmetry.
In principle there are two very important symmetries: the TR symmetry and the particle-hole symmetry.
They are explained in detail in Appendix A.

So far we discussed superconductivity for normal Dirac fermions with spin-1/2. What happens if we
assume spinless fermions?

2.3.3 Superconductivity for spinless fermions in 2D

Superconductivity for spinless fermions has a certain importance for this work, as the topological super-
conducting state which we receive due to the proximity of a s-wave superconductor to the topological
insulator resembles the spinless px + ipy topological superconductor. Still, there are some differences,
which will be explained in the section about topological superconductors.
As it is not obvious that superconductivity is possible for spinless particles, we want to derive it here.
This chapter is adapted from a review by Read and Green [19]. We start with the Hamiltonian which
describes the 2D system of spinless fermions:

H =
∑

k

(ξkc
†
kck +

1

2
(∆∗kc−kck + ∆kc

†
kc
†
−k). (40)

ξk = k2

2m − µ is the energy for free fermions and µ is the chemical potential (which is equal to the Fermi
energy EF at temperature T = 0). The spinless fermions also fulfill the anticommutation relations. With
spinless particles we have the problem that for a constant gap ∆k = ∆ we don’t have any pairing:

∆∗c−kck =
∆∗

2L2

∫
drdr′ψ(r)ψ(r′)

∑

k

e−i(−k)re−i(k)r′ =
∆∗

2

∫
drψ(r)ψ(r) = 0, (41)

where L2 is the volume of the two dimensional system. This problem can be solved by using a
k−dependent pairing potential. There are several symmetries which the pairing potential can have.
A superconductor with a constant gap ∆k = ∆ is called s-wave superconductor. In 2D, the simplest
nontrivial pairing is the so-called p-wave superconductor where ∆k = ∆(kx ± iky). With such a pairing
potential the Hamiltonian is not invariant under parity and TR symmetry anymore.

To diagonalize the Hamiltonian, we introduce the Nambu spinors ψk =

(
ck
c†−k

)
and ψ†k =

(
c†k
c−k

)
. As a

further simplification we use: ξkc
†
kck = ξk(−ckc†k + 1)

drop constant part→ −ξkckc†k, since constant parts do
not change the physics of the system. The Hamiltonian of Eq. (40) can now be rewritten in terms of the
Nambu spinors:

H =
1

2

∑

k

ψ†k

(
ξk ∆k

∆∗k −ξk

)
ψk, (42)

with the eigenvalues Ek = ±
√
ξ2
k + |∆k|2. We diagonalize the Hamiltonian by doing a Bogoliubov

transformation: αk = ukck−vkc†−k and α†k = u∗kc
†
k−v∗kc−k. By demanding that these two quasiparticles

should fulfill anticommutation relations we get the condition |uk|2+|vk|2 = 1. In terms of the Bogoliubov

particles the diagonalized Hamiltonian is H =
∑

kEkα
†
kαk. For uk and vk we get equations, the BdG

equations, that have to be fulfilled:
Ekuk = ξkuk −∆∗kvk, (43)

Ekvk = −ξkvk −∆kuk. (44)

The solutions are

vk
uk

= −Ek − ξk
∆∗k

, |uk|2 =
1

2
(1 +

ξk
Ek

), |vk|2 =
1

2
(1− ξk

Ek
). (45)
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We can see that if uk and vk are solutions, eiφkuk and eiφkvk are solutions as well.
The ground state can be written as

|ψ〉 = (Πk|uk|1/2)e
1
2 (
∑

k gkc
†
kc
†
−k) |vacuum〉 with gk =

vk
uk

= −Ek − ξk
∆∗k

. (46)

We can expand the exponential function and because of the Pauli principle all higher order terms vanish
and we get

|ψ〉 = (Πk|uk|1/2)Πk(1 + gkc
†
kc
†
−k) |vacuum〉 . (47)

For p-wave superconductivity we have ∆ → 0 for k → 0 and thus Ek − |ξk| → 0 for k → 0. Hence, we
have three options for k→ 0:

• strong-pairing phase when µ < 0 which implies ξk > 0:

This leads to gk ∝ ∆
2 (kx − iky)

k→0→ 0 and in real space g(r) ∝ e−r/r0 for r → ∞ which means
that the wave functions of the Cooper pairs are exponentially localized and the Cooper pairs are
strongly bound.

• weak-pairing phase when µ > 0 which implies ξk < 0:

This leads to gk ∝ − 2µ
∆

1
kx−iky

k→0→ ∞ and in real space g(r) ∝ 1
x+iy for r→∞ which means that

the wave functions decay very slowly and the Cooper pairs are weakly bound. The weak-pairing
phase does not require that the coupling is weak, but that it is continuously connected to the weak
coupling BCS region.

• weak-strong transition when µ = 0 which implies ξk = 0:
At small k we find gk =

kx−iky
|k| and in real space g(r) ∝ 1

(x+iy)|x+iy| for r → ∞. This shows a

mixed behaviour of the two former cases.

Apparently, depending on the sign of the chemical potential µ, we have different phases. As soon as
µ 6= 0 we get a gapped spectrum. We will see that, if µ < 0 (strong-pairing phase) we have a topological
trivial superconductor which can be adiabatically transformed into an insulator, like vacuum. For µ > 0
(weak-pairing phase) this is not possible and we have a topologically nontrivial state. We call this a
p-wave superconductor. To analyze consequences of this new state, we calculate the BdG equations in
position and time representation.

BdG equations in position and time representation
We write the wave functions in position and time representation and we use ξk ' −µ < 0 (weak-pairing
phase) and

u(r, t) =
∑

k

eikr−iEktuk,

v(r, t) =
∑

k

eikr−iEktvk.
(48)

The BdG equations now become

i
∂u(r, t)

∂t
= −µu(r, t) + i∆∗(

∂

∂x
+ i

∂

∂y
)v(r, t),

i
∂v(r, t)

∂t
= µu(r, t) + i∆(

∂

∂x
− i ∂

∂y
)u(r, t).

(49)

These two equations are compatible with u(r, t) = v∗(r, t) (∗). This has consequences for the Bogoliubov
quasiparticles αk:

α(r, t) =
∑

k

eikr−iEktαk =
∑

k

eikr−iEkt(ukck − vkc†−k) (50)

We use the Fourier transformation for fermions ck = 1
L

∫
d2re−ikrc(r), include (∗) and finally get our

Bogoliubov quasiparticle in position and time space:

α(r, t) =
1

L

∫
dr′(u(r− r′)c(r′)− u∗(r− r′)c†(r′)). (51)
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Thus, we have α†(r, t) = −α(r, t). Now we can define a fermionic state which is its own antiparticle:
γ(r, t) = iα(r, t) → γ† = γ. Such a particle is called a Majorana fermion. More about these Majorana
fermions is explained later. At this point it is only important to see, that Majorana fermions can appear
as a solution of the BdG equations. This raises the question, where they can appear as solutions. One
example is at the edge of a weak-pairing phase superconductor and a strong-pairing phase superconduc-
tor.

Edge of a weak- and a strong-pairing phase superconductor

x 

y

0

−μ0 μ0

Figure 6: Edge of a topological nontrivial weak-pairing phase superconductor (µ = µ0 > 0) and a
strong-pairing phase superconductor (µ = −µ0 < 0).

Figure 6 shows the system we want to calculate. We have a chemical potential µ(x) which is dependent
on x: for x < 0 we have µ(x) = −µ0 < 0 and for x > 0 we have µ(x) = µ0 > 0. A change in sign
across a line represents a domain wall between the weak and strong-pairing phases and µ = 0 is the
point at which the transition occurs. The weak-pairing phase is nontrivial and it makes sense to capture
the generic properties of an edge by a domain wall. The strong pairing phase, on the other hand, has
the same topology as the vacuum and can be continuously connected to it. Therefore the strong-pairing
phase does not need to have a domain wall. In a next step we want to solve the BdG equations. We
consider solutions with definite ky. At first we set ky = 0 and Ek = 0:

i∆
∂v0

∂x
= µ(x)u0, i∆

∂u0

∂x
= −µ(x)v0. (52)

u0 and v0 are the wave functions at ky = 0 and Ek = 0. To solve the equation we use the Ansatz
v0 = iu0.

−∆
∂u0

∂x
− µ(x)u0 = 0 (53)

has a unique normalizable solution ( µ(x)
x→∞→ 0): u0(x) = e−iπ/4e−

1
∆

∫ x
0
dx′µ(x′). This state satisfies

u∗0 = v0 = iu0 and for |x| → ∞, u0(x) is exponentially suppressed, thus, the state is bound in x−direction.
We have found a Majorana fermion. It is time independent, as it is a zero energy solution. Next we
assume finite ky and a small energy Ek = −∆ky. The BdG equations become

Ekuky = −µ(x)uky + i∆(
∂vky
∂ky

− kyvky ),

Ekvky = µ(x)vky + i∆(
∂uky
∂ky

+ kyuky ).

(54)

We can find bound states in x− direction, meaning they are bound to the domain wall:

uky (x, y, t) = uky (x)eikyy+i∆kyt = uky (x)eiky(y+∆t). (55)

This state is propagating in time along the domain wall in one direction. This is only possible, because
parity and TR symmetry are broken.

Vortices in p-wave superconductors
A vortex in a superconductor is a topological defect. Such vortices can be created by bringing the super-
conductor into a magnetic field. The magnetic flux then flows through vortices. We will only take into
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account vortices of minimal flux which is half-flux quantum. We can consider a vortex as a small circular
edge with vacuum at the center. If we have vortices in the strong-pairing phase, we expect nothing
interesting to happen. In the weak-pairing phase, on the contrary, we must include a concentric circular
domain wall to separate the vacuum at the center of the vortex from the weak-pairing phase outside.

x 

y

0

−μ0 μ0

Figure 7: Vortex in a weak-pairing phase superconductor (µ = µ0 > 0). At the core of the vortex the
chemical potential is µ = −µ0 < 0. The circle signals the domain wall which corresponds to the phase
transition with µ = 0.

We want to study what is happening on the boundary of a vortex with strong-pairing phase in a
weak-pairing phase superconductor. The setting is shown in Fig. 7. We write the BdG equations for a
single vortex and for E = 0 in polar coordinates r =

√
x2 + y2 and θ = arctan

(
y
x

)
:

i∆eiθ
(
∂

∂r
+
i

r

∂

∂θ

)
v = µu, (56)

i∆e−iθ
(
∂

∂r
+− i

r

∂

∂θ

)
u = −µv, (57)

with the boundary conditions u(r, θ + 2π) = −u(r, θ) and v(r, θ + 2π) = −v(r, θ). For r → ∞ we have
µ → µ0 > 0 (weak-pairing phase), and for r → 0 we have µ → −µ0. We can get normalizable solutions
of the form

u = (i(x− iy))−1/2f(r) and v = (−i(x+ iy))−1/2f(r) = u∗, (58)

where f(r) is a real function which fulfills

∂f(r)

∂r
= −µ(r)

f(r)

∆
with solution f(r) ∝ e−

∫ r
0
dr′µ(r′)/∆. (59)

Finally, we found a Majorana state bound to the vortex core. This was calculated at E = 0. This should,
like in the edge case, persist when we relax our assumptions, as long as the bulk outside the vortex is in
the weak-pairing phase.

The main problem about this weak-pairing phase p-wave superconductor is, that it does not exist in
real materials. Nevertheless, if we bring a s-wave superconductor near to the surface of a topological
insulator, we receive a surface state which resembles the spinless px + ipy topological superconductor.

2.3.4 Proximity-induced superconductivity on the surface of a topological insulator

When we put a superconductor on top of the surface of a topological insulator, Cooper pairs may
tunnel from the superconductor to the surface of the topological insulator. This results in an induced
superconducting energy gap in the surface states. Here we use a s-wave superconductor which we bring
on top of our Bi2Se3 topological insulator. The resulting superconducting state resembles the spinless
px + ipy superconductor. In contrast to the spinless superconductor, the topological superconductor we
get does not violate TR symmetry, and its Cooper pairs have even parity. In this section we want to
describe what happens, when the superconductor is brought near to the topological insulator, and we
want to show, how it is related to the spinless px + ipy superconductor. The following argumentation is
based on Ref. [20].
We start with the TR invariant surface Hamiltonians Hp where p = xy, yz, xz refers to the different
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surface planes of the Bi2Se3 topological insulator. We write the Hamiltonian with the electron field
operators (ψ↑, ψ↓)

ᵀ:

H0 =

(
ψ†↑
ψ†↓

)
(Hp − µ)

(
ψ↑
ψ↓

)
. (60)

Next we suppose that an s-wave superconductor is deposited on the surface. If there is a good interface
between the topological insulator and the superconductor, electrons tunnel between these two systems.
The electrons in the topological insulator then feel an effective proximity-induced superconducting pairing
field. We include the pairing effect in the topological insulator by adding V = ∆ψ†↑ψ

†
↓ + ∆†ψ↓ψ↑, where

∆ = ∆0e
iφ, to the phenomenological Hamiltonian H0. Eventually, we write the total Hamiltonian H in

Nambu basis:

H =
1

2




ψ↑
ψ↓
ψ†↓
−ψ†↑




†

Hs




ψ↑
ψ↓
ψ†↓
−ψ†↑


 , (61)

Hs =

(
(Hp − µ) ∆

∆∗ −T (Hp − µ)T −1

)
, (62)

where ∆ = ∆0e
iφ · I2×2. The excitation spectrum of this system is εk = ±

√
|∆0|2 + (µ± ~vF |k|)2,

where vF is the Fermi velocity of the corresponding surface and k the two dimensional momentum of
the surface. Owing to the TR invariance of the surface Hamiltonian, the second diagonal element equals
−T (Hp−µ)T −1 = −(Hp−µ). For µ� ∆0 the low energy spectrum resembles that of a spinless px+ipy
superconductor. We can compare the Hamiltonian Hs to that of Eq. (42). Apparently, it is formally
equivalent to a spinless px + ipy superconductor, but in contrast to the spinless superconductor, Hs is
still TR invariant.

We have already shown that in 2D spinless px ± ipy superconductors Majorana bound states can be
found. With the proximity-induced superconductivity on the surface of topological insulators we found
an existent system which resembles that of a px+ ipy. In contrast to the Hamiltonian of a p-wave super-
conductor, the Hamiltonian of the proximity-induced superconducting surface is TR invariant. To enable
the existence of Majorana fermions, we need to bring the superconducting surface into contact with a
surface which is described by a Hamiltonian which breaks TR symmetry. The edge of these two surfaces
then may host a Majorana. One option to create a TR breaking surface state is proximity-induced
ferromagnetism.

2.3.5 Proximity-induced ferromagnetism on the surface of a topological insulator

By placing a ferromagnetic insulator on top of the topological insulator, the topological insulator becomes
a ferromagnetic insulator due to the exchange coupling [21]. This is called the magnetic proximity effect.
The Hamiltonian for the surface of a topological ferromagnet reads:

Hf =

(
Hp − µ+mxσx +myσy +mzσz 0

0 −Hp + µ+mxσx +myσy +mzσz

)
, (63)

where Hp, p = xy, yz, xz, is the surface Hamiltonian of the topological insulator. The ferromagnetic
contribution is M = m · σ, where m = (mx,my,mz) is an exchange field. If the magnetization M is
perpendicular to the surface, the magnetization opens up a gap. For instance, we consider the (x − y)
plane (Hp = Hxy) and put a ferromagnet on top, which induces a perpendicular magnetization, m · σ =

(0, 0,mz)
ᵀ · σ. The band dispersion becomes ε = ±~vxyF

√
k2
x + k2

y +m2
z − µ+ εxy0 , thus no energy states

with |ε| < |mz| exist, meaning mz opens up a gap. The property making the ferromagnetic insulator
interesting is, that it breaks TR symmetry, as it can be seen from the form of Hf . We recall from the
section about superconductivity for spinless fermions in 2D, that we can find Majorana fermions on edges
of a topological superconductor to a topologically trivial state, if parity and TR symmetry are broken.
Indeed, it has been calculated that the edge between a topological superconductor and a topological
ferromagnet can host Majorana fermions [20].
Since we are eventually able to establish a system which may host Majorana fermions, we are interested
in the properties of of these fermions.

20



2.3.6 Majorana bound states

In this section we briefly explain some of the characteristics of Majorana fermions and conclude by ex-
plaining, why they are so interesting to the physical community. The content is based on the review [22]
about topological superconductivity and Majorana fermions.
Majorana fermions are fermionic particles, which are their own antiparticles. Thus, their annihilation
operator γ is equal to their creation operator γ†. Isolated Majorana fermions may occur, for instance,
in vortices and on edges of effectively spinless superconducting systems with triplet pairing symmetry
(p-wave superconductivity). In two dimensions this means px ± ipy pairing symmetry.

In a sense a Majorana fermion is half of a normal fermion since a fermionic operator ci on site i
can be written as a superposition of two Majorana operators γi,1, γi,2 on site i: ci = 1

2 (γi,1 + iγi,2),

c†i = 1
2 (γi,1 − iγi,2). In a one dimensional system this can be easily sketched in terms of a so-called

Kitaev’s chain, as it is shown in Fig. 8.

Figure 8: Kitaev’s 1D p-wave superconducting tightbinding chain. Upper panel: the fermion operators
ci on each site i can be split into two Majorana operators γi,1 and γi,2. Lower panel: fermion operators
c̃i are created by combining Majorana operators on neighboring sites γi+1,1 and γi,2. This leaves two
unpaired Majorana operators γ1,1 and γN,2. Adapted from Ref. [22].

Usually − when the two Majorana fermions are spatially localized close to each other and overlap
such that they cannot be addressed individually − this is only a mathematical operation without physical
consequences. But here we talk about Majorana fermions which are spatially separated like γ1,1 and γN,2
in the lower panel of Fig. 8. Such a state is protected from most types of decoherence since it cannot
be changed by local perturbations that only affect one of the Majoranas forming the fermion. We can
write the Majoranas in terms of the fermionic operators: γi,1 = ci+ c†i and γi,2 = i(c†i − ci). They satisfy
the anticommutation relation {γi,p, γj,q} = 2δi,jδp,q and we can see that γ2

i = 1. When we construct a

“Majorana number operator” ni = γ†i γi = 1, we recognize that a Majorana mode is “always empty and
always filled”.
Even though a Majorana state is protected against local perturbations, we can change the state by physi-
cal exchange of the Majorana fermions. This is enabled due to their non-Abelian statistics. Non-Abelian
statistics is only possible, if we have a degenerate ground state which is separated from all excited states
by a gap. By performing adiabatic operations, like a slow exchange of the quasiparticle positions, we
can bring the system from one ground state to another. In the case of Majorana fermions in a px ± ipy
superconductor this can be easily understood.
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Figure 9: Two vortices in a 2D px± ipy superconductor which host Majorana fermions described by the
operators γ1 and γ2. The red dashed lines are the branch cuts emanating from the vortex cores. (a)
shows a clockwise exchange of the two vortices. In (b) vortex 1 is brought around vortex 2. Both vortices
cross the branch cut of the other vortex.

We imagine a 2D topological superconductor with two vortices (1 and 2) where both of them have a
Majorana fermion γ1, γ2 at their cores (see Fig. 9). Each vortex has a winding of 2π of the supercon-
ducting phase φ. We choose φ to be single-valued everywhere, except for a branch cut that emanates
from each vortex. The phase changes by 2π when this branch cut is crossed. If we now exchange the
vortices in a clockwise manner (see Fig. 9(a)), one vortex crosses the branch cut of the other and gains
a phase shift of 2π, whereas the other does not get any additional phase. The Majorana fermion in the
vortex then acquires a phase of π (thus a sign change) when it crosses the branch cut. Consequently, the
result of this operation is:

γ1 → −γ2, γ2 → γ1. (64)

These transformations can be described by so-called braid operators B12 = 1√
2
(1 + γ1γ2):

γ1 → B12γ1B
†
12, γ2 → B12γ2B

†
12. (65)

If we do the same operation counterclockwise, the other Majorana fermion would get the phase shift and
the braid operator used is B̃12 = 1√

2
(1 − γ1γ2). The braid operations are non-Abelian, because, when

they involve some of the same Majorana fermions, they do not commute.
If we exchange the vortices twice, thus bringing them back to their original position, both Majorana
fermions gain a negative sign: γ1 → −γ1 and γ2 → −γ2. This is similar to two successive exchanges,
thus, the operator is B2

12. This can also be seen in Fig. 9(b), where both vortices cross the branch cut
of the other vortex when vortex 1 is brought around vortex 2.
Consequently, the ground state of a system with two Majorana fermions is twofold degenerate. If we have
2N vortices, we can define N Dirac fermions consisting of two Majorana fermions and each of these Dirac
fermions can be occupied or empty. For 2N vortices we have a 2N -fold degeneracy of the ground state.
In a system with only two Majorana fermions the exchange operation cannot change the eigenvalue of
the number operator which encodes, whether there are in total an even or odd number of particles in
the superconductor. To find nontrivial effects of exchange operations, we need at least four Majorana
fermions. Then exchange operations can lead to superposition state of different number states. Only the
total parity (all number states added up) must stay the same (meaning must stay odd or even).
By using four Majorana fermions, one can define a Majorana qubit. Such qubits keep the quantum
information encoded in delocalized fermionic states and are therefore expected to be robust against most
sources of decoherence. This makes the Majorana fermions interesting for quantum computation, even
though the braiding operations of the Majorana-based qubits can only explore a tiny fraction of the total
Hilbert space, making them insufficient for universal quantum computations. However, by including
non-protected operations or by coupling Majorana qubits to other qubit systems, this restriction can be
lifted.

In the last sections we provided an introduction to topological insulators, briefly motivated the low-
energy effective model Hamiltonian of the Bi2Se3 topological insulator and summarized the theory of
superconductivity until we finished with systems hosting Majorana fermions. Nevertheless, we aim to
calculate the Josephson effect on the surface of a topological insulator. For this reason, we need to
discuss what happens, when an electron coming from a normal conductor hits a superconductor. The
occurring event is called Andreev reflection.
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2.4 Andreev reflection and Josephson current

This section is based on the book by Yuli V. Nazarov and Yaroslav M. Blanter [23]. In the beginning
we introduce the scattering matrix s for a nanostructure. By considering an ideal contact between a
normal metal and a superconductor, we derive the scattering on superconductors. Later we place a
nanostructure between two superconductors and explain the process called Andreev reflection.

2.4.1 Scattering matrix

When nanostructures are fabricated, there are a lot of uncontrollable parameters and it is not possible to
construct two identical nanostructures. Nevertheless, the transport properties can be expressed through
a smaller set of parameters, such that these fabrication problems do not influence the physics. The con-
dition that must be fulfilled is, that electrons traverse the structure without energy loss and experience
only elastic scattering. This is always achieved at sufficiently low temperature and applied voltage.
We can characterize the scattering in a nanostructure by a scattering matrix s which contains the infor-
mation on the electron wave functions far from the structure. The transport is then described by the
transmission eigenvalues of this scattering matrix.

aRmaLn

bLn bRm
left right

Figure 10: Scattering in a nanostructure. The dark blue regions are the (left and right) reservoirs.
The scattering takes place in the scattering region (gray) in the nanostructure (light blue) far from the
reservoirs. aLn, aRm, bLn, bRm represent the amplitude of the plane waves, the arrow shows the direction
of transport of the corresponding plane wave.

At first we will derive the scattering matrix. We use the system shown in Fig. 10. It consists of two
reservoirs referred to as left and right. In between is the nanostructure in which the scattering happens.
The scattering takes place in a finite region (see Fig. 10, gray) and the superconducting reservoirs (see
Fig. 10, blue) are far from this region. The wave functions in the scattering region are unknown and
may take very complicated form. However, we can assume that the scattering region is connected to
the reservoirs by ideal waveguides (see Fig. 10, light blue). The wave functions in ideal waveguides are
always combinations of plane waves. As the left and right waveguides are independent of each other, we
use different coordinates: xL < 0, yL, zL for the left waveguide and xR > 0, yR, zR for the right one. At
fixed energy E we can write the wave function as a linear combination of the plane waves:

ψ(xL, yL, zL) =
∑

n

1√
2π~vn

Φn(yL, zL)
[
aLne

ik(n)
x xL + bLne

−ik(n)
x xL

]
,

ψ(xLR, yR, zR) =
∑

m

1√
2π~vm

Φm(yR, zR)
[
aRme

ik(m)
x xR + bRme

ik(m)
x xR

]
.

(66)

vj is the velocity in channel j, Φn(yL, zL) and Φm(yR, zR) are the transverse wave functions and the
energies of the transverse motion are En, Em. For any transport channel n or m, the energy E fixes

the value of the wave vector k
(j)
x =

√
2m(E − Ej)/~. Here, the transport is due to propagating, not

evanescent, waves and k
(j)
x has to be real. This means, we only have a finite number of open channels

to the left and right at a fixed energy. The coefficients aLn and aRm are the amplitudes of the waves
coming from the reservoirs and bLn and bRm are the amplitudes of the waves transmitted through or
reflected back from the scattering region. These coefficients are related to each other:

bαl =
∑

β=L,R

∑

l′

sαl,βl′aβl′ , α = L,R, l = n,m. (67)
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We can write the proportionality coefficients sαl in terms of a matrix:

s =

(
sLL sLR
sRL sRR

)
=

(
r t′

t r′

)
, (68)

with the block matrices sAB where A,B = {L,R}. The reflection matrix r describes the reflection of
the waves coming from the left, r′ the reflection of the particles coming from the right. t describes the
transmission through the scattering region. If we have TR symmetry, the scattering matrix is symmetric:
s = sᵀ. Any scattering matrix is unitary: s†s = 1.

2.4.2 Andreev reflection

Andreev reflection is a special form of a scattering process which can happen, when electrons are scattered
at the boundary to a superconductor. To explain this process, we first look at the quasiparticle states
in a superconductor. The energies of the quasiparticle states are separated from the Fermi energy by
the superconducting gap ∆0. In the gap no states are found. If we bring a metal into contact with the
superconductor, an electron in the metal with energy above ∆0 can enter the superconductor, where it
will be converted into a quasiparticle of the same energy. But if an electron has an energy E < ∆0 this
cannot happen, as there are no quasiparticles in the superconductor with such small energy. This means,
for voltages and temperatures below ∆0, no current may flow through the superconductor, at least not
in this picture.
As afore mentioned, there exists a different process which enables charge transfer at low energy, the so-
called Andreev reflection. An electron coming from the metal hitting a superconductor can be reflected
back as a hole, as it is shown in Fig. 11. This process conserves energy but not charge. In the metal we will
have a charge deficit of qm = −2e. In the superconductor, on the other hand, there is a Cooper pair with
charge qs = 2e. Consequently, charge is transfered from the normal metal to the superconductor. The

momentum of the hole ~kh is almost equal to that of the electron: ~kh = ~ke − 2E/vF
|E|�EF≈ ke ≈ kF ,

where ~kF is the Fermi momentum. The velocity of the holes is vh = 1
~
∂E
∂kh

meaning that holes with
kh > 0 move away from the superconductor.

superconductor

e

h e

normal 
conductor

Figure 11: Andreev reflection: an electron is reflected back as a hole inducing a Cooper pair in the
superconductor. While energy is conserved, the metal will have a charge deficit of qm = −2e and the
superconductor will gain a charge qs = 2e.

As explained in the preceding chapters, the wave function in a superconductor has to solve the BdG
equation (

ψe(r)
ψh(r)

)
=

(
H0(r)− EF ∆0e

iφ

∆0e
−iφ −T H0(r)T + EF

)(
ψe(r)
ψh(r)

)
. (69)

H0 is the Hamiltonian for the electrons in the absence of superconductivity. We assume that ∆0 and φ are
constant in the superconductor and ∆0 is the superconducting energy gap far away from the boundaries
in the superconductor.
We briefly explain the meaning of this BdG equations. In a normal metal there is no gap (∆0 = 0) and
the solutions are plane waves ψe,h(r) ∝ eike,hr. If we solve the equations for excitations close to the Fermi
surface, |E| � EF , we find that k = kF ± E

~vF thus the momenta of the electron and hole-like solutions
can be either above or below kF . In the conventional definition of quasiparticles in a normal metal,
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electrons have momentum k > kF and holes k < kF . We can see that the BdG equations allow solutions
with positive energies E+ = |~vF (k − kF )| and solutions with negative energies E− = −|~vF (k − kF )|
which are not dependent on each other, but they are obtained from each other by a flip of components.
As explained in the section above, the underlying symmetry is the particle-hole symmetry. The BdG
equations contain a double set of solutions. The solutions with negative energies would represent electrons
with k < kF and holes with k > kF which contradicts the conventional definition of electrons and holes
in a normal metal. Thus, we retain the positive energies only, which represent a complete set of solutions.
We look at the solutions of the BdG in a superconductor. By using plane waves for the electron and
hole wave functions we get

E =
√
ξ2 + ∆2

0, ξ = ~vF (k − kF ) for ∆0, E � EF . (70)

For E > ∆0 the quasiparticles can freely propagate in the superconductor. For E < ∆0 no quasiparticles
in the superconductor exist.

We consider an ideal (no scattering) contact between a normal metal (x < 0) and a superconductor
(x > 0). Since the transport channels are not mixed we can consider only one channel and we suppress
the index. We look at solutions of the form ψe,h(x) ∝ ψ̃e,h(x)eikF x that correspond to an electron

propagating to the right and a hole moving in the opposite direction. ψ̃ is the envelope function and
varies at a space scale that is much bigger than the electron wavelength. It satisfies the BdG

(
−i~vF ∂

∂x ∆(x)eiφ

∆(x)e−iφ i~vF ∂
∂x

)(
ψ̃e(x)

ψ̃h(x)

)
= E

(
ψ̃e(x)

ψ̃h(x)

)
. (71)

In the normal metal the envelope function describes the incoming electron and the outgoing Andreev-
reflected hole. With the amplitude rA of the Andreev reflection we can write

ψ̃(x < 0) =

(
eixE/~vF )

rAe
−ixE/~vF

)
. (72)

For E < ∆ we have only evanescent solutions in the superconductors:

ψ̃(x > 0) = C

(
fe
fh

)
e−x
√

∆2−E2/~vF . (73)

C is an arbitrary constant and the coefficients fe,h are found from the BdG equation and the normaliza-
tion condition |fe|2 + |fh|2 = 1. We find

fe =
eiφ√

2
, fh =

E − i
√

∆2 − E2

√
2∆

. (74)

The superconducting correlation length which describes the scale of penetration into the superconductor
is of the order ~vF /∆ � λF and it diverges at the threshold energy E = ∆. By demanding continuity
of the wave functions at x = 0, we can calculate rA and C:

C =
1

fe
, rA = e−iφ

(
E

∆
− i
√

∆2 − E2

∆

)
= eiχ with χ = − arccos

(
E

∆

)
− φ. (75)

In other words, the phase of the outgoing hole is shifted by χ with respect to the phase of the incoming
electron. Similarly, the phase shift of the amplitude of an incoming hole with respect to an outgoing
electron can be calculated: χ̃ = − arccos(E/∆) + φ.

In a next step we look at a system in which a nanostructure is placed between a normal and a su-
perconducting region. The nanostructure in the normal state is described by the scattering matrix s(E)
which depends on energy. At first, we need to find the scattering matrix for electrons and holes. For
electrons with energy E > 0 it is se = s(E). For the holes at the same energy it is related to a scattering
matrix with −E. We know that an electron and a hole at the same momentum have opposite velocities,
meaning that the incoming electrons correspond to outgoing holes and vice versa. Consequently, we have
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to invert the usual scattering matrix. As the holes obey a time-reversed Hamiltonian, the matrix has to
be transposed. Altogether, we get the scattering matrix sh for a hole: sh = s∗(−E).
Like before, we consider only scattering in one channel. As a result, we can write in our scattering matri-
ces: re = r(E), rh = r∗(−E), te = t(E) and th = t∗(−E). The same is valid for r′ and t′. Furthermore,
we know that Andreev reflection from the superconductor leads to a phase factor: eiχ for electrons and
eiχ̃ for holes.

Next, we look at a superconducting junction, where a nanostructure is placed between two super-
conductors with the same gap ∆0 but different phases φL, φR, as shown in Fig. 12. We assume that
the nanostructure is sufficiently short, such that the energy dependence of its scattering matrix is not
manifested at the energy scale ∆0. This implies that the electrons spend a very short time τd in the
nanostructure and according to Heisenberg’s uncertainty principle, this time is too short to allow a
response to the superconductivity inside the nanostructure, τd∆0 � ~. The scattering matrix of the
nanostructure is thus its scattering matrix in the normal state which we know from the calculations
above.
We examine an electron in the nanostructure at sufficiently low energy. It will be Andreev reflected while
it tries to enter the superconductor. The same happens to the reflected hole. Consequently, electrons
and holes are reflected back and forth which gives rise to discrete energy levels. The bound states for
quasiparticles between two superconductors at different phases are called Andreev bound states. At last,
we calculate the energy for these bound states.

aRh

aRe

aLh

aLe

bLe bRe

bRhbLh

e
χ
L

e
χ̃
L e

̃χR

e
χ
R

s

s*

Figure 12: Scattering in the nanostructure and Andreev reflection at the superconductor. The blue
regions are the (left and right) superconducting reservoirs. The scattering takes place in the scattering
region (gray) in the nanostructure (light blue) far from the reservoirs. At the boundaries to the reservoirs,
the plane waves are Andreev reflected, and get an additional phase. aL, aR, bL, bR represent the
amplitude of the plane waves and the arrow shows the direction of transport of the corresponding plane
wave. s describes the scattering of the electrons and s∗ the scattering of the holes in the nanostructure.

Again we first consider only one channel. Figure 12 illustrates the scattering processes in the nanos-
tructure and at the boundaries to the superconductor. The scattering matrix of the nanostructure relates
the amplitudes of the incoming states (~ae,~ah) and the amplitudes of the outgoing states (~be,~bh):

(
be
bh

)
=

(
s 0
0 s∗

)(
ae
ah

)
. (76)

The two components of the amplitude vectors correspond to the left and right side of the nanostructure:

be =

(
bLe
bRe

)
, bh =

(
bLh
bRh

)
, ae =

(
aLe
aRe

)
, ah =

(
aLh
aRh

)
. (77)

The scattering of the holes is given by the complex conjugate s∗ of the scattering matrix. The matrix
is block-diagonal as the nanostructure does not convert electrons to holes (see Fig. 12). The supercon-
ductors, on the contrary, convert electrons to holes and vice versa and lead to an additional phase. This
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leads to the relation (
ae
ah

)
=

(
0 seh
she 0

)(
be
bh

)
, (78)

where

seh =

(
eiχ̃L 0

0 eiχ̃R

)
, she =

(
eiχL 0

0 eiχR

)
,

χL,R = −φL,R − arccos

(
E

∆0

)
, χ̃L,R = φL,R − arccos

(
E

∆0

)
.

(79)

In Fig. 12 this is shown by the arrows in the superconductor which are labeled with the corresponding
phase. By replacing ae,h in Eq. (76) with Eq. (78) we get an equation for be,h. We require nontrivial
solutions. This can be expressed in terms of a determinant:

det

((
s 0
0 s∗

)(
0 seh
she 0

)
− I4×4

)
= 0. (80)

Solving the equation yields the energy of the bound state:

E = ∆0

√
1− τ sin2(φ/2), (81)

where τ is the so-called transmission eigenvalue − the eigenvalue of the scattering matrix s − and
φ = φL − φR is the phase difference of the two superconductors. Now we evaluate the solution for many
channels. We call kn the channel n. For any channel we get such a solution En(τn).

2.4.3 Josephson current

So far, we computed the excitations in form of bound states. In superconductivity we want to analyze the
correspondence between the properties of the excitations and those of the ground state of the supercon-
ductor. This is manifested in the symmetry of the BdG equation with respect to positive and negative
energies. The solutions at negative energies can be associated with the filled levels contributing to the
ground state energy, which is the sum of single particle excitation energies: Eg = −∑nEn. All excita-
tion energies contribute to the ground state energy: those corresponding to propagating quasiparticles
above the superconducting gap and those of the bound Andreev states. Only the latter contributions
depend on the phase difference of the superconductors. This phase dependent part is:

E(φ) =
∑

n

En(φ) = ∆0

∑

n

√
1− τn sin2(φ/2), (82)

where the sum over n adds all the possible channels in the normal region. This phase dependent energy
gives rise to a persistent current in the ground state − a supercurrent. We slowly vary the phase
difference. This leads to an energy shift per unit time:

dE

dt
=
∂E(φ)

∂φ

dφ

dt
. (83)

The global gauge invariance dictates that the time derivative of the superconducting phase is simply the
potential of the corresponding superconductor, dφdt = 2eV

~ . The energy change per unit time is the power
dissipated at the junction. On the other hand, this power is the product of current and voltage. We
conclude that the current in the junction is given by

J(φ) = −2e

~
∑

n

∂En
∂φ

=
e∆0

2~
∑

n

τn sin(φ)√
1− τn sin2(φ/2)

. (84)

This Josephson current is an odd periodic function of the phase difference and vanishes at φ = 0. For
a tunnel junction where τn � 1, the supercurrent is J(φ) = Jc sin(φ), where Jc = e∆0

2~
∑
n τn is the

maximal possible supercurrent achieved at φ = π/2.

We calculated the Josephson current due to Andreev reflection. We have seen that it can be described in
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terms of the transmission eigenvalues of the scattering matrix describing the normal region (the nanos-
tructure). Now we analyze the problem from a slightly different point of view: instead of the scattering
approach, we use the wave functions which solve the BdG equations in the different regions and apply
conditions for the interfaces. We calculate the energy as a function of the phase difference φ of the two
superconductors and by taking the derivative of the energy with respect to φ we finally get the Josephson
current.
In fact, the so-called Josephson effect is an effect which Brian D. Josephson predicted in 1962 [24]. He
stated that at zero voltage a supercurrent Js = Jc sin(φ) should flow between two superconducting elec-
trodes which are separated by a thin insulating barrier. φ is the phase difference of the wave functions
of the two superconducting electrodes. Jc is called the critical current and is the maximum supercurrent
that the junction can support. The more general expression Josephson used to calculate the current
requires the ground state energy Eg of the junction

J(φ) = −2e

~
∂Eg
∂φ

, (85)

and is valid at temperature T = 0.
The expression of the Josephson current may take a form similar to Eq. (84) with a transmission eigen-
value τ (for instance if the junction is a normal metal). But as soon as we have a ferromagnetic junction,
the form becomes different, because ferromagnetism breaks the TR symmetry.

By understanding the Josephson effect, we eventually have the basic knowledge to begin with the calcu-
lations.
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3 Derivation of the surface Hamiltonians of the topological insulator
Bi2Se3

3.1 Calculation of the surface Hamiltonian in the (y−z) plane

The Hamiltonian describing the bulk of the Bi2Se3 topological insulator is given by (see chapter 2)

H(k) = ε0(k)I4×4 +




M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz
A2k+ 0 −A1kz −M(k)


 . (86)

(x-y)-plane

(y-z)-plane

x 

z
y

Figure 13: Bulk with the coordinate system.

To get the Hamiltonian for the surfaces, we use the method of Zhou et al. [25] for quantum spin Hall
systems and follow the procedure of Ref. [26]. To calculate our surface states in the (y − z) plane (see
Fig. 13 for the coordinate orientation) we start with the bulk Hamiltonian (Eq. (86)) and we suggest a
four-component trial solution of the form:

Ψ = ψλe
λx. (87)

By putting this in the Hamiltonian of the bulk (Eq. (86)) and using (kx, ky, kz) = (−i∂x, ky, kz) we can
write the Hamiltonian as follows:

H(k) =




L1 −D−λ2 A1kz 0 −iA2(ky + λ)
A1kz L2 −D+λ

2 −iA2(ky + λ) 0
0 −iA2(λ− ky) L1 −D−λ2 −A1kz

−iA2(λ− ky) 0 −A1kz L2 −D+λ
2


 , (88)

where L1 = C +M + S−k
2
z +D−k

2
y, L2 = C −M + S+k

2
z +D+k

2
y, S± = D1 ±B1 and D± = D2 ±B2.

We solve the secular equation det |H(k)− ε · I4×4| = 0 for λ:

λαβ(ε) = β

√
− F

2D−D+
+ α

√
R

2D−D+
, (89)

with F = A2
2 +D+(ε−L1)+D−(ε−L2), R = F 2−4D+D−((ε−L1)(ε−L2)−A2

1k
2
z −A2

2k
2
y) and α = ±,

β = ±. Each of these solutions is doubly degenerate, implying that for each λ there are two linearly
independent ψλ. Next, we calculate

ψλ =




φ1

φ2

φ3

φ4


 (90)

by solving the equation
H(k)ψλ = εψλ. (91)
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We obtain two linearly independent solutions for each λ:

ψ
(1)
λ =




ε− L2 +D+λ
2

A1kz
0

−iA2(λ− ky)


 and ψ

(2)
λ =




−iA2(λ+ ky)
0

−A1kz
ε− L1 +D−λ

2


 . (92)

With these we can devise a general solution

Ψ(ε, ky, kz, x) =
∑

α=±

∑

β=±

∑

γ=1,2

Cγαβψ
γ
λαβ

eλαβx. (93)

Afterwards we use the boundary conditions Ψ(x = 0) = Ψ(x = −∞) = 0. The latter implies that all
Cγα− = 0. Thus, there are only solutions for β = +. We apply Ψ(x = 0) = 0 and demand a nontrivial
solution for Cγα+ (which means the determinant of the coefficient matrix has to be 0). This leads to the
important equation:

(λ+ + λ−)2 = − A2
2

D+D−
, (94)

where we abbreviated λ±+ to λ±. We compare this expression with λα+(ε) from Eq. (89)

(λ+ + λ−)2 = λ2
+ + λ2

− + 2λ+λ− = − F

D+D−
+ 2

√
F 2

(2D+D−)2
− R

(2D+D−)2
(95)

and we conclude
F 2 −R = (−A2

2 + F )2. (96)

This can be solved for the energy ε:

ε = C +
D2

B2
M ±

√
1− D2

2

B2
2

√
A2

2k
2
y +A2

1k
2
z + (D1 −

D2

B2
B1)k2

z . (97)

Furthermore, we find from Ψ(x = 0) = 0 that

C1
− = −C1

+ and C2
− = −C2

+, (98)

and two similar expressions for C2
+:

C2
+ = C1

+

D+(λ+ + λ−)

iA2
and C2

+ = C1
+

iA2

D−(λ+ + λ−)
. (99)

We can simplify the total surface wave functions in Eq. (93) to:

Ψ(ky, kz, x) = C1
+




∓
√
−D+

D−

√
A2

2k
2
y +A2

1k
2
z −D+(λ+ + λ−)ky

A1kz
−A1kz

iA2

D−(λ++λ−)

± iA2

D−(λ++λ−)

√
−D−D+

√
A2

2k
2
y +A2

1k
2
z + iA2ky




(eλ+x − eλ−x). (100)

Now we expand the Hamiltonian H(k) (Eq. (88)) for small |k|. This is possible due to the low-energy
long-wavelength nature of the Dirac cone of the surface states at the Γ point. This expansion is valid
when the energy is limited within the band gap between the conduction and valence bands [26]. For this
reason we use:

H(k) = H0(k = 0) + ∆H, (101)

where

H0(k = 0) =




C +M −D−λ2 0 0 −iA2λ
0 C −M −D+λ

2 −iA2λ 0
0 −iA2λ C +M −D−λ2 0

−iA2λ 0 0 C −M −D+λ
2


 (102)
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and

∆H =




S−k
2
z +D−k

2
y A1kz 0 −iA2ky

A1kz S+k
2
z +D+k

2
y −iA2ky 0

0 iA2ky S−k
2
z +D−k

2
y −A1kz

iA2ky 0 −A1kz S+k
2
z +D+k

2
y


 . (103)

By using

Ψ = ψλe
λx =




φ1

φ2

φ3

φ4


 eλx, (104)

we recognize that we can write the eigenvalue equation H(k = 0)ψλ = εψλ in terms of two decoupled
equations:

h

(
φ1

φ4

)
= ε

(
φ1

φ4

)
and h

(
φ3

φ2

)
= ε

(
φ3

φ2

)
, (105)

where h =

(
C +M −D−λ2 −iA2λ
−iA2λ C −M −D+λ

2

)
. (106)

Solving the secular equation det |h−ε · I4×4| = 0 leads to the same λαβ from Eq. (89) but with k = 0.
We calculate the solution of the eigenvalue equation:

(
φ1

φ4

)

tot

=
∑

α=±

∑

β=±

Cαβ

(
C −M −D+λαβ − ε

iA2λαβ

)
eλαβx. (107)

Due to the boundary condition

(
φ1

φ4

)

tot

(x = −∞) = 0 we know that all Cα− = 0. We calculate
(
φ1

φ4

)

tot

(x = 0) = 0. This results in the equations:

C−+ = −λ+

λ−
C++,

(C −M −D+λ
2
+ − ε)λ− = (C −M −D+λ

2
− − ε)λ+,

(108)

and finally
ε = C −M +D+λ+λ−. (109)

Now our wave function can be further simplified to

(
φ1

φ4

)

tot

= C ′
(
−D+(λ+ + λ−)

iA2

)
eλ+x − eλ−x, (110)

where C ′ is the normalization constant. We use Eq. (94) and normalize the spinors. This ends in

(
φ1

φ4

)
=

√
−D−

2A2
2B2

(
−D+

√
− A2

2

D+D−

iA2

)
. (111)

The complete set of spinor solutions for H(k = 0)Φ = εΦ is given by the two basis spinors:

Φ1 =




φ1

0
0
φ4


 =

√
−D−

2A2
2B2




−D+

√
− A2

2

D+D−

0
0
iA2


 and Φ2 =




0
φ4

φ1

0


 =

√
−D−

2A2
2B2




0
iA2

−D+

√
− A2

2

D+D−

0


 . (112)

We can use these two basis states to expand the Hamiltonian (88). This leads to a new effective surface
Hamiltonian:

Heff =

∫ ∞

−∞
dx[Φ1,Φ2]†H(k)λ→∂x [Φ1,Φ2], (113)
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where we replaced λ by ∂x, and finally

Heff = C +
D2

B2
M + (D1 −

D2

B2
B1)k2

z −A2

√
1− D2

2

B2
2

σzky +A1

√
1− D2

2

B2
2

σykz, (114)

which is the same as the surface Hamiltonian Hyz (Eq. (9)) when keeping only the terms to linear order
in |k|.

3.2 Calculation of the surface Hamiltonian in the ((x cos(ϑ)−y sin(ϑ))-z) plane

The idea here is to calculate the Hamiltonian of a surface when the bulk is cut at an angle ϑ. The setup
is shown in Fig. 14.

(x-y)-plane

(y-z)-plane

-plane(x-z)-plane

x 
z

y

((x cos (ϑ)− y sin (ϑ))−z )

(xcos (ϑ)− y sin(ϑ))

ϑ

Figure 14: Bulk cut at an angle ϑ and the used coordinate system.

The Hamiltonian describing the bulk of the Bi2Se3 topological insulator is given by (see chapter 2)

H(k) = ε0(k)I4×4 +




M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz
A2k+ 0 −A1kz −M(k)


 . (115)

To get the Hamiltonian for the surfaces, we again use the method of Zhou et al. [25] for quantum spin
Hall systems and follow the procedure of Ref. [26]. To calculate our surface states in the ((x cos(ϑ) −
y sin(ϑ)) − z) plane we start with the bulk Hamiltonian (Eq. (115))and we suggest a four-component
trial solution of the form:

Ψ = ψλe
λ(x sin(ϑ)+y cos(ϑ))+ikp(x cos(ϑ)−y sin(ϑ))+ikzz. (116)

kp is the momentum in the plane at angle ϑ. By putting this in the Hamiltonian of the bulk (equation
(115)) and using (kx, ky, kz) = (−i∂x,−i∂y,−i∂z) we get:

H(k) = ε0I4×4+



M(k) A1kz 0 A2(kp − λ)(cos(ϑ) + i sin(ϑ))
−M(k) A2(kp − λ)(cos(ϑ) + i sin(ϑ)) 0

0 A2(λ+ kp)(cos(ϑ)− i sin(ϑ)) M(k) −A1kz
A2(λ+ kp)(cos(ϑ)− i sin(ϑ)) 0 −A1kz −M(k)


 ,

(117)
where ε0 = C +D1k

2
z −D2(λ2 − k2

p) and M(k) = M −B1k
2
z +B2(λ2 − k2

p). In the new coordinates we
have k = (kp, kv, kz)

ᵀ where kp is in plane and kv is perpendicular to the plane. We solve the secular
equation det |H(k)− ε · I4×4| = 0 for λ:

λαβ(ε) = β

√
− F

2D−D+
+ α

√
R

2D−D+
, (118)

with
F = A2

2 − 2D−D+k
2
p −D−(C −M + k2

zS+ − ε)−D+(C +M + k2
zS− − ε), (119)

R = F 2 − 4D+D−((C +M + k2
zS− − ε+D−k

2
p)(C +M + k2

zS+ − ε+D+k
2
p)−A2

1k
2
z −A2

2k
2
p)), (120)
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and α = ±, β = ±, S± = D1 ± B1 and D± = D2 ± B2. Each of these solution is doubly degenerate,
meaning for each λ there are two linearly independent ψλ. Next, we calculate

ψλ =




φ1

φ2

φ3

φ4


 (121)

by solving the equation
H(k)ψλ = εψλ. (122)

We obtain two linearly independent solutions for each λ:

ψ
(1)
λ =




A2(kp − λ)(cos(ϑ) + i sin(ϑ))
0

−A1kz
−((C +M) + S−k

2
z +D−(k2

p − λ2)− ε)


 , ψ

(2)
λ =




−((C −M) + S+k
2
z +D+(k2

p − λ2)− ε)
A1kz

0
A2(kp + λ)(cos(ϑ)− i sin(ϑ))


 .

(123)
With these we can construct a general solution

Ψ(ε, kp, kz, x, y) =
∑

α=±

∑

β=±

∑

γ=1,2

Cγαβψ
γ
λαβ

eλαβ(x sin(ϑ)+y cos(ϑ)). (124)

Afterwards we use the boundary conditions Ψ((x sin(ϑ) + y cos(ϑ)) = 0) = Ψ((x sin(ϑ) + y cos(ϑ)) =
−∞) = 0. The latter implies that all Cγα− = 0, implying that there are only solutions for β = +. We put
the wave function in Ψ((x sin(ϑ) + y cos(ϑ)) = 0) = 0 and demand a nontrivial solution for Cγα+ (which
means the determinant of the coefficient matrix has to be 0). This leads to the important equation:

(λ+ + λ−)2 = − A2
2

D+D−
, (125)

where we abbreviated λ±+ to λ±. We expand the Hamiltonian H(k) (Eq. (88)) for small |k|. This is
possible due to the low-energy long-wavelength nature of the Dirac cone of the surface states at the Dirac
point Γ. This expansion is valid when the energy is limited within the band gap between the conduction
and valence bands [26]. For this reason we use:

H(k) = H0(k = 0) + ∆H, (126)

where

H0(k = 0) =



C +M −D−λ2 0 0 −A2λ(cos(ϑ) + i sin(ϑ))
0 C −M −D+λ

2 −A2λ(cos(ϑ) + i sin(ϑ)) 0
0 A2λ(cos(ϑ)− i sin(ϑ)) C +M −D−λ2 0

A2λ(cos(ϑ)− i sin(ϑ)) 0 0 C −M −D+λ
2




(127)
and

∆H =



S−k
2
z +D−k

2
p A1kz 0 A2kp(cos(ϑ) + i sin(ϑ))

A1kz S+k
2
z +D+k

2
p A2kp(cos(ϑ) + i sin(ϑ)) 0

0 A2kp(cos(ϑ)− i sin(ϑ)) S−k
2
z +D−k

2
p −A1kz

A2kp(cos(ϑ)− i sin(ϑ)) 0 −A1kz S+k
2
z +D+k

2
p


 .

(128)
By using

Ψ = ψλe
λ(x sin(ϑ)+y cos(ϑ)) =




φ1

φ2

φ3

φ4


 eλ(x sin(ϑ)+y cos(ϑ)) (129)
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we recognize that we can write the eigenvalue equation H(k = 0)ψλ = εψλ in terms of two decoupled
equations:

h1

(
φ1

φ4

)
= ε

(
φ1

φ4

)
and h2

(
φ2

φ3

)
= ε

(
φ2

φ3

)
, (130)

where

h1 =

(
C +M −D−λ2 A2λ(cos(ϑ) + i sin(ϑ))

A2λ(cos(ϑ)− i sin(ϑ)) C −M −D+λ
2

)
(131)

and

h2 =

(
C −M −D+λ

2 −A2λ(cos(ϑ) + i sin(ϑ))
A2λ(cos(ϑ)− i sin(ϑ)) C +M −D−λ2

)
. (132)

Solving the secular equations det |h1,2 − ε · I4×4| = 0 leads to the same λαβ from Eq. (118) but with
k = 0. We calculate the solution of the eigenvalue equations:

(
φ1

φ4

)

tot

=
∑

α=±

∑

β=±

Cαβ

(
A2λαβ(cos(ϑ) + i sin(ϑ))
C +M −D−λαβ − ε

)
eλαβ(x sin(ϑ)+y cos(ϑ)). (133)

and (
φ2

φ3

)

tot

=
∑

α=±

∑

β=±

C ′αβ

(
C +M −D−λαβ − ε

−A2λαβ(cos(ϑ)− i sin(ϑ))

)
eλαβ(x sin(ϑ)+y cos(ϑ)). (134)

Due to the boundary condition

(
φ1

φ4

)

tot

((x sin(ϑ) + y cos(ϑ)) = −∞) = 0 we know that all Cα− = 0

and similarly C ′α− = 0. We calculate

(
φ1

φ4

)

tot

((x sin(ϑ)+y cos(ϑ)) = 0) = 0. Because we want nontrivial

solutions for the coefficients, we can write the equation in Matrix form and ask for a nonzero determinant.
This leads to

ε = C +M +D−λ+λ−. (135)

Now our wave function can be further simplified by using Eq. (125)

(
φ1

φ4

)
= N

(
cos(ϑ) + i sin(ϑ)

−
√
−D−D+

)
,

(
φ2

φ3

)
= N

( √
−D−D+

cos(ϑ)− i sin(ϑ)

)
, (136)

where N =
√

D+

2B2
is the normalization constant.

The complete set of spinor solutions for H(k = 0)Φ = εΦ is given by the two basis spinors:

Φ1 =




φ1

0
0
φ4


 =

√
D+

2B2




cos(ϑ) + i sin(ϑ)
0
0

−
√
−D−D+


 and Φ2 =




0
φ2

φ3

0


 =

√
D+

2B2




0√
−D−D+

cos(ϑ)− i sin(ϑ)
0


 . (137)

We can use these two basis states to expand the Hamiltonian (88). This leads to a new effective surface
Hamiltonian:

Heff =

∫ ∞

−∞
d(x sin(ϑ) + y cos(ϑ))[Φ1,Φ2]†H(k)λ→∂x [Φ1,Φ2], (138)

and finally

Heff = C +
D2

B2
M + (D1 −

B1

B2
D2)k2

z −A2

√
1− D2

2

B2
2

σzkp +A1

√
1− D2

2

B2
2

kz(σx cos(ϑ) + σy sin(ϑ))

≈ C +
D2

B2
M −A2

√
1− D2

2

B2
2

σzkp +A1

√
1− D2

2

B2
2

kz(σx cos(ϑ) + σy sin(ϑ)).

(139)
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For ϑ = π/2 we get kp = ky and we can restore the Hamiltonian for Hyz (Eq. (9)). If ϑ = 0 we have
kp = kx and we receive the Hamiltonian Hxz in the (x− z) plane which is

Hxz = C +
D2

B2
M +A2

√
1− D2

2

B2
2

(kz
A1

A2
σx − σzkx). (140)

This result for the (x− z) plane can also be calculated similarly as we presented it for (y − z) plane.
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4 Josephson effect in topological insulator planar, step and edge
junctions

We derived the Josephson current which is transported through a junction due to Andreev bound states.
Such calculations can be done easily in one dimensional and two dimensional systems, as for example
nanowires and two dimensional conducting surfaces of topological insulators. In the theory part we also
showed that the surfaces can be described by 2 × 2 Hamiltonians which are TR invariant. All these
properties are used to calculate the Josephson effect on surfaces of topological insulators. We do this
for three different geometries: planar, step and edge junctions. We begin by briefly summarizing the
relevant Hamiltonians of the system.
The bulk material we consider is Bi2Se3. As demonstrated, the low-energy effective Hamiltonian for
Bi2Se3 in the basis of four hybridized states of Se and Bi pz−orbitals denoted as (|P1+

z ↑〉, |P2−z ↑〉,
|P1+

z ↓〉, |P2−z ↓〉) can be written as

H(k) = ε0(k)I4×4 +




M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz
A2k+ 0 −A1kz −M(k)


 , (141)

where k± = kx± iky, ε0(k) = C +D1k
2
z +D2k+k−, M(k) = M −B1k

2
z −B2k+k−, and k+k− = k2

x + k2
y.

Here ↑ (↓) stands for up (down) spin and + (−) stands for even (odd) parity.

(x-y)-plane

(y-z)-plane

x 

z
y

Figure 15: Bulk material and coordinate system.

We use the coordinate orientation shown in Fig. 15. To induce a Josephson effect, we need supercon-
ducting regions. This is achieved by bringing the surface in contact with an s-wave superconductor. The
proximity effect then induces effective p-wave superconductivity in the surface states. Since the topo-
logical insulator Bi2Se3 has an insulating bulk and only the surface states are conducting, it is sufficient
to know the surface Hamiltonians and we don’t have to worry about the bulk anymore.
The effective Hamiltonian describing carriers in the (x− y) plane of the topological insulator is given by

Hxy = εxy0 + ~vxyF (σxky − σykx), (142)

where εxy0 = C + (D1/B1)M is the energy at the Dirac point, ~vxyF = A2

√
1− (D1/B1)2 represents the

Fermi velocity in the (x− y) plane, and σi, (i = x, y, z) denote the Pauli matrices. In the (y − z) plane
it is

Hyz = εyz0 + ~vyzF (σy
A1

A2
kz − σzky), (143)

with the Dirac point energy εyz0 = C + (D2/B2)M and the Fermi velocity ~vyzF = A2

√
1− (D2/B2)2.

These two surface Hamiltonians are TR invariant. The TR operator is T = I2×2⊗ iσyK. To describe
the electrons and holes in one Hamiltonian, we write the surface states in the Nambu basis and subtract

the chemical potential µ which is equal to the Fermi energy EF at T = 0 (µ
T=0
= EF ):

Hn
xy =

(
Hxy − µ 0

0 −Hxy + µ

)
, Hn

yz =

(
Hyz − µ 0

0 −Hyz + µ

)
. (144)
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The eigenvalue problem now takes the form:

Hn
xyΨ = εΨ, Hn

yzΨ = εΨ. (145)

Ψᵀ = (Ψe,Ψh)ᵀ is a four component vector which contains a two component vector Ψe representing
the electrons and similarly a two component vector Ψh for the holes. In a normal metal electrons and
holes move separately and are decoupled. This changes as soon as superconductivity is induced. In the
superconducting surface, the electron and hole states are coupled to each other. This is described by the
BdG equation. Therefore, the surface Hamiltonians for the superconducting (x − y) plane and (y − z)
plane take the following form:

Hs
xy =

(
Hxy − U0 − µ ∆0e

iφ

∆0e
−iφ −Hxy + U0 + µ

)
, Hs

yz =

(
Hyz − U0 − µ ∆0e

iφ

∆0e
−iφ −Hyz + U0 + µ

)
, (146)

and the corresponding BdG equations

Hs
xyΨs = εΨs, Hs

yzΨs = εΨs. (147)

Note the simple form of the diagonal elements due to the TR invariance of the surface state Hamiltonian.
These are all the Hamiltonians needed for the calculation of the Josephson effect in topological insulator
planar, step and edge junctions. The setups are drawn in Fig. 16. The junctions are divided into three
regions: region I and III denote topological superconducting planes and region II denotes a topological
insulator plane (which is normal conducting). We are doing our calculations in the small junction limit,
L � W , where W is the width in y−direction, which is still finite. The superconducting regions are
assumed to be infinite on the open sides.

x = 0 x = L

L L

x = z = 0

 z = L

x 

z
y

x = z = 0

z = L

L

(a) (b) (c)

I II IIII

III
II

I

ss s

s
n

n

W W W
III

II

s

s

s
n

Figure 16: Schematics of the three topological junctions: (a) planar junction, (b) step junction, (c) edge
junction. The blue planes are the superconductors inducing p-wave superconductivity in the surface
of the topological insulator. The superconducting regions (s) are referred to as region I and III. The
junction in between is the normal conducting (n) surface of the topological insulator (region II).

In general, regions I and III are topological superconductors and thus described by the BdG Eqs.
(147). Furthermore, it is assumed that there is an electrostatic potential U in the three regions which can
be adjusted independently by a gate voltage or doping. The zero potential is chosen to be in region II. In
region I and III the potential is U = −U0. Moreover, we use U0 � |µ−ε0|, ε. This means that the Fermi
wave length λ′F in the superconductor is sufficiently small, such that λ′F � ξ, λF , where λF = ~vF /µ is
the Fermi wave length in the normal region II and ξ = ~vF /∆0 is the superconducting coherence length.
In this regime of a heavily doped superconductor with |ky| ≤ |(µ − ε0)/~vF | the wave functions can be
simplified. In addition, it is assumed that the interface is smooth and impurity free on the scale of ξ.

When the calculation is done for the different setups, it can soon be seen, that the results of the planar
junction can be derived from the step junction by a simple change of variables. This is why the main part
of the discussion is always about the step junction, with the intention, that it includes the discussion of
the planar case.
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In the next section, we will talk about the interfaces. The most common boundary condition to de-
scribe interfaces is the continuity of the wave functions at the interfaces. But for Hamiltonians with TR
symmetry, a boundary may be described in terms of a more general condition by including a very thin
potential barrier at the interface.

4.1 Boundary conditions

The usual boundary conditions are the continuity of the wave functions and current conservation. We
derive a different set of boundary conditions, which fulfills the usual condition of current conservation
but is more general than the continuity of the wave functions. More specifically, it includes the continuity
of the wave functions as a special case.

4.1.1 Current conservation

Naturally, the current has to be conserved at the interfaces. In second quantization we can calculate
the current density operator j(r, t) by using Heisenberg’s equation of motion for the probability density
ρ(r, t) = Ψ†(r, t)Ψ(r, t):

i~
∂ρ(r, t)

∂t
= [ρ(r, t), H], (148)

and the continuity equation

∇ · j +
∂ρ

∂t
= 0. (149)

In second quantization we have H =
∫
drΨ†(r, t)H(r, t)Ψ(r, t) where H(r, t) is the Hamiltonian density.

Ψ(r, t)ᵀ = (Ψe,Ψh)ᵀ denote the wave functions.
Independent of whether we are dealing with a topological insulator or superconductor, the current

operator in the (x− y) plane becomes:

jxy =



−vxyF Ψ†eσyΨe + vxyF Ψ†hσyΨh

vxyF Ψ†eσxΨe − vxyF Ψ†hσxΨh

0


 . (150)

Similarly in the (y − z) plane the current becomes

jyz =




0

−vyzF Ψ†eσzΨe + vxyF Ψ†hσzΨh

vyzF
A1

A2
Ψ†eσyΨe − vyzF A1

A2
Ψ†hσyΨh


 . (151)

In the step junction, the current which flows in x−direction is conserved by flowing in z−direction in
region II.

4.1.2 Hermiticity of the total Hamiltonian

Planar junction
In a TR invariant system an interface between a superconducting and a normal conducting region can be
described by a single parameter which determines the scattering at the interface [27]. Since the normal
conducting junctions are described by TR-invariant Hamiltonians, we derive such a boundary condition
similar to Ref. [27] for our normal conducting junctions. To explain the idea of the method, we derive
the boundary conditions for the planar junction in detail.
The Hamiltonian for the entire system is given by Hs

xy for x < 0, Hn
xy for 0 < x < L and Hs

xy for x > L.
We demand that this total Hamiltonian H is hermitian. We proceed by doing an integration by parts,
requiring all the surface terms have to vanish. In second quantization

H =

∫ ∞

−∞
dy

[∫ 0

−∞
dx+

∫ L

0

dx+

∫ ∞

L

dx

]
Ψ†HΨ (152)
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has to be hermitian. We simplify the problem by considering only one interface for the moment. Then,
for the first interface, the Hamiltonian HI with Hs

xy for x < 0, Hn
xy for 0 < x shall be hermitian. This

means, when doing an integration by parts all the surface terms have to vanish:

HI =

∫ ∞

−∞
dy

[∫ 0

−∞
dx+

∫ ∞

0

dx

]
Ψ†HΨ =

∫ ∞

−∞
dy

[(
ΨsI
e

ΨsI
h

)†
i~vxyF,I

(
σy 0
0 −σy

)(
ΨsI
e

ΨsI
h

) ∣∣∣
x→0−

−
(

ΨII
e

ΨII
h

)†
i~vxyF,II

(
σy 0
0 −σy

)(
ΨII
e

ΨII
h

) ∣∣∣
x→0+

]

−
∫
dy

∫
dx . . . ,

(153)
where vxyF,I is the Fermi velocity in region I, vxyF,II and vxyF,III in region II and III respectively. This leads
to the boundary condition

ΨsI†
e/hv

xy
F,IσyΨsI

e/h|x→0− = ΨII†
e/hv

xy
F,IIσyΨII

e/h|x→0+ (154)

for the first interface. An analogous argumentation leads to the boundary condition

ΨII†
e/hv

xy
F,IIσyΨII

e/h|x→L− = ΨsIII†
e/h vxyF,IIIσyΨsIII

e/h |x→L+ (155)

for the second interface. It can be seen, that we get the same boundary conditions for the electrons and
the holes. In a next step, a general relation between ΨsI |x→0+ and ΨII |x→0+ is derived. The functions
hereafter refer only to the electron part, but the index “e” is omitted for simplicity. (It is exactly the
same derivation for the hole part, with the exception of a sign change during the calculation which
cancels out in the end.)
At first, we solve the equation

σy = U†σyU. (156)

The identity matrix I and the three Pauli matrices σi (i = x, y, z) form a basis for 2 × 2 matrices. In
this case

U = e−ασx−iβI−iγσy−δσz (157)

is a general solution for Eq. (156). This can be physically interpreted by considering a thin barrier of
width d extending from x = 0 to x = d. Consequently, in this region we have to include an additional
constant term V consisting of both, potential and magnetic parts,

V (x) = AI +Bσx + Cσz +Dσy, (158)

where A,B,C and D are real in order that the Hamiltonian is hermitian. A can be thought of as a
potential, and B,C and D as being proportional to the three components of a magnetic field which has a
Zeeman coupling to the spin of the electron. We will eventually be interested in the limit of a δ-function
barrier, so that A,B,C,D →∞ and d→ 0, keeping Ad,Bd,Cd and Dd fixed. The Hamiltonian in the
region 0 < x < d is now given by

Hd = εxy0 − i~vxyF (σx∂y − σy∂x)− µ+AI +Bσx + Cσz +Dσy. (159)

We look for a state with energy E and momentum ky in the y−direction. The corresponding wave
function is of the form:

ψ(x, y, t) = f(x)eikyy−iEt. (160)

In the region 0 < x < d it satisfies the equation

(εxy0 + ~vxyF σx∂y + i~vxyF σy∂x − µ+AI +Bσx + Cσz +Dσy)f = Ef. (161)

Since we are interested in the limit A,B,C,D →∞, we can ignore the terms of finite order (terms of E,
ky, εxy0 and µ). The equation then can be solved with

f(x) = ex(iAσy+Bσz−Cσx+iDI)/vxyF (162)
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and thus
f(d) = ed(iAσy+Bσz−Cσx+iDI)/vxyF . (163)

Next we take the limit A,B,C,D → ∞ and d → 0 and keep Ad = −vxyF γ, Bd = −vxyF δ, Cd = −vxyF α
and Dd = −vxyF β fixed. By superposing states with different values of E and ky, we recognize that any
wave function ψ(x, y, t) must satisfy

ψ(0+, y, t) = ψ(0−, y, t)e−ασx−iβI−iγσy−δσz . (164)

By imposing invariance under TR (we know that our surface Hamiltonians are TR invariant), only one
parameter (A) will be left and the other three parameters (B, C, D) must be zero, since they can be
interpreted as arising from a magnetic field. TR invariance of the surface Hamiltonian for the electrons
means T HT = iσyH

∗(−iσy) = σyH
∗σy = H. By applying this transformation, it can be seen that only

γ (or A) can be nonzero if V is invariant under TR.
Using Eq. (154), the boundary condition for the first interface reads

ΨII
e/h|x→0+ =

√
vxyF,I
vxyF,II

e−iγσyΨsI
e/h|x→0− , (165)

and similarly, with Eq. (155), for the second interface

ΨsIII
e/h |x→L+ =

√
vxyF,II
vxyF,III

e−iγσyΨII
e/h|x→L− . (166)

In the planar case all the velocities are the same, as the same material and surface are used.
We refer to the fact that current conservation is fulfilled with the boundary conditions Eqs. (165 and 166).

Step junction
The Hamiltonian for the entire system is given by Hs

xy for x < 0, Hn
yz for 0 < z < L and Hs

xy for x > 0.
As before, we demand that this total Hamiltonian is hermitian. Again we consider only one interface at
a time and the Hamiltonian HI with Hs

xy for x < 0, z = 0, Hn
yz for 0 < z, x = 0 shall be hermitian.

This implies, the surface terms of the following equation have to vanish:

HI =

∫ ∞

−∞
dy

[∫ 0

−∞
dx+

∫ ∞

0

dz

]
Ψ†HΨ =

∫ ∞

−∞
dy

[(
ΨsI
e

ΨsI
h

)†
i~vxyF,I

(
σy 0
0 −σy

)(
ΨsI
e

ΨsI
h

) ∣∣∣
x→0−

+

(
ΨII
e

ΨII
h

)†
i~vyzF,II

A1

A2

(
σy 0
0 −σy

)(
ΨII
e

ΨII
h

) ∣∣∣
z→0+

]

−
∫
dy

∫
dxdz . . . ,

(167)
where vxyF,I is the Fermi velocity in region I, vyzF,II and vxyF,III in region II and III respectively. This leads
to the boundary condition

ΨsI†
e/hv

xy
F,IσyΨsI

e/h|x→0− = −ΨII†
e/hv

yz
F,II

A1

A2
σyΨII

e/h|z→0+ (168)

for the first interface. An analogous derivation leads to the boundary condition

ΨII†
e/hv

yz
F,II

A1

A2
σyΨII

e/h|z→L− = −ΨsIII†
e/h vxyF,IIIσyΨsIII

e/h |x→0+ (169)

for the second interface. It can be seen that we have the same equation as in the planar case, just with
a different sign. Thus, the solution for the first interface is

ΨII
e/h|z→0+ = i

√
vxyF,IA2

vyzF,IIA1
e−iγσyΨsI

e/h|x→0− , (170)
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and for the second interface

ΨsIII
e/h |x→0+ = i

√
vyzF,IIA1

vxyF,IIIA2
e−iγσyΨII

e/h|z→L− . (171)

Contrary to the planar junction, the velocities in region I and III are equal (both in (x− y) plane) but
different from the velocity in region II ((y−z) plane). Current conservation is fulfilled with the boundary
conditions (170, 171).

Edge junction
Completely analogously the boundary condition for the edge junction at z = L, x = 0 can be calculated:

ΨII
e/h|z→0+ = i

√
vxyF,IA2

vyzF,IIA1
e−iγσyΨsI

e/h|x→0− . (172)

The boundary condition for the second interface is

ΨsIII
e/h |z→L+ = e−iγσyΨII

e/h|z→L− . (173)

The above derived boundary conditions are used when the system is TR invariant. For a TR sym-
metry breaking system such more general boundary conditions would be more complicated, since the
magnetic parts are nonzero. Thats why, for simplicity, we will use the continuity of the wave functions
for TR invariant systems.

4.2 Planar junction

4.2.1 Solutions of the BdG equations

In all three junctions region I (x < 0, z = 0) is superconducting and described by the Hamiltonian
Hs

xy and the corresponding BdG equations. We are looking for solutions of the BdG equations in the
superconducting region which decay exponentially for ε < ∆0. In the regime U0 + µ − εxy0 � {∆0, ε}
and ε < ∆0 we find

ΨI±
s (x, y) =

(
ΨI±
se (x, y)

ΨI±
sh (x, y)

)
= eikyy±ikxx+κx




e∓iβ

∓ie∓iβ±iα
e−iφI

∓ie−iφI±iα


 , (174)

where β = arccos(ε/∆0), sin(α) =
~vxyF ky

U0+µ−εxy0
, kx =

√
(U0+µ−εxy0 )2

(~vxyF )2 − k2
y and

κ =
(U0+µ−εxy0 )∆0

(~vxyF )2kx
sin(β). These solutions decay as x → −∞. The sign ± denotes the direction ±x of

transport of the wave. The heavily doped regime (U0 � |µ − εxy0 |, ε) can be approximated with α = 0
and thus with the wave functions

ΨI±
s (x, y) = eikyy±ikxx+κx




e∓iβ

∓ie∓iβ
e−iφI

∓ie−iφI


 . (175)

For the planar case the effective Hamiltonian in region II (0 < x < L, z = 0) is Hn
xy. The solutions of

the eigenvalue equation are superpositions of states in the form

ΨII±
e (x, y) =




1
∓ie±iα(ε)

0
0


 eikyy±ikx(ε)x, ΨII±

h (x, y) =




0
0
1

∓ie±iα(−ε)


 eikyy±ikx(−ε)x, (176)
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where sin(α(ε)) =
~vxyF ky
ε+µ−εxy0

and kx(ε) =
√

(ε+µ−εxy0 )2

(~vxyF )2 − k2
y.

Region III of the planar junction is described by Hs
xy. In contrast to the wave functions in region I,

these need to decay for x → ∞. Consequently, we get similar solutions of the BdG equation in region
III (for x > L, z = 0) but with some changes in sign:

ΨIII±
s (x, y) =

(
ΨIII±
se (x, y)

ΨIII±
sh (x, y)

)
= eikyy±ikx(x−L)−κ(x−L)




e±iβ

∓ie±iβ±iα
e−iφIII

∓ie−iφIII±iα


 , (177)

where β = arccos(ε/∆0), sin(α) =
~vxyF ky

U0+µ−εxy0
, kx =

√
(U0+µ−εxy0 )2

(~vxyF )2 − k2
y and κ =

(U0+µ−εxy0 )∆0

(~vxyF )2kx
sin(β).

These solutions decay for x→∞.
Here we also restrict ourselves to the heavily doped regime and use α = 0, resulting in

ΨIII±
s (x, y) = eikyy±ikx(x−L)−κ(x−L)




e±iβ

∓ie±iβ
e−iφIII

∓ie−iφIII


 . (178)

4.2.2 Boundary conditions

The Hamiltonians describing our system are TR invariant and we can use the more general boundary
conditions with the small potential barrier at the interface. For the first interface (between region I and
II), the most general boundary conditions are:

[a+
e,hΨII+

e,h (x, y) + a−e,hΨII−
e,h (x, y)]|x→0+ = e−iγ1σy [α+ΨI+

s(e,h)(x, y) + α−ΨI−
s(e,h)(x, y)]|x→0− . (179)

The indices e, h denote the electron and hole wave functions. In the superconducting wave function, e
refers to the first two entries and h to the last two entries of the four component wave vectors. a±e,h are
the amplitudes of the electron and hole wave functions propagating in ±x−direction. They are different
for electrons and holes in the second region. In the superconducting surface, on the contrary, the electron
and hole wave functions have the same amplitudes α±, as there the electron and holes are coupled to
each other via the BdG equations. For the interface between region II and III we get similar equations:

[β+ΨIII+
s(e,h)(x, y) + β−ΨIII−

s(e,h)(x, y)]|x→L+ = e−iγ2σy [a+
e,hΨII+

e,h (x, y) + a−e,hΨII−
e,h (x, y)]|x→L− , (180)

with the amplitudes β± for the superconducting wave functions propagating in ±x−direction. The
boundary conditions yield eight equations for eight variables (a±e,h, α± and β±) and two parameters γ1

and γ2 for the “potential” of the first and the second interface respectively. We write the eight equations
in matrix representation:

M ·




a+
e

a−e
a+
h

a−h
α+

α−

β+

β−




= 0, (181)

with

M =

(
M11 M12

M21 M22

)
, (182)

where

M11 =




Ψ+
e 01 Ψ−e 01 0 0

Ψ+
e 02 Ψ−e 02 0 0
0 0 Ψ+

h 01 Ψ−h 01
0 0 Ψ+

h 02 Ψ−h 02


 =




1 1 0 0
−ieiα(ε) ie−iα(ε) 0 0

0 0 1 1
0 0 −ieiα(−ε) ieiα(−ε)


 , (183)
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M12 =




cos γ1ΨI+
se 01− sin γ1ΨI+

se 02 cos γ1ΨI−
se 01− sin γ1ΨI−

se 02 0 0
sin γ1ΨI+

se 01 + cos γ1ΨI+
se 02 sin γ1ΨI−

se 01 + cos γ1ΨI−
se 02 0 0

cos γ1ΨI+
sh 01− sin γ1ΨI+

sh 02 cos γ1ΨI−
sh 01− sin γ1ΨI−

sh 02 0 0

sin γ1ΨI+
sh 01 + cos γ1ΨI+

sh 02 sin γ1ΨI−
sh 01 + cos γ1ΨI−

sh 02 0 0




=




e−iγ1−iβ eiγ1+iβ 0 0
−ieiγ1−iβ ie−iγ1+iβ 0 0
e−iγ1−iφI eiγ1−iφI 0 0
−ieiγ1−iφI ie−iγ1−iφI 0 0


 ,

(184)

M21 =




Ψ+
e L1 Ψ−e L1 0 0

Ψ+
e L2 Ψ−e L2 0 0
0 0 Ψ+

hL1 Ψ−h L1
0 0 Ψ+

hL2 Ψ−h L2




=




eikx(ε)L e−ikx(ε)L 0 0
−ieiα(ε)eikx(ε)L ie−iα(ε)e−ikx(ε)L 0 0

0 0 eikx(−ε)L e−ikx(−ε)L

0 0 −ieiα(−ε)eikx(−ε)L ieiα(−ε)e−ikx(−ε)L


 ,

(185)

M22 =




0 0 cos γ2ΨIII+
se L1 + sin γ2ΨIII+

se L2 cos γ2ΨIII−
se L1 + sin γ2ΨIII−

se L2
0 0 cos γ2ΨIII+

se L2− sin γ2ΨIII+
se L1 cos γ2ΨIII−

se L2− sin γ2ΨIII−
se L1

0 0 cos γ2ΨIII+
sh L1 + sin γ2ΨIII+

sh L2 cos γ2ΨIII−
sh L1 + sin γ2ΨIII−

sh L2

0 0 cos γ2ΨIII+
sh L2− sin γ2ΨIII+

sh L1 cos γ2ΨIII−
sh L2− sin γ2ΨIII−

sh L1




=




0 0 eiγ2−iβ e−iγ2+iβ

0 0 −ie−iγ2−iβ ieiγ2+iβ

0 0 eiγ2−iφIII e−iγ2−iφIII

0 0 −ie−iγ2−iφIII ieiγ2−iφIII


 .

(186)

The first label (0, L) behind the wave functions Ψ indicates the x−position at which the wave function
is evaluated and the second label (1, 2) denotes the component.
Any matrix equation A · ~x = 0, where A is a n × n square matrix and ~x a n component vector of
solution variables, is solved by the trivial solution ~x = 0. If the determinant of A is nonzero, the trivial
solution is the only solution of the equation. In our case this implies, that our wave functions are 0 as
their components are 0. But since we want nontrivial solutions, we need the determinant of the matrix
to be zero: det(M) = 0. We solve the equation for the phase difference φ = φI − φIII of the two
superconducting regions by writing the phases of the superconductors in terms of the phase difference
φ: φI = φ/2 and φIII = −φ/2. We get:

cos(φ) =

(
cos(kx(ε)L) cos(kx(−ε)L) +

sin(kx(ε)L) sin(kx(−ε)L)

cos(α(ε)) cos(α(−ε))

)
cos(2β)

+

(
sin(kx(ε)L) cos(kx(−ε)L)

cos(α(ε))
− cos(kx(ε)L) sin(kx(−ε)L)

cos(α(−ε))

)
sin(2β)

− sin(kx(ε)L) sin(kx(−ε)L) tan(α(ε)) tan(α(−ε)).

(187)

We find that Eq. (187) is independent of the interface parameters γ1 and γ2. This means, we obtain the
same expression for cos(φ) in the special case γ1 = γ2 = 0 which corresponds to the continuity of the
wave functions. Naturally, the wave functions look different, if we use the boundary conditions with the
potential barriers γ1 and γ2 at the boundaries than if we only demand continuity. In our general case
the wave functions are functions of γ1 and γ2.

4.2.3 Josephson current

In a next step, a finite width W is introduced to quantize the transverse wave vectors, ky → kyn,
n = 0, 1, 2, . . . . With ρn(ε, φ), the density of states in mode n, the Josephson current at zero temperature
is given by:

J(φ) = −2e

~
d

dφ

∫ ∞

0

dε

∞∑

n=0

ρn(ε, φ)ε. (188)
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With the “infinite mass” boundary conditions [28] at y = 0 and y = W quantized values kyn = (n +

1/2)π/W can be used [29]. As a result of this quantization, we get kxn =
√

((µ− εxy0 )/~vxyF )2 − k2
yn,

which means, the lowest N(µ) = (µ − εxy0 )W/(π~vxyF ) modes are propagating as kxn is real, while the
higher modes are evanescent, since for these modes kxn is imaginary. The analysis of the Josephson
current is done in the short-junction regime where the length L of the normal region is small relative to
the superconducting coherence length ξ. This requires ∆0 � ~vxyF /L. This implicates that the energy
ε is small, making the following simplifications valid to leading order in the small parameter ∆0L/~vxyF :
α(−ε) ≈ α(ε) ≈ α(0) =: α and kx(−ε) ≈ kx(ε) ≈ kx(0) =: kxn. The solution is a single bound state per
mode:

εn(φ) = ∆0

√
1− τn sin2(φ/2), (189)

τn =
k2
xn

k2
xn cos2(kxnL) +

(
µ−εxy0

~vxyF

)2

sin2(kxnL)
. (190)

In Eq. (189) we have written the energy in a special form. This enables us to compare it to the
expression of the energy which we derived in chapter 2 for Andreev scattering. We see that the Andreev
bound states of a topological insulator junction look like those in a normal (trivial) Josephson junction.
Consequently, we may interpret τn as the transmission probability of region II − the conducting surface
of the topological insulator. By using ρn(ε, φ) = δ(ε − εn(φ)) the supercurrent due to the discrete
spectrum becomes:

J(φ) =
e∆0

2~

∞∑

n=0

τn sin(φ)√
1− τn sin2(φ/2)

=
e∆0

~
W

2π

∫ ∞

0

τn sin(φ)√
1− τn sin2(φ/2)

dkyn. (191)

Contributions to the supercurrent from the continuous spectrum are smaller by a factor proportional to
L/ξ where ξ is the superconducting coherence length and may be neglected in the short-junction regime
[30]. For L� W the summation over n may be replaced by an integration. The integral can be solved
numerically. Since the chemical potential µ can be tuned (e.g. by a gate voltage), it makes sense to plot
the critical Josephson current as a function of the chemical potential with respect to the Dirac point
energy. This is done in Fig. 17 (blue line). The current is a combination of propagating (real kx) and
evanescent (imaginary kx) waves. The red line in Fig. 17 shows the contribution of the propagating waves

only. We can see that the contribution of the evanescent waves can be neglected for |Λ| = |µ−ε
xy
0

~vxyF
| ≥ 2

but becomes dominant for |Λ| → 0. The limiting behaviour at the Dirac point (|µ− εxy0 | � ~vxyF /L) for
a short junction can be calculated analytically by doing a Taylor expansion of the sum around τn (the
calculation can be found in the analysis of the step junction). This results in

J(φ) =
e∆0

2~
W

πL
cos(φ/2) arctan(sin(φ/2)) for |µ− εxy0 | � ~vxyF /L, (192)

which leads to the critical current

Jc,min = 0.21
e∆0

~
W

L
. (193)

This is plotted in Fig. 17 (red line). In the opposite regime (|µ − εxy0 | � ~vxyF /L) the critical current
becomes:

Jc,slope = 0.61
e∆0

~
(µ− εxy0 )W

π~vxyF
, (194)

which is plotted in Fig. 17 (black line). In this regime the oscillating behaviour of the critical current
can be considered as a small deviation.
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Figure 17: Critical current Jc of a planar Josephson junction, as a function of Λ =
µ−εxy0

~vxyF
(where

the chemical potential is the tunable parameter) in the normal region (blue). The black lines are the
asymptotes and the red lines show the contribution of the propagating waves only.

In 2006 Titov and Beenakker [31] made a similar calculation of the “Josephson effect in ballistic
graphene”. In graphene low-lying excitations are also described by a Dirac equation H0 = −i~vF (σx∂x+
σy∂y). But in contrast to a topological insulator, the energy spectrum of graphene consists of two Dirac
cones instead of one. Due to this degeneracy, graphene gives twice the Josephson current of a topological
insulator.

4.3 Step junction

4.3.1 Solutions of the BdG equations

Region I (x < 0, z = 0) is equal to region I of the planar case and we use the solutions of the BdG in
the heavily doped regime (U0 � |µ− εxy0 |, ε):

ΨI±
s (x, y) = eikyy±ikxx+κx




e∓iβ

∓ie∓iβ
e−iφI

∓ie−iφI


 . (195)

The effective Hamiltonian in region II (0 < z < L, x = 0) for the step junction is Hn
yz. The solutions of

the eigenvalue problem are any linear combination of the eigenstates

ΨII±
e (y, z) =

1√
1 + sin(α(ε))




∓i cos(α(ε))
1 + sin(α(ε))

0
0


 eikyy±ikz(ε)z, (196)

ΨII±
h (y, z) =

1√
1 + sin(α(−ε))




0
0

∓i cos(α(−ε))
1 + sin(α(−ε))


 eikyy±ikz(−ε)z, (197)

where sin(α(ε)) =
~vyzF ky
ε+µ−εyz0

and A1

A2
kz(ε) =

√
(ε+µ−εyz0 )2

(~vyzF )2 − k2
y.

The solution of the BdG equations of region III (x > 0, z = L) with the Hamiltonian Hs
xy are similar

to those of the planar case:

ΨIII±
s (x, y) =

(
ΨIII±
se (x, y)

ΨIII±
sh (x, y)

)±
= eikyy±ikx(x)−κ(x)




e±iβ

∓ie±iβ±iα
e−iφIII

∓ie−iφIII±iα


 , (198)

46



where β = arccos(ε/∆0), sin(α) =
~vxyF ky

U0+µ−εxy0
, kx =

√
(U0+µ−εxy0 )2

(~vxyF )2 − k2
y and κ =

(U0+µ−εxy0 )∆0

(~vxyF )2kx
sin(β).

These solutions decay as x → ∞. We again assume heavy doping of the superconducting region such
that the wave functions can be simplified with α = 0:

ΨIII±
s (x, y) = eikyy±ikx(x)−κ(x)




e±iβ

∓ie±iβ
e−iφIII

∓ie−iφIII


 . (199)

4.3.2 Boundary conditions

In the step junction the Hamiltonians describing the three regions are TR invariant too. We use the
boundary condition with the thin potential barrier. For the first interface (between region I and II) we
have:

[a+
e,hΨII+

e,h (y, z) + a−e,hΨII−
e,h (y, z)]|z→0+ = i

√
vxyF A2

vyzF A1
e−iγ1σy [α+ΨI+

s(e,h)(x, y) + α−ΨI−
s(e,h)(x, y)]|x→0− .

(200)
The indices e, h denote the electron and the hole wave functions. In the superconducting wave function,
e refers to the first two entries and h to the last two entries of the four component wave vectors. a±e,h are
the amplitudes of the electron and hole wave functions propagating in ±z−direction. They are different
for electrons and holes in the second region. In the superconductor on the contrary, the electron and
hole wave functions have the same amplitudes α± as there the electron and holes are coupled to each
other via the BdG equations. For the interface between region II and III we get similar equations:

[β+ΨIII+
s(e,h)(x, y) + β−ΨIII−

s(e,h)(x, y)]|x→0+ = i

√
vyzF A1

vxyF A2
e−iγ2σy [a+

e,hΨII+
e,h (y, z) + a−e,hΨII−

e,h (y, z)]|z→L− .

(201)
In contrast to the planar junction, the velocities of the superconducting and normal regions are different,
this is why they appear in the boundary conditions. The factor i appears because the sign of the
discontinuous part changes at the interface.
With the same procedure like in the planar case − writing the eight equations in matrix representation
and demanding nontrivial solutions for the coefficients − we get a similar condition for φ as in the planar
case Eq. (187), but with different signs:

cos(φ) =

(
cos(kz(ε)L) cos(kz(−ε)L) +

sin(kz(ε)L) sin(kz(−ε)L)

cos(α(ε)) cos(α(−ε))

)
cos(2β)

+

(
cos(kz(ε)L) sin(kz(−ε)L)

cos(α(−ε)) − sin(kz(ε)L) cos(kz(−ε)L)

cos(α(ε))

)
sin(2β)

− sin(kz(ε)L) sin(kz(−ε)L) tan(α(ε)) tan(α(−ε)).

(202)

As before, it is calculated in the heavily doped regime, meaning the parameters α→ 0 in the supercon-
ducting regions.

4.3.3 Josephson current

To calculate the Josephson current, a finite width W is introduced to quantize the transverse wave vectors
in region II, ky → kyn, n = 0, 1, 2, . . . . With ρn(ε, φ), the density of states of mode n, the Josephson
current at zero temperature is given by:

J(φ) = −2e

~
d

dφ

∫ ∞

0

dε

∞∑

n=0

ρn(ε, φ)ε. (203)

Using again the “infinite mass” boundary conditions [28] at y = 0 and y = W , kyn = (n + 1/2)π/W

is valid. This quantizes kzn and A1

A2
kzn =

√(
µ−εyz0

~vyzF

)2

− k2
yn, which means the lowest N(µ − εyz0 ) =
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(
µ−εyz0

~vyzF

)
W
π modes are propagating as kzn is real, while the higher modes are evanescent, since for these

modes kzn is imaginary. The analysis of the Josephson current is done in the short-junction regime
where the length L of the normal region is small relative to the superconducting coherence length ξ.
This requires ∆0 � ~vyzF /L making α(−ε) ≈ α(ε) ≈ α(0) =: α and kz(−ε) ≈ kz(ε) ≈ kz(0) =: kzn a
good approximation. The solution is a single bound state per mode:

εn(φ) = ∆0

√
1− τn sin2(φ/2), (204)

τn =

(
A1

A2
kzn

)2

(
A1

A2
kzn

)2

cos2(kznL) +
(
µ−εyz0

~vyzF

)2

sin2(kznL)
. (205)

We compare Eq. (204) to the energy modes of the usual Andreev reflection. This enables us to identify
τn as the transmission probability of the topological insulator surface sandwiched between two heavily
doped topological superconducting surfaces. We realize that the solutions of the step case are the same
as those of the planar case (see Eq. (190)) with exception of the additional scaling factor A1

A2
in the

step case. This scaling factor means, that the Fermi velocity in direction of transport (z−direction) is
different from the velocity in transverse direction (y−direction).
By using ρn(ε, φ) = δ(ε− εn(φ)) the supercurrent due to the discrete spectrum becomes

J(φ) =
e∆0

2~

∞∑

n=0

τn sin(φ)√
1− τn sin2(φ/2)

=
e∆0

~
W

2π

∫ ∞

0

τn sin(φ)√
1− τn sin2(φ/2)

dkyn. (206)

As L � W , the summation over n may be replaced by an integration. The integral can be solved

numerically. In Fig. 18 we plotted the Josephson current for different values of Λ =
µ−εyz0

~vyzF

(
A2L
A1

)
, where

the chemical potential µ is the parameter that can be tuned.
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Figure 18: Current J(φ) of a Josephson junction for different values of Λ =
µ−εyz0

~vyzF

(
A2L
A1

)
.

The Λ = 0 curve shows the small µ − εyz0 limit, which is calculated analytically later. The other
curves are the numerical solutions of the integral in Eq. (206).
By maximizing the current with respect to φ, the critical Josephson current can be calculated. This
is shown in Fig. 19 for different values of A1 and A2. Figure 20 (blue line) shows the most general
case, where the dependence of A1 and A2 is absorbed in the axis scaling of the plot. The red line is the
contribution of the propagating waves only.
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Figure 19: Critical current Jc of a Josephson junction for different values of A1 and A2, as a function of
the chemical potential µ.
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Figure 20: Critical current Jc of a Josephson junction, as a function of the chemical potential Λ =
µ−εyz0

~vyzF

(
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)
of the normal region (blue). This is the most general case, where the whole dependence on

the factor A1

A2
is absorbed in the plotting variable and in the critical current Jc. In red, the contribution

of the propagating waves only is shown. The black line is the slope of the critical current (|Λ| � 1).

The limiting behaviour at the Dirac point µ− εyz0 �
~vyzF
L can be calculated:

J(φ) =
e∆0

2~

∞∑

n=0

τn sin(φ)√
1− τn sin2(φ/2)

=
e∆0

2~
sin(φ)

∞∑

n=0

(
τn +

τ2
n sin2(φ/2)

2
+

3τ3
n sin4(φ/2)

8
+

5τ4
n sin6(φ/2)

16
+ . . .

)
.

(207)

To get an analytical expression,
∑∞
n=0 τn is calculated under the assumption kzn = iκ, which means that

τn = 1
cosh2(κL)

and thus
∞∑

n=0

τn =
W

Lπ

A1

A2

∫ ∞

0

d(κL)

cosh2(κL)
=
W

Lπ

A1

A2
. (208)
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Similarly the other sums can be computed:

∞∑

n=0

τ2
n

2
=
W

Lπ

A1

A2

∫ ∞

0

d(κL)
1

2 cosh4(κL)
=

1

3

W

Lπ

A1

A2
, (209)

∞∑

n=0

3τ3
n

8
=
W

Lπ

A1

A2

∫ ∞

0

d(κL)
3

8 cosh6(κL)
=

1

5

W

Lπ

A1

A2
, (210)

∞∑

n=0

5τ4
n

16
=
W

Lπ

A1

A2

∫ ∞

0

d(κL)
5

16 cosh8(κL)
=

1

7

W

Lπ

A1

A2
. (211)

Using these approximations, the current becomes:

J(φ) =
e∆0

~
W

Lπ

A1

A2

∞∑

n=0

cos(φ/2)(sin(φ/2) +
1

3
sin3(φ/2) +

1

5
sin5(φ/2)

1

7
sin5(φ/2) + . . . )

=
e∆0

~
W

Lπ

A1

A2
cos(φ/2)arctanh(sin(φ/2)).

(212)

This leads to the following critical current in the small |µ− εyz0 | regime:

Jc,min = 0.21
e∆0

~
W

L

A1

A2
. (213)

The Josephson current for these regime (Λ = 0) is plotted in Fig. 18.

The slope (Fig. 20, black) of the numerically calculated critical current, corresponding to the opposite
regime (|µ− εyz0 | � ~vyzF /L), is:

Jc,slope = 0.61
e∆0

~
W

Lπ

A1

A2
(µ− εyz0 ). (214)

4.4 Edge junction

4.4.1 Solutions of the BdG equations

In region I (x < 0, z = 0) and in region II (0 < z < L, x = 0) of the edge junction we have the same
solutions ΨI±

s (x, y), ΨII±
e (y, z) and ΨII±

h (y, z) as for the step junction. Region III is described by Hs
yz.

The solutions for |ky| ≤
∣∣∣µ−ε

yz
0

~vyzF

∣∣∣ and U0 + µ − εyz0 � {∆0, ε} and ε < ∆0 can be obtained by

performing a rotation by π/2 about the z−axis and a rotation by π/2 about the y−axis in spin- and
real-space. The transformation is described in Appendix B. The real-space transformation changes the
{x, y, z} dependent part, whereas the spin rotation changes the prefactor. The decay parameter κ has
to be adapted and should be dependent on kz. Eventually, we find the solutions of the BdG equations
in region III:

ΨIII±
s (y, z) =

(
Ψse

III±(y, z)
Ψsh

III±(y, z)

)
= eikyy±ikz(z−L)−κ(z−L)




e±iβ

±i 1+cos(α)
sin(α) e±iβ

e−iφ

±i 1+cos(α)
sin(α) e−iφ


 , (215)

where β = arccos(ε/∆0), sin(α) =
~vyzF

A1
A2
kz

U0+µ−εyz0
, A1

A2
kz =

√(
U0+µ−εyz0

~vyzF

)2

− k2
y and κ =

(U0+µ−εyz0 )

(~vyzF
A1
A2

)2kz
∆0 sin(β).
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The heavily doped regime (very large U0) of region III can be approximated using:

1 + cos(α)

sin(α)
=

1±
√

1−
(

~vyzF
A1
A2
kz

U0+µ−εyz0

)2

~vyzF
A1
A2
kz

U0+µ−εyz0

=
U0 + µ− εyz0

~vyzF
A1

A2
kz

±

√√√√
(
U0 + µ− εyz0

~vyzF
A1

A2
kz

)2

− 1

=
U0 + µ− εyz0√

(U0 + µ− εyz0 )2 − (~vyzF )2k2
y

±

√√√√√


 U0 + µ− εyz0√

(U0 + µ− εyz0 )2 − (~vyzF )2k2
y




2

− 1

≈ 1.

(216)

Finally we obtain the wave functions in the heavily doped region III:

ΨIII±
s (y, z) = eikyy±ikz(z−L)−κ(z−L)




e±iβ

±ie±iβ
e−iφ

±ie−iφ


 . (217)

4.4.2 Boundary conditions

Again the Hamiltonians are TR invariant and the most general boundary condition for the first interface
(between region I and II) is given by:

[a+
e,hΨII+

e,h (y, z) + a−e,hΨII−
e,h (y, z)]|z→0+ = i

√
vxyF A2

vyzF A1
e−iγ1σy [α+ΨI+

s(e,h)(x, y) + α−ΨI−
s(e,h)(x, y)]|x→0− .

(218)
The indices e, h denote the electron and hole wave functions. In the superconducting wave function,
e refers to the first two entries and h to the last two entries of the four component wave vectors. a±e,h
are the amplitudes of the electron and hole wave functions propagating in ±z−direction in the normal
region and α± are the amplitudes of the wave functions in the superconducting region. For the interface
between region II and III we get similar equations:

[β+ΨIII+
s(e,h)(x, y) + β−ΨIII−

s(e,h)(x, y)]|z→L+ = e−iγ2σy [a+
e,hΨII+

e,h (y, z) + a−e,hΨII−
e,h (y, z)]|z→L− . (219)

In the edge junction the velocity changes only at the first interface. This is why only the boundary
conditions for the first interface are dependent on the velocities.

4.4.3 Josephson current

We perform the same procedure as in the planar and step case and use the same “infinite mass” boundary
conditions [28] as in the step case to quantize kyn = (n + 1/2)π/W . In the heavily doped regime
and in the low energy limit some parameters can be simplified: α(−ε) ≈ α(ε) ≈ α(0) := α, and
kz(−ε) ≈ kz(−ε) ≈ kz(0) := kzn. Finally, we get:

εn = ∆0

√
(1− τn sin(φ/2)2), (220)

τ = − 1

tan(α)2 sin(kznL)2
. (221)

Naturally, τn < 0 corresponds to εn > ∆0 implying absence of Andreev bound states. The formation
of Andreev bound states in the central region requires the presence of electrons with opposite spins in
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regions I and III. Due to spin momentum locking in the topological insulator and because the spins in
region I and III lie in different planes, the formation of Andreev bound states is prohibited. The only
possibility is ky = 0 implying spin along y−direction. This is not allowed due to the boundary conditions:
kyn = (n+ 1/2)π/W > 0. Thus, the contribution of the Andreev bound states to the Josephson current
vanishes in these edge junctions.
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5 Josephson effect in ferromagnetic topological insulator junctions

So far, we have analyzed the Josephson effect on a topological insulator planar and step junction. Now we
perform a similar examination of a junction with induced ferromagnetism. We aim to see the influences
of the magnetization M = m ·σ on the Josephson current. The analysis becomes a lot simpler, when we
limit ourselves to a magnetization perpendicular to the junction. There the magnetization opens up a
gap. Using the magnetization as a parameter, we can tune the critical current. To investigate how the
magnetization in different directions affects the Josephson current, we will carry out an analysis of the
Josephson current at the Dirac point.

We look at two systems (see Fig. 21), a planar junction in the (x − y) plane and a step junction
with superconducting electrodes in the (x− y) plane and a weak link between them in the (y− z) plane.

x = 0 x = L

L L

x = z = 0

 z = L

x 

z
y

(a) (b)

I II III

s sf

W

I

III
II

s

s
f

W

Figure 21: Schematics of the two ferromagnetic topological insulator junctions: (a) planar junction and
(b) step junction. The blue planes are the superconductors inducing superconductivity in the surface
states of the topological insulator (s). The left superconducting region is referred to as region I, the
right as region III. The yellow plane is the ferromagnetic insulator inducing the magnetization M in the
surface states of the topological insulator (f, region II).

5.1 Ferromagnetic planar junction

The junction to be investigated is shown in Fig. 21(a). Here, region II is covered by a ferromagnetic
insulator, which leads to induced magnetization in the surface of the topological insulator. The simplest
case is a magnetization perpendicular to the junction, thus M = mzσz. This is why we will first restrict
ourselves to a junction with perpendicular magnetization only and afterwards we will extend our analysis
by considering magnetizations in all directions for a chemical potential at the Dirac point energy.

5.1.1 General case

The ferromagnetic region is described by

Hf
xy =

(
Hxy − µ+mxσx +myσy +mzσz 0

0 −Hxy + µ+mxσx +myσy +mzσz

)
. (222)

We can separate the BdG equation in two equations, one for holes and one for electrons. Then we can
solve the simplified equation Hf

xy(mx,my,mz)Ψe(x, y) = εΨe(x, y) for the first two components of the
electron wave functions (the remaining two components are 0 due to the block diagonal form of the
Hamiltonian), where:

Hf
xy(mx,my,mz) =

(
εxy0 − µ+mz −i~vxyF (∂y + i∂x) +mx − imy

−i~vxyF (∂y − i∂x) +mx + imy εxy0 − µ−mz

)
. (223)

For the hole wave functions the last two components (the first two are 0) can be obtained by solving:
Hf
xy(−mx,−my,−mz)Ψh(x, y) = −εΨh(x, y). Doing so, we find that the BdG equations are solved by
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any linear combination of the basis states

ΨII±
e (x, y) =




µ−εxy0 +ε

~vxyF
+ mz

~vxyF
ky + mx

~vxyF
∓ κ(ε,mx,mz)

0
0


 e

ikyy+(i
my

~vxy
F

±κ(ε,mx,mz))x
(224)

and

ΨII±
h (x, y) =




0
0

µ−εxy0 −ε
~vxyF

− mz
~vxyF

ky(−ε)− mx
~vxyF

∓ κ(−ε,−mx,−mz)


 e

ikyy+(−i my
~vxy
F

±κ(−ε,−mx,−mz))x
(225)

with κ(ε,mx,mz) =
√
m2
z − (µ− εxy0 + ε)2 + (ky~vxyF +mx)2/(~vxyF ). The wave functions of the super-

conducting regions were calculated in the previous chapter.

The magnetization M breaks TR symmetry, thus we cannot use the general boundary conditions
we used in the preceding sections. Instead, for simplicity, we demand continuity of the wave functions
at the interfaces. We follow the same procedure as in the preceding chapters and write the boundary
conditions in matrix form and search for nontrivial solutions. Consequently, we want the determinant
of the matrix to be 0. We assume that the chemical potential satisfies |µ − εxy0 | � ε and we call this
the low energy regime. It can be seen that we can apply this assumption by setting ε = 0 in the wave
functions ΨII±

e (x, y) and ΨII±
h (x, y) of region II as ε is very small compared to µ− εxy0 . This simplifies

the problem, since only the wave functions of the superconducting regions remain energy dependent,
whereas the wave functions of region II become independent of the excitation energy ε. Finally, we find
solutions for ε. Unfortunately, this ends in very complicated solutions, thus, for further analysis, we
distinguish between two special cases: perpendicular magnetization (mx = 0 and my = 0) and chemical
potential at the Dirac point energy (µ− εxy0 = 0).

5.1.2 Perpendicular magnetization (mx = 0 and my = 0)

In this case we see that in the low energy limit κ(−ε,−mx,−mz) ≈ κ(ε,mx,mz) ≈ κ(0, 0,mz) =: κ =√
m2
z − (µ− εxy0 )2 + (ky~vxyF )2/(~vxyF ) such that we get a simple expression for the energy:

ε = ∆0

√√√√ κ2 + k2
y sinh2(κL)

κ2 + (k2
y +m2

z) sinh2(κL)
− κ2 sin2(φ/2)

κ2 + (k2
y +m2

z) sinh2(κL)
(226)

A discussion of the results will be provided in the next section, where we perform the same analysis for
a step junction. We can adopt the complete analysis from the step case by substituting mx → mz and
setting A1

A2
= 1.

Small magnetization: mz ≤ µ− εxy0 :
For this case we assume, that we have only propagating states and no decaying states, thus instead of
κ(ε) we have kx(ε). The propagating wave functions which solve the BdG equation in the junction are:

ΨII±
e (x, y) =




sin(α(ε))± i
√

cos(α(ε)2)− p(mz, ε)2

1− p(mz, ε)
0
0


 eikyy±ikx(ε)x, (227)

ΨII±
h (x, y) =




0
0

sin(α(−ε))± i
√

cos(α(−ε)2)− p(−mz,−ε)2

1− p(−mz,−ε)


 eikyy±ikx(−ε)x, (228)
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where sin(α(ε)) =
~vxyF ky
ε+µ−εxy0

, kx(ε) =
√

(ε+µ−εxy0 )2

(~vxyF )2 − m2
z

(~vyzF )2 − k2
y and p(mz, ε) = mz

ε+µ−εxy0
.

As the magnetization mzσz breaks the TR symmetry, we use continuity of the wave functions at the
interfaces and demand nontrivial solutions for the coefficient vectors. As always, we have heavily doped
superconducting regions and we analyze low energy solutions, α(−ε) ≈ α(ε) ≈ α(0) =: α, p(mz,−ε) ≈
p(mz, ε) ≈ p(mz, 0) =: p(mz), and kx(−ε) ≈ kx(ε) ≈ kx(0) =: kx. We get the following bound states:

ε = ∆0

√
1

1 +N
− τ sin2(φ/2) (229)

with

N =

m2
z

(~vxyF )2 sin2(kxL)

(kx)
2

cos2(kxL) +

((
µ−εxy0

~vxyF

)2

− m2
z

(~vxyF )2

)
sin2(kxL)

(230)

and

τ =
(kx)

2

(kx)
2

cos2(kxL) +
(
µ−εxy0

~vxyF

)2

sin2(kxL)
. (231)

After performing the calculations we find that the detailed analysis and the calculation of the Joseph-
son current can be adopted from the ferromagnetic step junction by replacing A1

A2
→ 1, kz → kx,

mz → mx, εyz0 → εxy0 and vyzF → vxyF .

5.1.3 Chemical potential at the Dirac point (µ− εxy0 = 0)

By considering only the case where the chemical potential is at the Dirac point energy, it is possible to
get results for the magnetization pointing in any direction. If we assume

√
m2
z +m2

x � ε we can employ
κ(ε,mx,mz) ≈ κ(0,mx,mz) =: κ(mx) and κ(−ε,−mx,−mz) ≈ κ(0,−mx,−mz) ≈ κ(−mx). Then the
energy reads:

ε

∆0
=

√√√√√1

2
+

cos(2L
my
~vxyF

+ φ)κ(mx)κ(−mx) +

(
k2
y −

(
mx
~vxyF

)2

−
(
mz
~vxyF

)2
)

sinh(κ(mx)L) sinh(κ(−mx)L)

2κ(mx)κ(−mx) cosh(κ(mx)L) cosh(κ(−mx)L)
.

(232)
In this case we can inherit the solutions from the step case as well. We only have to replace κ(mz) →
κ(−mx), κ(−mz)→ κ(mx) and −my

A2

A1
→ my. The only difference in the analysis appears in the shift

of the phase difference of the superconducting regions due to my in cos(2L
my
~vxyF

+ φ). In the planar case

the phase is shifted in the opposite direction and does not have the prefactor A2

A1
.

5.2 Ferromagnetic step junction

The ferromagnetic step junction is illustrated in Fig. 21(b). Region I and III are covered by a super-
conductor and region II by a ferromagnet, leading to a superconducting or a ferromagnetic proximity
effect respectively. Again we begin with the examination of a junction with perpendicular magnetization
and later we will analyze the effects of the magnetization in all directions for the case of the chemical
potential at the Dirac point energy.

5.2.1 General case

The Hamiltonian describing the ferromagnetic region II is:

Hf
yz =

(
Hyz − µ+mxσx +myσy +mzσz 0

0 −Hyz + µ+mxσx +myσy +mzσz

)
(233)
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As in the planar case we can separate the BdG equation in two equations, one for holes and one for
electrons. Solving the simplified equation Hf

yz(mx,my,mz)Ψe(y, z) = εΨe(y, z) gives us the first two
components Ψe(y, z) of the electron wave functions (the remaining two components are 0), where

Hf
yz(mx,my,mz) =

(
εyz0 − µ+ i~vyzF ∂y +mz −~vyzF A1

A2
∂z +mx − imy

~vyzF
A1

A2
∂z +mx + imy εyz0 − µ− i~vyzF ∂y −mz

)
. (234)

For the hole wave functions we find the last two components (the first two are 0) by solving
Hf
yz(−mx,−my,−mz)Ψh(y, z) = −εΨh(y, z) for the wave function. The BdG equations are then fulfilled

by any linear combination of the wave functions:

ΨII±
e (y, z) =




µ−εyz0 +ε

~vyzF
− ky + mz

~vyzF
mx
~vyzF

± κ(ε,−mx,−mz)

0
0


 e

ikyy+(−i my
~vxy
F

A2
A1
±κ(ε,mx,mz))z

(235)

and

ΨII±
h (y, z) =




0
0

µ−εyz0 −ε
~vyzF

− ky − mz
~vyzF

− mx
~vyzF

± κ(−ε,mx,mz)


 e

ikyy+(i
my

~vxy
F

A2
A1
±κ(−ε,mx,mz))z

, (236)

with κ(ε,mx,mz) =
√
m2
x − (µ− εyz0 + ε)2 + (ky~vxyF +mz)2 A2

~vyzF A1
.

The wave functions for the superconducting regions are known from the previous chapter.

As the magnetization breaks TR symmetry we use continuity of the wave functions as boundary condi-
tion. We assume |µ− εyz0 | � ε (low energy regime) and follow the same procedure as in the planar case;
we write the eight equations in matrix representation and demand nontrivial solutions for the coefficients
of the wave functions. Again we restrict ourselves to the special cases of perpendicular magnetization
and chemical potential at the Dirac point.

5.2.2 Perpendicular magnetization (mz = 0 and my = 0)

In this case we see that in the low energy regime (|µ − εyz0 | � ε) we can use κ(−ε,−mx,−mz) ≈
κ(ε,mx,mz) ≈

√
m2
x − (µ− εyz0 )2 + (ky~vyzF )2 A2

~vyzF A1
=: κ resulting in a handsome solution for the

energy:

ε = ∆0

√√√√ κ2 + k2
y sinh2(κL)

κ2 + (k2
y +m2

x) sinh2(κL)
− κ2 sin2(φ/2)

κ2 + (k2
y +m2

x) sinh2(κL)
. (237)

Next we want to calculate the Josephson current. Therefore, we introduce a finite width W to quantize
the transverse wave vectors of region II, ky → kyn = (n + 1/2)π/W , n = 0, 1, 2, . . . (“infinite mass”
boundary conditions [28]). With ρn(ε, φ), the density of states in mode n, the Josephson current at zero
temperature is given by:

J(φ) = −2e

~
d

dφ

∫ ∞

0

dε

∞∑

n=0

ρn(ε, φ)ε. (238)

κ is quantized as well and κn =
√
m2
x − (µ− εyz0 )2 + (kyn~vyzF )2 A2

~vyzF A1
. The lowest N(µ − εyz0 ) =(√

(µ−εyz0 )2−m2
x

~vyzF

)
W
π modes are propagating as κn is imaginary while the higher modes are evanescent,

since for these modes κ is real. The analysis of the Josephson current is done in the short-junction regime
where the length L of the ferromagnetic region is small relative to the superconducting coherence length
ξ. This requires ∆0 � ~vyzF /L. Finally, we have a single bound state per mode:

εn = ∆0

√√√√ κ2
n + k2

y sinh2(κnL)

κ2
n + (k2

yn +m2
x) sinh2(κnL)

− κ2
n sin2(φ/2)

κ2
n + (k2

yn +m2
x) sinh2(κnL)

. (239)
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By using ρn(ε, φ) = δ(ε− εn(φ)) the supercurrent due to the discrete spectrum is

J(φ) =
e∆0

2~

∞∑

n=0

κ2
n

κ2
n+(k2

yn+m2
x) sinh2(κnL)

sin(φ)

εn(φ)
=
e∆0

~
W

2π

∫ ∞

0

κ2
n

κ2
n+(k2

yn+m2
x) sinh2(κnL)

sin(φ)

εn(φ)
dkyn. (240)

As L � W , the summation over n may be replaced by an integration. The integral can be solved
numerically. We calculate the critical Josephson current by maximizing the current with respect to
the phase difference φ of the superconductors. This is done with Mathematica. Figure 22 shows the
behaviour of the critical current for different values of qx = mx

~vyzF
A2L
A1

. By plotting the solutions of the
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Figure 22: Critical Josephson current Jc of a ferromagnetic step junction as a function of Λ =
µ−εyz0

~vyzF

(
A2L
A1

)
for different values of qx = mx

~vyzF
A2L
A1

.

normal step junction and the solution here for qx = 0 in the same figure, we find that the qx = 0 plot

restores the solutions of the normal step junction. Calculation shows that for Λ =
µ−εyz0

~vyzF

(
A2L
A1

)
= 0 and

qx = 0 we get the same critical current as in the step case:

Jc = 0.21
e∆0

~
W

L

A1

A2
. (241)
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(
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)
= 5 is fixed.

The Josephson current gets suppressed by a perpendicular magnetization. This can be seen in Fig.
23, where the Josephson current for different magnetization strengths qx is plotted while Λ = 5 is fixed.
As the magnetization is increased, the current decreases. From Fig. 22 we know that the magnetization
qx can be used to tune the critical Josephson current. The stronger the magnetization, the larger the
chemical potential needs to be, to result in a finite current. For large magnetization the finite Josephson
current at the Dirac point (Λ = 0) vanishes. This can be seen in Fig. 24 which illustrates the dependence
of Jc on qx at Λ = 0. It corresponds to the points at Λ = 0 in Fig. 22.

At larger values of Λ we get a strange behaviour, as can be seen for qx = 7 in Fig. 22. Certain values
of Jc can be achieved by different values of Λ. In Fig. 25 the critical Josephson current is plotted as
a function of Λ and qx. We will analyze this non-monotonic behaviour of Jc in Appendix C in more detail.
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Figure 24: Critical Josephson current Jc of a ferromagnetic step junction as a function of qx = mx
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Figure 25: Critical Josephson current Jc(Λ, qx) of a ferromagnetic junction with qx = mx
~vyzF

A2L
A1

and

Λ =
µ−εyz0

~vyzF

(
A2L
A1

)
. As soon as qx is large enough, the same critical current can appear for different Λ.

Small magnetization: mx ≤ µ− εyz0 (qx ≤ Λ):
In this limit only propagating waves contribute to the Josephson current. Consequently, instead of κ(ε)
we use kz(ε). The BdG equations are solved by the wave functions

ΨII±
e (y, z) =




1− sin(α(ε))

p(mx, ε)± i
√

cos(α(ε)2)− p(mx, ε)2

0
0


 eikyy±ikz(ε)z, (242)

ΨII±
h (y, z) =




0
0

1− sin(α(−ε))
p(−mx,−ε)± i

√
cos(α(−ε)2)− p(−mx,−ε)2


 eikyy±ikz(−ε)z, (243)

where sin(α(ε)) =
~vyzF ky
ε+µ−εyz0

, A1

A2
kz(ε) =

√
(ε+µ−εyz0 )2

(~vyzF )2 − m2
x

(~vyzF )2 − k2
y and p(mx, ε) = mx

ε+µ−ε0 .

We can see, that magnetization mxσx breaks the TR symmetry. As a result the boundary conditions
are given by the continuity of the wave functions. As before, we assume heavily doped superconducting
regions. Furthermore, we consider only low energy solutions, enabling us to simplify some parameters:
α(−ε) ≈ α(ε) ≈ α(0) =: α, p(mx,−ε) ≈ p(mx, ε) ≈ p(mx, 0) =: p(mx), and kz(−ε) ≈ kz(ε) ≈ kz(0) =:
kz. Finally, demanding nontrivial solutions leads to

ε = ∆0

√
1

1 +N
− τ sin2(φ/2), (244)

with

N =

m2
x

(~vyzF )2 sin2(kzL)
(
A1

A2
kz

)2

cos2(kzL) +

((
µ−εyz0

~vyzF

)2

− m2
x

(~vyzF )2

)
sin2(kzL)

(245)
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and

τ =

(
A1

A2
kz

)2

(
A1

A2
kz

)2

cos2(kzL) +
(
µ−εyz0

~vyzF

)2

sin2(kzL)
. (246)

With the “infinite mass” boundary conditions [28] at y = 0 and y = W , quantized kyn = (n+1/2)π/W

can be used which quantizes kzn as well. Then, A1

A2
kzn =

√
(µ−εyz0 )2

(~vyzF )2 − m2
x

(~vyzF )2 − k2
yn, which means the

lowest N =

√(
µ−εyz0

~vyzF

)2

− m2
x

(~vyzF )2
W
π modes are propagating as kzn is real, while the higher modes are

evanescent, since for these modes kzn is imaginary. The analysis of the Josephson current is done in the
short-junction regime where the length L of the normal region is small relative to the superconducting
coherence length ξ. The solution is a single bound state per mode where the index n denotes the nth
mode:

ε(φ)→ εn(φ), τ → τn and N → Nn. (247)

Then the supercurrent due to the discrete spectrum becomes:

J(φ) =
e∆0

2~

∞∑

n=0

τn sin(φ)√
1

1+Nn
− τn sin2(φ/2)

=
e∆0

~
W

2π

∫
√(

µ−εyz0
~vyz
F

)2

− m2
x

(~vyz
F

)2

0

τn sin(φ)√
1

1+Nn
− τn sin2(φ/2)

dkyn.

(248)
As L�W , the summation over n may be replaced by an integration. We only integrate over real kzn.
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Figure 26: Critical current Jc of a ferromagnetic step junction as a function of Λ for three different values
of qx = mx

~vyzF
LA2

A1
. The contributions due to propagating waves only (labeled with “propagating waves”)

and the critical Josephson current (including the current due to decaying waves) are plotted.

As before we maximize the current with respect to φ and receive the critical current. Figure 26 shows
the total critical current and the critical current due to propagating waves only for qx = 0, qx = 2 and
qx = 4. It can be seen that the critical Josephson current for |Λ| < |qx| arises due to decaying waves
only. Both, propagating and decaying waves, contribute for chemical potentials with |qx| < |Λ| < |qx|+δ,
where δ > 0 gives the range. As soon as |Λ| > |qx| + δ, the critical Josephson current arises singly due
to propagating waves.

In the succeeding discussion, the use of κ refers to decaying waves in z−direction, whereas kz refers
to the propagating waves. They are related by κ = −ikz.
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5.2.3 Chemical potential at the Dirac point (µ− εyz0 = 0)

With this simplification it is possible to examine an arbitrary direction of magnetization. If we as-
sume

√
m2
x +m2

z � ε then κ(ε,−mx,−mz) ≈ κ(0,−mx,−mz) =: κ(−mz) and κ(−ε,mx,mz) ≈
κ(0,mx,mz) =: κ(mz). Again we calculate the energy:

ε

∆0
=

√√√√√1

2
+

cos(2L
my
~vyzF

A2

A1
− φ)κ(mz)κ(−mz) +

(
A2

A1

)2
(
k2
y −

(
mx
~vyzF

)2

−
(
mz
~vyzF

)2
)

sinh(κ(mz)L) sinh(κ(−mz)L)

2κ(mz)κ(−mz) cosh(κ(mz)L) cosh(κ(−mz)L)
.

(249)
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Figure 27: Energy dependence on qx = mx
~vyzF

LA2

A1
and qz = mz

~vyzF
LA2

A1
for φ = 0 for different values of

qy =
my
~vyzF

LA2

A1
. (a) qy = 0, (b) qy = 1.5 and (c) qy = 5.

We can plot the energy as a function of qx = mx
~vyzF

LA2

A1
and qz = mz

~vyzF
LA2

A1
. Figure 27 shows such plots

for 3 different values of qy =
my
~vyzF

LA2

A1
for the superconducting phase difference φ = 0. The energy fulfills

ε ≤ ∆0. We can calculate the Josephson current as before by introducing the finite width W and thus
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quantizing kyn. The Josephson current then again is written in terms of a numerical integral:

J(φ) =
e∆0

~
W

L2π

A1

A2

∫ ∞

0

sin
(
φ− 2L

my
~vyzF

A2

A1

)

cosh(κ(mz)L) cosh(κ(−mz)L) ε
∆0

d

(
LA2

A1
ky

)
. (250)
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Figure 28: Josephson current as a function of φ for different magnetization qx = mx
~vyzF

LA2

A1
, qy =

my
~vyzF

LA2

A1

and qz = mz
~vyzF

LA2

A1
. (a) Josephson current for different values of qx while qy = qz = 0. (b) Josephson

current for different values of qz while qx = qy = 0. (c) Josephson current for different values of qy while
qx = qz = 0. The black line in (a), (b) and (c) is qx = qy = qz = 0. (d) shows the difference between the
Josephson current of junctions with magnetization in x− and z−direction (∆J = J(qz, φ)− J(qx, φ)).

We can see from the equation and in Fig. 28(c) that the magnetization
my
~vyzF

LA2

A1
leads to a phase

shift in the Josephson current and thus does not influence the critical current. Furthermore, we observe
from Figs. 28(a), (b) and (d), that the magnetization in x−direction (perpendicular to the junction)
suppresses the current stronger than the magnetization in z−direction (direction of transport). This can
be understood, when we look at κ(mz) and κ(−mz), which are equal if mz is 0 but they differ if mz 6= 0.
In principle, both, qx and qz, suppress the Josephson current.

Figure 29 shows the dependence of the critical Josephson current on qx = mx
~vyzF

LA2

A1
and qz = mz

~vyzF
LA2

A1
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for qy = 0. The black line corresponds to qz = 0 and thus perpendicular magnetization. Moreover, it
the same curve as in Fig. 24 at Λ = 0.

The maximal value of the critical current can again be calculated (numerically) and we can see that
it restores again the result: Jc = 0.21 e∆0

~
W
L
A1

A2
for qx = qy = qz = Λ = 0.

Figure 29: Critical Josephson current Jc of a ferromagnetic step junction as a function of qx = mx
~vyzF

LA2

A1

and qz = mz
~vyzF

LA2

A1
for qy = 0. The black line corresponds to qz = 0 (perpendicular magnetization).

5.3 Context of the results to current publications

Recently, the topics of induced superconductivity and ferromagnetism on topological insulators have
attracted a great deal of attention. However, most of the calculations are done with Dirac-type surface
Hamiltonians (H = ~vF (σxkx + σyky)) and include only the planar setup. In this section we would like
to link our results to these works and discuss the similarities and differences. We focus on two subjects:
the Josephson current of topological ferromagnetic junctions and the occurrence of Majorana fermions
at the interface between the ferromagnetic and superconducting surfaces.

5.3.1 Josephson effect in ferromagnetic topological insulator junctions

In 2009 Y. Tanaka et al. [32] and in 2010 Linder et al. [18] studied the transport properties of planar
topological ferromagnetic junctions. They calculated the Josephson current of this junction and found an
anomalous current-phase relation, for a magnetization in x−direction (thus, in direction of transport).
The magnetization mx leads to a shift of the phase difference in the Josephson current, such that at
φ = 0 a finite Josephson current is possible for mx 6= 0. This is similar to the behaviour we calculated
for the magnetization my in y− direction.
This different behaviour occurs due to the fact that Tanaka and Linder chose their topological insulator
surface Hamiltonian to be a Dirac-type Hamiltonian H = ~vF (σxkx +σyky). We, on the contrary, chose
the model describing the topological insulator Bi2Se3, which is a Rashba type Hamiltonian of the form
H = ~vF (σxky−σykx). This gives rise to a different spin-momentum locking on the surface and therefore
the magnetization acts differently on the surface states of a Rashba-type Hamiltonian and a Dirac-type
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Hamiltonian. Nevertheless, a comparison to the results of Tanaka and Linder shows, that our results
are in agreement with their predictions. Furthermore, Tanaka and Linder showed that a perpendicular
magnetization opens up a gap in the energy spectrum of a planar junction with a Dirac-type Hamiltonian,
which is also what we calculated and analyzed for a step junction with a Rashba-type Hamiltonian.

5.3.2 Majorana fermions at the edge of the topological superconducting and ferromagnetic regions

The search for Majorana fermion realizations has intensified recently, as they enable topological quantum
computation due to their non-Abelian statistics. Fu and Kane showed in 2007 [20] that the interface
between a topological ferromagnetic region and a topological superconducting region hosts chiral Ma-
jorana edge states. In 2009 Tanaka et al. [32] found that the sign of the perpendicular magnetization
mz corresponds to the chirality of the Majorana mode. Since the Josephson junctions we calculated
have two such interfaces, we investigated whether they can host Majorana fermions, which would lead
to complete agreement with known results. We examine the interfaces for the topological ferromagnetic
planar as well as the step junctions.

Ferromagnetic planar junction
At ε = ky = my = 0 (which is only possible for phase difference φ = ±π of the superconductors,

here we choose φ = π) the wave functions are decaying ∝ e
± ∆0

~vxy
F

x
in the superconducting region

and ∝ e
±
√
m2
x+m2

z−(µ−εxy0 )2

~vxy
F

x
in the ferromagnetic region. Note that for ky = 0 and ε = 0 we have

κ(ε,mx) = κ(−ε,−mx) = κ(0,±mx) =: κ (the sign of mx does not matter as it occurs only squared in
κ). If the length L of the junction is sufficiently large such that the decay length in the ferromagnetic

region is smaller than L, L ≥ 1
κ =

~vxyF√
m2
x+m2

z−(µ−εxy0 )2
, we can assume that the first boundary of the

ferromagnetic region supports states propagating in positive x−direction only and the second boundary
supports states propagating in negative x−direction only. With these conditions we can calculate the
spinors at the boundaries:

Ψ1 =




i(mz + µ− εxy0 )
i(mx + κ)
−i(mx + κ)

i(mz + µ− εxy0 )


 , Ψ2 =




(i− 1)(mz + µ− εxy0 )
(i− 1)(mx − κ)

(−i− 1)(mx − κ)
(i+ 1)(mz + µ− εxy0 )


 . (251)

These spinors satisfy PΨ1 = Ψ1 and PΨ2 = Ψ2, with the particle-hole conjugation operator P =
(τy ⊗ σyK). These relations imply that we have Majorana bound states at the boundaries to the
ferromagnet. With the spinors we can write the wave functions in the superconducting regions I and III:

ΨI
s(x, y) = Ψ1e

∆0
~vxy
F

x
for region I and ΨIII

s (x, y) = Ψ2e
∆0

~vxy
F

(L−x)
for region III. (252)

In the ferromagnetic region (0 < x < L) the wave functions read:

ΨII
f (x, y) = Ψ1e

−
√
m2
x+m2

z−(µ−εxy0 )2

~vxy
F

x
+ Ψ2e

√
m2
x+m2

z−(µ−εxy0 )2

~vxy
F

(x−L)
(253)

If the length of the Josephson junction becomes L ≤ 1
κ =

~vxyF√
m2
x+m2

z−(µ−εxy0 )2
, we don’t have zero energy

Majorana bound states anymore. Instead the overlap between the two boundaries gives rise to a finite
splitting.

Ferromagnetic step junction
At ε = my = 0 and ky = 0 (which is only true for phase difference φ = ±π of the superconduc-

tors, here we choose φ = π) the wave functions are decaying ∝ e
± ∆0

~vxy
F

x
in the superconducting region

and ∝ e
±
√
m2
x+m2

z−(µ−εyz0 )2

~vyz
F

z
in the ferromagnetic region. Note that for ky = 0 and ε = 0 we have

κ(ε,mz) = κ(−ε,−mz) =: κ. If the length L of the junction is sufficiently large such that the decay

length in the ferromagnetic region is smaller than L, L ≥ 1
κ =

~vyzF√
m2
x+m2

z−(µ−εyz0 )2
, we can assume that the
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first boundary in the ferromagnetic region supports states propagating in positive z−direction only and
the second boundary supports states propagating in negative z−direction only. With these conditions
we can calculate the spinors at the boundaries:

Ψ1 =




i(mz + µ− εyz0 )
i(mx − κ)
−i(mx − κ)

i(mz + µ− εyz0 )


 , Ψ2 =




(i− 1)(mz + µ− εyz0 )
(i− 1)(mx + κ)

(−i− 1)(mx + κ)
(i+ 1)(mz + µ− εyz0 )


 . (254)

They satisfy PΨ1 = Ψ1 and PΨ2 = Ψ2, with the particle-hole conjugation operator P = (τy ⊗ σyK),
implying that we have Majorana bound states. With these spinors we can write the wave functions in
the superconducting regions I and III:

ΨI
s(x, y) = Ψ1e

∆0
~vxy
F

x
for region I ΨIII

s (x, y) = Ψ2e
− ∆0

~vxy
F

x
for region III. (255)

In the ferromagnetic region (0 < z < L) we have:

ΨII
f (y, z) = Ψ1e

−
√
m2
x+m2

z−(µ−εyz0 )2

~vyz
F

z
+ Ψ2e

√
m2
x+m2

z−(µ−εyz0 )2

~vyz
F

(z−L)
(256)

If the length L of the Josephson junction becomes L ≤ 1
κ =

~vyzF√
m2
x+m2

z−(µ−εyz0 )2
we don’t have zero energy

Majorana bound states anymore. Instead the overlap between the two boundaries gives rise to a finite
splitting.

It can be seen that the calculation of the Majorana bound states in step junctions is completely analogous
to the planar junctions. Therefore an edge between a superconducting region and a ferromagnetic region
perpendicular to the superconducting region can host Majorana edge states as well.
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6 Conclusion and outlook

In this Master thesis we have conducted a detailed study of the Josephson effect on the surface of a
topological insulator, e.g. Bi2Se3. Mainly we used two setups − the planar junction and the step junc-
tion. The symmetries of the bulk crystal structure give rise to different Fermi velocities in direction of
the rotation symmetry axis and in direction perpendicular to it. We discovered that this manifests itself
in a scaling factor in the critical Josephson current of the step junction when compared to the planar
junction. This scaling appears in both normal and ferromagnetic topological insulator junctions. We
performed a detailed discussion of the ferromagnetic topological insulator step junction revealing that a
magnetization perpendicular to the junction suppresses the critical Josephson current. A magnetization
in the transverse direction leads to a finite Josephson current, even when the phase difference of the
superconductors is zero. Our findings are in agreement with the existing results about ferromagnetic
topological Josephson junctions. We found a non-monotonic behaviour in the critical Josephson current
when the perpendicular magnetization and the chemical potential are sufficiently large. An experimental
verification of this behaviour (as shown in Fig. 22) could provide valuable insights into the transport
mechanisms in these junctions.
Interestingly, the edge junction (see Fig. 16) gives rise to a vanishing contribution to the Josephson
current from Andreev bound states. This suppression was explained in terms of spin momentum locking
which prohibits the formation of Andreev bound states in the central region. From a finite contribu-
tion to the Josephson current for a planar junction, we enter a regime with vanishing contribution for
a π/2−edge junction. Thus, the investigation of Andreev bound states for a general ϑ−edge junction
(0 ≤ ϑ ≤ π/2) would be interesting from the point of view of this crossover. With this in mind we
derived the surface Hamiltonian for a general angle about the z−axis. This would give the necessary
equipment for an analysis of the Josephson effect at a general angle.

The same study can also be adapted to a spherical system. A description of a spherical topological
insulator is found in Ref. [33]. They found that a nontrivial quantum spin connection emerges from
the three-dimensional band structure. Their Hamiltonian can be used to calculate the Josephson effect
on a spherical topological insulator with superconducting pole caps. Owing to spin orbit coupling, the
electronic spin changes direction with latitude, implying that it lies in a horizontal plane at the poles,
but in a vertical plane at the equator. This change of the spin orientation may have impact on the
electronic response of various spintronics devices like spin valves. One may also include ferromagnetic
components, which may lead to interesting behaviour as well.

Apart from investigating different geometries, the presence of an external magnetic field applied on
the junction promises interesting effects. In Ref. [34] they discuss exact analytical solutions for the
bound states of Dirac electrons in graphene in various magnetic fields with translational symmetry. The
authors use a factorization method in the framework of the Dirac-Weyl equation for a massless electron
in a magnetic field and other techniques of supersymmetric quantum mechanics. The solutions and the
ideas may be adapted to topological insulators and may enable the calculation of the Josephson effect
in junctions with different magnetic fields.

Last but not least, systems studied in this Master thesis could be investigated with a bias voltage applied
over the junction. This leads to an AC Josephson effect. It has been shown that the conductance in a
topological insulator step junction is suppressed when the bias current is increased [35]. Furthermore,
one may use ferromagnetic topological insulator junctions which may also lead to interesting interactions
between the bias voltage and the ferromagnetism.
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Appendices

A TR and particle-hole symmetry

A.1 TR symmetry for spin-1/2 particles

In this section we want to investigate how TR acts on spin-1/2 particles and what the TR operator T
looks like. The spin is described with the Pauli matrices σi, i = x, y, z. As the TR operator flips the
sign of a spin, we know: T σiT −1 = −σi. This can be satisfied with T = iσyK where K is the complex
conjugation. We can see that T 2 = iσyKiσyK = iσyiσy = −σ2

y = −I2×2. iσy is a unitary matrix and

thus T −1 = T † which means that T is an anti unitary operator.
To see that it is a good TR operator for our properties, we apply it on position r and on momentum ~k
(replace ki by −i∂i) we can see that:

T (ri · I2×2)T −1 = ri · I2×2 the position is invariant under TR

T (−i~∂i · I2×2)T −1 = i~∂i the momentum k changes sign

T σiT −1 = −σi the spin changes sign

T (U · I2×2)T −1 = U · I2×2 constants do not change sign

(257)

This is true when we consider only one spin-1/2 particle at once. As we work in a Nambu basis where
one basis vectors describes an electron and a hole at the same time, the complete TR operator is
T = I2×2 ⊗ iσyK.

A.2 Particle-hole symmetry

The particle-hole symmetry is the symmetry which relates the electrons and holes in the system to each
other. In our Nambu basis we can express the particle-hole symmetry though the operator

P = τy ⊗ σyK =




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


 . (258)

K is the complex conjugation and τy and σy are the second Pauli matrices in real and spin space
respectively. This operator fulfills

PH(r)P† = −H(r). (259)

As P2 = 1, P is an unitary operator. If there is a solution ψi with positive energy Ei there must
exist a solution ψj with negative energy Ej = −Ei and the solutions satisfy ψj(r) = Pψi(r). We can

diagonalize H: Hdiag = 1
2

∑
iEiΨ

†
iΨi. The solutions now satisfy Ψj = Ψ†i . If E = 0 it is possible to

get a solution that satisfies Ψ = Ψ† and is thus a Majorana fermion. In our Nambu basis this means, a
general Majorana fermion has to satisfy the equation

ψM (r) = PψM (r). (260)

This allows us to write the state in a general form:

ψM (r) =




f(r)
g(r)
g∗(r)
−f∗(r)


 . (261)

Our topological insulator Hamiltonians are TR invariant: THT = H where T = I2×2 ⊗ iσyK is the
TR operator. If ψi(r) is an eigenstate, also T ψi(r) has to be an eigenstate with the same energy. This
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is Kramers’ theorem for a superconductor. For the Majorana spinor above the Kramers’ partner takes
the form:

ψ′M (r) =




g∗(r)
−f∗(r)
−f(r)
−g(r)


 . (262)

The probability densities of the Majorana fermion and its Kramers’ partner are equal: |ψM (r)|2 =
|ψ′M (r)|2 = 2|g(r)|2 + 2|f(r)|2. To get spatially isolated Majorana fermions, which means Majorana
fermions which don’t have a Kramers’ partner with identical probability density, we need a Hamiltonian
which breaks TR symmetry.
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B Spin- and real-space rotation

As we need to solve complicated equations for the different faces of the topological insulator, it may be
useful to know, how one can derive the solution of a face when knowing the solution of another face.
We derive this for the example of the two faces of the 3D topological insulator that are described with
Hamiltonians of the form:

Hxy = σxky − σykx (263)

and
Hyz = σykz − σzky. (264)

We want to transform Hxy to Hyz. For that, a spin-space rotation and a real-space rotation are needed.
At first a rotation by π/2 about the z−axis and a rotation by π/2 about the y−axis in spin-space are
done by the transformation

S = e−iπ/4σye−iπ/4σz . (265)

This fulfills

S



σx
σy
σz


S−1 =



σy
σz
σx


 . (266)

The same rotation in real space reads
R(n, φ) = e−iφnL. (267)

n is the unit vector about which the system is rotated, φ = (φx, φy, φz) is the rotation angle and L = r×k
is the angular momentum operator. As before, a rotation by π/2 about the z−axis and a rotation by
π/2 about the y−axis shall be done. First the rotation by π/2 about the z−axis a calculated:

R(ez, π/2)

(
kx
ky

)
R(ez, π/2)† =

(
kx
ky

)
+

(−iπ
2

)[
xky − ykx,

(
kx
ky

)]
+ . . .

=

(
kx
ky

)
+

(
iπ

2

)(
−iky
ikx

)
+

1

2

(−iπ
2

)2 [
xky − ykx,

(
iky
−ikx

)]
+ . . .

=

(
kx
ky

)
+
(π

2

)( ky
−kx

)
− 1

2

(π
2

)2
(
kx
ky

)
+ . . .

=

(
kx cos(π/2) + ky sin(π/2)
ky cos(π/2)− kx sin(π/2)

)

=

(
ky
−kx

)
.

(268)
Analogously one can obtain

R(ey, π/2)

(
kz
kx

)
R(ey, π/2)† =

(
kx
−kz

)
. (269)

Finally, we get the complete rotation in real-space

R(ey, π/2)R(ez, π/2)



kx
ky
kz


R(ez, π/2)†R(ey, π/2)† =



ky
kz
kx


 . (270)

Therefore (spin- and real-space transformations commute) the unitary transformation is described by
the operator

U = SR(ey, π/2)R(ez, π/2), (271)

which acts on the Hamiltonian as follows:

UHxyU† = Hyz. (272)

73



To perform the rotation on the wave functions, the matrix representation of the rotations is chosen:

Rx(φx) =




1 0 0
0 cos(φx) − sin(φx)
0 sin(φx) cos(φx)


 , (273)

Ry(φy) =




cos(φy) 0 sin(φy)
0 1 0

− sin(φy) 0 cos(φy)


 , (274)

Rz(φz) =




cos(φz) − sin(φz) 0
sin(φz) cos(φz) 0

0 0 1


 . (275)

The rotation transforms a vector (x, y, z)ᵀ in the following way:

SRy(π/2)Rz(π/2)



x
y
z


 = S



z
x
y


 . (276)

This can be applied on the wave functions.
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C Non-monotonic critical Josephson current at Λ > qx

In this section we want to discuss the non-monotonic critical Josephson current appearing for certain
values of qx and Λ in step junctions with perpendicular magnetization. Our investigation leads to ideas
of how this behaviour is connected to ferromagnetism.

In Figs. 22 and 25 we can see that, as soon as the magnetization qx becomes large enough, there
are points of critical current Jc which can belong to two or three different chemical potentials. Further
analysis shows, that this is not the case for qx ≤ 4.51 but is the case for qx ≥ 4.55. The critical value
for 0 slope is in between. As the calculation for the critical current involves solving a numerical integral
and a maximization with respect to φ it is very hard to find the reason for this behaviour. To get a
better picture we look at the qx = 7 curve. We choose six points (belonging to two values of the critical
current Jc) which we want to analyze. They are listed in Tab. 1. The first point is located before the
local maximum, the second point is around the inflection point and the third point is after the local
minimum.

Jc Λ =
µ−εyz0

~vyzF

(
A2L
A1

)
φ(Jc)

0.61 7.8 2.51
8.17 2.29
8.52 2.17

1.27 10.1 2.33
10.2 2.28
10.5 2.22

Table 1: Two values of critical current Jc which can be achieved by three different Λ and three points
corresponding to this Jc are listed. The magnetization is chosen to be qx = mx

~vyzF
A2L
A1

= 7. φ(Jc) is the

phase difference where the Josephson current achieves its maximal value Jc.

For further analysis we look at the energy spectrum for the first three points listed in Table 1. We ex-

amine the energy within the regime where we have propagating waves, thus 0 ≤ ky ≤
√(

µ−εyz0

~vyzF

)2

− m2
x

(~vyzF )2 ,

with respect to kzL and φ. This is illustrated in Fig. 30. Figure 31 shows the energy with respect to
ky

A2L
A1

and φ. We can see that there are certain points with zero energy.

75



kzL

1
2

3
4

φ

−π

−π/2
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+π/2
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∆
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0.6

0.8

Figure 30: Energy dependence on the superconducting phase difference φ and on kzL for different

Λ =
µ−εyz0

~vyzF

(
A2L
A1

)
. The magnetization is chosen to be qx = mx

~vyzF
A2L
A1

= 7. Blue: Λ = 7.8, black: Λ = 8.17

and red: Λ = 8.52.
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(a) (b)

(c) (d)

Figure 31: Energy dependence on the superconducting phase difference φ and on ky for different Λ =
µ−εyz0

~vyzF

(
A2L
A1

)
. The magnetization is chosen to be qx = mx

~vyzF
A2L
A1

= 7. The values for Λ are (a) Λ = 7.8,

(b) Λ = 8.17 and (c) Λ = 8.52. (d) shows a comparison of (a), (b) and (c).

Zero energy modes:
Zero energy modes are particularly interesting, because ε = 0 is the necessary condition for the appear-
ance of a Majorana bound state. Furthermore, we know that ky needs to be 0 and that κ has to be real,
such that the particle can be its own antiparticle. This means the Majorana modes need to decay in
z−direction. To analyze the appearance of zero energy modes, we look at the energy (Eq. (237)) and
set it to 0. This leads to the equations: κ2 + (k2

y +m2
x) sinh2(κL) 6= 0 (denominator has to be nonzero)

and κ2 +k2
y sinh2(κL)−κ2 sin2(φ/2) = 0. For a general phase difference φ the second condition can only

be fulfilled if κ = ky = 0. We note, that the denominator (condition one) gets 0, but we can take the
limit {κ, ky} → 0 and we see that ε → 0, thus this is a zero energy solution. It also requires qx = ±Λ.
By substituting this condition in the wave function of the second region, we can see that the spinor can
never take a form of a Majorana spinor.
The remaining zero energy modes need φ = ±π. For κ real, there is no additional zero energy mode to
the one already mentioned. There are still several cases where we have zero energy for waves propagating
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in z, thus kz 6= 0:

1. kz = nπ/L and ky = 0, where n > 0 is an integer.

2. kz = nπ/L and ky
√

Λ2 − q2 − (nπ)2 6= 0. In Fig. 32 the possible ky
A2L
A1

for the corresponding
qx values are plotted, for −15 ≤ Λ ≤ 15, kzL = φ = π. The zero energy points in the Figs. 30
and 31 are such zero energy modes. In Tab. 2 the three zero energy points in 31 for φ = π are
characterized.

Figure 32: Zero energy modes with kzL = φ = π. The plot shows the allowed ky
A2L
A1

values for different

magnetization qx = mx
~vyzF

A2L
A1

and different Λ =
µ−εyz0

~vyzF

(
A2L
A1

)
.

Λ =
µ−εyz0

~vyzF

(
A2L
A1

)
A2L
A1

ky kzL

7.8 1.4 π
8.17 2.8 π
8.52 3.7 π

Table 2: Characterization of three different zero energy points at φ = π for magnetization qx =
mx
~vyzF

A2L
A1

= 7.

The non-monotonic behaviour in the critical Josephson current may arise due to the zero energy modes
appearing in the energy spectrum of ferromagnetic topological insulator junctions. But as the calculation
of the critical current involves numerically solving an integral and maximizing the current with respect
to the superconducting phase difference, the analysis becomes very intriguing. In a next step, we analyze
the appearance of new propagating modes.

Comparison to number of propagating modes:
We compare the values of Λ, where this non-monotonic behavior arises, to the scaled number of modes
N ′ = N · LW A2

A1
=
√

Λ2 − q2
x/π. Doing so, we find that when Λ is small enough such that the curve

is still monotonic, N ′ < 1. We increase Λ and just before the first local maximum of Jc, N
′ exceeds

1. Just before the second local maximum, we have N ′ ≥ 2. When plotting the superconducting phase
difference φ(Jc) which maximizes the current J against Λ, we find that this phase difference oscillates
between larger values for larger qx. This is shown in Fig. 33. The crosses indicate the value of Λ where
N ′ becomes an integer. Again we see that by increasing Λ the next integer value of N ′ is achieved just
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before the maximum of φ(Jc). All this suggests that this non-monotonic behavior arises due to quantum
interference of the new additional propagating mode and the already existing ones.

-15.0 -12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0

Λ
1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

φ
(J

c)

qx = 0

qx = 0.5

qx = 1

qx = 2

qx = 3

qx = 4

qx = 7

qx = 9

Figure 33: Superconducting phase difference φ(Jc) (which maximizes the current J) as a function of

Λ =
µ−εyz0

~vyzF

(
A2L
A1

)
for different values of qx = mx

~vyzF
LA2

A1
. The crosses indicate the Λ at which the scaled

number of modes N ′ = N · LW A2

A1
=
√

Λ2 − q2
x)/π takes an integer value.
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