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Summary

In nonequilibrium systems, individual constituents can self-organize, forming collective
order without any external control. Self-organization offers a robust and scalable way to
create complex structures; consequently, it is relevant in different contexts, including living
systems, economics, and social dynamics. As a paradigmatic example of self-organization,
synchronization describes how limit-cycle oscillators tend to lock their phases and, as
a result, spontaneously form a phase-coherent state. Synchronization captures diverse
phenomena like the simultaneous flashing of fireflies or phase locking in power grids. While
synchronization usually arises through mutually attractive interactions, another class of
self-organization occurs when interactions are nonreciprocal. In this case, the constituents
may interact in an antagonistic way; for example, one constituent may repel another
one, which in turn attracts the former, akin to the dynamics of predator and prey. Such
interactions can result in a nonreciprocal phase transition, whereby individual constituents
self-organize, forming a collective dynamical state similar to a chase-and-escape motion
between predators and prey.

While synchronization and nonreciprocal phase transitions are extensively studied
using classical models, nature is ultimately governed by the laws of quantum physics.
This raises fundamental questions: Can physical systems, whose constituents are micro-
scopically governed by quantum mechanics, exhibit synchronization and nonreciprocal
phase transitions? If so, how does the quantum nature of the individual constituents
affect the collective states and dynamics? These questions are particularly relevant given
the experimental progress in controlling driven-dissipative quantum many-body systems,
where interactions, driving, and dissipation can be engineered to a remarkable degree.
Since these systems are inherently out of equilibrium, they are natural platforms for
self-organization to occur.

Motivated by the rich phenomena of self-organization and the experimental progress
in driven-dissipative quantum systems, this thesis explores how two paradigmatic self-
organization transitions manifest in quantum systems. First, we discuss similarities and
differences between classical and quantum synchronization, pointing out unique features in
many-body quantum synchronization where the microscopic nature of individual quantum
constituents qualitatively shapes the macroscopic synchronized state. Second, we offer a
versatile framework for engineering antagonistic interactions among quantum constituents
and establish that nonreciprocal phase transitions can occur in quantum systems. A central
theme of this work is to provide intuition for the occurrence of self-organized, collective
states based on a detailed understanding of the microscopic interactions. Furthermore, we
emphasize the role of measurements, highlighting how dynamics and symmetry breaking
become directly visible in individual quantum trajectories. Finally, we show that the
fundamental insights gained about synchronization and nonreciprocal phase transitions
have implications for the design of superradiant lasers relevant for precision applications.
This thesis motivates future research to explore self-organization in quantum systems as a
way of forming useful many-body states, such as squeezed states for enhanced metrology,
where the order is not externally imposed but rather develops spontaneously through the
interactions among the quantum constituents.
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Chapter 1

Introduction

Self-organization

Complex structures can be formed through deliberate and precise control. To illustrate,
artists transform marble into impressive sculptures; managers coordinate employees to
achieve an efficient workflow; and programmers design algorithms for specific compu-
tational tasks. In each case, the resulting configuration – the artwork, the organized
workflow, or the algorithm – is imposed externally.

Remarkably, similar forms of order can also arise spontaneously without any external
control through the process of self-organization [Haken, 1983]. Beautiful patterns emerge
in plants, teams can self-coordinate without hierarchical oversight, and neural networks
spontaneously develop complex algorithms during training without a programmer setting
parameters explicitly. Self-organization only occurs out of equilibrium, relying on a
continuous energy exchange with the environment. The patterns and the complexity
formed through self-organization appear on a wide range of scales from the distribution
of matter in the Universe to intricate shapes of snowflakes and assemblies of cells [Cross
and Greenside, 2009]. Consequently, the importance of self-organization is appreciated
in various fields, including chemistry [Prigogine, 1978], biology [Fang et al., 2019], eco-
nomics [Farmer and Foley, 2009], and social dynamics [Castellano et al., 2009; Helbing,
2012]. Self-organization offers advantages over externally controlled structure formation.
First, it is inherently robust: Whereas an imperfection in the external control can result in
a breakdown of the carefully crafted structure, self-organization is the result of distributed
local interactions and thus often resilient to perturbations. Second, self-organization is
more easily scalable since an increasing number of constituents does not require a more
advanced external control.

A paradigmatic example of self-organization is synchronization. The Kuramoto
model captures the essence of this phenomenon: Coupled oscillators tend to align their
phases so that they will eventually share the same frequency despite differences in their
natural frequencies [Kuramoto, 1984]. This demonstrates how pairwise interactions
result in a collectively ordered state without external forcing. Many phenomena can
be understood in terms of synchronization [Strogatz, 2003], including the simultaneous
flashing of fireflies [Buck, 1938], phase locking in power grids [Witthaut et al., 2022], as
well as collective emission in lasers [Zhu et al., 2015].

The interactions that lead to synchronization are usually reciprocal: Individual
constituents share the same “goal” of aligning their phases. The concept of reciprocal
interactions dates back to Newton’s third law, which states that any action necessitates
a symmetric reaction. For example, two equally charged particles symmetrically repel
each other, and massive objects symmetrically attract each other. However, reciprocity
of interactions is not always the rule; instead, interactions can be nonreciprocal, which
significantly influences self-organization. This has recently been highlighted in the context
of active matter, i.e., ensembles of active agents. Active agents are nonequilibrium entities
that use energy to propel themselves or generate forces onto one another [Schweitzer,
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2003; Marchetti et al., 2013; Bechinger et al., 2016; te Vrugt and Wittkowski, 2025]. Each
active agent is driven out of equilibrium locally, a characteristic that distinguishes active
matter from other nonequilibrium systems such as boundary-driven systems. An exciting
feature of active agents is that the forces exerted among them can be nonreciprocal so
that the influence of agent A on agent B differs from B’s influence on A.

A particularly interesting subclass of nonreciprocal interactions are antagonistic
interactions, where A influences B in a way that is opposite to the way in which B
influences A. In other words, A and B have competing goals with respect to each other.
Antagonistic interactions occur, for example, in ecological systems where the population
of predators grows at the expense of the number of prey [Lotka, 1925; Volterra, 1926], or in
social dynamics as a competition between agreement and disagreement [Hong and Strogatz,
2011b]. Antagonistic interactions can cause a nonreciprocal phase transition where a
dynamical pattern emerges in the form of a collectively ordered state that oscillates in
time [You et al., 2020; Fruchart et al., 2021; Hanai, 2024].

Driven-dissipative quantum systems

Both synchronization and nonreciprocal phase transitions are extensively discussed in
classical systems. Simple classical models are constructed to describe and understand
these phenomena. Yet, our world is fundamentally governed by the laws of quantum
mechanics. This raises a few key questions: Can physical systems, whose constituents are
microscopically governed by quantum mechanics, exhibit synchronization and nonrecipro-
cal phase transitions? If so, how can these self-organization transitions be formulated
within the framework of quantum physics? These questions are partially addressed in
the study of quantum synchronization [Walter et al., 2014; Lee and Sadeghpour, 2013],
self-organization of cold atoms [Ritsch et al., 2013; Mivehvar et al., 2021], or collec-
tive effects like subradiance and superradiance [Dicke, 1954; Gross and Haroche, 1982].
However, many questions have remained unanswered: Does the quantum nature of the
individual constituents influence the collective synchronization behavior? Are there nonre-
ciprocal phase transitions in quantum systems, and how could the necessary antagonistic
interactions occur among quantum constituents?

These questions become increasingly important due to the experimental progress in
controlling quantum many-body systems. Some quantum systems can be described as
isolated systems following the time evolution governed by a Hamiltonian. For instance,
various quantum computing platforms are designed to achieve perfect isolation [Nielsen
and Chuang, 2010]. However, the coupling to an environment and the resulting dissipation
often cannot be neglected. Furthermore, control over the quantum system is enabled by
various drives, e.g., through a microwave pulse or a laser beam. As a result, one often
treats driven-dissipative quantum systems, which are inherently out of equilibrium since
they can gain energy via the drive and lose energy to an environment. In recent years,
nonequilibrium phenomena have been observed in a variety of experimental platforms,
including solid materials in cavities [Hübener et al., 2021], cold atoms in cavities [Mivehvar
et al., 2021] or in optical tweezers [Browaeys and Lahaye, 2020; Kaufman and Ni, 2021],
chiral quantum optics [Suárez-Forero et al., 2025], trapped ions [Foss-Feig et al., 2025],
and quantum fluids of light in nonlinear optical systems [Carusotto and Ciuti, 2013].

The high control of driven-dissipative quantum systems requires a precise theoretical
understanding of nonequilibrium phenomena at the quantum level. Therefore, a consid-
erable amount of research is performed towards this direction [Polkovnikov et al., 2011;
Schaller, 2014; Eisert et al., 2015; Landi et al., 2022; Defenu et al., 2024; Sieberer et al.,
2025]. The progress in understanding nonequilibrium quantum systems enables the design
of quantum technologies that rely on drive and dissipation. Arguably, the laser is the most
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important technology of this class, relying on nonequilibrium gain and loss [Haken, 1983].
More recently, engineered dissipation is used for signal amplification [Clerk et al., 2010]
and in quantum information platforms [Harrington et al., 2022]. It will be interesting to
consider self-organization as a robust and scalable way to form useful structure among
the quantum constituents, like phase-coherent, squeezed, or entangled states.

Overview of this thesis

This thesis is motivated by the rich phenomenology of spontaneous self-organization and
the experimental progress in the control of driven-dissipative quantum systems. The main
contribution of this thesis is to connect two paradigmatic classes of self-organization –
synchronization and nonreciprocal phase transitions – to quantum physics. This connection
is of fundamental interest, as it addresses the key questions regarding self-organization in
quantum systems posed above. Also, it has practical implications allowing us to derive
design principles for superradiant lasers, a promising type of laser relevant for precision
applications. A central theme of this thesis is to intuitively explain why certain collective
states arise through a comprehensive understanding of the pairwise interactions of any
two constituents. Another recurring theme is the role of measurements. We highlight the
backaction that the measurement imparts on the system, and use the resulting quantum
trajectories to analyze dynamics and symmetry breaking beyond the ensemble description.

The thesis starts with a review of classical synchronization and nonreciprocal in-
teractions in Chapter 2. To connect these concepts to quantum physics, we use the
framework of open quantum systems, which allows us to efficiently describe the effects
of an environment on the system. The notation and the concepts of open quantum
systems that are relevant for this thesis are introduced in Chapter 3. We then review
synchronization of driven-dissipative quantum oscillators with a novel emphasis on the
role of measurements in Chapter 4. Chapters 2 to 4 build the basis for the presentation
of our main results in the following three chapters.

In Chapter 5, we present a model of quantum oscillators whose synchronization
behavior is qualitatively different from that of classical oscillators. Existing models of
synchronizing quantum oscillators exhibit a self-organization transition that qualitatively
resembles that of the Kuramoto model. Here, however, collective synchronization is
shaped by the quantum nature of the individual oscillators. This is an example of self-
organization where the microscopic details of the quantum constituents are visible in the
macroscopic order.

In Chapter 6, we go beyond reciprocal interactions and analyze a quantum model
that hosts a phase transition induced by nonreciprocal interactions. We offer a general
framework to engineer antagonistic interactions, where two quantum systems influence
each other in opposing ways. The key result is to show that a nonreciprocal phase
transition can occur in a quantum many-body system. The transition is marked by the
occurrence of a dynamical pattern oscillating in time. We will show how this pattern is
made apparent and influenced through measurements.

The preceding chapters build a fundamental understanding of synchronization and
nonreciprocal interactions in quantum systems. Chapter 7 connects these theoretical
insights to the physics of a concrete physical system, the superradiant laser. This type
of laser relies on synchronized atoms that emit coherent light with narrow linewidth,
offering promising applications for precision technologies. We will show that nonreciprocal
interactions can naturally occur among the atoms, altering their collective self-organization
behavior. This causes a dynamical state, corresponding to a frequency shift, which limits
the laser’s optimal performance. We conclude and collect open questions for future studies
in Chapter 8.
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Chapter 2

Synchronization

Synchronization is a paradigmatic example of self-organization. It describes the phe-
nomenon in which oscillating entities align their phases and entrain their frequencies
even in the presence of noise and frequency disorder. Synchronization occurs in various
ways throughout nature, as well as in engineered and social systems. Perhaps the most
famous instance is that coupled clocks begin to tick in unison as originally discovered
by Christiaan Huygens in 1673 [Pikovsky et al., 2001, Appendix A1]; his experiment is
still revisited centuries later [Bennett et al., 2002; Goldsztein et al., 2021]. To give some
more examples, synchronization can describe the simultaneous flashing of fireflies [Buck,
1938; McCrea et al., 2022], phase locking in power grids [Witthaut et al., 2022], crowds
of people falling into step [Strogatz et al., 2005], and the coordinated firing of neurons
in brains [Brown et al., 2004; Uhlhaas et al., 2009]. As such a widespread phenomenon,
synchronization has been extensively studied in classical nonlinear dynamics [Pikovsky
et al., 2001; Acebrón et al., 2005; Strogatz, 2019].

As we will discuss in this thesis, the concepts of synchronization also apply to quantum
systems. To intuitively understand the dynamics of quantum systems that synchronize, it
is helpful to be familiar with the basic concepts of synchronization in classical systems,
which are presented in this chapter. In Section 2.1, we show how a single limit-cycle
oscillator can be described in terms of its phase. Phase locking and frequency entrainment
of two coupled oscillators are discussed in Section 2.2. In Section 2.3, we present the
Kuramoto model that describes many coupled oscillators and features a self-organization
transition from disorder to collective synchrony. The material presented in this chapter is
largely based on the textbooks Pikovsky et al. [2001] and Strogatz [2019].

2.1 Limit-cycle oscillator

Our starting point is the harmonic oscillator. The time evolution of a harmonic oscillator
with frequency ω and unit mass, ẍ = −ω2x, can be expressed by the differential equation

α̇ = −iωα , (2.1)

where α = x+ ip and p = ẋ/ω. There are different dynamical solutions to Eq. (2.1) that
depend on the initial condition α0

α(t) = α0 exp(−itω) . (2.2)

The energy |α0|2 determines the amplitude of the oscillation. Three possible evolutions
are displayed in Fig. 2.1(a).

In contrast to the harmonic oscillator that has a constant energy, limit-cycle oscillators
are driven-dissipative systems that continuously exchange energy with an environment.
Importantly, the rate of energy exchange with the environment depends on the oscillator’s
state variables. This renders the differential equation governing the time evolution of the
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x

p

(a) Harmonic oscillator

x

p

(b) Limit-cycle oscillator

Figure 2.1: (a) Three trajectories of a harmonic oscillator in phase space.
(b) Four trajectories of a van-der-Pol oscillator, Eq. (2.3), with κ1 = κ2 =
ω/2. The red circle shows the limit cycle to which all trajectories converge.

oscillator nonlinear, a necessary condition for the presence of limit cycles [Strogatz, 2019].
In the context of synchronization, we are interested in stable limit cycles where the gain
and loss processes result in closed attracting trajectories in phase space. Independently
of the initial condition, the oscillator’s state approaches these periodic trajectories in the
long-time limit. On the limit cycle, we can define a single variable to uniquely identify
the oscillator’s state. We call this the phase of the oscillator, which takes values between
zero and 2π; it will be the central quantity in synchronization.

A paradigmatic model of a limit-cycle oscillator is the van-der-Pol (vdP) oscillator.
In the regime of weak nonlinearity, the oscillator’s amplitude α follows the equation of
motion [Pikovsky et al., 2001, Section 7.2]

α̇ = −iωα+ κ1α/2− κ2|α|2α , (2.3)

with linear gain at rate κ1 > 0 and nonlinear loss at rate κ2 > 0. The loss is nonlinear,
since the effective loss rate depends on the amplitude squared. Figure 2.1(b) shows four
trajectories with different initial conditions that approach the same limit cycle. The
limit-cycle trajectory can be obtained by defining the amplitude r = |α| and phase
ϕ = − arg[α] so that α = r exp(−iϕ). The equations of motion for amplitude and phase
of a vdP oscillator are

ṙ = (κ1/2− κ2r
2)r , (2.4)

ϕ̇ = ω . (2.5)

Since κ1,2 > 0, the radius is attracted to the stable fixed point at r0 =
√
κ1/2κ2. The

phase increases linearly in time at rate ω. We conclude that the vdP oscillator exhibits
an attractive limit-cycle with constant amplitude r0 and frequency ω.

The vdP oscillator as written in Eq. (2.3) represents the normal form of a Hopf
bifurcation [Kuznetsov, 2023]. As such, it may represent the dynamics of a variety of
dynamical systems, at least within a local parameter regime. To give an example, let
us connect the model of a vdP oscillator to the laser. In a semiclassical description
of the laser, the complex amplitude αl of the light field is coupled to a gain medium
whose relaxation time is short compared to that of the light field. The gain medium can
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consequently be adiabatically eliminated, which results in an effective description for the
light-field amplitude [Scully and Zubairy, 1997, Chapter 5]

α̇l = −iωαl +
κ+

1 + κ2|αl|2/κ+
αl − καl , (2.6)

with linear damping at rate κ, saturated gain at rate κ+, and saturation coefficient κ2.
We can expand the right-hand side for small κ2|αl|2/κ+, which is valid close to the lasing
threshold, i.e., for κ ≈ κ+:

α̇l ≈ −iωαl + (κ+ − κ)αl − κ2|αl|2αl +O

(
κ2|αl|2

κ+

)
. (2.7)

We find the equation of the vdP oscillator, Eq. (2.3), with the effective linear gain
κ1 = κ+ − κ. The lasing state, in which the light field assumes a nonzero value oscillating
with the lasing frequency ω, is obtained when the gain overcomes the damping, κ+−κ > 0.
The lasing transition constitutes a self-organization transition, where the constituents of
the gain medium, for example, individual atoms, emit light in phase [Haken, 1983]. In
terms of the vdP oscillator, the lasing state corresponds to a limit cycle. The vdP oscillator
discussed in this chapter can thus be thought of as a laser close to the lasing threshold.
Our discussion of synchronization of vdP oscillators in the following sections therefore
also captures the essentials of synchronization and injection locking of lasers [Siegman,
1986, Chapter 29].

2.1.1 Influence of fluctuations

The dynamics of a physical system is generally not completely deterministic. Instead,
fluctuations result in a stochastic time evolution. The fluctuations are usually the effect
of an environment that influences the system dynamics. Even when the combined state of
a system and its environment evolves deterministically, the system state by itself appears
to fluctuate. For example, a Brownian particle can be described in a deterministic way,
including the motion and interactions of all neighboring particles. It is simpler, however,
to consider the influence of the environment on the particle as effective fluctuations that
randomly change the state of the system [Zwanzig, 2001]. In equilibrium systems, the
coupling to the environment and the strength of fluctuations are related by the dissipation-
fluctuation theorem [Callen and Welton, 1951; Kubo, 1966]. However, the concept of
fluctuations induced by the environment also extends to nonequilibrium systems like
the vdP oscillator, where the energy exchange with the environment inevitably induces
fluctuations in the system. In the example of the laser, the fluctuations may originate
from thermal noise or from quantum fluctuations that persist at zero temperature.

Without specifying the details of the coupling to the environment, the fluctuations
are usually modeled by a Langevin equation, i.e., an Itô stochastic differential equa-
tion [Zwanzig, 2001]; for a vdP oscillator, it reads

α̇ = −iωα+ κ1α/2− κ2|α|2α+ σξx(t) + iσξy(t) . (2.8)

The terms ξx(t) and ξy(t) are stationary Gaussian white-noise processes that induce
independent fluctuations in the real and imaginary parts of the amplitude α. The
noise processes have zero mean, E[ξx(t)] = E[ξy(t)] = 0, and variance E[ξx(t)ξx(t′)] =
E[ξy(t)ξy(t′)] = δ(t− t′). The strength of the noise is σ2.
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Figure 2.2: Limit-cycle oscillations in the presence of noise. The blue
lines show x = Re[α] for ten different trajectories, all starting with the
same initial condition. One of them is highlighted in a darker blue. The
black line displays the average evolution obtained by averaging over 16 000
trajectories. The red line shows a trajectory in the absence of noise.
Parameters: κ1 = κ2 = ω/2 = 10σ2.

Integrating Eq. (2.8) results in a trajectory for α that depends on the random
realization of the noise. A few such trajectories are displayed in Fig. 2.2 (blue lines).
They approximately follow the noiseless evolution (red line) with additional fluctuations.

Any Langevin equation can be converted to an equivalent Fokker-Planck equa-
tion [Risken, 1989; Zwanzig, 2001]. The Fokker-Planck equation describes the time
evolution of the probability distribution for the system to be in a certain state. Here, we
introduce the probability distribution P (x, p) for the vdP oscillator to be in the state
α = x+ip at time t (for ease of notation, we do not explicitly denote the time dependence).
Equation (2.8) corresponds to the Fokker-Planck equation

∂tP (x, p) = −∇(µP (x, p)) + σ2∇2P (x, p) ,

∇ =

(
∂x
∂p

)
, µ =

(
ωp+ κ1x/2− κ2(x

2 + p2)x
−ωx+ κ1p/2− κ2(x

2 + p2)p

)
,

(2.9)

introducing partial differentials for t, x and p, e.g., ∂t = ∂/∂t. The deterministic part of
the time evolution enters via the term proportional to µ, while the effect of the fluctuations
is described by the term proportional to σ2.

Fokker-Planck equations are partial differential equations whose analytical and nu-
merical solutions are typically difficult to obtain. For a numerical solution, it is often
easiest to integrate the corresponding Langevin equation for various initial conditions and
realizations of the noise. Given sufficient realizations, the probability distribution P (x, p)
is approximated by the relative number of occurrences of the values α = x+ ip at each
time counted over all trajectories.

We take this approach to obtain the time evolution of the probability distribution
shown in the upper panels of Fig. 2.3. We recognize the oscillation at frequency ω and the
attraction to the limit cycle since the probability distribution rotates and moves towards
the limit-cycle amplitude r0. Furthermore, note that the probability distribution spreads
along the phase direction, indicating that the initial phase of the distribution is lost over
time. This process is called phase diffusion. The initial distribution approaches a unique
stationary distribution in the long-time limit, which is ring-shaped and phase-symmetric,
i.e., invariant under rotations around the origin; see top right panel of Fig. 2.3. Similarly,
the phase fluctuations are visible in the average of many trajectories in Fig. 2.2 (black line).
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Figure 2.3: Time evolution of the classical vdP oscillator shown by the
probability distributions P (x, p) (top row) and P (ϕ) (bottom row). In the
top row, the grayscale indicates the value of P (x, p). The distributions
are obtained by sampling 16 000 trajectories and counting the occurrences
per (x, p) or per ϕ. One trajectory is shown by the blue line in the top
left panel. Parameters: κ1 = κ2 = ω/2 = 10σ2.

In the long-time limit, the information about the initial phase is lost in all trajectories, so
that their average gives zero.

The phase diffusion can be quantified by converting Eq. (2.8) to polar coordinates
using Itô’s formula. We obtain [Gardiner, 1997, Section 4.4.5]

ṙ = (κ1/2− κ2r
2)r +

σ2

2r
+ σξr , (2.10)

ϕ̇ = ω +
σ

r
ξϕ . (2.11)

where ξr and ξϕ are independent Gaussian white-noise processes following the same
statistics as ξx and ξy. In the equation for the phase, Eq. (2.11), the noise process enters
with a factor of 1/r. Therefore, when the radius is large, the fluctuations in the phase are
small.

Let us now assume that the rates κ1 and κ2 are large compared to σ2. The radius then
approximately takes the constant value r0. This allows us to consider the Fokker-Planck
equation for the phase distribution P (ϕ),

∂tP (ϕ) = −ω∂ϕP (ϕ) +
σ2

2r20
∂2ϕP (ϕ) , (2.12)

corresponding to the Langevin equation ϕ̇ = ω + σξϕ/r0 [Pikovsky et al., 2001, Section
9.2]. The Fokker-Planck equation describes phase diffusion at rate

D ≡ σ2

2r20
. (2.13)

The time evolution of the phase distribution is shown in the bottom row of Fig. 2.3. Here,
the phase diffusion becomes visible as a broadening of P (ϕ), which approaches a flat
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curve in the long-time limit. Indeed, the steady state solution of Eq. (2.12) that satisfies
∂tP (ϕ) = 0 is P (ϕ) = 1/(2π), i.e., completely flat.

In the example of the laser, the phase fluctuations result in a nonzero linewidth [Gar-
diner and Zoller, 2000; Scully and Zubairy, 1997]. The linewidth is an important charac-
teristic of the laser, quantifying the quality of its coherence; it corresponds to the width
of the spectrum of the laser’s light. The spectrum is defined as the Fourier transform of
the steady-state two-time correlations

g(τ) ≡ lim
t→∞

E[α∗(t+ τ)α(t)] . (2.14)

The expectation value E[·] denotes an average over all possible noise realizations; in
practice, it is approximated by a finite number of numerical simulations with different
noise realizations. When the amplitude is large, amplitude fluctuations can be ignored,
and phase fluctuations dominate the two-time correlation function. Furthermore, the
phase evolution is stationary in the long-time limit, so that

g(τ) = r20E
[
exp[i(ϕ(τ)− ϕ(0))]

]
. (2.15)

Inserting the solution of Eq. (2.11) with r = r0, and using that the phase fluctuations are
Gaussian, one obtains [Scully and Zubairy, 1997, Section 11.4]

g(τ) = r20 exp(iωτ −D|τ |) . (2.16)

The spectrum is the Fourier transform of the autocorrelation function. Here, it evaluates
to a Lorentzian distribution centered at frequency ω with width 2D. This shows how the
phase diffusion determines the laser linewidth.

2.2 Two coupled oscillators

In this section, we show that two limit-cycle oscillators that are coupled strongly enough
can entrain their frequencies and lock their phases despite the presence of frequency
detuning or noise.

2.2.1 Frequency detuning

We start the discussion assuming zero fluctuations. The evolution of two detuned and
coupled van-der-Pol oscillators is given by

α̇ = −iδα/2 + κ1α/2− κ2|α|2α+ V (β − α)/2 (2.17a)

β̇ = +iδβ/2 + κ1β/2− κ2|β|2β + V (α− β)/2 (2.17b)

with frequency detuning δ and coupling strength V ≥ 0. For simplicity, we consider only
dissipative coupling; for an analysis of reactive coupling, see for example Pikovsky et al.
[2001, Section 8.2.1]. In writing Eqs. (2.17), we have implicitly moved to a frame rotating
at the average frequency of the two oscillators. In that frame, the frequencies of the
oscillators are ±δ/2.
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Similar to before, we define amplitudes and phases of the oscillators via α =
rA exp(−iϕA) and β = rB exp(−iϕB). The equations of motion for the amplitudes
rA,B are

ṙA = (κ1/2− V/2− κ2r
2
A)rA + V rB cos(ϕ)/2 (2.18a)

ṙB = (κ1/2− V/2− κ2r
2
B)rB + V rA cos(ϕ)/2 , (2.18b)

and the equations for the phases are

ϕ̇A = +
δ

2
+
V

2

rB
rA

sin(ϕB − ϕA) , (2.19a)

ϕ̇B = −δ
2
+
V

2

rA
rB

sin(ϕA − ϕB) . (2.19b)

While the global phase ϕA + ϕB is irrelevant here, the phase difference ϕAB = ϕA − ϕB
plays a central role; its time evolution is

ϕ̇AB = δ − V

2

(
rA
rB

+
rB
rA

)
sin(ϕAB) . (2.20)

In the context of synchronization, the rates κ1 and κ2, which stabilize the limit cycle,
are considered large compared to the coupling strength V . In this case, Eqs. (2.18)
are approximately fulfilled by the steady state ṙA,B = 0 where rA,B = r0 =

√
κ1/2κ2.

Equation (2.20) consequently becomes

ϕ̇AB = δ − V sin(ϕAB) . (2.21)

This equation is called the Adler equation [Adler, 1946; Pikovsky et al., 2001]. The
Adler equation captures the essential dynamics of two coupled limit-cycle oscillators. It
describes a competition between the detuning, which causes the phase difference to grow,
and the coupling, which brings the phase difference closer to zero.

When the detuning is smaller than the coupling, |δ| < V , the Adler equation exhibits
a stable fixed point

ϕfAB = arcsin(δ/V ) . (2.22)

In this case, the two oscillators synchronize: They oscillate at the same frequency and their
phase difference is locked to a constant value. The region in which synchronization occurs
is called the Arnold tongue; the boundary between the synchronized and unsynchronized
regimes, |δ| = V , is shown in Fig. 2.4(a) by the blue dashed line.

When the detuning is larger than the coupling strength, |δ| > V , the solution to the
Adler equation is time dependent; the phase difference ϕAB continuously increases or
decreases. This corresponds to an unsynchronized state. The time period T during which
ϕAB increases by 2π is

T =

∫ 2π

0
dϕAB

dt

dϕAB
=

∫ 2π

0
dϕAB

1

δ − V sin(ϕAB)
=

2π√
δ2 − V 2

, if |δ| > V . (2.23)

The average observed frequency difference is thus 2π/T =
√
δ2 − V 2. It is shown in

Fig. 2.5(a) by the black line. For large values of the detuning |δ| ≫ V , the coupling has
close to no influence; thus, the observed frequency difference approximately equals the bare
frequency difference δ shown by the gray dashed line. When the detuning decreases and
approaches the coupling strength |δ| → V , the frequency difference decreases compared to
the bare detuning, i.e., the frequencies of the two limit-cycle oscillators are pulled towards



12 2. Synchronization

−10 −5 0 5 10

detuning δ/σ2

0

5

10

co
u

p
lin

g
V
/
σ

2

(a) maximum of P (φAB)

0

1

2

−π 0 +π

phase difference φAB

0.0

0.5

(b) distribution of phase differences P (φAB)

V = 0

V = δ

V = 2δ

Figure 2.4: Phase locking of classical vdP oscillators. (a) Arnold tongue.
The blue dashed line indicates the synchronization transition V = |δ|. The
grayscale shows the maximum of P (ϕAB), a measure for synchronization
in the presence of noise. (b) Distribution P (ϕAB) of the phase difference
in the long-time limit in the presence of noise and detuning, δ = σ2. The
blue and red ticks indicate the value of the phase ϕfAB = arcsin δ/V in the
absence of noise.

their average natural frequency. When the detuning is sufficiently small compared to the
coupling, |δ| < V , the two oscillators exactly entrain their frequencies as indicated by the
plateau at zero frequency difference.

2.2.2 Influence of fluctuations

In Section 2.1.1, we saw that noise causes fluctuations in the phase of a limit-cycle
oscillator. As we show in this section, two coupled oscillators subject to fluctuations can
nevertheless exhibit features of synchronization. However, in the presence of noise, phase
locking and frequency entrainment are approximate rather than exact.

In the presence of phase fluctuations, the equations for the phases, Eqs. (2.19), (setting
again rA = rB = const.) become

ϕ̇A = +
δ

2
+
V

2
sin(ϕB − ϕA) +

σ√
2
ξA , (2.24a)

ϕ̇B = −δ
2
+
V

2
sin(ϕA − ϕB) +

σ√
2
ξB . (2.24b)

The two independent Gaussian white-noise processes ξA and ξB both have zero mean and
variance E[ξA,B(t)ξA,B(t

′)] = δ(t − t′). We have absorbed the dependence of the noise
strength on the amplitudes rA,B [see Eq. (2.11)] in the parameter σ. Introducing the
noise process ξ – once more with zero mean and variance δ(t− t′) – that originates from
the difference of the phase fluctuations of both oscillators, the Adler equation becomes

ϕ̇AB = δ − V sin(ϕAB) + σξ . (2.25)

In the absence of noise, we identified a sharp transition between the unsynchronized and
the synchronized states. Here, the fluctuations prevent exact phase locking. Nevertheless,
we can quantify the amount of phase locking using the distribution P (ϕAB) of the phase
difference in the long-time limit. Numerically, this distribution can be obtained by
integrating the Adler equation in the presence of noise for various initial conditions and
counting how often ϕAB assumes a certain value in the long-time limit. The results are
shown in Fig. 2.4(b) for different values of the coupling. When the coupling is absent, the
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Figure 2.5: Frequency entrainment of classical vdP oscillators. (a) Ob-
served frequency difference as a function of detuning. The dashed line
shows the identity line for reference. The black line shows the noiseless
case (

√
δ2/V 2 − 1 as calculated in Eq. (2.23)). The blue and red lines show

the observed frequency for two different noise strengths. Although difficult
to see, the observed frequency is not exactly zero for any σ2 > 0 and
|δ| > 0. (b) Spectra of the two phase oscillators for σ2 = δ/5, as defined
in Eq. (2.28). Each spectrum is averaged in bins of width ω/δ = 0.05.

phase distribution is flat, showing that all phase differences are equally likely. A nonzero
coupling induces a phase preference indicated by a peak in the phase distribution. The
phase is more likely to take values close to ϕfAB = arcsin(δ/V ), the stable fixed point
obtained in the noise-free analysis; see Eq. (2.22).

Figure 2.4(a) shows the maximum value of P (ϕAB) as a function of detuning and
coupling strength. The maximum grows with increasing coupling and decreasing detuning,
and displays a crossover at the synchronization transition V = |δ| obtained in the noiseless
case (blue dashed line). In conclusion, the phase distribution P (ϕAB) and its maximum
value provide a quantitative measure of the amount of phase locking of two coupled
oscillators.

For an intuitive understanding of synchronization in the presence of noise, we rewrite
the dynamics as the overdamped motion of a particle in a potential following Pikovsky
et al. [2001, Section 9.2]. Generally, the motion of a particle with position x and mass m
subject to damping at rate γ in a potential U(x) is mẍ+ γẋ = −∂xU(x). In the limit
of small mass or large damping, mẍ ≪ γẋ, the inertial term can be neglected, which
corresponds to the overdamped limit; see also Strogatz [2019, Sections 2.6 and 2.7]. In that
case, the velocity of the particle is completely determined by the slope of the potential.

Here, the position of the particle corresponds to the phase difference ϕAB. We recast
the Adler equation (2.25) in the form

ϕ̇AB = − ∂

∂ϕAB
U(ϕAB) + σξ , U(ϕAB) = −ϕABδ − V cos(ϕAB) . (2.26)

There are two qualitatively different cases for the shape of the potential U(ϕAB); they are
depicted in Fig. 2.6. When the detuning is larger than the coupling, |δ| > V , there are no
local minima in the potential; see Fig. 2.6(a). The particle continually descends the slope,
which translates to a continuously increasing phase difference (or decreasing if δ < 0). In
contrast, when the coupling is larger than the detuning, V > |δ|, the potential exhibits
local minima; see Fig. 2.6(b). Without noise, the particle approaches a local minimum
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(b)(a)

Figure 2.6: Dynamics of the Adler equation visualized by the potential
U(ϕAB). The phase ϕAB is depicted as a gray circle in the potential
landscape U(ϕAB). (a) Unsynchronized case; the phase continuously falls
down the slope. (b) Synchronized case; the phase is trapped in a local
minimum. Phase fluctuations (dashed arrows) can cause the particle to
move to a neighboring minimum. The process indicated by the black
dashed arrow is more likely than the one indicated by the gray dashed
arrow.

and remains there, corresponding to the synchronized state where the phase difference is
locked and the frequency difference is zero. The noise at strength σ, however, disturbs
the phase-locked state since fluctuations can cause the particle to slip to a neighboring
local minimum. The phase slip occurs more likely in the direction of the slope, and thus
the average frequency is nonzero for any nonzero δ. This becomes evident in Fig. 2.5(a),
which shows that exact frequency locking only occurs in the noiseless case. Nevertheless,
we observe frequency pulling in the regime of small δ, indicating approximate frequency
entrainment.

To further analyze the approximate frequency entrainment in the presence of noise, we
consider the spectrum of the oscillators. The spectrum allows us to analyze the properties
of the trajectories in the frequency domain. We introduced it at the end of Section 2.1.1
for a single oscillator, see Eqs. (2.14) to (2.16). The steady-state two-time correlations
are

ga(τ) = lim
t→∞

E[exp[iϕa(t+ τ)− iϕa(t)]] , (2.27)

where a ∈ {A,B}. The spectra, which depend on frequency ω, are obtained via Fourier
transformation,

Sa(ω) =

∫ ∞

−∞
dτe−iωτga(τ) . (2.28)

We numerically calculate the spectra by averaging over multiple trajectories obtained
from integrating Eqs. (2.24). The spectra are shown in Fig. 2.5(b) for different values
of the coupling strength. They are characterized by a peak whose position indicates the
typical frequency and whose width originates from the phase diffusion. For zero coupling,
the spectra both peak at the natural frequencies ±δ/2. With increasing coupling, they
peak at frequencies closer to zero until they nearly overlap. This behavior is consistent
with the average frequency difference shown in Fig. 2.5(a).

The frequency spectra and the phase distribution P (ϕAB) allow for quantifying
frequency entrainment and phase locking even though noise prohibits exact synchronization.
In Chapter 4, when discussing synchronization of quantum oscillators, we will encounter
analogous measures of quantum synchronization.
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Figure 2.7: Order parameter of the Kuramoto model. Each oscillator
is depicted as a blue disk on the unit circle. The position on the circle
represents the phase ϕi. The order parameter z is shown in the complex
plane by the red star. (a) The phases take different values, corresponding
to an unsynchronized state, and z is close to zero. (b) The phases take
similar values, indicating a synchronized state, and |z| is close to one.

2.3 Kuramoto model

Next, we extend the analysis to a large ensemble of coupled limit-cycle oscillators. As
before, the oscillators’ amplitudes are assumed constant. The phase dynamics are described
by the Kuramoto model [Kuramoto, 1975]

ϕ̇i = ωi +
V

N

N∑
j=1

sin(ϕj − ϕi) + σξi (2.29)

for N oscillators with phases ϕi and natural frequencies ωi. Each oscillator is subject to
an independent noise process ξi (with zero mean and variance δ(t− t′) as before). All pairs
of oscillators are coupled in the same way as discussed in the previous section. We have
normalized the coupling strength V by 1/N to allow for a well-defined thermodynamic
limit N → ∞, where each oscillator is influenced by an infinite number of other oscillators;
the coupling to each one, however, is infinitesimally small. For N = 2, the model is
equivalent to the one of two coupled oscillators presented in Eqs. (2.24).

An important property of the Kuramoto model is that the set of equations (2.29)
is invariant under a translation of all phases by a constant value ϕi → ϕi + ϕ0. This
corresponds to a U(1) symmetry. Physically, it means that no phase is preferred. As we
will later see, the synchronized state spontaneously breaks the U(1) symmetry.

To quantify the degree of synchronization among all oscillators, we introduce the order
parameter

z =
1

N

N∑
j=1

exp(iϕj) ≡ |z| exp(iψ) . (2.30)

It is schematically depicted in Fig. 2.7. When the phases of the oscillators take different
values, the order parameter takes a value close to zero. When the oscillators have similar
phases, the order parameter takes a nonzero value with phase ψ. The order parameter
allows us to rewrite Eq. (2.29) as

ϕ̇i = ωi + V |z| sin(ψ − ϕi) + σξi . (2.31)
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This form makes it explicit that each oscillator is attracted to the phase ψ with an effective
coupling strength V |z|.

In the limit N → ∞, the continuum limit is helpful; therefore, we introduce the
distribution f(ϕ, ω) of oscillators with phase ϕ and natural frequency ω at time t. In the
continuum limit, the order parameter takes the form

z =

∫ 2π

0
dϕ

∫ ∞

−∞
dωeiϕf(ϕ, ω) , (2.32)

and the Kuramoto model can be written as the Fokker-Planck equation [Strogatz, 2019]

∂f(ϕ, ω)

∂t
= − ∂

∂ϕ
[(ω + V |z| sin(ψ − ϕ))f(ϕ, ω)] +

σ2

2

∂2f(ϕ, ω)

∂ϕ2
. (2.33)

2.3.1 Frequency disorder

We first focus on the effect of frequency disorder and set the noise strength σ = 0. For
simplicity, we consider the natural frequencies ωi to be sampled from a Lorentz distribution

g(ωi) =
G

π(ω2
i +G2)

(2.34)

with width G. Without loss of generality, the average frequency is set to zero.
For small coupling strengths, the disorder in frequencies results in a uniform distri-

bution of phases with vanishing order parameter, z = 0. When increasing the coupling
strength, we expect a transition to a synchronized state in which the oscillators assume
similar phases and the order parameter is nonzero, |z| > 0.

In the limit N → ∞, the transition point can be found by presuming that there is a
solution with constant z (in the case of nonzero average frequency, we would assume a
solution rotating with this frequency) [Strogatz, 2019]. If there is a constant solution, then
we conclude from Eq. (2.31) and our analysis of the Adler equation that the oscillators
with frequencies |ωi| < |z|V are phase locked. The phase of each locked oscillator with
respect to the average phase ψ is determined by its natural frequency: ϕi−ψ = arcsin ωi

V |z| ;
see Eq. (2.22). The density of locked oscillators is thus

f(ϕ, ω) = δ

(
ϕ− ψ − arcsin

ω

V |z|

)
g(ω) . (2.35)

Inserting this density into (2.32) and evaluating the frequency integral, we find

z = V z

∫ π/2

−π/2
dϕ eiϕ cos(ϕ)g (V |z| sinϕ) . (2.36)

Here, we employed the fact that the unlocked oscillators do not contribute to the order
parameter; the reason is that for any unlocked oscillator with frequency ωi and phase ϕi
there is an oscillator with frequency −ωi and phase ϕi+π, and their combined contribution
to the order parameter vanishes. For our presumed solution to be correct, the integral
equation (2.36) must be fulfilled self-consistently. One solution is the unsynchronized state
z = 0. For the case of a Lorentz distribution, a second solution to the self-consistency
equation (2.36) can be obtained for V > 2G. It corresponds to a partially synchronized
solution with

|z| =
√

1− 2G

V
. (2.37)
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In this state, the oscillators have self-organized, forming a state of collective coherence
indicated by the nonzero value of the order parameter.

Regarding the phase ψ of the order parameter, any value of ψ satisfies the self-
consistency equation. While the Kuramoto model is phase symmetric, the synchronized
solutions in the limit N → ∞ are not phase symmetric; in each solution, the order
parameter assumes a particular phase ψ that depends on the initial condition. This is an
instance of spontaneous symmetry breaking : Each solution spontaneously breaks the U(1)
symmetry.

While the approach outlined above gives exact solutions for the synchronization
threshold and the value of the order parameter, it does not inform about the stability of
the unsynchronized and the partially synchronized solutions. In the following, we derive
an equation of motion for the order parameter z employing the Ott-Antonsen Ansatz
following Ott and Antonsen [2008] and Strogatz [2019]. This approach not only reproduces
the solution of Eq. (2.37) but also guarantees its stability. In the absence of noise, σ = 0,
the Fokker-Planck equation (2.33) becomes the continuity equation

∂f(ϕ, ω)

∂t
= − ∂

∂ϕ

[
(ω + V |z| sin(ψ − ϕ)f(ϕ, ω))

]
. (2.38)

To solve it, we introduce a Fourier decomposition of f(ϕ, ω) (after factoring out g(ω))

f(ϕ, ω) =
g(ω)

2π

∑
n

fn(ω)e
inϕ =

g(ω)

2π

[
1 +

∞∑
n=1

(
fn(ω)e

inϕ + c.c.
)]

, (2.39)

where c.c. abbreviates complex conjugation. Note that f0(ω) = 1 since f(ϕ, ω) is
normalized to one and fn(ω) = f∗−n(ω) since f(ϕ, ω) is real valued. Inserting the Fourier
decomposition into Eq. (2.38), we can collect the terms proportional to exp(inϕ) for each
n to find

∂

∂t
fn(ω) = n

[
V

2
(z∗fn−1(ω)− zfn+1(ω))− iωfn(ω)

]
. (2.40)

At first, it may seem that no progress was made; instead of describing infinitely many
coupled phases, we now describe infinitely many coupled Fourier modes. Remarkably,
however, the equations can be solved by the Ansatz fn(ω) = (ζ(ω))n, if

∂ζ(ω)

∂t
=
V

2
(z∗ − zζ(ω)2)− iωζ(ω) . (2.41)

While this is still an infinite-dimensional set of equations, we can make further progress
when the frequencies follow a Lorentzian distribution. In this case, the integral expression
for the order parameter, Eq. (2.32), can be evaluated via a contour integration. This yields
z = ζ∗(−iG), which connects the fn(ω) evaluated at ω = −iG to the order parameter z:

f∗n(−iG) = zn . (2.42)

Finally, inserting z = ζ∗(−iG) into Eq. (2.41) evaluated at ω = −iG and n = 1, we find
a dynamical equation for the order parameter

ż =

(
V

2
−G

)
z − V

2
|z|2z . (2.43)

We recognize the same equation that describes a van-der-Pol oscillator, see Eq. (2.3) with
effective gain κ1 = V − 2G and nonlinear loss rate κ2 = V/2. For negative effective gain,
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Figure 2.8: Order parameter in the Kuramoto model (noise free but
frequency disordered). (a) Time evolution of the order parameter |z| for
V = 3G. Black is obtained from integration of Eq. (2.29) with ξi = 0
and N = 214. Blue shows the Ott-Antonsen result of Eq. (2.43). In both
cases, the line (shaded area) shows the mean (standard deviation) of 16
realizations. (b) Order parameter in the long-time limit. Red to blue lines
show the results from the numerical integration of the Kuramoto model
for increasing N = {26, 28, 210, 212, 214}. The analytical result expected
for N → ∞ is shown by the black line.

i.e., when the coupling does not overcome the frequency disorder, V < 2G, the incoherent
solution z = 0 is a stable fixed point. When the gain is positive,

V > 2G , (2.44)

there is a stable fixed point with |z| =
√
1− 2G/V , consistent with Eq. (2.37). Having

obtained a dynamical equation for the time evolution of the order parameter implies the
stability of the unsynchronized and partially synchronized solutions. Here, the frequency
is zero, since we have set the average value of the natural frequencies to zero; see Eq. (2.34).
When the frequency distribution g(ω) has a mean ω =

∫
dωg(ω) different from zero, one

would obtain an additional term +iωz on the right side of Eq. (2.43).
The analytical result obtained by the Ott-Antonsen ansatz, Eq. (2.43), is compared

with numerical simulations of the Kuramoto model for large numbers N in Fig. 2.8. Panel
Fig. 2.8(a) displays the time evolution of the order parameter. The analytical result and
the numerical solution converge onto the same value in the long-time limit, but do not
exactly agree at all times. The reason for the discrepancy is that we have restricted the
dynamics on the Ott-Antonsen manifold when making the Ansatz fn(ω) = (ζ(ω))n. The
initial conditions for the numerical simulation of Fig. 2.8(a), which are random phases,
however, do not necessarily belong to this manifold. Nevertheless, the Ott-Antonsen
manifold is shown to be attracting in certain cases [Ott and Antonsen, 2009; Pikovsky
and Rosenblum, 2011, 2015]; consistently, the numerical simulations converge onto the
same value as the analytical solution after a transient time. Figure 2.8(b) displays the
order parameter as a function of the coupling strength. For an increasing number of
oscillators, the results from the numerical simulation of the Kuramoto model converge to
the analytical result of Eq. (2.37).
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2.3.2 Influence of fluctuations

Let us now consider the effect of fluctuations on the Kuramoto model, Eq. (2.29). First, we
assume identical oscillators setting ωi = 0. We will identify a synchronization transition
in the Kuramoto model despite the presence of fluctuations closely following Pikovsky
et al. [2001, Section 12.2]. As in the previous section, we analyze the system in the limit
of infinitely many oscillators and introduce the density f(ϕ) of oscillators with phase ϕ
at time t. Here, the density does not depend on the frequency ω since all oscillators are
identical. The Fokker-Planck equation (2.33) now reads

∂f(ϕ)

∂t
= − ∂

∂ϕ
[V |z| sin(ψ − ϕ)f(ϕ)] +

σ2

2

∂2f(ϕ)

∂ϕ2
. (2.45)

We expand f(ϕ) in a Fourier series, f(ϕ) = 1
2π

∑
n fn exp(inϕ), where f1 = z∗ and f0 = 1.

We obtain an equation similar to Eq. (2.40) with an additional diffusion term proportional
to σ2,

ḟn =
nV

2
(fn−1z

∗ − fn+1z)−
n2σ2

2
fn . (2.46)

The Ott-Antonsen Ansatz, which was used to solve Eq. (2.40), does not help here because
of the diffusion term. To make further progress, let us instead consider Eq. (2.46) for
n = 1, 2, and 3,

ż =
V

2
(z − f∗2 z

∗)− σ2

2
z, (2.47)

ḟ2 = V [(z∗)2 − f3z]− 2σ2f2, (2.48)

ḟ3 =
3V

2
(f2z

∗ − f4z)−
9σ2

2
f3. (2.49)

First, we note that the incoherent state z = fn = 0 for n ≥ 2 is a fixed point. A stability
analysis reveals that this solution is stable for small coupling strengths and unstable for

V > σ2 . (2.50)

In this case, the incoherent state is unstable due to the attraction of the phases. The
coupling results in a synchronized state with a finite order parameter |z| > 0.

The value of the order parameter can be approximately obtained near the threshold
V ≈ σ2, as we now show. The linear terms in Eqs. (2.47) to (2.49) indicate that the
modes fn for n ≥ 2 decay faster (∼ σ2) compared to the rate of change of z (∼ V − σ2).
We therefore eliminate their time evolution setting ḟ2 ≈ 0 and ḟ3 ≈ 0. From Eqs. (2.48)
and (2.49), we then find that f2 is of order z2 and f3 is of order z3. Near the threshold,
|z| is expected to be small; so we use the further approximation f3 ≈ 0 to find from
Eq. (2.48): f2 = V (z∗)2/(2σ2). This expression is inserted in Eq. (2.47) resulting in

ż =

(
V

2
− σ2

2

)
z − V 2

4σ2
|z|2z . (2.51)

This equation is similar to Eq. (2.43). Instead of the frequency disorder parametrized by
G, here, the noise at strength σ2 determines the damping rate of the order parameter.
From Eq. (2.51), we see that the synchronization condition is V > σ2, consistent with
Eq. (2.50). We can now additionally calculate the steady-state solution of the order
parameter

|z| =
√
2σ2 (V − σ2) /V 2 . (2.52)
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Figure 2.9: Order parameter in the Kuramoto model (disorder free but
noisy). (a) Time evolution of the order parameter |z| for V = 2.5 and
N = 212. Black shows the result of Eq. (2.51). Blue is obtained from
integration of the Kuramoto model, Eq. (2.29), with ωi = 0. In both
cases, the line (shaded area) shows the mean (standard deviation) of 16
realizations. (b) Order parameter in the long-time limit. Red to blue lines
show the result from the numerical integration of the Kuramoto model
for increasing N = {24, 26, 28, 210, 212}. The black line is the approximate
result of Eq. (2.52).

The time evolution of Eq. (2.51) is compared to a direct simulation of the Kuramoto
model of Eq. (2.29) in Fig. 2.9(a). While the approximation of the time evolution does
not perfectly agree with the numerical simulation, the steady-state solution shown by
the black line in Fig. 2.9(b) agrees very well with the numerical solution for large N in
the vicinity of the transition. For larger coupling strengths, the approximation f3 ≈ 0
becomes worse, and as a result, the solutions deviate. Improved approximations have
been described, for example, by Tyulkina et al. [2018].

Finally, we state the critical coupling when both frequency disorder (a Lorentzian
distribution with width G) and phase noise (fluctuations with variance σ2) are present.
A stability analysis reveals that the incoherent state becomes unstable when [Strogatz
and Mirollo, 1991]

V > σ2 + 2G . (2.53)

This result may be expected when combining Eqs. (2.44) and (2.50). It implies that
the coupling needs to overcome both the disorder due to fluctuations and the frequency
disorder.

In Chapters 4 to 5, we will describe models of coupled quantum oscillators that can
be described by equations of motion for an order parameter similar to Eq. (2.51). As we
will show, these models also feature a transition to a synchronized state similar to the
Kuramoto model.

2.4 Nonreciprocal interactions

All the interactions among phases discussed so far are reciprocal: The phases of two
coupled oscillators symmetrically tend to approach each other. The concept of reciprocal
interactions is very general and dates back to Newton [1687] who stated that any action
necessitates a symmetric reaction. For example, two equally charged particles symmetri-
cally repel each other, and massive objects symmetrically attract each other. Reciprocal
interactions generally occur in equilibrium systems where dynamics are governed by a
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Figure 2.10: Sketch of nonreciprocal interactions.

potential landscape [Ivlev et al., 2015; Fruchart et al., 2021]. In nonequilibrium systems
that are provided with energy from an environment, interactions can also be nonreciprocal,
i.e., asymmetric.

A specific nonequilibrium system that can feature nonreciprocal interactions is active
matter, which has attracted much interest in recent years [te Vrugt and Wittkowski, 2025].
An active system is composed of active agents. Each active agent has access to a source
of energy that it can use to propel itself and exert forces on other agents. These forces do
not necessarily conserve momentum and can be nonreciprocal.

Nonreciprocal interactions can be exemplified by a predator-prey model; see Fig. 2.10.
Living animals can be considered active agents that convert food into motion and that
exert influences on other animals. While prey attracts predators, predators clearly do not
attract prey; instead, predators repel prey. These antagonistic interactions result in the
onset of chase-and-run-away dynamics. One key result of this thesis is to show that such
dynamics can occur among active quantum agents, which will be explained in Chapter 6.

Limit-cycle oscillators can feature nonreciprocal interactions as we now show. The
state of two coupled limit-cycle oscillators is well described by their phases ϕA and ϕB.
The equations of motion (in the absence of detuning and in the frame rotating at their
common frequency) are

d

dt
ϕA = V sin(ϕB − ϕA)/2 ,

d

dt
ϕB = V sin(ϕA − ϕB)/2 .

(2.54)

These equations describe attractive or repulsive phase interactions: When V > 0, phases
ϕA and ϕB are mutually attracted to each other; when V < 0, both phases mutually
repel each other. The interactions are reciprocal, and as such, they can be derived from a
potential

U(ϕA, ϕB) = −V
2
cos(ϕA − ϕB) (2.55)

via ϕ̇i = −∂U/∂ϕi.
Consider now the modified equations

d

dt
ϕA = VBA sin(ϕB − ϕA)/2 ,

d

dt
ϕB = VAB sin(ϕA − ϕB)/2 ,

(2.56)

where the directional coupling strengths VBA and VAB determine how ϕB influences ϕA
and how ϕA influences ϕB, respectively. When VBA ̸= VAB, we refer to the interactions
as nonreciprocal (or asymmetric). It is impossible to construct a potential that generates
nonreciprocal interactions, like we did for reciprocal interactions in Eq. (2.55).
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The most interesting case occurs when VBA and VAB have opposite sign, i.e., sign(VBA) =
−sign(VAB). We call these interactions antagonistic (adapting the terminology from,
e.g., You et al. [2020] or Brauns and Marchetti [2024]). In this case, the two phases have
opposite influences on each other. For example, when VAB > 0 and VBA < 0, ϕA attracts
ϕB, while ϕB repels ϕA.

To solve Eqs. (2.56), let us rewrite them as the sum ϕ̄AB = ϕA + ϕB and difference
ϕAB = ϕA − ϕB of the phases,

d

dt
ϕ̄AB =

VAB − VBA

2
sin(ϕ) ,

d

dt
ϕAB = −VAB + VBA

2
sin(ϕ)

(2.57)

When VAB + VBA > 0 (< 0), the phase difference will approach zero (π) in the long-time
limit, and the average phase approaches a constant value. The dynamics become more
interesting when adding noise or disorder to the system, which perturbs the equilibrium
synchronized state. This can result in a dynamical state, where the phases continuously
change over time. Furthermore, the dynamical state can be stabilized against the effects
of fluctuations through many-body interactions, resulting in a novel class of nonreciprocal
phase transitions [Fruchart et al., 2021]. This idea will be discussed in a system of
synchronizing quantum spins in Chapter 6.

2.5 Conclusions

In this chapter, we reviewed important aspects of synchronization. We showed how
a limit-cycle oscillator can be described in terms of its phase. Next, we analyzed the
synchronization dynamics between two such oscillators. Building on this, we described syn-
chronization in an ensemble of limit-cycle oscillators. This constitutes a self-organization
transition, where pairwise phase alignment results in a phase-coherent collective state.
Throughout, we emphasized the role of fluctuations that result in phase diffusion and
prohibit exact synchronization. Finally, we introduced the basic ideas and notations of
nonreciprocal interactions.

This chapter provides the necessary intuition to understand the dynamics of the
quantum models that are presented in the following chapters. Several concepts of
synchronization and nonreciprocity will be encountered again later. They include the
idea of a limit cycle that relies on energy exchange with an environment; the role of
phase fluctuations and phase diffusion; measures to quantify phase locking and frequency
entrainment; synchronization transitions between two oscillators as well as in ensembles
of many oscillators; and nonreciprocal phase interactions.
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Chapter 3

Open quantum systems

As discussed in the previous chapter, limit-cycle oscillators rely on gain and loss of energy
from and to an environment. When extending classical synchronization to quantum
synchronization, we will analogously consider quantum systems that are in contact with
an environment, allowing for an exchange of energy. The effect of the environment on the
quantum system can be described within the framework of open quantum systems.

This chapter concisely reviews the key concepts and the notation of the theory of
open quantum systems that are relevant for the remainder of this thesis; it is based on
the textbooks Breuer and Petruccione [2002], Wiseman and Milburn [2010, Appendix A],
and Gardiner and Zoller [2000]. We refer to these textbooks for a more detailed and
comprehensive introduction to open quantum systems. We will introduce the density
operator in Section 3.1 and its time evolution in Section 3.2. Furthermore, continuous
measurements and cascaded interactions are presented in Sections 3.3 and 3.4.

3.1 Density operator

In quantum mechanics, a system is described by a state vector |ψ⟩, which evolves under a
Hamiltonian Htot following Schrödinger’s equation (throughout this work, we work with
units where ℏ = 1)

d

dt
|ψ⟩ = −iHtot |ψ⟩ . (3.1)

We now consider the case where the state vector |ψ⟩ naturally decomposes into a system
and an environment. The total Hamiltonian can be written as

Htot = Hs ⊗ 1e + 1s ⊗He +Hse , (3.2)

where Hs and He are the system and environment Hamiltonians, which describe the
coherent evolutions within system and environment, respectively. The interactions between
system and environment are described by the Hamiltonian Hse. The identity operators
for system and environment are 1s and 1e.

Typically, the environment contains many more degrees of freedom than the system.
For instance, the system may be a single qubit or oscillator, while the relevant environment
is a measurement device or a vacuum chamber. When the quantum system is perfectly
isolated from the environment, Hse = 0, the system evolves in a unitary way and is
referred to as a closed quantum system.

Due to interactions between system and environment (Hse ̸= 0), however, the degrees
of freedom of the system will in general become correlated with those of the environment.
The total quantum state can be expressed as

|ψ⟩ =
∑
i,j

cij |si⟩ ⊗ |ej⟩ , (3.3)
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where |si⟩ and |ej⟩ span the basis of system and environment, respectively. The complex
numbers cij are arbitrary but must fulfill the normalization condition

∑
i,j |cij |

2 = 1. We
now consider the common case, where only observables of the system are relevant. This
motivates the introduction of the density operator as follows. Using the trace operation
Tr[·] =

∑
i,j ⟨si| ⊗ ⟨ej | · |si⟩ ⊗ |ej⟩, the expectation value of any system operator Os is

⟨ψ|Os |ψ⟩ = Tr[Os |ψ⟩⟨ψ|] =
∑
i,j

(⟨si| ⊗ ⟨ej |)Os |ψ⟩⟨ψ| (|si⟩ ⊗ |ej⟩) . (3.4)

We can split the trace into two parts, a trace over the system, Trs[·] =
∑

i ⟨si| · |si⟩, and a
trace over the environment, Tre[·] =

∑
i ⟨ei| · |ei⟩, so that

⟨ψ|Os |ψ⟩ =
∑
i

⟨si|Os

(∑
j

⟨ej |ψ⟩⟨ψ|ej⟩
)
|si⟩ = Trs

[
OsTre[|ψ⟩⟨ψ|]

]
. (3.5)

The last expression motivates the definition of the density operator ρ ≡ Tre[|ψ⟩⟨ψ|], which
allows us to calculate any expectation value of system operators through

⟨ψ|Os |ψ⟩ = Trs[Osρ] , (3.6)

Consequently, system observables can be described using the density operator ρ of the
system rather than the state vector |ψ⟩ for system and environment.

The density operator can be decomposed into a weighted sum of pure system states |si⟩,

ρ =
∑
i

pi |si⟩⟨si| , (3.7)

where the sum of weights pi is normalized,
∑

i pi = 1. Whenever the density operator
cannot be expressed as a single pure state, it describes a mixed state with purity Tr

[
ρ2
]
< 1.

Consider, for example, the simple case of a single system qubit (i.e., a two-level system
with states |0⟩ and |1⟩) and a single environment qubit that are maximally entangled,
|ψ⟩ = (|0s⟩ ⊗ |0e⟩+ |1s⟩ ⊗ |1e⟩)/

√
2. After tracing out the environment qubit, the density

operator of the system is ρ = (|0s⟩⟨0s| + |1s⟩⟨1s|)/2, which cannot be written as a pure
state; it is a maximally mixed state with purity Tr

[
ρ2
]
= 1/2.

From now on, and throughout this thesis, we drop the subscript ‘s’ for system as all
states and operators will refer to the system.

Let us now gain some more intuition about density operators and the associated mixed
states. A mixed state represents a quantum state of incomplete knowledge. The system
could be in any of multiple pure states, but it is not known which one. To illustrate
this, consider an imperfect experiment that prepares the desired state, say, a qubit in the
ground state |0⟩, with probability p0 < 1. There is, however, a probability p1 = 1− p0
that the qubit ends up in the excited state |1⟩. Without any further information, the best
one can do is to assert the state of the qubit after the preparation as the mixed state
ρ = p0 |0⟩⟨0|+ p1 |1⟩⟨1|.

Note that the decomposition of a density operator ρ into pure states is not unique.
Consider a second experiment that prepares one of the two superposition states √p0 |0⟩ ±√
p1 |1⟩ with probability 1/2 each. The experiment produces the same mixed state as in the

first experiment, ρ = p0 |0⟩⟨0|+ p1 |1⟩⟨1|. Thus, the two distinct ensembles of pure states,
{|0⟩ , |1⟩} with probabilities {p0, p1} and {√p0 |0⟩±

√
p1 |1⟩} with probabilities {1/2, 1/2}

yield the same density operator. Furthermore, the expectation value ⟨O⟩ = Tr[Oρ] of any
operator O is also independent of the underlying ensemble distribution. We will come
back to ensembles of states in the context of measurements in Section 3.3.
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3.2 Lindblad master equation

We have identified the density operator ρ as the key quantity of interest. It completely
characterizes the state of the system and allows for the computation of all expectation
values. Furthermore, the dynamics of the density operator completely describe the dy-
namics of the system. The time evolution of the density operator can be derived from
Schrödinger’s equation of system and environment, Eq. (3.1), using the Born approxi-
mation (weak system-environment coupling), the Markov approximation (memoryless
environment), and a rotating-wave approximation (neglecting rapidly oscillating terms);
the detailed derivation can be found in Breuer and Petruccione [2002] or Manzano [2020].

Within these approximations, the time evolution of the density operator is governed
by the Lindblad master equation, or Gorini–Kossakowski–Sudarshan–Lindblad equation,

d

dt
ρ = −i[H, ρ] +

NJ∑
i=1

D[Ji]ρ ≡ Lρ , D[J ]ρ ≡ JρJ† − 1

2

(
J†Jρ+ ρJ†J

)
. (3.8)

with Hamiltonian H and NJ jump operators Ji. The interactions with the environment
can change the coherent, i.e., Hamiltonian, evolution of the system, and thus H is generally
not equal to Hs from Eq. (3.2). All the effects of the environment on the system are
described by the jump operators Ji and the change in the Hamiltonian H − Hs. The
jump operators describe dissipative dynamics and the Hamiltonian coherent dynamics.
The Lindblad equation represents the most general equation for the time evolution of a
density operator that preserves its properties (positive semi-definiteness and unit trace);
see Breuer and Petruccione [2002] or Manzano [2020] for a proof. In Eq. (3.8), we also
introduced the generator L called the Liouvillian or Lindbladian, a shorthand notation
for the right-hand side of the master equation.

To compute the equations of motions for any operator o and its expected value ⟨o⟩,
the adjoint master equation is useful:

d

dt
o = +i[H, o] +

NJ∑
i=1

D̃[Ji]o , D̃[J ]o ≡ J†oJ − 1

2

(
J†Jo+ oJ†J

)
=

1

2

(
[J†, o]J + J†[o, J ]

)
.

(3.9)

It describes the time evolution of the operator o in the Heisenberg picture.
The Lindblad master equation (3.8) (or its Heisenberg-picture equivalent Eq. (3.9))

has proven to be a versatile tool in numerous theoretical studies and accurately describes
a variety of experiments relevant to this thesis; see for example Karg et al. [2020]; Laskar
et al. [2020]; Krithika et al. [2022]; or Behrle et al. [2023]. We therefore adopt the Lindblad
master equation as the starting point to describe the dynamics of the quantum systems
studied in this thesis.

3.3 Continuous measurements

In Section 3.1, we have established that open quantum systems are generally in a mixed
state, i.e., a state of incomplete knowledge. More information about the system’s state can
be obtained through measurements. Different types of measurement yield different kinds
and amounts of information [Wiseman and Milburn, 2010]. In this thesis, we are often
interested in the dynamics of the system over an extended period of time. To measure the
time evolution of the system for a single realization, continuous measurements are useful.
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Figure 3.1: Sketch of the homodyne or heterodyne detection setup. The
quantum system loses excitations at rate κ. Using a beam splitter, the
signal from the quantum system is mixed with a local oscillator whose
frequency is detuned from the signal by the frequency ωm. A photodetector
gives the homodyne or heterodyne current, Ihom or Ihet.

In this section, we introduce continuous homodyne and heterodyne measurements
following Wiseman and Milburn [2010, Chapter 4]. Homodyne detection measures a single
quadrature of the system. Heterodyne detection measures two quadratures simultaneously,
such as the x and y quadratures of a harmonic oscillator. While there are several other
types of measurements, such as direct photodetection, we focus on heterodyne detection
because it allows for obtaining information about the phase arctan(x/y), which is the
central quantity in synchronization. As we will show in Chapter 4, heterodyne detection
can be used to experimentally quantify the degree of synchronization in quantum systems.

We consider a general quantum system described by the master equation

d

dt
ρ = Lρ ≡ −i[H, ρ] +

NJ∑
i=1

D[Ji]ρ (3.10)

with arbitrary Hamiltonian H and NJ jump operators Ji. For example, the system could
be a cavity that leaks photons, which are tracked by the detector; see Fig. 3.1.

By monitoring the effects of the system on the environment, one can extract information
about the system state. In the example of the lossy cavity, monitoring the photons that
leak from the cavity reveals information about the state of the cavity field. In heterodyne
or homodyne detection, the leaking excitations are mixed with a local oscillator with
frequency ωm. For simplicity, we consider the case where only one jump operator,
J1 ≡

√
κJ , is measured.

The master equation in the presence of homodyne or heterodyne detection is

d

dt
ρm = Lρm +

√
κ
dW

dt
H[eiωmtJ ]ρm , (3.11)

H[eiωmtJ ]ρm ≡ eiωmt(J − Tr[Jρm])ρm +H.c. . (3.12)

For a derivation, we refer to Wiseman and Milburn [2010, Chapter 4]. The density
operator ρm denotes the conditional state of the system under measurement. Its time
evolution is governed by the Lindbladian L of Eq. (3.10) and an additional stochastic
term. The stochastic term contains the Wiener increment dW corresponding to an
integrated Gaussian white-noise process. Its mean is zero, E[dW ] = 0, and its variance
is E[dW 2] = dt. The stochastic term describes the measurement backaction that results
in fluctuations in the state of the system and renders the master equation a stochastic
master equation.
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Performing a continuous measurement on a system inevitably influences its time
evolution. The system’s time evolution conditioned on a measurement outcome is called
a quantum trajectory. Each quantum trajectory will be different because it depends on
the measurement backaction, i.e., the random fluctuations induced in the system due to
the measurement. Different types of measurement (such as heterodyne, homodyne, or
photodetection measurements) result in different types of measurement backaction. We
will see an example of this in Section 6.8.

When the frequency ωm matches the system frequency, the master equation loses
the time dependence of the measurement operator. In that case, a single quadrature
is continuously measured. The phase of the local oscillator determines along which
quadrature the measurement is performed. For a large frequency ωm, the quadrature that
is measured changes rapidly. Effectively, two quadratures (call them x and y) are thereby
measured simultaneously and the master equation becomes [Wiseman and Milburn, 2010,
Eq. (4.108)]

d

dt
ρm = Lρm +

√
κ/2

(
dWx

dt
H[J ] +

dWy

dt
H[−iJ ]

)
ρm . (3.13)

The two quadratures are measured with half the efficiency compared to the efficiency of
homodyne detection. For each quadrature, there is an independent Wiener process dWx,y

(with the same statistical properties as dW above).
Averaging over the ensemble of possible quantum trajectories reproduces the uncon-

ditional evolution of the density operator governed by Eq. (3.10). This can be seen
straightforwardly from Eq. (3.11): Averaging over the ensemble of possible trajectories
implies averaging over the possible noise realizations; in this case, the additional term that
describes the measurement backaction vanishes, since E[dWx,y] = 0. The density operator
may thus be viewed as describing the ensemble of all quantum trajectories averaged over
all possible measurement outcomes. As pointed out in Section 3.1, different ensembles
can correspond to the same density operator. In the context of measurements, different
ways to observe the system result in different ensembles of quantum trajectories that
correspond to the same time evolution of the density operator.

In an experiment, the observed quantity is the output of the photodetector depicted
in Fig. 3.1, i.e., the current Ihom, which is related to the state of the system through

Ihom = 2
√
κRe

[
Tr
[
eiωmtJρm

]]
+ dW/dt , (3.14)

By mixing this signal with cos(ϕm(t)) and sin(ϕm(t)) and time averaging, one can obtain
the complex heterodyne current Wiseman and Milburn [2010]

Ihet =
√
κTr[Jρm] +

√
1/2 (dWx/dt+ idWy/dt) , (3.15)

The heterodyne current directly gives insight into the conditional expected value Tr[Jρm].
As we will see in Chapter 4, the current thereby allows us to quantify synchronization of
quantum systems.

3.4 Cascaded master equation and unidirectional interac-
tions

In Section 2.4, we discussed how classical particles can interact nonreciprocally. We
now extend this concept to quantum physics by presenting a general framework for
nonreciprocal interactions in quantum systems. This framework is based on cascaded
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(a)
cascaded coupling

via chiral waveguide

(b)

Figure 3.2: Unidirectional interactions. (a) Sketch of the coupling among
the three modes A, B, and C. The mode C that is coupled to both A and
B effectively mediates the dissipative coupling g2

c

κc
D[a + b] (gray dotted

box). (b) The effective cascaded coupling from A to B is schematically
depicted by the chiral waveguide.

interactions [Gardiner, 1993; Carmichael, 1993]. Quantum nonreciprocal interactions may
alternatively occur, for example, through optical binding forces of nanoparticles [Rudolph
et al., 2024a,b], as a quadrature nonreciprocity [Wanjura et al., 2023], or via a dissipative
gauge symmetry [Wang et al., 2023]. The advantage of cascaded interactions lies in their
generality and broad applicability.

In the following, we follow Metelmann and Clerk [2015]. Consider the master equation
for two systems, A and B, described by ladder operators a(†) and b(†). They interact via
the Hamiltonian iV (a†b− ab†) where V is real-valued and sets the interaction strength.
Additionally, both systems are coupled at strength gc to a third subsystem, C, described
by ladder operators c(†). The third mode decays at rate κc. The system of three modes is
depicted in Fig. 3.2(a); its master equation is

d

dt
ρ = −i[iV (a†b− ab†), ρ]− igc[(a+ b)c† +H.c., ρ] + κcD[c] . (3.16)

In the limit where κc is large compared to gc and V , the third mode can be adiabatically
eliminated: Setting ċ = 0 yields c = gc(a+ b)/κc. Inserting this expression into the master
equation (3.16) gives an effective description for modes A and B. For simplicity, let us
consider the special case where the couplings to the third mode are such that V = g2c/κc.
In this case, Eq. (3.16) becomes

d

dt
ρ =− i[iV (a†b− ab†), ρ] + 2VD[a+ b]ρ . (3.17)

As we will now show, the master equation (3.17) describes cascaded, i.e., unidirectional,
interactions. The directionality is revealed by considering the time evolution in the
Heisenberg picture; see Eq. (3.9). For an operator OA that acts only on subsystem A,
i.e., [OA, b

(†)] = 0, we find

V −1 d

dt
OA = i[i(a†b− ab†), OA] + 2D̃[a+ b]OA = [a†, OA]a+ a†[OA, a] . (3.18)

This expression does not depend on any operator of subsystem B, implying that system
A is not influenced at all by system B. In contrast, for operators OB acting only on
subsystem B, i.e., [OB, a

(†)] = 0, we obtain

V −1 d

dt
OB = (2a† + b†)[OB, b] + [b†, OB](2a+ b) , (3.19)
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which depends on operators of both subsystems. We conclude that system B is influenced
by system A but not vice versa, which constitutes unidirectional, or cascaded, interactions,
schematically depicted in Fig. 3.2(b). We may recast Eq. (3.17) as

d

dt
ρ = 2V (D[a] +D[b])ρ− V ([b†, aρ] + [ρa†, b]) (3.20)

using the notation of Stannigel et al. [2012, Eq. (2)] to describe cascaded interactions.
The first term of Eq. (3.20) describes the individual decay of each mode, while the second
term describes the unidirectional interactions.

Experimentally, cascaded interactions can be mediated by nanophotonic waveguides [Pe-
tersen et al., 2014] or freely propagating laser beams [Karg et al., 2020]. Cascaded
interactions have been demonstrated in various systems, such as superconducting qubits
[Joshi et al., 2023], hybrid atomic-optomechanical systems [Karg et al., 2020], quan-
tum dots [Söllner et al., 2015; Delteil et al., 2017], and atomic ensembles that emit
unidirectionally into waveguides [Mitsch et al., 2014; Liedl et al., 2023, 2024].

While cascaded couplings are nonreciprocal, they do not allow for antagonistic inter-
actions, where two subsystems can influence each other in opposing ways, as defined in
Section 2.4. In Chapter 6, we will extend the concept of unidirectional interactions to an-
tagonistic nonreciprocal interactions in quantum systems. This relies on the combination
of two opposing cascaded couplings that include a phase shift.
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Chapter 4

Quantum synchronization

In recent years, the understanding of synchronization in quantum systems has attracted
a great deal of interest. Research topics include limit-cycle oscillations in quantum
systems [Weiss et al., 2017; Roulet and Bruder, 2018b; Chia et al., 2020; Ben Arosh et al.,
2021; Parra-López and Bergli, 2020; Es’haqi-Sani et al., 2020; Setoyama and Hasegawa,
2025; Dutta et al., 2025]; the relation between synchronization and entanglement or other
quantum features [Lee et al., 2014; Roulet and Bruder, 2018a; Zhu et al., 2015; Witthaut
et al., 2017; Lorenzo et al., 2022; Mari et al., 2013; Bandyopadhyay and Banerjee, 2023];
synchronization behaviors unique to quantum systems [Lörch et al., 2016, 2017; Amitai
et al., 2018; Dutta and Cooper, 2019; Shen et al., 2023a]; and other questions [Zhirov
and Shepelyansky, 2006; Giorgi et al., 2012; Ameri et al., 2015; Ishibashi and Kanamoto,
2017; Li et al., 2017; Buča et al., 2022; Bandyopadhyay and Banerjee, 2022; Wächtler and
Moore, 2024]. Experimentally, quantum synchronization has been observed in systems
of cold atoms [Cox et al., 2014; Weiner et al., 2017; Laskar et al., 2020; Natale et al.,
2025], nuclear spins [Krithika et al., 2022], as well as trapped ions [Zhang et al., 2023;
Li et al., 2025], and it has been simulated on a quantum computer [Koppenhöfer et al.,
2020]. These experimental advances further motivate a detailed theoretical understanding
of quantum synchronization.

This chapter offers a pedagogical introduction to synchronization of quantum systems.
In Section 4.1, we will analyze the quantum analog of the classical van-der-Pol oscillator
introduced in Section 2.1. We first present a single quantum van-der-Pol oscillator. Next,
synchronization of two such oscillators is analyzed. Finally, we investigate self-organization
via synchronization in a network of many coupled quantum van-der-Pol oscillators, similar
to the Kuramoto model. An analogous analysis of synchronization among quantum
spins is presented in Section 4.2, starting with a single spin and progressing to two
coupled spins and finally a large ensemble of coupled spins. This will lead us to introduce
the superradiant laser, which also shows a Kuramoto-like synchronization transition.
Throughout this chapter, we will emphasize parallels between synchronization of quantum
oscillators and of classical oscillators subject to fluctuations.

While this chapter mostly summarizes previous results of the literature, it also contains
novel insights in quantum synchronization regarding the effects of measurement. We
demonstrate that continuous heterodyne detection results in quantum trajectories that
make the quantum limit cycle apparent. Furthermore, the measurement results in
experimentally accessible quantities that approximate established theoretical measures of
quantum synchronization.

4.1 Quantum van-der-Pol oscillator

We begin by presenting a quantum analog of the classical van-der-Pol (vdP) oscillator,
which was introduced in Section 2.1. The quantum vdP oscillator is described by creation
and annihilation operators a† and a that add or remove an excitation of a bosonic mode
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and fulfill the commutation relation [a, a†] = 1. The bosonic mode can represent different
physical systems, such as a light mode in a resonator or a trapped particle. Gain and
loss of the oscillator are introduced through the coupling to an (unspecified) environment,
whose effect on the system is described by a Lindblad master equation; see Chapter 3.
The master equation of the quantum vdP oscillator is

d

dt
ρ = −i[ωa†a, ρ] + κ1D[a†]ρ+ κ2D[a2]ρ+ κD[a]ρ . (4.1)

The Lindblad dissipator is, as before, D[o]ρ = oρo† − (o†oρ+ ρo†o)/2. The oscillator’s
frequency is ω, and κ1, κ2, and κ are the rates of linear gain, nonlinear two-excitation
loss, and linear loss, respectively. The master equation is invariant under a phase shift,
a → a exp(iϕ0), which corresponds to a U(1) symmetry. The quantum vdP oscillator
was first introduced by Lee and Sadeghpour [2013] and Walter et al. [2014], and has since
become a paradigmatic model for studying quantum synchronization. It has recently been
implemented in the motional mode of a trapped ion [Li et al., 2025]. Related models are
presented by Chia et al. [2020], Ben Arosh et al. [2021], and Chia et al. [2025].

The connection between the quantum and classical vdP oscillators is evident in the
time evolution of the oscillator’s amplitude ⟨a⟩ ≡ Tr[aρ]. It can be computed using
Eq. (3.9), resulting in

d

dt
⟨a⟩ = −iω ⟨a⟩+ κ1 − κ

2
⟨a⟩ − κ2 ⟨a†a2⟩ . (4.2)

When the state is initialized as a coherent state |α⟩ (a |α⟩ = α |α⟩) and assuming that
it remains a coherent state, one can approximate the last term in Eq. (4.2): ⟨a†a2⟩ ≈
|⟨a⟩|2 ⟨a⟩. The approximation is valid for short time scales compared to the strength of
decoherence, where fluctuations play a negligible role. Within the approximation, one
obtains

d

dt
⟨a⟩ ≈ −iω ⟨a⟩+ κ1 − κ

2
⟨a⟩ − κ2|⟨a⟩|2 ⟨a⟩ , (4.3)

which is the equation of motion for a vdP limit-cycle oscillator presented in Eq. (2.3)
(there, we have set κ = 0). In general, however, the fluctuations that stem from the
coupling to the environment and that are inherently described by the master equation (4.1)
cannot be neglected. They can be described by a classical approximation of the master
equation (4.1) that is valid in the limit of large amplitudes, i.e., κ1 − κ≫ κ2 [Carmichael,
1999]. One finds the Langevin equation of the same form as Eq. (2.8) with noise strength
σ2 = 3(κ1 + κ)/4 + 2κ2 [Lee and Sadeghpour, 2013]. In the following, we analyze the full
master equation without any approximation to be able to also describe the regime of
small excitation numbers quantitatively correctly.

4.1.1 Quantum limit cycles

A numerical integration of the master equation (4.1) yields the time evolution of the
density operator1. To display the time evolution in phase space, the density operator is
projected onto coherent states, which gives the Husimi-Q distribution [Carmichael, 1999]

Q(α) =
1

π
⟨α|ρ|α⟩ , (4.4)

1Throughout this chapter, we use the Python package QuTiP [Johansson et al., 2012] to solve the
master equations. The density operator is represented in the Fock basis using states |0⟩ to |Nfock − 1⟩,
where the number of states Nfock is chosen large enough so that the population in higher-level Fock states
is negligible.
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Figure 4.1: Time evolution of the quantum vdP oscillator shown by the
Husimi-Q distribution Q(α = x+ ip) (top row) and the phase distribution
Q(ϕ) (bottom row). Parameters: κ1 = ω = 4κ, κ2 = κ/2.

a phase-space representation akin to classical probability distributions. The result is
shown in Fig. 4.1. The dynamics can be understood as three simultaneous processes. First,
the initial coherent state oscillates at frequency ω, which can be seen in the Husimi-Q
distribution as a rotation in time around the origin. Second, as a result of gain and
nonlinear loss, the amplitude of the oscillation is attracted to the limit cycle, and the
radial position of the state approximately approaches the value r0 =

√
κ1/2κ2. Third,

the state diffuses in phase due to the coupling to the environment. While the master
equation is a deterministic differential equation that does not explicitly feature a noise
process, it inherently captures the effect of fluctuations that stem from the coupling to
the environment, as we will later discuss in more detail. The attraction towards the limit
cycle and the phase diffusion together result in a stationary ring-shaped state in the
long-time limit, see last panel of Fig. 4.1. The steady state is phase symmetric, which
follows from the U(1) symmetry of the master equation.

Comparing Fig. 4.1 to Fig. 2.3, we find that for a vdP oscillator, the dynamics of Q(α)
are qualitatively the same as those of the probability distribution P (x, p). Similar to how
P (x, p) describes the ensemble of trajectories, we will later see how ρ – and consequently
Q(α) – describes an ensemble of quantum trajectories.

The phase distribution Q(ϕ) displayed in the bottom row in Fig. 4.1 is obtained by
integrating out the radial degree of freedom

Q(ϕ) =

∫ ∞

0
dr r Q(α = re−iϕ) . (4.5)

It informs about the likelihood of the quantum vdP oscillator to assume a certain phase
ϕ. The phase distribution of the initial state is sharply peaked. Over time, it shifts due
to the oscillation and flattens due to the phase diffusion approaching a flat distribution in
the steady state. The phase distribution P (ϕ) of the classical vdP oscillator qualitatively
showed the same behavior; see Fig. 2.3.
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Quantum limit cycles under heterodyne detection

While the steady state shown in the top right panel of Fig. 4.1 resembles the classical limit
cycle in its circular shape, it is static and appears not to feature the dynamical oscillations
of a classical limit cycle. The reason is that the density operator ρ describes the probability
distribution of an ensemble of quantum trajectories. The probability distribution of an
ensemble of classical trajectories in the presence of noise is also time-independent; see
Section 2.1.1. We now show that individual trajectories display dynamical limit-cycle
oscillations in the long-time limit. They can be made apparent through heterodyne
detection.

The role of measurement and trajectories in the context of quantum synchronization
has been explored in a few previous works. For one, homodyne detection has been proposed
to enhance synchronization with or without feedback [Kato and Nakao, 2021; Shen et al.,
2023b]. Moreover, an unraveling of the master equation into pure states has been employed
to gain insights into synchronization along individual quantum trajectories [Zhirov and
Shepelyansky, 2008, 2009; Weiss et al., 2016; Es’haqi-Sani et al., 2020] and to derive an
effective phase equation [Setoyama and Hasegawa, 2024, 2025].

However, the full unraveling into pure states that is considered in previous studies is
in general not experimentally feasible, as it requires perfect monitoring of all dissipative
processes. Here, we take a realistic approach of unraveling only a single jump operator
describing the loss of excitations. We consider a heterodyne detection introduced in
Section 3.3 because it measures both quadratures and thus allows for obtaining information
about the phase. Such an unraveling is possible in a variety of experimental setups,
including microwave and optical resonators [Blais et al., 2004; Weiner et al., 2017] and,
indirectly, two-level systems [Campagne-Ibarcq et al., 2016].

The stochastic master equation under heterodyne detection was introduced in Eq. (3.11);
for the quantum vdP oscillator, it becomes

d

dt
ρm =− i[ωa†a, ρm] + κ1D[a†]ρm + κ2D[a2]ρm+

+ κD[a]ρm +
dW

dt

√
κ
[
eiωmt(a− Tr[aρm])ρm +H.c.

]
.

(4.6)

It contains the measurement backaction term proportional to the noise process dW/dt.
We simulate the time evolution governed by Eq. (4.6) to obtain individual quantum

trajectories; they are shown in Fig. 4.2. The state of the quantum vdP oscillator in
each quantum trajectory shows a limit-cycle behavior: It is attracted to the limit cycle
amplitude [see Fig. 4.2(a)] and displays persistent oscillations [see Fig. 4.2(b)]. While
the steady-state density operator obeys the U(1) symmetry of the master equation, each
trajectory breaks it since it displays a distinct phase at any point in time.

The measurement backaction also results in fluctuations of the state of the system. As
a result, the oscillator’s phase in each quantum trajectory fluctuates. Therefore, averaging
over time or over several trajectories restores the U(1) symmetry of the master equation.
Several trajectories starting with the same initial phase are shifted in their phases by a
random amount at later times. The average of several trajectories decays to zero; see the
black line in Fig. 4.2(b). It agrees well with the density matrix evolution shown by the
gray dashed line in Fig. 4.2(b), which describes the average over all possible quantum
trajectories. In the master equation (4.1), the effect of the fluctuations is captured as
decoherence. It is contained in the term κD[a]ρ that not only describes the loss of
excitations but also decoherence.
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Figure 4.2: Quantum vdP oscillator: limit cycle under measurement.
(a) The heatmap shows the steady-state Husimi-Q distribution from
Fig. 4.1, top-right panel. The blue line shows the time evolution of
⟨x⟩m and ⟨p⟩m of one quantum trajectory. (b) The faint blue lines show
the expectation value ⟨x⟩m of ten different quantum trajectories. The
bright blue line highlights one of them. The black line shows the average
of 100 such realizations. It overlaps well with the gray dashed line, which
is the solution of ⟨x⟩ of the master equation without measurement. Same
parameters as in Fig. 4.1.

While expectation values of the conditional state are not directly observable in an
experiment, the measured heterodyne current is accessible; see Eq. (3.15). For the
quantum vdP oscillator, it is

Ihet =
√
κTr[aρm] +

√
1/2 (dWx/dt+ idWy/dt) . (4.7)

While it informs about the expected value of a, it contains additional detector noise that
partially masks the signal.

The quantum trajectories obtained under heterodyne detection show qualitatively the
same behavior as the trajectories of the classical vdP oscillator; see Fig. 2.2. Consequently,
many aspects of quantum vdP oscillators can be qualitatively understood in terms of
classical noisy oscillators. However, in the quantum limit, i.e., the limit of small numbers
of excitations when κ2/κ1 → ∞, the discretized level structure becomes relevant. While
the limit-cycle of the classical vdP oscillator can have an arbitrarily small amplitude,
the limit cycle of the quantum vdP oscillator with the smallest number of excitations is
(2 |0⟩⟨0|+ |1⟩⟨1|)/3 [Lee and Sadeghpour, 2013]. Furthermore, other models of quantum
limit cycles show a behavior different from classical synchronization; see for example
Lörch et al. [2014].

4.1.2 Two coupled oscillators

Having introduced the quantum vdP oscillator, we now examine how two such oscillators
synchronize when coupled. The two quantum vdP oscillators are described by the master
equation

d

dt
ρ =κ1(D[a†] +D[b†])ρ+ κ(D[a] +D[b])ρ+ κ2(D[a2] +D[b2])ρ

− i
δ

2
[a†a− b†b, ρ] + VD[a− b]ρ .

(4.8)

The density operator ρ describes the joint state of both oscillators represented by the
operators a(†) and b(†). The master equation describes the system in the frame rotating
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at their average frequency and includes the gain and loss terms of Eq. (4.1) for both
oscillators. For simplicity, we focus on oscillators with identical rates κ and κ1,2. The
frequency of each oscillator, however, can be different, which is parametrized by the
detuning δ. Finally, the coupling is described by the dissipative interaction term D[a− b]ρ
with interaction strength V .

Deriving the mean-field equation in the same way, in which Eq. (4.3) was derived, we
find the same equations as those of the two coupled classical vdP oscillators, Eqs. (2.17),
with α = ⟨a⟩, β = ⟨b⟩. We therefore expect phase locking and frequency entrainment as
discussed for the classical case in Section 2.2. These expectations will be confirmed in the
following by analyzing the master equation (4.8).

Phase locking

Various measures for phase locking of quantum oscillators have been suggested [Ludwig
and Marquardt, 2013; Lee and Sadeghpour, 2013; Walter et al., 2014; Mari et al., 2013;
Hush et al., 2015; Weiss et al., 2016; Jaseem et al., 2020a]. Here, we use the Husimi-Q
distribution, extending the definition of Eq. (4.4) to two oscillators

Q(α, β) =
1

π
⟨α| ⊗ ⟨β| ρ |α⟩ ⊗ |β⟩ . (4.9)

It is obtained by projecting the density operator on the coherent states |α⟩ and |β⟩.
We chose the Husimi-Q distribution because it provides a natural analog to classical
phase-space distributions and allows us to treat phase locking of classical and quantum
vdP oscillators as well as spins (as we see in Section 4.2) in a parallel way. From Q(α, β),
we derive the distribution Q(ϕAB) of the phase difference ϕAB = ϕA − ϕB . It is obtained
by integrating out the radial degree of freedom as well as the total phase,

Q(ϕAB) =

∫ 2π

0
dϕA

∫ 2π

0
dϕB

∫ ∞

0
drArA

∫ ∞

0
drBrBQ(α = rAe

−iϕA , β = rBe
−iϕB )

×δ(ϕAB − ϕA + ϕB) .

(4.10)

The integrals can be evaluated analytically, allowing for an efficient way to compute the
phase distribution2. Figure 4.3(b) displays the phase distribution by the solid lines for
different coupling strengths. In the absence of coupling, the phase distribution Q(ϕAB) is
completely flat, i.e., all phase differences are equally likely, indicating the absence of phase
locking. When increasing the coupling strength, Q(ϕAB) develops an increasingly large
peak, indicating partial phase locking; it becomes more likely for the phase difference to
take a value close to zero. To quantify the degree of synchronization by a single number, we
use the maximum value of the phase distribution, maxQ(ϕAB). It is shown in Fig. 4.3(a)
as a function of coupling strength and detuning. The amount of phase locking increases
with V/|δ|. The white dashed lines indicate the synchronization threshold V = |δ| for the
classical analog without fluctuations. The phase locking behavior of two coupled quantum

2Expanding the coherent states in the Fock basis, |α⟩ =
∑∞

n=0 α
n(n!)−1/2 exp

(
−|α|2/2

)
|n⟩ (and

similarly for |β⟩), the integrals of Eq. (4.10) can be evaluated, resulting in

Q(ϕAB) =
∑

nα,nβ ,
mα,mβ

eiϕAB(nα−mα)Γ(1 + (nα +mα)/2)Γ(1 + (nβ +mβ)/2)

2π
√

nα!nβ !mα!mβ !
×

×⟨nα, nβ |ρ|mα,mβ⟩δnα−mα,mβ−nβ ,

(4.11)

using the Gamma function Γ() and the Kronecker-Delta symbol δi,j .
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Figure 4.3: Phase locking of quantum vdP oscillators. (a) The grayscale
shows the maximum of the phase distribution maxQ(ϕAB), a measure
of phase locking. The white dashed line indicates the synchronization
transition V = |δ| expected in classical noiseless oscillators. (b) The lines
show the phase distribution Q(ϕAB) for different values of the coupling
strength. The scatter points show the corresponding estimate of the
phase distribution obtained via the heterodyne current; see Eq. (4.15).
Parameters: κ = κ2, κ1 = 3κ2. (b) δ = κ/2.

vdP oscillators is qualitatively the same as that of two classical oscillators in the presence
of fluctuations; compare to Fig. 2.4.

Frequency entrainment

Frequency entrainment of the two oscillators can be analyzed via their spectra [Walter
et al., 2015]. The spectra of classical oscillators were introduced in Section 2.2; see
Eq. (2.28). For quantum oscillators, the steady-state spectra are defined as [Breuer and
Petruccione, 2002]

SA(ω) = lim
t→∞

∫ ∞

−∞
dτ ⟨a†(t+ τ)a(t)⟩ e−iωτ ,

SB(ω) = lim
t→∞

∫ ∞

−∞
dτ ⟨b†(t+ τ)b(t)⟩ e−iωτ ,

(4.12)

i.e., the Fourier transforms of the two-time correlations ⟨a†(t+ τ)a(t)⟩ and ⟨b†(t+ τ)b(t)⟩.
They inform about the dynamics of oscillators A and B in the frequency domain. We
show the spectra of the two coupled quantum vdP oscillators in Fig. 4.4 by the solid lines.
We find a behavior similar to that of classical vdP oscillators; compare to Fig. 2.5(b):
Each spectrum features a peak whose width stems from the phase diffusion and whose
position represents the typical frequency. The frequency difference is δ in the absence of
a coupling and approaches zero when increasing the coupling. Due to phase fluctuations,
there is no exact frequency entrainment.

In summary, we have shown that the synchronization behavior of two coupled quantum
vdP oscillators is qualitatively the same as that of two classical oscillators in the presence
of fluctuations. The quantum character can, however, result in a qualitatively different
behavior, for example when the coupled oscillators are anharmonic [Lörch et al., 2017].
Further quantum effects in synchronization have been shown for a single oscillator subject
to an external drive. They include multiple Arnold tongues due to the quantized level
structure [Lörch et al., 2016] and a boost of synchronization via dissipation [Mok et al.,
2020].



38 4. Quantum synchronization

Quantum synchronization under heterodyne detection

Both phase locking and frequency entrainment can be observed via heterodyne detection.
Consider the evolution of the two quantum vdP oscillators in Eq. (4.8) with an additional
independent measurement for each oscillator,

d

dt
ρ =− i

δ

2
[a†a− b†b, ρ] + κ1(D[a†] +D[b†])ρ+ κ2(D[a2] +D[b2])ρ+ VD[a− b]ρ+

+ κD[a]ρm +
dWA

dt

√
κ
[
eiωmt(a− Tr[aρm])ρm +H.c.

]
+

+ κD[b]ρm +
dWB

dt

√
κ
[
eiωmt(b− Tr[bρm])ρm +H.c.

]
.

(4.13)

The second and third lines describe the heterodyne detection of oscillators A and B,
respectively. The two detectors produce the currents

Ihet,A =
√
κTr[aρm] +

√
1/2 (dWA,x/dt+ idWA,y/dt) ,

Ihet,B =
√
κTr[bρm] +

√
1/2 (dWB,x/dt+ idWB,y/dt) ;

(4.14)

see Eq. (3.15) The currents are determined by the expectation values of a and b and the
detector noise.

The currents can be used to approximate the measures of phase locking and frequency
entrainment, i.e., the phase distribution Q(ϕAB) and the spectra SA,B(ω). The phase
difference between the two oscillators is estimated by the phase relation of the currents

ϕmAB = arg[Ihet,B/Ihet,A] . (4.15)

The phase distribution can be approximated by the normalized frequency of occurrence
of ϕmAB in the stationary state, which is shown in Fig. 4.3(b) by the scatter points. They
approximate well the phase distribution Q(ϕAB). Moreover, the heterodyne currents can
be used to estimate the spectra via [Wiseman and Milburn, 2010, Section 4.5.1]

Sm
A (ω) = lim

t→∞

∫ ∞

−∞
dτe−iωτE[Ihet,A(t+ τ)∗Ihet,A(t)] = κSA(ω) + 1 (4.16)

and analogously for oscillator B. The constant term stems from the white noise of the
detector partially masking the signal. The measured spectra are shown in Fig. 4.4 by the
scatter points. They approximate well the spectra SA,B(ω) displayed by the solid lines
despite the presence of the constant noise floor.

In summary, heterodyne detection presents a tool to approximately measure both
phase locking and frequency entrainment of coupled quantum limit cycles. Thereby, it
connects previously suggested theoretical measures of quantum synchronization with
quantities accessible in experimental settings.

4.1.3 Large network of coupled oscillators

Let us now extend our analysis to a large network of quantum vdP oscillators in analogy
to the classical Kuramoto model. The density operator ρ now describes the collective
state of N oscillators that are described by creation and annihilation operators ai and a†i
for i ∈ {1, . . . , N}, where each ai acts on a subspace of the joint Hilbert space,

ai ≡ 1 ⊗ · · · ⊗ 1⊗︸ ︷︷ ︸
i−1 times

a⊗1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
N−i times

. (4.17)
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Figure 4.4: Frequency entrainment of quantum vdP oscillators. The lines
show the spectra as calculated by Eq. (4.12) for oscillators A (blue solid)
and B (red dashed). The scatter points show the spectra calculated from
the heterodyne currents; see Eq. (4.16). The heterodyne spectra are
averaged over a window of width δ/10. Parameters: κ = κ2, κ1 = 3κ2,
δ = 5κ2.

The master equation describing the network is an extension of Eq. (4.8) to N coupled
quantum vdP oscillators (we now set κ = 0 for simplicity),

d

dt
ρ =

N∑
i=1

(
κ1D[a†i ] + κ2D[a2i ]

)
ρ+

V

N

∑
i<j

D[ai − aj ]ρ . (4.18)

All oscillators are assumed to have equal frequency, and we have moved to a frame rotating
at this frequency. The case of different frequencies is discussed by Lee et al. [2014]. The
master equation is invariant under a global rotation ai → ai exp(iϕ0) by a constant angle
ϕ0, which constitutes a U(1) symmetry – the same symmetry that we identified in the
Kuramoto model. The last term of Eq. (4.18) describes an all-to-all coupling. The sum
runs over all pairs of oscillators, which are coupled dissipatively and in the same form of
Eq. (4.8). As established in the previous section, the terms D[ai − aj ] result in in-phase
locking of oscillators i and j. Therefore, all oscillators pairwise attract each other in their
phases, which will result in global phase locking. The case of reactive, i.e., Hamiltonian,
all-to-all coupling is discussed by Lee and Sadeghpour [2013].

The size of the Hilbert space grows exponentially with the number N of oscillators,
so that an exact solution of master equation (4.18) becomes infeasible for large N . Even
for moderate N = 4 and including only the first 4 Fock states, the density matrix has
44×44−1 ≈ 6×105 independent real-valued entries. However, the master equation (4.18)
can be solved in a simpler way in the limit of N → ∞. In this case, a mean-field ansatz
ρ =

⊗N
i=1 ρi, where the state of all oscillators factorizes, is exact [Spohn, 1980]. Since

all oscillators are identical, it is sufficient to derive the equation of motion for one of
the N oscillators, say d

dtρ1 = Tr̸=1[
d
dtρ], where the trace is performed over all oscillators
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Figure 4.5: Kuramoto-like synchronization transition of quantum vdP
oscillators. (a) Absolute value of the mean-field amplitude |A| = |Tr[aρmf ]|
in the steady state as a function of the coupling strength for different
ratios κ2/κ1. (b) Critical coupling Vc as a function of the ratio κ2/κ1.

except the first, and then to set all oscillators equal, ρi = ρmf . In this way, we obtain the
mean-field equation

d

dt
ρmf =

(
κ1D[a†] + κ2D[a2] + VD[a]

)
ρmf − iV [Hmf(ρmf), ρmf ] , (4.19)

Hmf(ρmf) = iTr[aρmf ]a
† − iTr[a†ρmf ]a . (4.20)

The mean-field equation is a nonlinear master equation: The time evolution of ρmf

depends on higher-order terms ρ2mf due to the mean-field Hamiltonian Hmf . It can be
understood as a coherent drive of each oscillator with the mean amplitude Tr[aρmf ]. The
complexity has substantially reduced from a linear equation describing N oscillators to a
nonlinear equation of a single oscillator.

Let us define the mean-field amplitude as A ≡ Tr[aρmf ]. For increasing coupling, we
expect a transition from a stable inhomogeneous state with vanishing coherence indicated
by A = 0 to a self-organized, synchronized state characterized by a nonzero value of the
mean-field amplitude |A| > 0. The parameter |A| is an order parameter of the transition,
analogous to the order parameter |z| of the Kuramoto model defined in Eq. (2.30). To
make the analogy explicit, we can introduce the phases ϕj of the oscillators, and rewrite
the mean-field amplitude as

A ≡ Tr[aρmf ] =
1

N

N∑
j=1

⟨aj⟩ =
1

N

N∑
i=j

|⟨aj⟩| exp(iϕj) . (4.21)

The phase diffusion due to decoherence, which was discussed in Section 4.1.1, results in
a spread of the phases ϕj of the oscillators, which leads to a vanishing order parameter.
The alignment of the phases due to the coupling term competes with the phase diffusion,
and results in a state with a nonzero order parameter, where the oscillators approximately
lock their phases.

We confirm this by integrating Eq. (4.19) to obtain the order parameter in the steady
state. Figure 4.5(a) shows the steady-state value of the order parameter |A| as a function
of coupling strength V . Indeed, there is a continuous transition to synchronization
indicated by the order parameter, which assumes a nonzero value above a critical coupling
strength Vc. We also see that Vc varies with the ratio κ2/κ1.
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To obtain the critical coupling for small values of κ2/κ1, where the numerical in-
tegration of Eq. (4.19) is intractable, we have performed a stability analysis. We use
the perturbation ansatz ρmf = ρ0 + δρ, where ρ0 is the incoherent state that solves the
mean-field equation for Hmf = 0. Linearizing around small δρ, we find

d

dt
δρ =

(
κ1D[a†] + κ2D[a2] + VD[a]

)
δρ− iV [Hmf(δρ), ρ0] , (4.22)

which is of the form d
dtδρ =Mδρ. We represent δρ in the Fock basis with states |0⟩ to

|Nfock − 1⟩, to obtain an explicit expression for M , a matrix of dimension N2
fock ×N2

fock.
The critical coupling Vc is obtained as the coupling strength above which at least one
eigenvalue of M is positive, indicating the instability of ρ0. In the range of Fig. 4.5(b),
κ2/κ1 ≥ 0.06, it is sufficient to include Nfock = 25 states.

The value of the critical coupling as a function of the ratio of damping and gain is
shown in Fig. 4.5(b). Lee et al. [2014] have analyzed the master equation (4.18) in the
quantum limit κ2/κ1 → ∞, finding the critical coupling Vc = 10κ2/3. This is consistent
with our result displayed in Fig. 4.5(b). Furthermore, the critical coupling in the classical
limit is zero, as phase diffusion becomes negligible [Matthews et al., 1991]. Figure 4.5(b)
additionally shows how the classical-to-quantum transition of the critical coupling from
Vc = 0 to Vc = 10κ2/3 takes place.

Through the above analysis, we have found that the synchronization transition of
many dissipatively coupled quantum vdP oscillators resembles that of the Kuramoto
model with quantitative differences [Lee et al., 2014]. Many-body systems of other types
of quantum limit-cycle oscillators also behave qualitatively similarly to the Kuramoto
model [Ludwig and Marquardt, 2013; Zhu et al., 2015; Davis-Tilley et al., 2018; Delmonte
et al., 2023]. In Chapter 5, we will highlight qualitatively different behavior in a network
of all-to-all coupled quantum limit-cycle oscillators. In that case, each oscillator only
comprises three states, and the quantum nature of the oscillators will lead to a different
synchronization behavior.

4.1.4 Experimental implementation in trapped ions

One way to experimentally realize a quantum vdP oscillator is by employing sideband
transitions either in trapped ions as proposed by Lee and Sadeghpour [2013] and refined
by Hush et al. [2015], or in optomechanical systems [Walter et al., 2014]. For clarity, let
us focus on the implementation in trapped ions.

The motion of an ion confined in a Paul trap can be approximately modeled as
a harmonic oscillator with ladder operators a(†) that create or annihilate a motional
phonon. The dissipative dynamics of a quantum vdP oscillator can be engineered using
internal states of the ion: two excited states |e1⟩ and |e2⟩ that rapidly decay to a third
state |g⟩. Shining a laser that is blue detuned from the transition σge1 = |g⟩⟨e1| by
the frequency corresponding to the energy of a single phonon results in the coupling
Hb = g(σge1a+ σ†ge1a

†). This is called a blue sideband transition [Leibfried et al., 2003].
Since the state |e1⟩ rapidly decays at rate κe1, we can adiabatically eliminate this internal
degree of freedom to obtain

d

dt
ρ = −i[g(σge1a+ σ†ge1a

†), ρ] + κe1D[σge1]ρ→ g2

κe1
D[a†]ρ . (4.23)

The two-photon loss can be engineered analogously with a sideband drive between states
|g⟩ and |e2⟩ that is red detuned by two phonon energies. Combining the two processes
results in the dynamics of a quantum vdP oscillator.
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A discretized version of this proposal has been implemented by Li et al. [2025]; instead
of continuous sideband driving, the sidebands are sequentially applied for a short time. A
similar system where there is no nonlinear loss, but saturated gain has been proposed
by Hush et al. [2015] and realized by Behrle et al. [2023]. This system constitutes a
phonon laser, i.e., a laser with phonons instead of photons. As we showed in Eq. (2.6),
the quantum vdP oscillator approximates its dynamics close to the lasing threshold. Both
Li et al. [2025] and Behrle et al. [2023] have studied phase diffusion and synchronization
(or, equivalently, injection locking) to an external signal. In these systems, heterodyne
detection is difficult since the loss of phonons is not directly detectable. Instead, the
motional state of the ion is read out by employing once more the coupling to internal
degrees of freedom. An extension to two (or more) coupled quantum vdP oscillators has
so far not been realized but also proposed by Lee and Sadeghpour [2013], Lee et al. [2014],
and Hush et al. [2015].

4.2 Quantum spins

Quantum vdP oscillators have served as a good model to understand quantum synchro-
nization due to their close relation to classical vdP oscillators. Building on this analysis,
we now turn our attention to quantum spins, which only comprise a few states but
nevertheless exhibit a similar synchronization behavior. Here, we focus on two-level
systems, i.e., spins-1/2. In Chapter 5, three-level systems, i.e., spins-1, will be discussed
to highlight quantum effects in synchronization. By studying the synchronization of
quantum spins, one can understand the principal mechanism for superradiant lasing,
which will be explained in Section 4.2.3. To arrive there, we first present a single spin-1/2
limit-cycle oscillator and the synchronization behavior of two coupled spins.

A quantum spin-1/2 (in the following referred to as spin) comprises two states |0⟩
and |1⟩. Transformations of the state of the spin are described by Pauli matrices σx,y,z

and ladder operators σ±, defined as follows:

σ+ = |1⟩⟨0| , σ− = |0⟩⟨1| ,
σx = σ+ + σ− , σy = i(σ− − σ+) , σz = |1⟩⟨1| − |0⟩⟨0| .

(4.24)

If there are several spins, we add a subscript to distinguish which spin is being acted
upon. Formally, when there are N spins and i ∈ {1, . . . , N},

σx,y,z,±i ≡ 12 ⊗ · · · ⊗ 12⊗︸ ︷︷ ︸
i−1 times

σx,y,z,±⊗12 ⊗ · · · ⊗ 12︸ ︷︷ ︸
N−i times

, (4.25)

where 12 is the 2× 2 identity operator. In the case of two spins, we will use subscripts
A,B instead of 1, 2.

4.2.1 Quantum limit cycles

The only gain and loss processes that are possible in a spin-1/2 system are linear; a
nonlinear two-excitation loss that is key in the dynamics of a quantum vdP oscillator
cannot exist in a two-level system. We will therefore consider the master equation

ρ̇ = −i[ω
2
σz, ρ] + γ+D[σ+]ρ+ γ−D[σ−]ρ (4.26)
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with frequency ω, gain rate γ+, and loss rate γ−. A spin-1/2 has only three degrees of
freedom s±,z = ⟨σ±,z⟩, and the master equation (4.26) can be rewritten as

d

dt
sz = (γ+ − γ−)− (γ+ + γ−)sz , (4.27)

d

dt
s+ = iωs+ − (γ+ + γ−)s+/2 . (4.28)

The first line describes the dynamics of the population sz. In the steady state, the
population is

szss =
γ+ − γ−
γ+ + γ−

. (4.29)

The second line describes the oscillation at frequency ω and the decoherence at rate
(γ+ + γ−)/2. We see that, as for the quantum vdP oscillator, gain and loss also result in
decoherence. Due to the decoherence, s+ vanishes in the long-time limit.

In terms of the density operator, the steady state of the system is

ρss =
1

γ+ + γ−
(γ− |0⟩⟨0|+ γ+ |1⟩⟨1|) . (4.30)

This state is a mixture of the states |0⟩ and |1⟩. Therefore, Roulet and Bruder [2018b]
dismiss the possibility of synchronization in two-level systems. However, Parra-López and
Bergli [2020] show that two-level systems can indeed exhibit features of synchronization,
which have been observed in a trapped ion subject to an external drive [Zhang et al.,
2023]. Our analysis of the dynamics of a spin-1/2 in the presence of heterodyne detection
will support the idea that spins-1/2 can be considered as quantum limit-cycle oscillators.

First, we discuss the phase distribution of a spin-1/2, which is analogous to the phase
distribution of the classical and quantum vdP oscillators. It is defined using spin-coherent
states [Roulet and Bruder, 2018b; Parra-López and Bergli, 2020]

|θ, ϕ⟩ = exp(−iϕσz/2) exp(−iθσy/2) |1⟩ , (4.31)

and the Husimi-Q function

Q(θ, ϕ) =
1

2π
⟨θ, ϕ|ρ|θ, ϕ⟩ . (4.32)

The phase ϕ is the azimuthal phase, which is the relevant quantity to analyze synchro-
nization. The parameter θ determines the population difference, i.e., the number of
excitations in state |1⟩ and |0⟩: ⟨θ, ϕ|σz|θ, ϕ⟩ = cos(θ). The phase distribution of the
phase ϕ is obtained by integrating over θ,

Q(ϕ) =

∫ π

0
dθ sin θQ(θ, ϕ) =

1

2π
+

1

4
Re[
〈
σ+
〉
e−iϕ] . (4.33)

Evaluating the integral reveals that the expectation value ⟨σ+⟩ determines the shape of
the phase distribution.

The dynamics of the master equation (4.26) are visualized by the distributions Q(θ, ϕ)
and Q(ϕ) in Fig. 4.6. Similar to the analyses of classical limit-cycle oscillators in the
presence of fluctuations [see Fig. 2.3] and the quantum vdP oscillator [see Fig. 4.1], we
identify three processes taking place: the rotation at frequency ω, the attraction to the
limit cycle, and the phase diffusion.
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Figure 4.6: Time evolution of the spin-1/2 oscillator shown by the Husimi-
Q distribution Q(θ, ϕ) (top row) and the phase distribution Q(ϕ) (bottom
row). The Husimi-Q distribution is shown by a Mollweide projection: Lines
of constant θ are horizontal; the top and bottom of the plot correspond
to θ = 0 and θ = π, and ϕ increases from left to right. Parameters:
γ+ = γ−/2, ω = 2γ−.

Quantum limit cycles under heterodyne detection

As for the quantum vdP oscillator, the spin’s limit-cycle structure becomes apparent
through heterodyne detection. In the presence of a measurement of σ−, the master
equation is

ρ̇m =− i[
ω

2
σz, ρm] + γ+D[σ+]ρm + γ−D[σ−]ρm+

+
dW

dt

√
γ−
[
eiωmt(σ− − Tr

[
σ−ρm

]
)ρm +H.c.

]
.

(4.34)

Integrating this master equation, we obtain quantum trajectories for the spin-1/2 oscillator;
several of them are shown in Fig. 4.7. Despite the presence of fluctuations, we see that
the expectation value ⟨σz⟩m approaches a constant value, while the expectation value
⟨σx⟩m displays limit-cycle oscillations with frequency ω. The ensemble average (black line)
displays a damped oscillation that agrees well with the solution of the master equation
(gray dashed line).

This behavior is equivalent to both the quantum vdP oscillator [see Fig. 4.2] and a
classical noisy limit-cycle oscillator [see Fig. 2.2]. We conclude that the spin-1/2 system
under measurement shows limit-cycle oscillations. The master equation (4.26) can be
understood as describing the ensemble of all possible measurement outcomes. Certainly,
under a different type of measurement, such as photodetection, the limit cycle would not
be visible. One may take the point of view that a physical system described by a master
equation does or does not display limit cycles depending on how the system is observed.
This corresponds to considering quantum trajectories as “subjectively real” [Wiseman,
1996].

4.2.2 Two coupled spins

Having described the limit cycle of a single spin-1/2, let us now discuss the synchronization
behavior of two coupled spin-1/2 oscillators. Their time evolution is governed by

ρ̇ = −i δ
4
[σzA − σzB, ρ] + VD[σ−A + σ−B ]ρ+ γ+

(
D[σ+A ] +D[σ+B ]

)
ρ+ γ−

(
D[σ−A ] +D[σ−B ]

)
ρ ,

(4.35)
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Figure 4.7: Spin-1/2 oscillator: Limit cycle under measurement. (a) The
heatmap shows the steady-state Husimi-Q distribution from Fig. 4.6,
top-right panel. The blue scatter points show the time evolution of one
quantum trajectory. (b) The faint blue lines show the expectation values
⟨σx⟩m and ⟨σz⟩m of ten different quantum trajectories. The bright blue
line highlights one of them. The black line shows the average of 100
such realizations. It overlaps well with the gray dashed line, which is
the solution of ⟨σx⟩ of the master equation without measurement. Same
parameters as in Fig. 4.6: γ+ = γ−/2, ω = 2γ−.

The system is described in the rotating frame of the average frequency. The detuning
between the two spins is δ and the coupling strength is V . We can obtain intuition
about the dynamics by considering the mean-field equations for the expectation values
s+,z
A,B = ⟨σ+,z

A,B⟩

d

dt
szA = (γ+ − γ− − V )− (γ+ + γ− + V )szA , (4.36)

d

dt
szB = (γ+ − γ− − V )− (γ+ + γ− + V )szB , (4.37)

d

dt
s+A = +iδs+A/2− (γ+ + γ− + V )s+A/2 + V szAs

+
B/2 , (4.38)

d

dt
s+B = −iδs+B/2− (γ+ + γ− + V )s+B/2 + V szBs

+
A/2 . (4.39)

We have approximated
〈
σzAσ

+
B

〉
= szAs

+
B and the same for A↔ B. Within this approxi-

mation, the phases ϕA,B = arg[s+A,B] evolve following

d

dt
ϕA = +

δ

2
+ szA

V

2

∣∣s+B∣∣∣∣s+A∣∣ sin(ϕB − ϕA) , (4.40)

d

dt
ϕB = −δ

2
+ szB

V

2

∣∣s+A∣∣∣∣s+B∣∣ sin(ϕA − ϕB) . (4.41)

The phase interactions are qualitatively the same as the phase interactions between two
classical limit-cycle oscillators [see Eq. (2.19)] with an effective coupling strength that
depends on the szA,B as well as |s+A,B| . Therefore, we expect that a positive steady-state
value of szA,B results in in-phase locking, while negative szA,B results in out-of-phase
locking with phase difference π. To confirm this expectation, we now solve the full master
equation (4.35) to analyze phase locking.
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Figure 4.8: Phase locking of spin-1/2 oscillators. (a) The grayscale shows
the maximum of the phase distribution maxQ(ϕAB), a measure of phase
locking. The white dashed line indicates the synchronization transition
V = |δ| expected in classical noiseless oscillators. (b) The lines show the
phase distributionQ(ϕAB) for different values of the coupling strength. The
scatter points show the corresponding estimate of the phase distribution
obtained via the heterodyne current; see Eq. (4.49). Parameters: γ+ =
γ−/2. (b) δ = γ−/2.

Phase locking

We use a distribution for the phase difference similar to the analyses of the classical and
quantum vdP oscillators. It is obtained in analogy to Eq. (4.10) by first projecting the
density matrix on spin-coherent states

Q(θA, ϕA, θB, ϕB) =
1

4π2
⟨θA, ϕA| ⊗ ⟨θB, ϕB| ρ |θA, ϕA⟩ ⊗ |θB, ϕB⟩ . (4.42)

Then, we integrate over the polar angles θA,B to obtain the combined phase distribution

Q(ϕA, ϕB) =

∫ π

0
dθA sin θA

∫ π

0
dθB sin θBQ(θA, ϕA, θB, ϕB) , (4.43)

and we integrate over the global phase to obtain a distribution of the phase difference
ϕAB = ϕA − ϕB

Q(ϕAB) =

∫ 2π

0
dϕA

∫ 2π

0
dϕBQ(ϕA, ϕB)δ(ϕAB − ϕA + ϕB) = (4.44)

=
1

2π
+

π

16
Re[
〈
σ+Aσ

−
B

〉
eiϕAB ] . (4.45)

For the last step, the integrals have been carried out explicitly; see also Eqs. (A8) and
(A13) of Kehrer et al. [2024] for a more general expression. Equation (4.45) explicitly
shows the relation between the phase distribution and the presence of correlations as
measured by

〈
σ+Aσ

−
B

〉
between the two spins. If there are no correlations

〈
σ+Aσ

−
B

〉
= 0,

then the phase distribution is flat. As before, we use the maximum value, maxQ(ϕAB),
as a measure for synchronization.

The maximum value of Q(ϕAB) and the phase distribution are shown in Fig. 4.8.
Qualitatively, we find the same behavior as for the quantum vdP oscillator and the
classical noisy oscillator; see Fig. 4.3 and Fig. 2.4. Here, the spins phase lock with a
phase difference of π, since we chose parameters where the gain is smaller than the loss,
so that sz assumes negative values. Later, we will also confirm that positive values of
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Figure 4.9: Frequency entrainment of spin-1/2 oscillators. The lines show
the spectra as calculated by (4.46) for oscillators A (blue solid) and B
(red dashed). Parameters: γ+ = γ−/2, δ = 5γ−.

sz correspond to in-phase locking. Quantitatively, the synchronization measure is in
general smaller compared to the quantum vdP oscillators due to the smaller Hilbert space.
For the spins, the maximum deviation of the phase distribution from 1/(2π) is π/32
where

〈
σ+Aσ

−
B

〉
= 1/2. For the quantum and classical vdP oscillators, it is not bounded.

Intuitively, this is because the phase diffusion is proportional to the inverse amplitude
squared [see Eq. (2.13)] and can therefore be arbitrarily small for large amplitudes.

Frequency entrainment

To analyze frequency entrainment of two detuned spins, we calculate the spectra in
analogy to Eq. (4.12)

SA,B(ω) = lim
t→∞

∫ ∞

−∞
dτ ⟨σ+A,B(t+ τ)σ−A,B(t)⟩ e

−iωτ (4.46)

i.e., the Fourier transforms of the two-time correlations ⟨σ+A,B(t+ τ)σ−A,B(t)⟩. The spectra
are shown in Fig. 4.9 and display frequency entrainment in the same way as the quantum
and noisy classical vdP oscillators; see Fig. 4.4 and Fig. 2.5.

Quantum synchronization under heterodyne detection

The analysis of synchronization of two spins under heterodyne detection is carried out in
the same way as for the two quantum vdP oscillators. The conditional master equation is

ρ̇ =− i
δ

4
[σzA − σzB, ρ] + VD[σ−A + σ−B ]ρ+ γ+

(
D[σ+A ] +D[σ+B ]

)
ρ+ γ−

(
D[σ−A ] +D[σ−B ]

)
ρ

+
dWA

dt

√
γ−
[
eiωmt(σ−A − Tr

[
σ−Aρm

]
)ρm +H.c.

]
+

dWB

dt

√
γ−
[
eiωmt(σ−B − Tr

[
σ−Bρm

]
)ρm +H.c.

]
,

(4.47)
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with the usual statistics of the noise processes dWA,B; see Section 3.3. The heterodyne
currents,

Ihet,A =
√
γ−Tr

[
σ−Aρm

]
+
√
1/2 (dWA,x/dt+ idWA,y/dt) ,

Ihet,B =
√
γ−Tr

[
σ−Bρm

]
+
√
1/2 (dWB,x/dt+ idWB,y/dt) ,

(4.48)

can be used to measure phase locking. The phase difference ϕAB between the two
oscillators is estimated by the phase relation of the currents

ϕmAB = arg[Ihet,B/Ihet,A] . (4.49)

The relative number of occurrences of the measured phase is shown by the scatter points in
Fig. 4.8. They qualitatively follow the phase distribution Q(ϕAB). While in principle, the
spectra can be reconstructed from the heterodyne currents, in practice, the signal-to-noise
ratio is small (therefore, the reconstructed spectra are not displayed in Fig. 4.9). The
signal-to-noise ratio can be increased, however, by considering ensembles of two-level
systems. We will see an example of this in Chapter 6; see Fig. 6.9(b).

4.2.3 Large network of coupled spins

Let us now consider synchronization amongN coupled quantum spins-1/2, which resembles
the Kuramoto model. At the end of this section, we will highlight the connection to
superradiant lasers.

We aim to extend the dissipative coupling between two spins of the previous section
to all N oscillators. One approach is to include the jump operator from Eq. (4.35) that
mediates the coupling for each pair of spins,

V

N

∑
i<j

D[σ−i + σ−j ]ρ . (4.50)

We used this approach for the network of N coupled quantum vdP oscillators; see
Eq. (4.18). An alternative approach is a single collective jump operator D[S−]ρ, where the
collective spin operators are defined by S± =

∑N
i=1 σ

±
i . This type of collective coupling

can be efficiently implemented using a cavity, as we will see at the end of this section.
One can show that

D[S−] =
∑
i<j

D[σ−i + σ−j ]− (N − 2)

N∑
i=1

D[σ−i ] , (4.51)

which implies that the spin-spin interactions are the same for both the pairwise and
the collective coupling, but the collective coupling results in less damping for each spin.
Hence, there is also less decoherence, and the tendency to synchronize is larger. Therefore,
we will now study the collective coupling.

The quantum Lindblad master equation under consideration is

ρ̇ =
V

N
D[S−]ρ+

N∑
i=1

(
γ+D[σ+i ] + γ−D[σ−i ]

)
ρ . (4.52)
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To get an intuition for the dynamics, let us examine the mean-field equations for the
phase ϕi = arg[

〈
σ+i
〉
] of each spin, where s±,z

i ≡ ⟨σ±,z
i ⟩

d

dt
ϕi =

sziV

2N

N∑
j=1

∣∣∣s+j /s+i ∣∣∣ sin(ϕj − ϕi) . (4.53)

This set of equations is of the same form as the Kuramoto model [see Eq. (2.29)] with an
effective coupling strength V szi |s

+
j /s

+
i | , which has been pointed out by Xu and Holland

[2015] and Zhu et al. [2015]. When γ+ > γ−, the population of each spin is inverted and
szi assumes a positive value. In this case, the effective coupling is positive resulting in
phase locking among all spins. This process competes with the decoherence, or more
specifically, the phase fluctuations due to the coupling to the environment. We expect a
Kuramoto-like transition as discussed in Section 2.3.2 from an incoherent to a synchronized
state when increasing the collective coupling strength. The coupling strength, above
which the spins synchronize, depends on the phase fluctuations, or decoherence, whose
amplitude is dominated by γ± as we will see below.

In the thermodynamic limit of infinitely many spins, the mean-field equations are
exact [Spohn, 1980] and readily solvable when exploiting the permutational invariance by
setting s±,z ≡ s±,z

i for all i. The mean-field equations are

ṡ+ = V s+sz/2− (γ+ + γ−)s+/2 ,

ṡz = −2V
∣∣s+∣∣2 + (γ+ − γ−)− (γ+ + γ−)sz .

(4.54)

The fixed point s+ = 0, sz = (γ+ − γ−)/(γ+ + γ−) ≡ sz0 describes the incoherent state.
One can think of this state as all spins possessing an independent random phase due
to the large phase fluctuations, such that s+ =

∑
j |s

+
j | exp(iϕj) averages to zero. This

state is stable when the gain rate is smaller than the loss rate, γ+ < γ−. When γ+ > γ−,
however, the population is inverted, allowing for phase locking. In this case, a stability
analysis reveals that the incoherent state becomes unstable for a coupling V larger than
the critical coupling

Vc =
γ+ + γ−

sz0
. (4.55)

The critical coupling is proportional to the total decoherence γ+ + γ− (the decoherence
from the collective coupling becomes negligible for N → ∞). For V > Vc, the attractive
phase interactions overcome the decoherence, resulting in a synchronized state. The
steady-state solution is

sz = (γ+ + γ−)/V ,
∣∣s+∣∣2 = γ+ − γ−

2V 2
(V − Vc) . (4.56)

Figure 4.10(a) displays the order parameter |s+| by the black line, showing a Kuramoto-
like synchronization transition. The dependence of the critical coupling on the ratio γ+/γ−
is shown in Fig. 4.10(b) by the blue dashed line. For γ+ < γ−, there is no transition since
there is no population inversion. For γ+ ≫ γ−, the critical coupling approaches γ+.

The effect of frequency disorder among the spins has been studied by Zhu et al. [2015],
who found an exact expression for the order parameter in the presence of heterogeneous
frequencies sampled from a Lorentzian distribution. As in the Kuramoto model, the
coupling strength needs to overcome both frequency disorder and noise for synchronization
to occur. A special case of frequency disorder is when there are two distinct frequencies.
In this case, we can think of two species, or ensembles, of spins that are detuned from one
another and that can synchronize in analogy to two synchronizing oscillators. This scenario
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Figure 4.10: Kuramoto-like synchronization transition of spin-1/2 oscilla-
tors. (a) The black line shows the order parameter |s+| in the long-time
limit obtained from the mean-field analysis valid in the limit N → ∞.
The colored lines show the steady-state order parameter

√
⟨σ+σ−⟩ in the

finite-size system for various N . Parameters: γ+ = 10γ− (b) The heatmap
shows the steady-state order parameter

√
⟨σ+σ−⟩ for N = 104. The

dashed line indicates the synchronization transition, Eq. (4.55), predicted
by the mean-field equations. It agrees well with the boundary between
small and large values of the order parameter.

has been proposed by Xu et al. [2014], who find a synchronization transition when the
coupling is larger than the detuning. Later, Patra et al. [2019a,b, 2020] identified various
dynamical behaviors in the same model, including chaos. Furthermore, an experimental
implementation of synchronization between two spin ensembles has been carried out by
Weiner et al. [2017]; see details on the experimental implementation below.

Finite-size systems

Next, we would like to understand how the synchronization transition depends on the
number N of spins. Due to the exponential scaling of the degrees of freedom, we
use a cumulant expansion [Kubo, 1962; Plankensteiner et al., 2022], which is a good
approximation for large N . Within the cumulant expansion, we derive a set of Heisenberg
equations from master equation (4.52) following Eq. (3.9). After taking the expectation
value, all expectation values of a product of three operators are replaced following

⟨o1o2o3⟩ → ⟨o1o2⟩⟨o3⟩+ ⟨o1o3⟩⟨o2⟩+ ⟨o1⟩⟨o2o3⟩ − 2⟨o1⟩⟨o2⟩⟨o3⟩ . (4.57)

Furthermore, the master equation (4.52) features a U(1) symmetry, which means that no
global phase is preferred. Therefore, expectation values such as

〈
σ+i
〉
= 0 or ⟨σ+i σzj ⟩ = 0

will vanish in the long-time limit. We can exploit the U(1) symmetry to set these terms
equal to zero, simplifying the equations. Finally, we invoke the permutational invariance
among the spins to set all spins equal, e.g., ⟨σ+i σ

−
j ⟩ = ⟨σ+σ−⟩ for all i ̸= j. This yields

the closed set of differential equations

d

dt
sz =

(
γ+ − γ− − V

N

)
−
(
γ+ + γ− +

V

N

)
sz − 2V

N − 1

N
⟨σ+σ−⟩ ,

d

dt
⟨σ+σ−⟩ =−

(
γ+ + γ− +

V

N

)
⟨σ+σ−⟩+ V

2N
(⟨σzσz⟩+ sz)

+ V
N − 2

N
sz⟨σ+σ−⟩ , (4.58)
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d

dt
⟨σzσz⟩ =2

(
γ+ − γ− − V

N

)
sz − 2

(
γ+ + γ− +

V

N

)
⟨σzσz⟩

+
V

N

(
4
〈
σ+σ−

〉
− 4(N − 2)sz

〈
σ+σ−

〉)
.

In the limit N → ∞, they are equivalent to the mean-field equations (4.54).
We now use

√
⟨σ+σ−⟩, which measures the correlations among any two spins, (evalu-

ated in the steady state) as an order parameter for synchronization. In Eq. (4.45), we
already identified the relation between phase locking and the correlations between two
spins. The order parameter thus quantifies the amount of phase locking between any two
spins. Additionally,

√
⟨σ+σ−⟩ becomes |s+| for N → ∞, further motivating its use as an

order parameter.
The colored lines in Fig. 4.10(a) show the synchronization transition for finite N

obtained within the cumulant expansion. Similarly to the transition in the Kuramoto
model shown in Fig. 2.9, the sharp transition becomes a crossover for a finite number
of oscillators. Figure 4.10(b) displays the spin correlations as a function of gain and
collective coupling strength. There are close to zero correlations below the critical coupling
(blue dashed line), while there is a significantly larger amount of correlations above it,
consistent with the transition predicted by the mean-field analysis.

Experimental implementation: superradiant laser

The model of synchronization in a large ensemble of spins described above captures the
essential physics of a superradiant laser. Superradiant lasers consist of a group of atoms
coupled to a cavity; they are a promising source of coherent light due to their stable
frequency and superior narrow linewidth [Chen, 2009; Meiser et al., 2009]. In contrast to
a standard laser, the cavity decays rapidly, ensuring a small number of excitations in the
cavity mode, which renders the laser robust against cavity fluctuations [Bohnet et al.,
2012; Norcia and Thompson, 2016]. The laser light exhibits a stable frequency set by the
atomic transition frequency. The incoherent drive of each atom (modeled by the term
γ+D[σ+i ]ρ) provides it with energy, allowing for continuous lasing [Norcia and Thompson,
2016; Laske et al., 2019; Kristensen et al., 2023]. In the following, we present a simple
theoretical model of the superradiant laser based on Meiser et al. [2009].

The superradiant laser comprises N atoms, each modeled as a quantum spin-1/2 with
two states out of the electronic level structure, simply labeled |0⟩ and |1⟩. The atoms
are placed in an optical cavity, resulting in a coherent coupling of all spins to the cavity
mode at rate Ω. The cavity is described by a bosonic mode with ladder operators a(†);
it loses excitations at rate κ. The spins lose excitations due to spontaneous emission
at rate γ−, but they are repumped to the excited state at rate γ+. The repumping
can be engineered by a laser coherently driving the transition between state |0⟩ and
a third excited level, which spontaneously decays to state |1⟩. We note that realizing
the incoherent drive presents an experimental challenge due to heating and atom loss;
therefore, other mechanisms for repumping have been proposed [Liu et al., 2020; Reilly
et al., 2025]. In the frame rotating with the spin frequency and the cavity frequency,
which for simplicity are assumed equal, the master equation is

d

dt
ρ = −iΩ[a†S− + aS+, ρ] + κD[a]ρ+

N∑
i=1

(
γ+D[σ+i ] + γ−D[σ−i ]

)
ρ , (4.59)
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We will now connect this model to the master equation of the dissipatively coupled spins,
Eq. (4.52). The Heisenberg equation for the cavity mode a reads

d

dt
a = −κ

2
a− iNΩS− . (4.60)

In the limit κ≫
√
NΩ, the cavity rapidly follows the spin degrees of freedom, and one

can set ȧ = 0 to find a = −2iΩS−/κ. After inserting this expression into the master
equation (4.59), using κD[a] → N−1VD[S−] and (a†S− + S+a) → 0, we obtain the
effective model of a dissipatively coupled spin ensemble, Eq. (4.52) with V = 4NΩ2/κ.

Having reduced the model of the superradiant laser to a model of synchronizing
quantum spins makes it possible to understand the dynamics of the superradiant laser
in terms of synchronization. The cavity-mediated coupling results in attractive phase
locking among the atomic dipoles that counteracts phase diffusion due to decoherence.
As we discussed in the context of the Kuramoto model in the presence of fluctuations
[see Section 2.3.2], a collective phase-coherent state arises if the coupling is large enough,
which intuitively explains the narrow linewidth of the laser. The minimal linewidth of a
superradiant laser is ∆νmin = V/N [Meiser et al., 2009]. In terms of the cooperativity
C = 4Ω2/(κγ−), the expression becomes ∆νmin = Cγ−. Therefore, the cavity is designed
such that the cooperativity C is small, and the states |0⟩ and |1⟩ are chosen such that the
spontaneous emission rate γ− is small. For typical experimental parameters, C ≈ 0.15 and
γ− ≈ 10mHz, this evaluates to a minimal linewidth of ∆νmin ≈ 1.5mHz. Superradiant
lasers offer great technological promise as their exceptionally narrow linewidth is expected
to improve the precision of optical atomic clocks [Ludlow et al., 2015].

Two experiments further highlight the connection between superradiant lasers and
synchronization. Cox et al. [2014] investigated the response of a superradiant laser to
external driving. Similarly to how two oscillators synchronize, the superradiant laser
synchronizes to the external drive when the drive strength is sufficiently large compared
to the detuning between the drive and laser frequencies. In the context of lasers, one
also refers to this process as injection locking. Later, Weiner et al. [2017] experimentally
studied synchronization between two detuned superradiant ensembles of atoms. Both
phase locking and frequency entrainment were measured via heterodyne detection to
characterize the synchronization of the two ensembles.

4.3 Conclusions

In this chapter, we introduced the basic concepts of quantum synchronization, building
on the previous chapter on synchronization in classical systems. We presented two models
of quantum limit-cycle oscillators: quantum van-der-Pol oscillators and spins-1/2. We
studied their synchronization behavior, moving from single limit-cycle oscillators to large
networks of coupled oscillators. We have shown how these driven-dissipative quantum
systems feature limit cycles, phase locking, frequency entrainment, and a collective
Kuramoto-like synchronization transition. Finally, we connected synchronization in the
spin ensemble to the superradiant laser. We will revisit this connection in Chapter 7.

Throughout, we have highlighted the qualitative similarity between synchronization
of quantum oscillators and synchronization of classical oscillators subject to noise. We
demonstrated that analogous measures of phase locking and frequency entrainment can
be used to characterize synchronization of quantum and classical limit-cycle oscillators.
The measures rely on phase-space distributions and emission spectra.

The qualitative similarity between quantum and classical synchronization becomes
particularly evident through continuous measurement. Individual quantum trajectories
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obtained through heterodyne detection exhibit persistent, coherent oscillations with
additional noise similar to the trajectories of classical limit-cycle oscillators subject to
noise. Viewing quantum limit cycles through the lens of a suitable measurement goes
beyond the ensemble analysis using the density operator; this contributes to understanding
what a quantum limit cycle is. Furthermore, the measurement perspective connects
theoretical measures of quantum synchronization to an experimentally accessible quantity:
the heterodyne current of the photodetector.

Having established the similarity between quantum and classical synchronization
provides a solid intuition for the dynamics of the quantum systems that we will investigate
in the remainder of this work. However, this similarity is not always present. Much re-
search is devoted to understanding quantum, i.e., nonclassical, features of synchronization.
For example, the relation between synchronization and entanglement is explored exten-
sively [Lee et al., 2014; Roulet and Bruder, 2018a; Zhu et al., 2015; Witthaut et al., 2017;
Lorenzo et al., 2022; Mari et al., 2013; Bandyopadhyay and Banerjee, 2023]. Furthermore,
there are synchronization behaviors unique to quantum systems [Lörch et al., 2016, 2017;
Amitai et al., 2018; Dutta and Cooper, 2019; Mok et al., 2020; Shen et al., 2023a]. In the
following chapter, we will explore collective synchronization transitions that are unique
to quantum many-body systems.
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Chapter 5

Macroscopic quantum
synchronization effects

The results of this chapter have been published in

Macroscopic Quantum Synchronization Effects,
T. Nadolny and C. Bruder,
Physical Review Letters, 131, 190402 (2023)

In Chapter 4, we extended the concept of synchronization to quantum systems. To a large
extent, we found that the synchronization properties of both these models are qualitatively
the same as those of classical systems with noise. This is not always the case; the present
chapter shows that the quantum nature of oscillators can result in a qualitatively different
synchronization behavior. In other words, we will present a self-organization transition to
a collectively ordered state that inherits characteristic features of the individual quantum
constituents.

It has been established in previous studies that quantum effects are relevant in the
synchronization of a few quantum oscillators [Lörch et al., 2016, 2017; Dutta and Cooper,
2019; Shen et al., 2023a]; we present some of these effects in Section 5.1. For large networks
of coupled oscillators, however, it remained unclear if these effects persist and if the
microscopic details of each quantum oscillator matter for the macroscopic synchronization
dynamics. While quantum features in large networks like the presence of entanglement and
quantum discord are studied [Zhu et al., 2015; Witthaut et al., 2017; Lorenzo et al., 2022;
Mari et al., 2013; Bandyopadhyay and Banerjee, 2023], the synchronization dynamics are
mostly similar to the dynamics in classical synchronization. In Sections 5.2 to 5.4, we
propose and discuss a model of a large network of coupled quantum oscillators in which
the synchronization dynamics is qualitatively shaped by their quantum nature.

5.1 Quantum synchronization effects in one or two oscillators

We start by presenting a three-level (or spin-1) quantum limit-cycle oscillator and its
synchronization behavior. Specifically, we present two blockades of synchronization
marked by the absence of phase locking. Both originate from quantum properties. The
interference blockade is related to coherences that interfere destructively [Koppenhöfer and
Roulet, 2019]. The quantum synchronization blockade is due to off-resonances that stem
from the quantized level structure [Lörch et al., 2017]. Understanding the synchronization
behavior on the level of one or two oscillators allows us to explain the self-organization
transition in a large network of coupled spin-1 oscillators in the following sections.

https://doi.org/10.1103/PhysRevLett.131.190402
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Figure 5.1: (a) Classical vdP limit cycle as presented in Chapter 2. Gain
and loss stabilize a specific amplitude of the limit cycle. (b) Sketch of the
spin-1 oscillator consisting of three levels. Gain and loss incoherently drive
the population to state |1⟩. The bare frequency is ωz and the asymmetry
of the level structure is parameterized by K.

5.1.1 Interference blockade

The individual oscillator under study is a quantum system with three states |0⟩, |1⟩,
and |2⟩. It is described by spin-1 operators, which are defined as Sz = |2⟩⟨2| − |0⟩⟨0|,
S+ =

√
2(|2⟩⟨1|+ |1⟩⟨0|), and S− = (S+)†. Two dissipative processes render the system a

limit-cycle oscillator. They are γ+D [|1⟩⟨0|] ρ and γ−D [|1⟩⟨2|] ρ, which pump the population
from state |0⟩ to state |1⟩ at rate γ+ and from state |2⟩ to state |1⟩ at rate γ−. Due to
these gain and loss processes, each three-level oscillator forms a limit cycle [Roulet and
Bruder, 2018b], whose population (measured by Sz) is stabilized, while the phase of the
amplitude (measured by S+) is free.

The analogy to a classical limit cycle is portrayed in Fig. 5.1. Panel (a) shows the
limit-cycle of a classical van-der-Pol oscillator. Consider now decreasing its amplitude
to the lowest few Fock states, specifically so that the limit-cycle amplitude matches the
amplitude of the first Fock state |1⟩. Restricting the dynamics to only the two neighboring
Fock states, |0⟩ and |2⟩, results in the minimal model for a quantum three-level, or
spin-1, limit cycle as described above. It is sketched in Fig. 5.1(b). This system has been
proposed by Roulet and Bruder [2018b] and studied in further works since [Koppenhöfer
and Roulet, 2019; Solanki et al., 2023; Roulet and Bruder, 2018a; Kehrer et al., 2024].
We additionally allow for an asymmetric level structure, parameterized by K, which sets
the asymmetry in energy differences between levels |2⟩ and |1⟩, and the levels |1⟩ and |0⟩.

The master equation for a three-level oscillator subject to an external drive is

ρ̇ =− i
[
K |2⟩⟨2|+ (ΩS+ +Ω∗S−), ρ

]
+ γ+D [|1⟩⟨0|] ρ+ γ−D [|1⟩⟨2|] ρ . (5.1)

We moved to a frame rotating with the frequency ωz. The first term describes the energy
level asymmetry K. The second term represents an external drive with amplitude Ω
resonant with the bare frequency ωz (therefore, there is no time dependence in the rotating
frame). Similar to phase locking between two oscillators, we will now discuss how the
oscillator locks its phase to the external drive. Later, we use these results to understand
the transition to a synchronized state in a large network.
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Figure 5.2: Phase distributions Q(ϕ) (the mean 1/2π is subtracted) of
a single spin-1 oscillator subject to an external drive for K = 0 (black
dashed), K/(γ− + γ+) = −1/10 (orange), K/(γ− + γ+) = +1/10 (blue).
(a) Equal rates γ+ = γ− result in the interference blockade when K = 0,
i.e., no unique phase is preferred. (b) Imbalanced rates γ+ = γ−/2 lift the
interference blockade. Parameters: Ω/γ− = 1/10.

In the same way that we analyzed the phase distribution of a spin-1/2 in Eq. (4.33),
we assess the phase response of the spin-1 oscillator by the phase distribution [Lee and
Sadeghpour, 2013; Roulet and Bruder, 2018b]

Q(ϕ) =

∫ π

0
dθ sin θQ(θ, ϕ) . (5.2)

We use the Husimi-Q distribution

Q(θ, ϕ) =
3

4π
⟨θ, ϕ|ρ|θ, ϕ⟩ (5.3)

and spin-coherent states

|θ, ϕ⟩ = exp(−iϕSz) exp(−iθSy) |2⟩ , (5.4)

with Sy = i(S− − S+)/2. This phase distribution was generalized to SU(3) coherent
states including two free phases by Jaseem et al. [2020b] and Solanki et al. [2023]; for our
purposes, it is sufficient to consider one phase.

To discuss phase locking in the long-time limit, we compute the steady state of
the master equation (5.1) and show the resulting phase distributions Q(ϕ) in Fig. 5.2.
Figure 5.2(a) displays the case of equal gain and loss, γ+ = γ−. For K = 0, the coherences
resulting from the external drive have opposite signs, such that their contributions to
the phase distribution partially cancel, which is referred to as the interference block-
ade [Koppenhöfer and Roulet, 2019]. It becomes apparent in the phase distribution (black
dashed line), which shows two peaks of equal height at ϕ = 0 and ϕ = π instead of a
single maximum. This means that the oscillator does not uniquely lock its phase with
respect to the external drive; rather, it shows a bistable behavior, locking equally likely
in and out of phase. For other ratios of γ+/γ−, the interference blockade is lifted and
the phase distribution indicates a unique phase preference. For example, in Fig. 5.2(b),
where γ+ = γ−/2, the black-dashed line indicates a phase preference at around ϕ = 3π/2.

The asymmetry parameter K also lifts the interference blockade, resulting in in-phase
locking for K < 0 and anti-phase locking for K > 0. This behavior is exemplified by the
colored lines of Fig. 5.2(a,b), where the orange line (negative K) peaks closer to 0 and 2π,
while the blue line (positive K) peaks closer to π. The fact that negative K corresponds
to in-phase alignment while positive K implies anti-phase alignment will be relevant in
our discussion of synchronization in a large ensemble in Section 5.3.
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5.1.2 Quantum synchronization blockade

Next, consider two coupled spin-1 oscillators, each of the form described in the previous
subsection and displayed in Fig. 5.1(b). The two oscillators have frequency ωz ± δ/2.
Their quantum master equation in the frame rotating with the average frequency ωz is

ρ̇ =− i
[δ
2
(Sz

A − Sz
B) +K(|2⟩⟨2|A + |2⟩⟨2|B) + VAB(S

+
AS

−
B + S+

BS
−
A ), ρ

]
+

+
(
γ+D [|1⟩⟨0|A] + γ−D [|1⟩⟨2|A] + γ+D [|1⟩⟨0|B] + γ−D [|1⟩⟨2|B]

)
ρ .

(5.5)

The two oscillators labeled A and B differ by the detuning δ between them. The interaction
among the oscillators is described by the Hamiltonian VAB(S

+
AS

−
B +S+

BS
−
A ). In contrast to

the coupling discussed in the previous chapter [see Eq. (4.8) and Eq. (4.35)], the coupling
is coherent and not dissipative.

As for the quantum van-der-Pol oscillators and the spins-1/2 [see Eq. (4.10) and
Eq. (4.43)], we analyze phase locking using the phase distribution Q(ϕAB) for the relative
phase ϕAB,

Q(ϕAB) =

∫
dθAdθBdϕAdϕB sin θA sin θB ×Q(θA, θB, ϕA, ϕB)× δ(ϕAB − ϕA + ϕB) .

(5.6)

Here, we use the Husimi-Q function generalized to two oscillators

Q(θA, θB, ϕA, ϕB) =
9

16π2
⟨θA, ϕA| ⊗ ⟨θB, ϕB| ρ |θA, ϕA⟩ ⊗ |θB, ϕB⟩ . (5.7)

We compute the steady state of the master equation (5.5) and the corresponding
phase distribution Q(ϕAB). The maximal value of the phase distribution, maxQ(ϕAB),
serves as a measure for the strength of phase locking; it is shown in Fig. 5.3(a) for different
values of δ and K. Clearly, there is stronger phase locking in the region |K| ≈ |δ| and
suppression of synchronization when |K| is different from |δ|. This is the microscopic
quantum synchronization blockade [Lörch et al., 2017]. To explain this finding, let us
first consider δ = −K. In this case, the energy difference between states |1⟩ and |2⟩ of
oscillator A is equal to that between states |0⟩ and |1⟩ of oscillator B. Thus, the transition
|1⟩A ⊗ |1⟩B ↔ |2⟩A ⊗ |0⟩B is resonant, which leads to a strong phase locking. We also
find strong phase locking for δ = +K where the energy difference between states |0⟩ and
|1⟩ of oscillator A is equal to that between states |1⟩ and |2⟩ of oscillator B. Then, the
transition |1⟩A ⊗ |1⟩B ↔ |0⟩A ⊗ |2⟩B is resonant. These two transitions are the most
important ones, since they include the limit-cycle state |1⟩A ⊗ |1⟩B, which is the most
populated one. When |δ| differs significantly from |K|, the influence of the coupling is
suppressed since the dominant transitions are off-resonant. Figure 5.3(a) highlights the
resonances as well as the suppression of synchronization.

The microscopic quantum synchronization blockade has been highlighted as a quantum
effect of synchronization, where identical oscillators synchronize less strongly compared to
detuned oscillators. We will later see how this blockade between two oscillators influences
the macroscopic synchronization behavior in the many-body model of two ensembles of
spin-1 oscillators. In that context, we will also come back to Panels (b) and (c) of Fig. 5.3.

5.2 Many-body model

So far, it has remained an open question whether quantum effects in synchronization
survive when increasing the number of oscillators. Will the quantum nature of the
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Figure 5.3: Analysis of phase locking of two spin-1 oscillators. (a) Max-
imum of the phase distribution (the mean 1/2π is subtracted). (b) Ar-
gument ϕmax

AB of the maximum shown in (a). The relative phase is ap-
proximately zero below the resonances and approximately π above them.
At the resonances, they cross ±π/2 as indicated by the blue and red
stripes. Furthermore, the phase shift between oscillators A and B below
the resonances is closer to zero for K ≲ −δ, and closer to π for K ≲ δ as
indicated by the white and black regions. (c) In this bitmap, white pixels
indicate that the maximum of the phase distribution is larger than the
threshold of 5× 10−3, and the maximum phase is closer to 0 than to π.
Parameters: γ− = 2γ+, V = γ−/10.

oscillators be reflected in the macroscopic dynamics? Or does the detailed microscopic
description of each oscillator become irrelevant, resulting in dynamics described by generic
classical synchronization models? A third possibility is the emergence of behavior not
visible at the level of a few coupled oscillators.

We will now answer these questions and show how in a macroscopic ensemble of
interacting quantum oscillators, the synchronization behavior is qualitatively shaped
by their quantum nature. This is explained through a comprehensive understanding
of the behavior of individual oscillators presented in the previous section. Both the
interference blockade and the quantum synchronization blockade remain influential in a
large network. We also identify aspects of the dynamics that are understood as typical
synchronization transitions independently of the microscopic quantum properties. Finally,
we discuss phase frustration in the network: If the coupling causes each oscillator to favor
antialignment of its phase with respect to the other oscillators, collective synchronization
is suppressed. This results in emergent blockades of synchronization only present in the
many-body system.

We first consider the model schematically shown in Fig. 5.4. It comprises a large group
of N all-to-all coupled oscillators and thus resembles the Kuramoto model discussed in
Section 2.3. Here, however, the group consists of quantum oscillators with three states
|0⟩, |1⟩, and |2⟩ each, as presented in the previous sections. In the frame rotating with
the bare frequency ωz, the time evolution is governed by the quantum master equation
ρ̇ = −i[H0 +Hint, ρ] + Lρ, with

H0 =
∑

i
K |2⟩⟨2|i , Hint =

V

N

∑
i<j

(S+
i S

−
j + S−

i S
+
j ) ,

L =
∑

i

(
γ+D [|1⟩⟨0|i] + γ−D [|1⟩⟨2|i]

)
.

(5.8)
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Figure 5.4: A group of N quantum oscillators that are all-to-all coupled
through coherent interactions at strength V . Each oscillator consists of
three levels (|0⟩, |1⟩, and |2⟩) and is incoherently driven to state |1⟩ at rates
γ±. The bare frequency is ωz and the asymmetry of the level structure is
parameterized by K.

In the sums, i and j take values from 1 to N . The spin-1 operators Sz,±
i are defined as

before for each spin i. This master equation extends the model of two oscillators defined
in Eq. (5.5) to a large ensemble of oscillators. It can be thought of as a Kuramoto model
of spin-1 oscillators with coherent coupling. The bare Hamiltonian H0 describes the
coherent dynamics in the absence of any coupling. For each oscillator, the parameter K
sets the asymmetry in energy differences between levels |2⟩ and |1⟩, and the levels |1⟩
and |0⟩. The interaction among the oscillators is described by Hint. All oscillators are
coherently coupled to all others. The coupling strength within each group is V . Finally,
as before, each three-level oscillator is incoherently driven to the level |1⟩, with strength
γ+ (γ−) from level |0⟩ (|2⟩).

Because of the exponential growth of the Hilbert space size, solving the master
equation becomes intractable for large N . We employ a mean-field treatment, which for
the case of an all-to-all coupling discussed here gives an exact solution for the macroscopic
dynamics in the limit N → ∞ [Spohn, 1980]. This approach corresponds to neglecting
correlations between oscillators, encoded in the product-state ansatz, ρ =

⊗
i ρi [Lee

et al., 2014]. Since all oscillators are identical, their time evolution can be described
in terms of a single three-level oscillator with density matrix ρmf coupled to the mean
amplitude ⟨S+⟩ = Tr[ρmfS

+] = 1/N
∑

i

〈
S+
i

〉
. Consequently, the dynamics of the group

are described by the nonlinear master equations

ρ̇mf =− i
[
K |2⟩⟨2|+ V

(
S+ ⟨S−⟩+ S− ⟨S+⟩

)
, ρmf

]
+

+
(
γ+D [|1⟩⟨0|] + γ−D [|1⟩⟨2|]

)
ρmf .

(5.9)

This equation is the analog of the mean-field equations that we discussed for coupled
quantum vdP oscillators and spins-1/2; see Eqs. (4.19) and (4.54). To obtain the results
below, we numerically time-integrate the nonlinear master equation (5.9). Additionally,
we perform a stability analysis of the unsynchronized state ρmf = |1⟩⟨1|, which is a solution
of ρ̇mf = 0.

5.3 Synchronization transition

To investigate the state of the group, we utilize the mean amplitude ⟨S+⟩ = 1/N
∑

i

〈
S+
i

〉
as an order parameter. The phase ϕi of each oscillator is defined through ⟨S+

i ⟩ =
exp(iϕi)

∣∣⟨S+
i ⟩
∣∣. Consequently, the order parameter ⟨S+⟩ is analogous to the one defined

for the Kuramoto model; see Eq. (2.30). Intuitively, in the absence of any coupling,
all oscillators exhibit random phases due to the noise that stems from the coupling to
the environment. In this case, we expect the mean amplitude to vanish in the limit
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Figure 5.5: Synchronization of a single group. (a) Time evolution of
the amplitude ⟨S+⟩ below and above the critical coupling strength Vc,
specifically V/(γ− + γ+) = 1/5 and V/(γ− + γ+) = 3/5. (b) Time-
averaged long-time limit amplitude |⟨S+⟩|t and coherences, showing a
sharp transition at Vc. Parameters in (a) and (b): γ+ = γ−/2 and K = 0.
(c) Order parameter |⟨S+⟩|t as a function of the coupling strength V and
γ+/γ− as a gray-scale image for asymmetry parameter K = 0. The black
dashed line displays the corresponding critical coupling strength obtained
from a stability analysis. The orange and blue lines show the critical
coupling strengths for K/(γ− + γ+) = −1/10 and +1/10, respectively. In
the region γ+/γ− around 1, synchronization is suppressed for K ≥ 0 due to
the interference blockade; for negative values of K, the blockade vanishes
and synchronization reappears, as indicated by the finite critical coupling
strength for K/(γ− + γ+) = −1/10 (orange line). (d) Phase distributions
Q(ϕ) (the mean 1/2π is subtracted) for the same values of K/(γ− + γ+)
as in (c) (same data as shown in Fig. 5.2).
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of infinitely many oscillators N → ∞. Indeed, numerical integration of the mean-field
equations shows that for small coupling strengths, the group of oscillators converges to
the steady state ρmf = |1⟩⟨1| exhibiting no phase preference, ⟨S+⟩ = 0.

The coupling among the oscillators, however, tends to align their phases. As in
the Kuramoto model describing classical phase oscillators [see Section 2.3], there is a
critical coupling strength Vc above which the group synchronizes. The critical coupling
usually depends on both the noise and the frequency disorder inherent in the system. For
a group of identical oscillators, there is no frequency disorder but only intrinsic noise
whose strength depends on the rates γ− and γ+ at which each oscillator couples to the
environment.

Figure 5.5(a) displays the time evolution of the mean amplitude in both the unsynchro-
nized and synchronized regimes. Below the critical coupling strength, the zero-amplitude
state is stable. For V > Vc, in the synchronized regime, the alignment of phases leads
to a finite amplitude in the long-time limit with persistent oscillations of Re[⟨S+⟩]. The
frequency of this oscillation will be further addressed when discussing the behavior of two
coupled groups. Other quantities not shown in Fig. 5.5(a) also change when entering the
synchronized phase: The states |0⟩ and |2⟩ become populated, and the coherence ⟨|0⟩⟨2|⟩
exhibits oscillations at twice the frequency compared to those of ⟨S+⟩.

To analyze the presence of synchronization among the oscillators, we use the time-
average of the (in general time-dependent) absolute value of the amplitude |⟨S+⟩|t in the
steady state. Figure 5.5(b) depicts this order parameter as a function of the coupling
strength, showing a sharp transition between the unsynchronized and synchronized states.
This resembles the synchronization transition in the Kuramoto model; see Fig. 2.9(b).

So far, we set γ+/γ− = 1/2 and observed a typical synchronization transition. We now
present the order parameter as a function of both the coupling strength and the ratio γ+/γ−
in Fig. 5.5(c). Most notably, for equal gain and loss rates, the critical coupling diverges,
i.e., the transition to synchronization disappears. This is a macroscopic manifestation of
the interference blockade that we reviewed in Section 5.1.1. Synchronization of a single
three-level quantum limit-cycle oscillator subject to an external drive is suppressed when
gain and loss rates are equal due to destructive interference. As a result, there is no unique
phase locking; see black dashed line in the top panel of Fig. 5.5(d) [Fig. 5.5(d) shows
the same data as Fig. 5.2]. The divergence of the critical coupling strength in Fig. 5.5(c)
reveals that the interference microscopic blockade also shapes the emergent collective
order of the macroscopic ensemble. Let us explain this behavior. In the ensemble, each
oscillator reacts as being driven by the mean field; compare Eq. (5.1) and Eq. (5.9) where
the effective drive strength is ⟨S−⟩. In the case γ+ = γ− and K = 0, the phase shifts
ϕ = 0 and ϕ = π between oscillator and drive are equally likely. For the ensemble of
oscillators, this implies that each oscillator tends to align its phase either in or out of
phase with the mean field. Hence, the response of each oscillator will on average not
amplify the coherence of the group, which leads to the absence of synchronization, i.e.,
the macroscopic interference blockade.

For a single asymmetric three-level oscillator, the interference blockade is lifted for
any non-zero value of the asymmetry parameter K [Solanki et al., 2023]. In contrast, we
find that the blockade in the macroscopic ensemble is lifted only for K < 0, but persists
for K ≥ 0. This is indicated by the orange and blue lines in Fig. 5.5(c), which show the
critical coupling for K < 0 and K > 0. In the case K < 0 (orange line), the critical
coupling remains finite for γ+ = γ−. For K > 0 (blue line), however, the critical coupling
diverges, indicating the interference blockade at equal gain and loss rates. To understand
this behavior, let us once more revisit the microscopic quantum synchronization behavior.
Figure 5.5(d) shows the phase distribution Q(ϕ) of a single oscillator coupled to an
external drive in the steady state for various values of K. The top panel concerns the
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Figure 5.6: Two groups A and B of N quantum oscillators each. The
oscillators in groupA are detuned from the ones in groupB by δ. Otherwise,
the oscillators are all-to-all coupled and of the same form as in Fig. 5.4 with
bare frequency ωz and asymmetry parameter K. The coupling strength
within each group is V , and the coupling strength between oscillators of
different groups is VAB .

critical case γ+ = γ−. For K < 0 (orange line), each oscillator preferably aligns its phase
with the mean field, leading to synchronization of the group. On the other hand, for
K > 0 (blue line), each oscillator favors a phase shift of π with respect to the mean
field, resulting in phase frustration that hinders synchronization. Therefore, unlike the
interference blockade of a single oscillator, the macroscopic interference blockade is only
lifted for negative K. For γ+ ̸= γ−, we similarly find that the phase distribution tends
to peak closer to ϕ = 0 (π) for negative (positive) values of K, which is reflected by the
respective critical coupling strengths shown by the orange (blue) line in Fig. 5.5(c) being
smaller (larger).

In summary, the ensemble of quantum oscillators may synchronize and form a phase-
coherent collective state above a critical coupling strength, as expected from generic models
of noisy classical oscillators. Importantly though, the quantum nature of the oscillators
remains influential on the macroscopic scale: The interference blockade manifests itself as
a blockade of global synchronization. Moreover, phase frustration, where each oscillator
aims to antialign its phase with the mean field, causes an emergent additional blockade
only present in the large network.

5.4 Synchronization in two groups

We now consider a model of two groups of quantum oscillators as depicted in Fig. 5.6. It
comprises two groups of oscillators resembling models of two ensembles of classical phase
oscillators [Okuda and Kuramoto, 1991; Montbrió et al., 2004]. The two groups, labeled
A and B, differ by the detuning δ between them. Each group is of the same form as in
the previous section. The Hamiltonians and Lindblad dissipators of the quantum master
equation ρ̇ = −i[H0 +Hint, ρ] + Lρ are now

H0 =
∑

i

δ

2

(
Sz
A,i − Sz

B,i

)
+K

(
|2⟩⟨2|A,i + |2⟩⟨2|B,i

)
,

Hint =
V

N

∑
σ

∑
i<j

(S+
σ,iS

−
σ,j + S−

σ,iS
+
σ,j) +

VAB

N

∑
i,j

(S+
A,iS

−
B,j + S−

A,iS
+
B,j) ,

L =
∑

σ,i

(
γ+D

[
|1⟩⟨0|σ,i

]
+ γ−D

[
|1⟩⟨2|σ,i

])
,

(5.10)

where σ ∈ {A,B} is the group label. The coupling strength within each group is V , and
the coupling strength between oscillators of different groups is VAB.
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Figure 5.7: Synchronization of two groups. (a,b) Spectra Pσ(ω) for
σ = A,B obtained via Fourier transform of the time evolution of ⟨S+⟩σ as
a function of detuning δ. (c) Difference of the two dominant frequencies,
ωA − ωB . (d) Frequency difference between the two groups as a function
of detuning δ and inter-group coupling VAB. Parameters: K = 0, V =
2γ+ = γ− (such that V > Vc). (a–c): VAB = V/2.

For the model of two distinct groups, we extend the product ansatz to ρ =
⊗

σ,i ρσ,i.
Since all oscillators within each group are identical, their time evolution can be described
in terms of two three-level oscillators with density matrices ρA and ρB coupled to the
mean amplitudes ⟨S+⟩σ = Tr[ρσS

+] = 1/N
∑

i ⟨S
+
σ,i⟩ of each group. The dynamics of

the two groups is governed by the two coupled nonlinear master equations

ρ̇A = −i[HA + VAB(S
+
〈
S−〉

B
+ S− 〈S+

〉
B
), ρA] + L̃ρA ,

ρ̇B = −i[HB + VAB(S
+
〈
S−〉

A
+ S− 〈S+

〉
A
), ρB] + L̃ρB ,

(5.11)

whereHσ = ± δ
2S

z+K |2⟩⟨2|+V (S+ ⟨S−⟩σ + S− ⟨S+⟩σ) and L̃ = γ+D [|1⟩⟨0|]+γ−D [|1⟩⟨2|].
The sign in front of δ/2 is plus (minus) for group A (B). The following results are ob-
tained through numerical integration of the nonlinear master equations (5.11) as well as
a stability analysis of the unsynchronized state ρσ = |1⟩⟨1|.

We identify three different states in the long-time limit. The first is the absence of any
synchronization, indicated by both amplitudes ⟨S+⟩σ vanishing. Secondly, all oscillators
of both groups can fully synchronize. Thirdly, there is a state of partial synchronization
where all oscillators within each group synchronize internally but not with the oscillators
of the other group.

To distinguish full and partial synchronization, we compare the oscillation frequencies
of both groups. For this purpose, we compute the discrete Fourier transform (FT) of the
amplitudes in the long-time limit to obtain the power spectra

Pσ(ω) =
∣∣FT{〈S+

〉
σ
(t)}

∣∣ (5.12)

for each group. We have smoothed the time series with a Hann window [Oppenheim et al.,
2013].

Figure 5.7(a,b) display the power spectra as a function of the detuning δ. We have set
V larger than the critical coupling such that the oscillators are synchronized within each
group. For sufficiently small detuning compared to the inter-group coupling strength, we
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Figure 5.8: Macroscopic quantum synchronization blockade. Panels (a–c)
show the frequency difference, the order parameter, and the relative phase,
respectively, as a function of detuning δ and asymmetry parameter K.
The phase ϕσ for σ = A,B is the argument of ⟨S+⟩σ in the long-time limit.
In (b) and (c), δ and K have the same range as in (a). In (b), the white
dashed line indicates the transition between the incoherent state being
stable and unstable. In (a) and (c), black color indicates regions where
the order parameter vanishes, i.e., synchronization is absent. When each
group synchronizes individually, i.e., in the blue and red regions in (a), the
relative phase in (c) takes arbitrary values since there is no fixed phase
relation between the two groups. Parameters: VAB = V = 2γ+ = γ−.

find a fully synchronized state as indicated by the identical spectra in this regime. Since
each spectrum is dominated by one frequency, we continue the analysis using the two
frequencies at which the spectra peak, ωσ = argmaxωPσ(ω). The frequency difference
ωA−ωB between the two groups is displayed in Fig. 5.7(c). At small δ, the frequencies are
equal and the two groups are synchronized, while for large detunings, ωA and ωB differ by
δ. This corresponds to the dynamics described by the Adler equation for classical phase
oscillators; see the black line in Fig. 2.5(a). To further demonstrate this correspondence,
we show the frequency difference in Fig. 5.7(d) as a function of detuning δ and inter-group
coupling strength VAB . For VAB < V , both individually synchronized groups of oscillators
can be regarded as two large oscillators that synchronize when their coupling is larger
than their detuning. In this regime, the microscopic details are irrelevant and the behavior
matches that of generic synchronization models. Specifically, we observe an Arnold tongue
where the locking range grows with increasing coupling strength, the same behavior that
we found in the context of the Adler equation. For VAB > V , the inter-group coupling
dominates, so that the analogy of two large coupled oscillators fails. As a result, the
locking range does not increase monotonically with the coupling and the spectra show
more than one relevant frequency component; see Appendix 5.A.

The previous analysis was done for a symmetric three-level structure, i.e., K = 0. We
now vary the asymmetry parameter K in addition to the detuning δ and present the
resulting phase diagram in Fig. 5.8. Remarkably, for large |K|/γ−, we find synchronization
only if |δ| ∼ |K|, while synchronization is absent for δ around zero. This is a macroscopic
manifestation of the quantum synchronization blockade [Lörch et al., 2017]: The two
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groups synchronize when they are distinct, but not if they are similar. This is in contrast
to the expected behavior that a greater similarity of oscillators increases their tendency
to synchronize. As explained in Section 5.1.2, the absence of synchronization between two
spin-1 oscillators is caused by their discrete energy spectrum. The effect of the coupling
between two oscillators is suppressed when |K| significantly differs from |δ| because the
dominant transitions are off-resonant. Only close to the resonances K = δ and K = −δ,
there is strong phase alignment of the two oscillators. This explains the microscopic
synchronization blockade; however, it does not yet fully capture the macroscopic quantum
synchronization blockade.

The macroscopic quantum synchronization blockade shows a feature that is not directly
visible in the microscopic quantum synchronization blockade: In Fig. 5.8(a), we find
synchronization only below the lines K = δ and K = −δ whereas in the case of two
oscillators, Fig. 5.3(a), synchronization occurs close to these lines. To explain this, let us
inspect more closely the microscopic synchronization blockade. Figure 5.3(b) shows that
two coupled oscillators tend to align their phases below the lines K = δ and K = −δ,
while above, they favor opposite phases. This is also visible on the level of the two
ensembles; see Fig. 5.8(c). Since each oscillator reacts to the mean fields of both groups,
their effect cancels when they have opposite phases. Altogether, for K ≳ δ, both groups
have opposite phases canceling their effect on each individual oscillator, resulting in the
absence of synchronization. This constitutes another instance of phase frustration that
results in an additional blockade of synchronization for K ≳ δ.

The region where the two ensembles fully synchronize can be inferred from the
microscopic properties under two reasonable assumptions. First, the two groups should
lock onto a phase difference that is closer to zero than to π to avoid phase frustration.
Second, the phase preference between any pair of oscillators induced by the coupling
must be stronger than some critical value. Combining these two assumptions results in
the white area shown in Fig. 5.3(c). It qualitatively agrees with the region where the
macroscopic system fully synchronizes (white region in Fig. 5.8(a)). The value of the
amplitude threshold is a free parameter that we chose to be 5× 10−3. Qualitative features
such as the general X shape, whose bottom diagonals are broader than the top ones, are
independent of this choice.

To summarize the analysis of two groups, parts of the collective states can be un-
derstood from a typical synchronization transition. In general, however, the quantum
properties of each individual oscillator change the macroscopic states significantly. We
demonstrated a blockade of global synchronization resulting from the quantized nature
of the oscillators. Moreover, an extended blockade of synchronization emerges in the
ensemble due to phase frustration, which is not present in the case of two coupled
oscillators.

5.5 Conclusions

While quantum effects in synchronization have been studied at the level of few coupled
oscillators, it has remained an open question whether these effects persist when increasing
the number of oscillators. To address this issue, we investigated the synchronization
behavior of two macroscopically large groups of coherently coupled quantum limit-cycle
oscillators. We demonstrated that quantum effects in synchronization persist on a
macroscopic scale: For a single group, destructive interference manifests itself as a
blockade of collective synchronization if gain and loss rates are comparable; for two
detuned groups of oscillators with an asymmetric level structure, their quantized nature
counterintuitively leads to synchronization of dissimilar groups. We also identified certain
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aspects of the dynamics that can be understood from classical generic synchronization
models: For a single group, the transition to synchronization necessitates a critical
coupling strength to overcome decoherence; for two groups of oscillators with a symmetric
level structure in the regime of small inter-group coupling strength, their dynamics can be
understood as the synchronization of two classical phase oscillators. Finally, we uncovered
emergent behavior only present in the macroscopic ensemble: Phase frustration, i.e.,
oscillators antialigning their phases, suppresses the global coherence and results in the
absence of collective synchronization. We showed that phase frustration can prohibit
synchronization in a single group and synchronization between two groups.

While we focused on a minimal model with three states, infinitely many oscillators,
and an all-to-all coupling, we expect that the results apply more generally. The quantum
synchronization blockade has been studied in the context of anharmonic oscillators [Lörch
et al., 2017], and the interference blockade is present in systems with more than three
states [Solanki et al., 2023]. Therefore, the effects described in this chapter may not only
apply to three-level oscillators but also to other types of quantum limit-cycle oscillators.
In finite-size systems, we have discussed in the context of the superradiant laser that the
synchronization transition remains visible as a crossover; see Fig. 4.10(a). Therefore, it
is to be expected that the effects presented here also remain in finite-size systems. In
Appendix 5.B, we demonstrate that the coherence decays with a lifetime proportional
to the number of oscillators. Finally, since global synchronization can persist for long-
range interactions in networks of classical oscillators [Acebrón et al., 2005] and quantum
oscillators [Zhu et al., 2015], we expect that the all-to-all coupling that is assumed in
this chapter is not essential. A detailed analysis of finite-size systems and long-range
couplings is left for future work.

An experimental observation of quantum synchronization effects in many-body systems
is challenging; even synchronization of a few interacting quantum oscillators remains
to be experimentally demonstrated. Platforms for potential experimental realizations
include superconducting circuits [Lörch et al., 2017; Nigg, 2018] and trapped ions [Lee and
Sadeghpour, 2013; Hush et al., 2015; Lörch et al., 2017]. We elaborate on the experimental
requirements and challenges in Appendix 5.C.

The results presented in this chapter can be regarded as self-organization of driven-
dissipative quantum constituents. Remarkably, the formation of a phase-coherent collective
state depends on the microscopic quantum properties of the individual constituents. A
comprehensive understanding of the individual constituents and their pairwise interactions
allowed us to explain when self-organization occurs and why it breaks down in certain
parameter regimes.
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Appendix for Chapter 5

5.A Additional spectra

In Figs. 5.9 and 5.10 we show additional spectra complementing Figs. 5.7 and 5.8. In short,
they demonstrate that for the results presented in this work, it is not necessary to consider
the full spectra Pσ(ω) to characterize the synchronization between two groups, but instead
it is sufficient to use the difference of the dominant frequencies ωσ = argmaxωPσ(ω).

The full spectra displayed in Figs. 5.9 and 5.10 in general show more than one frequency
component. For small inter-group coupling (see Fig. 5.9, two left columns, and Fig. 5.10,
second and third columns), we observe a small additional frequency component that is
picked up in each group from the other group. This additional peak, however, is clearly
smaller than the dominant one, and therefore, we can safely focus on the main peak.
The possibility of vanishing spectra (see first, fourth, and fifth columns in Fig. 5.10) is
also captured by our analysis in Fig. 5.8, since in this case, the order parameter |⟨S+⟩σ|t
vanishes as well. However, in the regime, where the inter-group coupling is larger than the
intra-group coupling, VAB > V (see Fig. 5.9, middle to right columns), it is possible to
find more than one dominant frequency component. In this regime, one can also observe
the case where one group synchronizes more strongly than the other group. This is best
visible in the fourth column of Fig. 5.9, where for negative (positive) detuning δ group
B (A) is more strongly synchronized, as indicated by the peak in the spectrum PB (PA)
being more pronounced. This regime (VAB > V ) is not relevant for the results presented
in this chapter, and its detailed analysis is left for future study.

5.B Finite-size analysis

To understand the influence of the group size, we go beyond the mean-field treatment and
include some correlations between the observables. A systematic approach is to truncate
higher-order cumulants [Kubo, 1962]. For this analysis, we truncate at the second-order
correlations, i.e., neglect correlations between three and more observables. To do so, we
use the Julia package QuantumCumulants.jl [Plankensteiner et al., 2022], which provides
an automated way of deriving equations of motion including correlations up to a set order
and converting them to Julia functions that can be integrated numerically. For the master
equation of one group [see Eq. (5.8)], we obtain the results shown in Fig. 5.11. While it is
interesting to consider correlations between spins that persist over time, here, we only
investigate the behavior of the global coherence. Instead of a persistent non-vanishing
value of |⟨S+⟩| that is observed in the mean-field limit N → ∞, the amplitude decays
over time for finite N . We find that the lifetime (as measured by the time for the absolute
value of the amplitude to decay to 1/e) increases linearly with the number of oscillators.
The lifetime of the coherence in a group of 500 oscillators reaches Tγ− ≈ 30, four times
larger than the lifetime in the absence of any coupling.
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Figure 5.11: Finite-size analysis. Left: The time evolution of the absolute
value of the amplitude |⟨S+⟩| for different values of the number of oscillators
N . From lighter to darker blue, N takes values 100, 500, 1000, 2000, and
infinity, which corresponds to the mean-field result. The black dashed line
shows the evolution in the absence of any coupling. Right: The lifetime
Tγ− of the coherence as a function of N , for different values of the coupling
strength, V . From darker to lighter red, V/γ− takes values 0.75, 1, 1.25, 1.5.
The inset shows the same data for smaller values of N .

5.C Experimental requirements

We propose two possibilities to experimentally implement the models presented in this
chapter. Clearly, an experimental implementation of a large network of coupled quantum
oscillators will be extremely challenging since quantum synchronization effects have not
even been observed between only two oscillators. The macroscopic interference blockade
can be observed with a single group of identical oscillators, each possessing a symmetric
level structure. The quantum synchronization blockade between two groups necessitates
an asymmetric level structure and control of the detuning between the two groups. We
briefly describe the implementation of the three levels of each oscillator, the gain and
loss processes, and the coupling among the oscillators, for two versatile experimental
platforms: superconducting circuits and trapped ions.

In superconducting circuits, following Lörch et al. [2017] and Nigg [2018], each oscillator
is implemented in a transmon qubit. Gain and loss are engineered through coupling
to ancillary modes; see Nigg [2018] for details. These incoherent processes result in a
population narrowly distributed around one eigenstate |n⟩, n > 0, which allows for an
effective approximate description of the dynamics using only three levels |n− 1⟩, |n⟩, and
|n+ 1⟩. These correspond to the levels |0⟩, |1⟩, and |2⟩ with gain and loss stabilizing state
|1⟩, as considered in this chapter. Since each transmon qubit features an anharmonic
spectrum, the three levels form an asymmetric three-level oscillator that is our building
block. Control of the frequency of the transmon qubits allows for introducing two detuned
groups of oscillators. For the coupling among the oscillators, in principle, each pair of
oscillators can be capacitively coupled. Due to hardware constraints, however, it is difficult
to couple all pairs of oscillators in this way. For collective synchronization, long-range
coupling among the oscillators is required. While this is challenging, non-local couplings
of transmon qubits have been described, for example, in [Majer et al., 2007; Onodera
et al., 2020].
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In trapped-ion setups, each oscillator can be implemented in a motional mode of an
ion in an anharmonic potential [Lee and Sadeghpour, 2013; Hush et al., 2015; Lörch et al.,
2017]. Gain and loss can be engineered by employing blue and red sideband transitions
that incoherently drive transitions from one to another motional state [Leibfried et al.,
2003]; see also Section 4.1.4. The anharmonicity of the energy spectrum allows for
addressing individual transitions with varying strengths by tuning the sideband frequency.
As described above in the case of transmon qubits, by engineering gain and loss to stabilize
one motional eigenstate, the dynamics are reduced to this state and the two neighboring
states. The anharmonic potential results in an asymmetry of the level structure of the
three relevant states. By changing the harmonic part of the potential, the frequency of
each oscillator, and hence the detuning between the two groups can be controlled. All
oscillators are naturally coupled via the long-range Coulomb interaction. The coupling
strength can be adjusted by varying the distance of the individual ions.
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Chapter 6

Nonreciprocal synchronization of
active quantum spins

The results of this chapter have been published in

Nonreciprocal Synchronization of Active Quantum Spins,
T. Nadolny, C. Bruder, and M. Brunelli,
Physical Review X, 15, 011010 (2025)

In the previous two chapters, we presented synchronization of quantum many-body
systems. All constituents of these systems – whether quantum van-der-Pol oscillators,
spins-1/2 or spins-1 – shared the same “goal” of achieving a phase-locked coherent state.
We now break this symmetry by considering two species of constituents with opposing
goals, i.e., two species that interact in a nonreciprocal way.

Nonreciprocal interactions are extensively studied in classical systems in the context
of active agents. Active agents are capable of exerting nonreciprocal forces upon one
another. For instance, one agent, say A, may attract another agent B while B repels A.
These antagonistic nonreciprocal interactions feature a wealth of exciting phenomena such
as novel phase transitions and collective dynamical states called traveling-wave states.
Whether these phenomena can originate in quantum many-body systems has remained
an open issue, and proposals for their realization have been lacking.

In this chapter, we present a model of two species of quantum spins-1/2 that interact
in an antagonistic nonreciprocal way of the attraction-repulsion type. We propose an
implementation of the model based on two atomic ensembles coupled via chiral waveguides,
which we introduced in Section 3.4. The spins are active due to the presence of local
gain, which allows them to synchronize. In the thermodynamic limit, we show that
nonreciprocal interactions result in a nonreciprocal phase transition to time-crystalline
traveling-wave states, associated with spontaneous breaking of parity-time symmetry.
We establish how this symmetry emerges from the microscopic quantum model. For a
finite number of spins, signatures of the time-crystal phase can be identified by inspecting
equal-time or two-time correlation functions. Continuous monitoring of the system, which
we introduced in Section 3.3, has a remarkable effect: It induces a quantum traveling-wave
state, i.e., a time-crystalline state of a finite-size quantum system, in which parity-time
symmetry is spontaneously broken. The results of this chapter lay the foundation to
explore nonreciprocal interactions in active quantum matter.

6.1 Introduction

We briefly presented active matter and nonreciprocal interactions in classical systems in
Section 2.4 as well as unidirectional, or cascaded, interactions between quantum systems

https://doi.org/10.1103/PhysRevX.15.011010
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in Section 3.4. Let us nevertheless recapitulate the important points to give context for
this chapter.

Active agents are nonequilibrium entities that convert energy into motion or non-
conservative forces at the individual level [Bowick et al., 2022; Shankar et al., 2022;
te Vrugt et al., 2025]. A distinctive feature of active agents is that the forces exerted
among them can be nonreciprocal. Nonreciprocity between two agents A and B occurs
when the response of A to the action of B differs from that of B to A. Nonreciprocal
interactions dramatically change the self-organization behavior in active matter, viz.,
ensembles of active agents, resulting in several universal manifestations. They include the
transition from a static to a dynamical behavior [You et al., 2020], a new class of critical
phenomena marked by exceptional points and spontaneous breaking of parity-time sym-
metry [Fruchart et al., 2021], as well as a dynamical analogue of geometrical frustration
resulting in time-crystalline order [Hanai, 2024]. The consequences of nonreciprocal inter-
actions are important in a variety of contexts, ranging from pattern formation [Brauns and
Marchetti, 2024] to classical spin models [Avni et al., 2025; Loos et al., 2023]. They have
been observed in metamaterials of various kinds [Brandenbourger et al., 2019; Librandi
et al., 2021; Liu et al., 2024], nanoparticles [Reisenbauer et al., 2024], as well as in active
forms of colloids, solids and plasmas [Meredith et al., 2020; Baconnier et al., 2022; Ivlev
et al., 2015]. Underlying all of these manifestations is a common type of nonreciprocal
interactions, namely antagonistic interactions akin to predator-prey dynamics, where
A is attracted by B while B is repelled by A. This effect is maximized in the limit of
interactions with opposite strength but equal magnitude.

Nonreciprocity in quantum systems has also gathered a great deal of interest [Barzanjeh
et al., 2025]. It is a resource for routing information in bosonic networks [Ranzani
and Aumentado, 2015; Wanjura et al., 2023] and for quantum sensing [Lau and Clerk,
2018]. Quantum emitters coupled to a chiral, i.e., unidirectional, waveguide have been
proposed for the preparation of entangled states [Stannigel et al., 2012; Pichler et al.,
2015]. In tight-binding models, nonreciprocity is responsible for anomalous localization
properties [Hatano and Nelson, 1996, 1997; McDonald et al., 2022] and, supplemented with
gain, gives rise to exotic non-Hermitian topological phases of bosonic systems [Wanjura
et al., 2020; Porras and Fernández-Lorenzo, 2019; Brunelli et al., 2023; Okuma and Sato,
2023]. Nonreciprocity is also of high practical relevance. Tunable and magnetic-free
nonreciprocal quantum devices, implemented with optomechanics [Verhagen and Alù,
2017] or superconducting circuits [Lecocq et al., 2017], are advantageous for on-chip
integration, scaling up superconducting quantum architectures, and improving quantum
measurement readout. Recently, first steps toward understanding the role of nonreciprocal
phase transitions [Hanai et al., 2019; Hanai and Littlewood, 2020; Chiacchio et al.,
2023; Reisenbauer et al., 2024; Zhu et al., 2024; Zelle et al., 2024; Sieberer et al., 2025;
Belyansky et al., 2025; Jachinowski and Littlewood, 2025] and nonreciprocal many-body
interactions [Brighi and Nunnenkamp, 2024; Begg and Hanai, 2024; Hanai et al., 2024]
have been taken.

Current investigations of nonreciprocity in quantum systems are, however, more
restrictive than those of nonreciprocal interactions in classical active matter, since only
the magnitude, i.e., the absolute value, of the interaction strengths (or transmission
coefficients) is typically considered [Deák and Fülöp, 2012; Caloz et al., 2018]. This
form of magnitude nonreciprocity is maximized for unidirectional interactions, i.e., when
A exerts an influence on B while B is immune to A’s influence, which corresponds to
cascaded quantum dynamics [Gardiner, 1993; Carmichael, 1993]; see Section 3.4. In
contrast, antagonistic interactions imply that A’s influence on B and B’s influence on
A oppose each other, i.e., realize a stronger form of nonreciprocity than unidirectional
interactions. Antagonistic attraction and repulsion are not accounted for by cascaded
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(a)

(b) (c)
detection

Figure 6.1: (a) The model comprises two groups A and B of N quantum
spins-1/2 each. Each spin is incoherently driven from |0⟩ to |1⟩ at rate
γ+ and the two spin species are detuned by δ. Within each species, the
spins are coupled with a strength V . Spins of species A (B) influence
spins of species B (A) with a strength VAB (VBA). If VAB ≠ VBA,
the interspecies coupling is nonreciprocal. (b) Physical implementation
with doubly-cascaded interactions mediated by two independent chiral
waveguides. The chiral modes a1,2 couple to the spins with strengths g1,2.
Between the two spin species, they pass a phase shifter which multiplies
the modes by p1,2 ∈ {±1}. Potential losses l1,2 are also accounted for. (c)
Alternative implementation with braided interactions. The mode a+ is
bidirectional and mediates reciprocal interactions between species A and
B. The chiral mode a− mediates purely coherent interspecies interactions.

interactions or other previously studied forms of nonreciprocity in quantum systems,
e.g., based on reservoir engineering [Metelmann and Clerk, 2015] or dissipative gauge
symmetry [Wang et al., 2023]. Despite their importance in classical active matter,
antagonistic many-body interactions in the quantum regime have remained unexplored.
Furthermore, it is not a priori clear how they can be realized.

In this chapter, we propose a model of synchronization of active quantum spins
to explore the effects of antagonistic nonreciprocity in quantum many-body systems.
As presented in Section 2.4, nonreciprocal couplings among limit-cycle oscillators can
lead to attraction-repulsion interactions of their phases. For classical oscillators, such
interactions have been shown to result in nonreciprocal phase transitions and traveling-
wave states [Hong and Strogatz, 2011b; Sonnenschein et al., 2015; Hanai, 2024; Fruchart
et al., 2021]. While synchronization in quantum systems is the subject of numerous works
[see Chapter 4], the role of antagonistic interactions in quantum synchronization has not
been explored prior to this work. Later, Kehrer and Bruder [2025] explored antagonistic
interactions between two coupled quantum van-der-Pol oscillators.

The model at the center of this chapter comprises two species of quantum spins-1/2, as
sketched in Fig. 6.1(a). Each spin is driven out of equilibrium via an incoherent gain that
provides it with energy. Therefore, we refer to the spins as active spins in analogy to active
matter, where each constituent is also individually provided with energy. The spins within
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Figure 6.2: (a) Phase diagram in the thermodynamic limit. The insets
sketch the dynamics in the respective phase. They depict species A and
B as a colored disk whose position on a circle represents the phase of
the spins; the arrows indicate the phase velocity. Stationary steady-state
positions are indicated by disks with a dashed border. Parameters: δ = 0,
V = 2 (all coupling strengths in units of γ+). (b,c,d) Time evolution
of the phases ϕa = arg[s+a ] of species A (blue) and B (orange) in the
thermodynamic limit. The phase difference is shown in gray. Parameters:
δ = 0, V = 2γ+, sync: V− = 0, V+ = γ+; π-sync: V− = 0, V+ = −γ+;
traveling wave: V− = γ+, V+ = 0; modulated traveling-wave: V− = 2.4γ+,
V+ = 1.5γ+.

each species mutually synchronize due to a collective coupling to a common mode, similar
to synchronization in superradiant lasers presented in Section 4.2.3. The interactions
between the two species can be tuned from reciprocal couplings to unidirectional and
antagonistic couplings. We find that, among active spins, antagonistic interactions are
mediated by purely Hamiltonian couplings.

We propose an implementation of this model in a light-matter coupled system consisting
of two atomic ensembles coupled by two chiral waveguides, which mediate unidirectional
couplings each; see Fig. 6.1(b). Braided interactions reminiscent of the coupling of giant
atoms [Kockum et al., 2018], as shown in Fig. 6.1(c), can be used to further enhance the
antagonistic effects.

In the thermodynamic limit, the model features a nonreciprocal phase transition
between static synchronized phases and a dynamical traveling-wave phase where the
two species persistently oscillate; see Fig. 6.2(a). The transition is accompanied by
spontaneous breaking of parity-time (PT ) symmetry and is induced by antagonistic
interactions, thus going beyond the scope of magnitude nonreciprocity. We show how
the nonreciprocal phase transition emerges from an underlying open quantum system
description. Guided by the physical implementation of Fig. 6.1(b), we define a suitable
PT symmetry for the Lindblad master equation for any system size that recovers the
symmetry that is spontaneously broken in the thermodynamic limit.

In finite-size quantum systems, the PT symmetry manifests itself in the spin corre-
lations and the spectral density, where an exceptional point signals the nonreciprocal
phase transition. While in classical systems full knowledge about the state is available, in
a quantum system any measurement can only reveal a limited amount of information.
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Additionally, the choice of measurement alters the dynamical evolution. Quantum trajec-
tories reveal that measurement backaction can spontaneously break PT symmetry. These
results show that traveling-wave states and nonreciprocal phase transitions are observable
for finite-size quantum systems.

From the analysis of the proposed model of active quantum spins that synchronize, we
are able to discuss in Section 6.9 general implications for a broader class of active quantum
systems. They regard the engineering of antagonistic interactions, the importance of PT
symmetry on the level of the microscopic quantum master equation, the role of decoherence
to stabilize a nonstationary state, and the influence of measurement backaction. We
expect these to be relevant for other models of nonreciprocal phase transitions in active
quantum systems.

6.2 Model

6.2.1 Quantum master equation

The agents of our model are two-level quantum systems, i.e., spins-1/2, grouped in two
species A and B; see Fig. 6.1(a). As in Section 4.2, for each spin, we define the Pauli
z-matrix σza,i = |1⟩⟨1|a,i − |0⟩⟨0|a,i, as well as raising and lowering operators σ+a,i = |1⟩⟨0|a,i
and σ−a,i = |0⟩⟨1|a,i. The indices run over the group label a ∈ {A,B} and the N spins per
species i ∈ {1, ..., N}. All spins within each species are equal and they are described by
the collective spin operators S±,z

a =
∑N

i=1 σ
±,z
a,i .

We describe the spins within the framework of open quantum systems introduced
in Chapter 3. The density matrix ρ describes the state of all spins, and its evolution is
governed by the quantum master equation

ρ̇ = Lρ = −i [H0 +Hinter, ρ] + (Linter + Lintra + Ldrive)ρ . (6.1)

The Liouvillian operator L is the short-hand notation for the generator of the dynamics.
The dynamics comprises both Hamiltonian terms, which generate unitary evolutions, and
dissipative terms, which arise from the system being in contact with an (unspecified)
environment. The label ‘inter’ refers to interspecies coupling, i.e., coupling between spins
of different species, while ‘intra’ refers to intraspecies coupling, i.e., coupling within the
same species.

The Hamiltonian terms are

H0 = δ(Sz
A − Sz

B)/4 , Hinter = i
V−
2N

S+
AS

−
B +H.c. . (6.2)

The bare Hamiltonian H0 describes a frequency splitting δ between the spins of species
A and the spins of species B. The interaction Hamiltonian Hinter describes excitation
exchanges with a purely imaginary amplitude, i.e., V− is real valued. We will later
consider the more general case of complex V− [see Fig. 6.3(c)]. As we will discuss in the
following section, Hinter can be effectively implemented with chiral waveguides and results
in antagonistic interactions. Besides Hamiltonian, i.e., coherent, coupling, we include a
second type of interspecies coupling of dissipative nature with real-valued strength V+,

Linterρ =
V+
N

(
D[S−

A , S
−
B ] +D[S−

B , S
−
A ]
)
ρ , (6.3)
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where D[o1, o2]ρ = o1ρo
†
2− (o†2o1ρ+ρo

†
2o1)/2. Importantly, V+ is allowed to take negative

values. We also include dissipative intraspecies couplings with non-negative strength
V ≥ 0,

Lintraρ =
V

N

(
D[S−

A ] +D[S−
B ]
)
ρ , (6.4)

where D[o] = D[o, o] indicates the standard dissipator [Breuer and Petruccione, 2002],
to which D[o1, o2] reduces for equal jump operators. While the terms in Eq. (6.3) do
not appear to be in standard Lindblad form, the full master equation (6.1) is, as can be
seen by combining the two dissipative interactions into collective jump operators using
D[o1 ± o2] = D[o1] +D[o2]± (D[o1, o2] +D[o2, o1]). The combined dissipative interaction
terms are

Linter + Lintra =
|V+|
N

D[S−
A + sign(V+)S

−
B ]+

+
V − |V+|

N

(
D[S−

A ] +D[S−
B ]
)
.

(6.5)

The master equation describes a physical evolution when all rates of standard dissipators
are non-negative. Therefore, we require V ≥ |V+|.

The collective jump operators S−
A,B (and their sum or difference) arise from a collective

coupling of all spins (of A,B) to a rapidly decaying mode. This process is known as
superradiance and results in a buildup of coherence among the spins. It can also be
understood as synchronization of the spins [Xu et al., 2014; Zhu et al., 2015] as we
discussed when connecting superradiance to the Kuramoto model in Section 4.2.3. All
three interaction terms contribute to the synchronization dynamics, as we will see in
Section 6.4.

Finally, we consider an incoherent drive of each spin at rate γ+, described by

Ldriveρ = γ+

N∑
i=1

(
D[σ+A,i] +D[σ+B,i]

)
ρ . (6.6)

Unlike the previous terms, this local gain acts individually on each spin. It provides
energy at the microscopic level, a distinctive feature of active systems. In contrast to a
thermal bath, the incoherent drive can result in population inversion, where the state |1⟩
is more populated than the state |0⟩, an important feature as we will see in Section 6.4.

The proposed model possesses different symmetries. First, the master equation (6.1)
is invariant under a global phase shift σa,i → exp(iϕ0)σa,i for all spins σa,i, i ∈ {1, ..., N}
of both species a ∈ {A,B} where ϕ0 ∈ R. This is a U(1) symmetry, which implies that no
phase is preferred. We will see that phase locking spontaneously breaks the symmetry in
the thermodynamic limit in Section 6.4. Second, there is no explicit time dependence of
the master equation. The time-translation invariance can also be spontaneously broken in
the thermodynamic limit, forming a continuous time crystal [Sacha and Zakrzewski, 2017;
Iemini et al., 2018; Kongkhambut et al., 2022] in analogy to a standard crystal which
breaks space-translation invariance; see Section 6.5. We will point out a third symmetry
that can be broken simultaneously, parity-time (PT ) symmetry, in Section 6.6.

6.2.2 Cascaded quantum master equation

The model defined by Eq. (6.1) admits a simple interpretation in the framework of
cascaded quantum systems [Gardiner, 1993; Carmichael, 1993], which we reviewed in
Section 3.4. Cascaded interactions describe unidirectional couplings where one subsystem
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influences another one but not vice versa. The Liouvillian L defined in Eq. (6.1) can be
rewritten in the equivalent form

Lρ =− (V+ + V−)([S
+
B , S

−
Aρ] + [ρS+

A , S
−
B ])/2N

− (V+ − V−)([S
+
A , S

−
Bρ] + [ρS+

B , S
−
A ])/2N

− i[H0, ρ] + Lintraρ+ Ldriveρ .

(6.7)

The first and second lines each describe cascaded quantum interactions from A to B
and B to A, respectively, following the notation of Stannigel et al. [2012], which we
introduced in Eq. (3.20). We conclude that the strength with which species A influences
species B is VAB = V+ + V− and the strength of B’s influence on A is VBA = V+ − V−, as
depicted in Fig. 6.1(a). When the coupling strengths VAB and VBA differ, the interactions
are nonreciprocal. We consequently refer to the parameter V− = (VAB − VBA)/2 as
nonreciprocal coupling strength and to V+ = (VAB + VBA)/2 as reciprocal coupling
strength. By rewriting the master equation (6.1) in the cascaded form of Eq. (6.7),
we have found that the nonreciprocal coupling originates from the Hamiltonian term
of Eq. (6.2), while the reciprocal coupling stems from dissipative coupling of Eq. (6.3).

In the absence of nonreciprocity, V− = 0, the model defined in Eq. (6.1) or (6.7) reduces
to the model of two atomic ensembles that synchronize via purely dissipative, reciprocal
interactions, proposed by Xu et al. [2014], realized by Weiner et al. [2017], and further ana-
lyzed by Patra et al. [2019a,b, 2020]. Unidirectional synchronization, studied by Roth and
Hammerer [2016], is recovered when either VAB or VBA vanishes. This configuration max-
imizes magnitude nonreciprocity, i.e., an asymmetry in the magnitude of the directional
couplings, |VAB| ≠ |VBA|, which requires both dissipative and coherent interactions [Metel-
mann and Clerk, 2015]. In contrast, our interest is in the even more nonreciprocal scenario
in which VAB and VBA take opposite signs, sign(VAB) = −sign(VBA), which implies that
nonreciprocal couplings dominate over reciprocal couplings, |V−| > |V+|. In this case, from
Eq. (6.7) we see that the maximally nonreciprocal configuration VAB = −VBA is realized
by purely coherent interspecies interactions, i.e., V+ = 0. This may seem surprising at
first, since a purely Hamiltonian coupling between the two species has to be reciprocal.
However, in our model, each spin is incoherently driven; see Eq. (6.6). We will see that
this enables antagonistic quantum interactions of the phases of the spins, thus going
beyond magnitude nonreciprocity.

6.3 Physical implementation

We now suggest a physical realization of the model defined in Eq. (6.1) that can be
implemented in current experimental setups. It is based on the connection with cascaded
interactions highlighted in Eq. (6.7) and allows us to gain more intuition about our model.
We focus on the interacting part since the detuning and the incoherent drive of each spin
have already been implemented, e.g., in atomic ensembles [Weiner et al., 2017].

The simplest configuration that implements our model is depicted in Fig. 6.1(b) and
consists of the two spin ensembles A and B coupled by two independent chiral waveguides.
Chiral waveguides mediate cascaded, i.e., unidirectional, interactions [Pichler et al., 2015],
in our case between the two spin species. Experimentally, such interactions have been
implemented between an atomic ensemble and a micromechanical membrane by freely
propagating laser beams [Karg et al., 2020]. Cascaded interactions between single emitters
and receivers have also been engineered in various other platforms [Petersen et al., 2014;
Söllner et al., 2015; Delteil et al., 2017; Joshi et al., 2023].

The two chiral waveguides in Fig. 6.1(b) allow for two modes a1 and a2 to propagate
in opposite directions and interact sequentially with the two spin ensembles A and B with
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strengths g1 and g2. Between the two ensembles, the modes pass a phase shifter which
transforms a1,2 to p1,2a1,2. For simplicity, we focus on a change in sign only, p1,2 ∈ {±1}.
We also account for the losses l1,2 in the chiral waveguides between the two species via
the transmission coefficients 0 ≤ η1,2 =

√
1− l21,2 ≤ 1.

Due to causality, the mode a1 can only result in species A influencing species B, and
vice versa for mode a2. They respectively mediate effective interspecies couplings with
strengths

VAB/N = p12g
2
1η1 and VBA/N = p22g

2
2η2 . (6.8)

Thus, the setup shown in Fig. 6.1(b) is described by the effective master equation Eq. (6.1)
or (6.7), with V±/N = p1g

2
1η1 ± p2g

2
2η2 as well as V/N = g21 + g22. The presence of a

phase shift is essential to achieve interspecies couplings with opposite signs, and thus
allows for antagonistic interactions.

In this configuration, the interspecies coupling strengths cannot be arbitrarily large
compared to the intraspecies coupling strength, since |V±| ≤ V . While the constraint
|V+| ≤ V is unavoidable for the master equation to be physical, the coherent interactions
between the two groups can be enhanced by considering looped or braided geometries
known from giant atoms, which allow for |V−| > V [Kockum et al., 2018; Karg et al., 2019];
a possible implementation is depicted in Fig. 6.1(c). It makes explicit the distinction
between reciprocal and nonreciprocal couplings, mediated by the modes a+ and a−,
respectively. Braided couplings have been demonstrated in several physical systems, e.g.,
between atomic spins and a mechanical oscillator [Karg et al., 2020], superconducting
qubits [Kannan et al., 2020], and magnetic spin ensembles [Wang et al., 2022].

The outputs of the waveguides provide a way to observe the spin dynamics using the
input-output relation [Gardiner, 1993]. The output fields of the two chiral modes shown
in Fig. 6.1(b) are

a1,out = a1,in + g1(S
−
A + p1S

−
B ) ,

a2,out = a2,in + g2(S
−
B + p2S

−
A ) .

(6.9)

They allow to observe correlations among the spins that we will discuss in Section 6.7.

6.4 Synchronization dynamics

To obtain intuition about the dynamics of the spins, we first employ a mean-field
approach where any correlations between spins are neglected following the same approach
as in Section 4.2.3 for a single species. Each spin (group label a ∈ {A,B} and index
i ∈ {1, ..., N}) has three degrees of freedom. They are the expectation values of spin
operators ⟨σ±,z

a,i ⟩ = Tr[σ±,z
a,i ρ] taken with the density matrix at a given time. The

coherence s+a,i = ⟨σ+a,i⟩ is the expectation value of the ladder operator σ+a,i. The population
sza,i = ⟨σza,i⟩ = ⟨|1⟩⟨1|a,i − |0⟩⟨0|a,i⟩ quantifies which of the states |0⟩ or |1⟩ is more
populated. From the master equation (6.1), we derive the time evolution of the coherences
and populations for each spin. Setting s+a,i = sa,i exp(iϕa,i), with sa,i ≥ 0, introduces the
real-valued phase of each spin ϕa,i, which corresponds to the azimuthal phase on the
Bloch sphere.

The time evolution of the phases is given by

d

dt
ϕa,i = δa/2 +

sza,i
2N

∑
b=A,B

N∑
j=1

Vba
sb,j
sa,i

sin(ϕb,j − ϕa,i) , (6.10)
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where VAA = VBB = V , and δA = −δB = δ. These equations establish a connection
between the open quantum system in Eq. (6.1) and the nonreciprocal Kuramoto model,
which describes the time evolution of all-to-all coupled phase oscillators with nonreciprocal
interactions VAB ̸= VBA [Fruchart et al., 2021; Hanai, 2024].

In the standard Kuramoto model, which we introduced in Section 2.3, the coupling
strengths between the phases of oscillators are constant parameters. A positive coupling
K > 0 between two phase oscillators of the form dϕ1/dt = K sin(ϕ2 − ϕ1) will lead
oscillator 1 towards locking in phase with oscillator 2, i.e., ϕ1 is attracted by ϕ2. If K < 0,
however, ϕ1 is repelled by ϕ2, i.e., oscillator 1 tends to align its phase diametrically
opposite to the phase of oscillator 2. In contrast, in Eq. (6.10), the coupling strengths are
not constant but depend instead on the instantaneous population sza,i and amplitude sa,i
of the spins. The overall sign of the factors multiplying the sine terms determines whether
the phases of the spins are attracted or repelled. The incoherent drive continuously pumps
the population of each spin to the state |1⟩, i.e., results in sza,i > 0. The dynamics are
then determined by the effective interactions of the spins’ phases.

The mean-field treatment is exact in the thermodynamic limit N → ∞ [Spohn, 1980].
Exploiting the permutational invariance and setting all spins within each group to be
equal s±,z

a,i ≡ s±,z
a , we obtain the following dynamical evolution for the mean coherences

and populations [for complex valued V− we refer to Appendix 6.A],

d

dt
s+A =[(−γ+ + iδ)s+A + V s+As

z
A + VBAs

+
Bs

z
A]/2 , (6.11a)

d

dt
s+B =[(−γ+ − iδ)s+B + V s+Bs

z
B + VABs

+
As

z
B]/2 , (6.11b)

d

dt
szA =γ+ (1− szA)− 2V s+As

−
A − 2VBARe[s+As

−
B] , (6.11c)

d

dt
szB =γ+ (1− szB)− 2V s+Bs

−
B − 2VAB Re[s+As

−
B] . (6.11d)

For each species, the equations are the same as Eq. (4.54) with the additional interspecies
interaction terms. As we saw in Section 4.2.3, the intraspecies couplings results in a
transition to a synchronized state within each species. Let us recapitulate this process.
Since V ≥ 0, a positive value of the populations sza,i > 0 is required for synchronization.
This is achieved by the incoherent drive, which allows for population inversion of the
spins; see Eqs. (6.11)(c,d). At the same time, the incoherent drive also causes the decay
of the coherences; see Eqs. (6.11)(a,b). This is the process of decoherence [Breuer and
Petruccione, 2002], which diminishes phase locking and thus competes with the intraspecies
interactions. When the rate of the incoherent drive dominates, the spins therefore converge
to an unsynchronized state in which s+A,B = 0 due to the strong decoherence and szA,B = 1
due to the strong driving. Above a critical value of the coupling strength V/γ+, the
unsynchronized solution becomes unstable. In this regime the spins of each species
synchronize as indicated by a finite value of the coherences s+A,B [Xu et al., 2014; Zhu
et al., 2015]. This process spontaneously breaks the U(1) symmetry of our model: both
the master equation (6.1) as well as the mean-field equations (6.11) are invariant under a
global phase shift s+A,B → s+A,B exp(iϕ0) for ϕ0 ∈ R. Yet, in the thermodynamic limit the
spins synchronize onto a phase that depends on the initial conditions, thus breaking the
U(1) symmetry. Throughout this chapter, we consider values of V/γ+ large enough such
that each species is independently synchronized. We refer to Appendix 6.B for further
details on the transition to synchronization in this model.

Once synchronization within each species is achieved, the dynamics of the two species
is determined by the interspecies couplings. The resulting phase diagram obtained by
integrating Eqs. (6.11) is shown in Fig. 6.2(a). When VAB and VBA are both positive, the
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phases attract each other and all spins of both species synchronize. When they are both
negative, the phases of any two spins from different species repel each other, such that
the two species lock with a phase shift of π. This results in two different synchronized
regimes, which we call synchronized and π-synchronized, respectively. In Fig. 6.2(b) we
show the time evolution of the phases of the two species for these two cases.

The most remarkable regime is that of antagonistic interactions, where VAB and VBA

have opposite signs. In this case, Eq. (6.10) predicts that the spins of one species, say
A, try to lock their phases with those of species B. The spins of species B, however,
have the opposite inclination, namely, they tend to lock with a phase difference of π with
respect to species A.

We stress that the incoherent drive plays a key role in enabling persistent nonreciprocal
interactions among the phases of the spins, i.e., interactions whose effects extend beyond
the transient. To illustrate this, we adopt a ‘general notion of nonreciprocity’ [Bowick
et al., 2022; Fruchart et al., 2021], since the dynamics are not described in terms of forces.
We say that two dynamical variables xA, xB interact in a nonreciprocal way whenever the
coupling coefficients are asymmetric: ẋA = CBAxB, ẋB = CABxA, where CAB ̸= CBA.
In our model, this scenario is realized at the level of the phases [see Eq. (6.10) and the
discussion below it], or equivalently at the level of the coherences, as we will now show.
We recast Eq. (6.11) in matrix form (here setting δ = 0 for simplicity)

d

dt

(
s+A
s+B

)
=

1

2

(
−γ+ + V szA VBAs

z
A

VABs
z
B −γ+ + V szB

)(
s+A
s+B

)
. (6.12)

After some transient evolution, both szA and szB settle to a positive value due to the
incoherent drive. Therefore, when V/γ+ is large enough, the coherences take a finite value
due to the synchronization within each species. From the off-diagonal part of Eq. (6.12),
we see that the sign of VAB and VBA determines the quality of the interactions. The
interactions are nonreciprocal when VABs

z
A ≠ VBAs

z
B. Since the species are otherwise

identical, this scenario occurs when VAB ̸= VBA. Specifically, if signVAB = − signVBA,
they are of the antagonistic type. A similar argument can be made for any pair of two
spins, one of species A and one of species B, concluding that the microscopic interactions
are nonreciprocal. In the absence of the incoherent drive, the dynamics of the phases may
still be nonreciprocal at special times; however, the incoherent drive allows for sustaining
nonreciprocal interactions (and the resulting traveling-wave states) in the long-time limit.

6.5 Traveling-wave states

For large enough nonreciprocity, we find a regime of nonstationary states; see Fig. 6.2(a).
They are characterized by stable oscillations of s+a in the long-time limit, i.e., the phases
arg[s+a ] grow linearly in time; see Fig. 6.2(c). Figuratively, the spins of one species
persistently chase after the spins of the other species, which in turn run away. The phase
difference between the two species as well as |s+a | and sza are constant. Such states are
called traveling-wave states [Hong and Strogatz, 2011b; Fruchart et al., 2021; Brauns and
Marchetti, 2024]. From Fig. 6.2(a), we also see that unidirectional interactions V+ = ±V−
highlighted by the diagonal dashed lines lie entirely inside the static regions, which
confirms that traveling-wave states are beyond the reach of magnitude nonreciprocity.
Moreover, between the (π)-synchronized and the traveling-wave regimes, we find a region
of modulated traveling-wave states [Fruchart et al., 2021]. In these states, the relative
phase difference as well as |s+a | and sza also oscillate in time. Exemplary trajectories are
shown in Fig. 6.2(d).
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The traveling-wave state displays time-crystalline order [Hanai, 2024] and can be
understood as an instance of a continuous time crystal [Sacha and Zakrzewski, 2017;
Iemini et al., 2018; Kongkhambut et al., 2022]. As a time-dependent oscillatory state,
it breaks the time-translation symmetry of the microscopic model (6.1), analogously
to a standard crystal which breaks space-translation symmetry. In other words, the
traveling-wave state is a dynamical pattern that emerges via self-organization due to the
spin-spin interactions. The transition from a synchronized state to a traveling-wave state
is a nonreciprocal phase transition. It is known to occur for ensembles of classical phase
oscillators, where the phase diagram is similar to that of Fig. 6.2(a) [Fruchart et al.,
2021, Extended Data Fig. 4(a)]. The emergence of a nonreciprocal phase transition and
traveling-wave states from a microscopic quantum spin model is a key finding of this
thesis.

6.5.1 Order from decoherence

For classical phase oscillators, it has been shown that traveling-wave states require the
presence of disorder in their frequencies or additional phase noise [Fruchart et al., 2021;
Hanai, 2024]. In the absence of frequency disorder or noise, the oscillators will eventually
reach either a synchronized or a π-synchronized state. Adding disorder or noise prevents
relaxation towards these stationary states, stabilizing the dynamical states.

In our model, decoherence is responsible for the stabilization of the traveling-wave state,
without the need to include any external source of noise or disorder. The decoherence
stems from the coupling to the environment and implies a decay of the coherences s+A,B;
see Eqs. (6.11)(a,b). While the decoherence resulting from the dissipative interactions
defined in Eqs. (6.3) and (6.4) is negligible for a large number N of spins, the incoherent
drive at rate γ+ entails decoherence independently of N . The decoherence prevents a fully
coherent, stationary state and thus takes the role of noise or disorder to perturb stationary
states in classical systems. We conclude that the incoherent drive is essential for the
emergence of traveling-wave states in two ways: It activates each spin by inverting the
populations, which allows for nonreciprocal phase interactions; and it provides decoherence
that stabilizes the dynamical state.

6.5.2 Spontaneous PT -symmetry breaking

In the traveling-wave phase, we find two stable solutions that are shown in Fig. 6.2(c).
They differ by the chirality of the emergent oscillation. Depending on the chirality, the
observed frequency is either positive or negative, and the phase difference between the two
species takes a constant value of approximately +π/2 or −π/2; see also Appendix 6.C. The
two solutions are related by a symmetry transformation of the mean-field equations (6.11).
This symmetry is referred to as a generalized PT (parity-time) symmetry [Fruchart et al.,
2021]. Introducing a shorthand notation for the mean-field equations (6.11), ds/dt = L(s),
where s = (s+A, s

+
B, s

z
A, s

z
B) and L(s) is the right-hand side of equations (6.11), we have

L(s) = L∗(s) , if δ = 0 . (6.13)

The star denotes complex conjugation. The PT symmetry implies that when s(t) is a
solution, then s∗(t) is a solution as well:

for any solution s(t) ⇒ s∗(t) is solution . (6.14)

Each of the two stable solutions spontaneously breaks PT symmetry, and the two solutions
are related by the symmetry transformation, i.e., complex conjugation. The spontaneous
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Figure 6.3: Explicit symmetry breaking. (a) The color bar indicates the
frequency of the oscillation of the spins in the case of explicit symmetry
breaking (⟲ or ⟳). Furthermore, the purple color indicates where the
symmetry is spontaneously broken and either of two frequencies is obtained
(⟲/⟳). Black shows the unsynchronized regime where the two spin species
oscillate at different frequencies. (b) Cut through (a) at V− = 2.5. Shown
are the frequencies of species A (red) and B (blue) when increasing (solid
line) and decreasing (dashed line) the detuning. If the two species are
synchronized, their common frequency is shown in blue. There are five
regions from left to right: an unsynchronized state, a synchronized state in
which the symmetry is explicitly broken (⟳), two states that spontaneously
break the symmetry (⟲/⟳), explicitly broken (⟲) and unsynchronized.
(c) Similar to (b) when the symmetry is explicitly broken by Im[V−] at
constant Re[V−] = 1.5. There are no unsynchronized states in this case.
Parameters: V+ = 1, V = 2. All frequencies and interaction strengths are
given in units of γ+.

breaking of PT symmetry is a key feature of nonreciprocal phase transitions [Fruchart
et al., 2021]. Time-translation invariance is concurrently broken: Each of the traveling-
wave states forms one of two possible time-crystalline orders.

6.5.3 Explicit PT -symmetry breaking

We illustrate the effect of explicitly breaking PT symmetry in Fig. 6.3(a) by considering
a finite detuning δ between the species, which was set to zero in the analysis so far. For
small values of δ, spontaneous breaking still occurs as indicated by the purple regime.
This shows that the traveling-wave phase possesses some degree of robustness to frequency
imbalance, i.e., the spontaneous breaking of PT symmetry occurs even when the PT
transformation is not a perfect symmetry of the model. For larger values of δ, however,
one of the two traveling-wave states becomes the only stable solution indicated by blue
and red regions. For very large detuning, we find yet another regime (black) in which the
two species are unsynchronized and oscillate at different frequencies. This is the expected
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symmetric under combined       - transformation

swap species

Figure 6.4: Effect of parity (P) and time reversal (T ) transformations in
the implementation of our model using chiral waveguides. The model is
PT symmetric if δ = 0. A finite detuning distinguishes the left and right
locations of the spins and thereby explicitly breaks the PT symmetry.

behavior of two coupled limit-cycle oscillators that are strongly detuned as discussed in
the context of the Adler equation; see Eq. (2.21).

In the traveling-wave regime, oscillations with opposite chiralities are stable. The
bistability is associated with a hysteresis in the observed frequency of the oscillations. In
Fig. 6.3(b), we show the hysteretic behavior by adiabatically increasing and decreasing the
detuning. Starting from a large negative value of δ where the spins are unsynchronized,
the spins first enter a traveling-wave phase with unique chirality. Upon further increasing
the detuning, the state maintains the same chirality throughout the coexistence phase,
until it becomes unstable and the traveling-wave state with opposite chirality is attained.
When reversing this parameter sweep, however, the spins remain in the state with opposite
chirality in the coexistence regime. Similarly, including a nonzero imaginary part of V−
also breaks PT symmetry explicitly, resulting in a hysteretic behavior, as shown in
Fig. 6.3(c). Notice that the unsynchronized state only occurs for large δ, while for large
Im[V−], the system remains in the explicitly broken regime.

6.6 Origin of PT symmetry

So far, we have discussed the generalized PT symmetry as a property of the mean-field
equations. We now show how the notion of PT symmetry is grounded in physical
terms and how it emerges from a microscopic theory. While PT symmetry is typically
discussed on the level of non-Hermitian Hamiltonians [Bender and Hook, 2024], here, an
understanding of PT symmetry on the level of the master equation is required. In open
quantum systems, a distinction can be made between weak and strong symmetries [Buča
and Prosen, 2012; Albert and Jiang, 2014]: For weak symmetries, the total Liouvillian
commutes with the symmetry operation, while for strong symmetries, the Hamiltonian
and all jump operators each commute with the symmetry operation individually. PT
symmetry of master equations has been defined both in a weak [Prosen, 2012; Huybrechts
et al., 2020; Sá et al., 2023] and in a strong sense [Huber et al., 2020; Nakanishi and
Sasamoto, 2022]. The notion we put forward corresponds to a weak symmetry. We will
say that a Liouvillian L is PT -symmetric or invariant under PT transformation when
PT L(PT )−1 = L. This choice of PT symmetry is physically motivated by the proposed
implementation of our model, as we now show.
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The effects of PT transformation in our model are depicted in Fig. 6.4. In the context
of two interacting species, it is typical to define the parity transformation (P) as the
exchange of the two species P : A ↔ B [Huber et al., 2020; Nakanishi and Sasamoto,
2022; Bender and Hook, 2024]. On the master equation level, this corresponds to the
unitary swap σ±,z

A,i ↔ σ±,z
B,i . If a detuning is present, A and B change their frequency

under P. Therefore, in the implementation shown in Fig. 6.4, the detuning is a local
property that distinguishes the left and right sides. For the definition of time reversal
(T ), we inspect the effect of a time-reversed propagation of the two modes a1,2, which
is equivalent to flipping the chirality of the waveguides. Since V−/N = p1g

2
1η1 − p2g

2
2η2,

this effectively changes the sign of the coherent interactions between the two spin species.
We therefore find T : Hinter → −Hinter. Combining the two transitions, we obtain that, if
δ = 0, our model defined by Eq. (6.1) is PT symmetric, i.e., invariant under the combined
PT transformation (A ↔ B and Hinter → −Hinter). Otherwise, the PT symmetry is
explicitly broken. An imaginary part of V− also explicitly breaks PT symmetry. The same
transformation is obtained when considering the implementation shown in Fig. 6.1(c),
where the bidirectional waveguide is invariant under T ; see Appendix 6.A.

Remarkably, the PT transformation just introduced is equivalent to complex conjuga-
tion of the Liouvillian superoperator L in Eq. (6.1), namely

PT : (A↔ B and Hinter → −Hinter) ⇐⇒ L → L∗ . (6.15)

Complex conjugation of a generic Liouvillian, given a Hamiltonian H and a set of jump
operators {Lµ}, is defined as Lρ = −i[H, ρ]+

∑
µD[Lµ]ρ→ L∗ρ = +i[H∗, ρ]+

∑
µD[L∗

µ]ρ.
A PT -symmetric Liouvillian has several important consequences. First of all, in the
thermodynamic limit, the PT symmetry of the mean-field equations as defined in Eq. (6.14)
follows:

L = L∗ ⇒ (for any solution s(t) ⇒ s∗(t) is solution) (6.16)

This can be shown in the following way. For any solution ρ0(t), i.e., ρ̇0(t) = Lρ0(t), ρ∗0(t)
is a solution as well, since ρ̇∗0(t) = L∗ρ∗0(t) = Lρ∗0(t). The mean-field Ansatz used to
obtain (6.11) is

ρ0(s) =

N⊗
i=1

⊗
a=A,B

(
1 + szaσ

z + 2s+a σ
− + 2s−a σ

+
)
/2 ,

where 1 = |0⟩⟨0| + |1⟩⟨1|. Given s0(t) such that ρ0(s0(t)) is a solution, ρ∗0(s0(t)) =
ρ0(s

∗
0(t)) is a solution as well, which implies that both s0(t) and s∗0(t) solve the mean-field

equations (6.11).
With Eq. (6.16), we have established the emergence of PT symmetry, which is

spontaneously broken in the thermodynamic limit, from a physical and microscopic
theory. As we show in the next section, the symmetry constrains the spin correlations
and dynamics for finite-size systems away from the thermodynamic limit.

6.7 Finite-size system

6.7.1 Steady-state correlations

We start the analysis of finite-size systems by considering the long-time limit of master
equation (6.1). For any finite number of spins, a unique time-independent steady-state
density operator is obtained. This is a general property of finite-size systems and contrasts
with the previous analysis in the thermodynamic limit, where a time-dependent state can
be obtained. To analyze the steady state, we compute expectation values of operators
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⟨o⟩ = Tr[ρo]. Since all spins within each species are identical, we can drop the index
labeling the individual spins, e.g., ⟨σzA⟩ = ⟨σzA,i⟩ or ⟨σ+Aσ

−
A⟩ = ⟨σ+A,iσ

−
A,j⟩ for i ̸= j. The

correlations within each species and between species are measurable by considering the
output of the chiral waveguides; see Eq. (6.9).

The steady state respects the symmetries of the master equation, i.e., U(1) symmetry
and PT symmetry. As a result of the U(1) symmetry, expectation values that are affected
by a global phase shift, such as

〈
σ+A
〉
, vanish, while the PT symmetry defined in Eq. (6.15)

enforces that the unique steady state is real valued, namely

L = L∗ ⇒ ρss = ρ∗ss . (6.17)

Therefore, the expectation value of certain operators, such as σ+Aσ
−
B , must also be real

valued. We will find this to be important later on.
We compute the exact steady state of Eq. (6.1) for small numbers of spins up to

N = 19 (and N = 90 for V− = 0 and V+ = V , where all spins of both species are equal).
For larger N , we resort to the cumulant expansion approximation, which allows one
to systematically include correlations up to a certain order [Kubo, 1962]. We used this
expansion in the analysis of a single ensemble of spins; see Eq. (4.58). Here, we perform
an expansion to second and to fourth order; details are provided in Appendix 6.D.

In Fig. 6.5, we show the steady-state correlations and populations as a function of the
number of spins per species N . The results from the cumulant expansion agree very well
with the exact solution for large and small N . For large N , the agreement is expected as
the cumulant expansion is exact in the thermodynamic limit. For small N , the agreement
results from the simplicity of the state that can be well captured by the approximation.
In an intermediate regime, 5 ≲ N ≲ 100, however, there are deviations. They hint at the
existence of nontrivial higher-order correlations in this regime, which are not well captured
by a low-order cumulant expansion. We expect the cumulant expansion to converge to the
exact results when including higher-order correlations. Indeed, the fourth-order expansion
agrees better with the exact solution than the second-order expansion, as highlighted in
the inset of Fig. 6.5(b).

The intraspecies correlations, as measured by
〈
σ+Aσ

−
A

〉
shown in Fig. 6.5(a), indicate

synchronization within each ensemble (an analogous plot is obtained for species B). The
correlations increase with the number of spins but do not change significantly beyond
N ≳ 200. The interspecies correlations

〈
σ+Aσ

−
B

〉
quantify the synchronization between

species. In general,
〈
σ+Aσ

−
B

〉
is a complex number whose argument determines the relative

phase difference between the two species. In our case, however, PT symmetry implies
that these correlations are real valued. Figure 6.5(c) highlights that in the synchronized
state, the phase difference is zero, while the π-synchronized state is indicated by negative
correlations. This becomes clear from Fig. 6.6(a), which shows the correlations as a
function of V± at fixed N .

In the traveling-wave state, the correlations between the two species vanish when
V+ = 0; see Fig. 6.5(c) and Fig. 6.6(a). However, in the thermodynamic limit, the
correlations factorize:

〈
σ+Aσ

−
B

〉 N→∞−−−−→ s+As
−
B. Therefore, one could expect one of two

possible nonzero complex values, each corresponding to one of two possible solutions
related by PT transformation, i.e., complex conjugation. The apparent discrepancy
is resolved by considering that the density operator describes an ensemble of possible
trajectories, which contains both states that spontaneously break PT symmetry. In the
two traveling-wave states, the species lock at a phase difference close to +π/2 or −π/2.
The average of s+As

−
B ∼ exp(±iπ/2) is therefore small and vanishes for V+ = 0. We will

explicitly show the spontaneous breaking of PT symmetry in quantum trajectories in
Section 6.8.
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Figure 6.5: Spin correlations and population as a function of number of
spins N for (π)-synchronized and traveling-wave state. The solid and
dashed lines are computed with the cumulant expansion, and the dots
(same colors) show the exact solution of the master equation. The inset
shows a zoom of the nonmonotonous behavior of the populations and
highlights the convergence of the approximations. Parameters: δ = 0,
V = 2γ+; synchronized state: V− = 0, V+ = 2γ+; traveling-wave state:
V− = 2γ+, V+ = 0; π-synchronized state: V− = 0, V+ = −2γ+.

(b)(a)

Figure 6.6: (a) Second-order correlations
〈
σ+
Aσ

−
B

〉
between the two groups.

This quantity allows us to distinguish between the synchronized and π-
synchronized phases. The correlations are suppressed in the traveling-wave
phase. The black lines are the boundaries of the mean-field phase diagram
in Fig. 6.2(a). (b) Fourth-order correlations

〈
σ+
Aσ

+
Aσ

−
Bσ

−
B

〉
. A negative

value indicates the traveling-wave state. Parameters: V = 2, δ = 0, all
interaction strengths in units of γ+, and N = 12.
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Whereas features of the traveling-wave states are not revealed by second-order corre-
lations, they become apparent in higher-order correlations. We show in Fig. 6.5(d) and
Fig. 6.6(b) the fourth-order correlations

〈
σ+Aσ

+
Aσ

−
Bσ

−
B

〉
between four different spins. It

is negative only in the traveling-wave regime. In the two possible traveling-wave states
of the thermodynamic limit, the species maintain a phase difference close to ±π/2. In
both cases, the product s+As

+
As

−
Bs

−
B < 0 is negative. Therefore, averaging over the two

possible traveling-wave states does not result in a suppression of these correlations. For
any finite-size system, we have thus established the fourth-order correlations as a measure
that signals the traveling-wave phase even from the stationary steady-state density matrix.
However, this does not prove the presence of dynamics in finite-size systems yet, and this
point will be addressed in the next section.

6.7.2 Two-time correlations, spectra, and exceptional points

As in Section 4.2, we will analyze the dynamics of the spins through the two-time
correlations and the associated spectra. The two-time correlations ⟨σ+a (t+ τ)σ−b (t)⟩
quantify correlations between spins of species a, b ∈ {A,B} at two times that differ by τ .
The spectrum for each species is defined as the Fourier transform of two-time correlations

Sa(ω) = lim
t→∞

∫ ∞

0
dτ ⟨σ+a (t+ τ)σ−a (t)⟩eiωτ . (6.18)

In this chapter, we use a definition of the spectrum where the integral is evaluated from 0
to ∞. While this differs from the definition used in the previous chapters, the spectra give
qualitatively the same results. The spectrum is experimentally accessible via standard
methods like heterodyne measurements [Wiseman and Milburn, 2010] of the output of
the chiral waveguides shown in Fig. 6.1(b) and defined in Eq. (6.9).

To calculate the spectrum efficiently, we employ the quantum regression theorem [Breuer
and Petruccione, 2002; Meiser et al., 2009]. We factorize the third-order correlations,
⟨σza(t+ τ)σ+b (t+ τ)σ−B(t)⟩ ≈ sza(t+ τ)⟨σ+b (t+ τ)σ−B(t)⟩. Then, the two-time correlations
evolve according to

d

dτ

(
⟨σ+A(t+ τ)σ−a (t)⟩
⟨σ+B(t+ τ)σ−a (t)⟩

)
=M

(
⟨σ+A(t+ τ)σ−a (t)⟩
⟨σ+B(t+ τ)σ−a (t)⟩

)
, (6.19)

with

M =
1

2

(
−γA + iδ + V szA VBAs

z
A

VABs
z
B −γB − iδ + V szB

)
, (6.20)

where the effective decoherence rate γA,B = γ+ + V (1 + szA,B)/N depends on the number
of spins N . The populations sza that enter M are to be evaluated at time t+ τ . To obtain
the spectra, we solve Eq. (6.18) together with Eq. (6.19), setting the initial condition of
the two-time correlations for τ = 0 to the steady-state correlations obtained from the
cumulant expansion discussed in Section 6.7.1.

In Fig. 6.7(a), we show the spectrum SA(ω) of species A as a function of the non-
reciprocal coupling V− for δ = 0. The synchronized phase exhibits a single peak at
zero frequency, while the traveling-wave phase is indicated by peaks in the spectrum at
nonzero frequencies. At the critical value of V− that separates the two phases, we find an
exceptional point at which the two eigenvectors of the matrix M become collinear. The
exceptional point marks the crossing of a nonreciprocal phase transition [Fruchart et al.,
2021]. The presence of two peaks signals the two traveling-wave states with opposite
chirality.
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Figure 6.7: Spectrum |SA(ω)| for the finite-size system with N = 100 as a
function of V− (a) and δ (b). The spectrum is obtained by using Eq. (6.20)
together with the cumulant expansion. It is shown on a logarithmic scale
normalized to the maximum value. The blue dots mark the imaginary
parts of the eigenvalues of the dynamical matrix M . Blue circles denote
exceptional points. The insets show the real part of the eigenvalues of M .
Parameters: N = 100, V = 2, (a) δ = 0, (b) V− = 0. All frequencies and
interaction strengths in units of γ+.

The spectrum in Fig. 6.7(a) is symmetric under ω → −ω. This is a consequence of
PT symmetry (L = L∗). To see this, we consider the following expression of the two-time
correlations in the long-time limit, which depends on the steady-state density matrix
ρss [Breuer and Petruccione, 2002],

lim
t→∞

⟨σ+a (t+ τ)σ−b (t)⟩ = Tr
[
σ+a e

Lτ (σ−b ρss)
]
. (6.21)

When the Liouvillian is PT symmetric, the unique steady state is real valued, as we have
shown in the previous section. Therefore, the two-time correlations are also real valued
and

L = L∗ ⇒ |Sa(ω)| = |Sa(−ω)| . (6.22)

Thus, the PT symmetry enforces that the two traveling-wave states with opposite chirality
occur with equal weight in the spectral density.

Another exceptional point occurs when explicitly breaking PT symmetry by δ; see
Fig. 6.7(b), where we set V− = 0. The synchronization behavior is qualitatively the same
as the one of classical phase oscillators; see Fig. 2.5. For large detuning, the spectrum
indicates an unsynchronized state in which A oscillates at +δ/2, while B oscillates at
−δ/2 (not shown). At the transition between synchronized and unsynchronized states,
M exhibits an exceptional point. In this case, however, the spectrum is not symmetric
under ω → −ω, and the transition stems from breaking PT symmetry explicitly.

Finally, the dynamics of the modulated traveling-wave state are also observable in
the spectrum of a finite-size system; see Fig. 6.8(a). Between the synchronized phase
and the traveling-wave phase, a comb of frequencies opens up, signaling a more intricate
time-crystalline order. The higher harmonics in the spectrum are consistent with the
nonlinear evolution of the phases in the thermodynamic limit; see Fig. 6.2(d). The comb
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number of spins
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Figure 6.8: Spectrum |SA(ω)| for finite-size systems shown on a logarithmic
scale normalized to the maximum value. The spectrum is obtained by using
Eq. (6.20) together with the cumulant expansion. (a) Transition from the
synchronized to the traveling-wave state via the modulated traveling-wave
state for N = 1000. In the modulated phase, higher harmonics appear
in the spectrum. (b) Spectrum of the modulated traveling-wave state
as a function of N at V− = 3.2. Parameters: δ = 0, V+ = V = 2. All
frequencies and interaction strengths in units of γ+.

only becomes visible for N ≳ 600 spins as shown in Fig. 6.8(b). With increasing N , the
comb structure becomes more pronounced.

6.8 Quantum trajectories

So far, we have analyzed quantities obtained by computing expectation values of operators
using the density matrix. As discussed in Section 3.3, the density matrix can be viewed
as an ensemble description of quantum trajectories. Each quantum trajectory is the
evolution of the quantum system conditioned on the knowledge obtained by measurements.
In this section, we will study individual quantum trajectories.

Our model allows for a continuous measurement of the spin degrees of freedom by
observing the modes that mediate the interactions. For simplicity, we focus on the case
V+ = V while varying V− and consider the implementation depicted in Fig. 6.1(c). To
model the measurement, we explicitly include the coupling to mode a+, which mediates
reciprocal interactions, in the master equation

ρ̇ = −i[Ω
2
(a†+S

− + a+S
+) +H0 +Hinter, ρ] + +κD[a+]ρ+ Ldriveρ ≡ Lmρ . (6.23)

Here, S± = S±
A + S±

B and κ is the decay rate of mode a+, which can be thought of as
a lossy cavity. In the limit κ ≫ Ω, the cavity mode can be adiabatically eliminated,
a+ = −iΩS−/κ, and Eq. (6.23) reduces to master equation (6.1) with V = V+ = Ng2+ =
NΩ2/κ.

The dynamics can be observed experimentally by standard homodyne and heterodyne
detection techniques: The output of the cavity a+ is mixed with a constant signal from
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Figure 6.9: Time evolution under heterodyne detection of the phases of
the spins. (a) Synchronized state for V− = V+/2 and N = 100. The
phases of spins A and B synchronize, and a state that is static up to
noise is obtained. (b) Traveling-wave state for V− = 2V+ and N = 100.
The phases of the spin species continuously oscillate while the phase
difference remains constant. At around tγ+ = 22, the chirality of the state
switches. (c) Modulated traveling-wave states for V− = 1.6V+, here shown
for N = 2000. The gray line shows the phase difference, which is not
static (compare to Fig. 6.2(d)). Parameters: δ = 0, ξ = 1, ωm/κ = 2π,
Ω/κ = 1/

√
5N , V+ = V = 2γ+.

a local oscillator with frequency ωm. As reviewed in Section 3.3, the evolution of the
quantum state is then determined by the stochastic quantum master equation [Wiseman
and Milburn, 2010]

ρ̇m =Lmρm +
dW

dt

√
κξ
[
eiϕm(t)(a+ − ⟨a+⟩m)ρm +H.c.

]
, (6.24)

where ρm is the density matrix conditioned on the measurement outcome and ⟨a+⟩m =
Tr[a+ρm]. The measurement backaction is described by the random Wiener increment
dW , which follows a normal distribution with variance dW 2 = dt and zero mean. The
detection efficiency ξ can take values ξ ∈ [0, 1]. For ξ = 0, no information about the
quantum state is obtained, and Eq. (6.24) reduces to Eq. (6.23). For simplicity, we
focus on an ideal detector with ξ = 1. The phase ϕm determines how the cavity field
a+ is monitored. When the phase is set constant (in the frame rotating with the cavity
field a+), the measurement is called homodyne detection, and it probes the quadrature
a+e

iϕm + a†+e
−iϕm . When the phase increases with time as ϕm(t) = ωmt, where ωm is

large compared to the timescale at which the dynamics occur, the measurement is called
heterodyne detection. Thus, all possible quadratures are probed in quick succession, and
the measurement becomes effectively isotropic.

To solve Eq. (6.24), we resort to a cumulant expansion [Zhang et al., 2022], which we
have already shown in Section 6.7 to describe well the unconditional time evolution; see
details in Appendix 6.E.

6.8.1 Heterodyne measurement

Figure 6.9 shows quantum trajectories in the presence of heterodyne detection of synchro-
nized, traveling-wave, and modulated traveling-wave states, respectively. These results can
be compared with the time evolution in the thermodynamic limit depicted in Fig. 6.2(b-d).
In the synchronized state, see Fig. 6.9(a), the phases ϕa ≡ arg[⟨σ+a ⟩m] of the two spin
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Figure 6.10: Time evolution under heterodyne detection of the phase of
the spins of species A (top row) and phase difference (bottom row) for
different numbers of spins (columns). Several quantum trajectories are
shown in gray, and one is highlighted in black, which for each column is the
same trajectory in the top and bottom panels. In the top row, the phase is
unwrapped, i.e., 2π is added or subtracted to the value of the phases such
that the absolute difference between adjacent phase values never exceeds
π. This allows for easily distinguishing between periods of increasing and
decreasing phase. Chirality reversals for tγ+ > 50 are marked as blue ticks
on the upper horizontal axes, respectively. Parameters: same as Fig. 6.9(b)
with N specified for each column.

species a ∈ {A,B} assume nearly the same constant value after some transient evolution.
For any individual quantum trajectory, the U(1) symmetry of the master equation (6.1)
is spontaneously broken; see also [Zhang et al., 2022]. Averaging over many trajectories
recovers the density matrix description where ⟨σ+a ⟩ = 0 in the steady state.

In the quantum traveling-wave state shown in panel (b) of Fig. 6.9, the spins oscillate
with one of two chiralities, i.e., positive or negative frequency, and the phase difference
assumes values close to ±π/2. The continuous time-translation invariance of Eq. (6.1) is
spontaneously broken due to the measurement backaction; see also [Cabot et al., 2023].
On the other hand, the U(1) symmetry is dynamically restored, i.e., no phase is preferred
in the time average of a single trajectory [Fruchart et al., 2021]. Figure 6.9(c) shows a
modulated traveling-wave state. In this case, we have set N = 2000 since only for larger
values of N , the additional dynamics occur as we showed in Fig. 6.8(b).

The measurement backaction spontaneously breaks PT symmetry: At different times,
one of the two possible traveling-wave states is assumed. It further causes randomly
occurring chirality reversal, i.e., switches between the two traveling-wave states. One
such reversal occurs in the trajectory displayed in Fig. 6.9(b) at around tγ+ = 22. This is
similar to the classical nonreciprocal Kuramoto model in which noise can induce chirality
reversals [Fruchart et al., 2021]. Here, the chirality reversals occur due to the measurement
noise, which is unavoidable in quantum systems.

To analyze the chirality reversals further, we show the time evolution of the phase of
spins of species A in Fig. 6.10 for several quantum trajectories (gray with one highlighted
in black). Traveling-wave states with positive frequency are apparent as an increasing
phase, while traveling-wave states with opposite chirality, i.e., negative frequency, are
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Figure 6.11: Number of chirality reversals as a function of N . The
exponential fit ∝ exp(−N/δN) yields δN ≈ 59. The reversals are counted
for 32 trajectories, each integrated for a total time of 103/γ+, of which
the first 102/γ+ are discarded as a transient. To obtain the number of
reversals, the phase difference was averaged over a time window of 10/γ+.
Different values of the width of this window do not change the results
qualitatively. The black line (gray area) shows the average (standard
deviation) of 32 trajectories. Parameters: same as Fig. 6.9(b).

apparent as a decreasing phase. The second row of Fig. 6.10 displays the phase difference
between spins of species A and B. The phase difference typically assumes values close to
±π/2. As expected from the dynamics in the thermodynamic limit, see Fig. 6.2(b), the
phase increases when the phase difference is close to +π/2 and decreases when the phase
difference is close to −π/2. Also, the chirality reversals coincide with switches between
the two possible values of the phase difference. We highlight the chirality reversals by
the blue ticks on the upper horizontal axes. To obtain them, the phase difference is
time-averaged in a window of width 10/γ+ (which corresponds to approximately one
oscillation); a chirality reversal is then counted whenever the phase difference switches
between a value closer to +π/2 and a value closer to −π/2.

In Fig. 6.11, we see that the number of chirality reversals per fixed time decreases
exponentially with the number of spins. This is expected from classical models [Fruchart
et al., 2021], and it is compatible with fluctuations whose strength decreases in proportion
to 1/N . In the thermodynamic limit, no chirality reversals occur, and the system remains
in one of the two traveling-wave states.

Finally, we emphasize that these dynamics are observable in an experiment. The
heterodyne signal, which is experimentally accessible is [Wiseman and Milburn, 2010]

Ihet = 2
√
ξκRe[eiϕm(t) ⟨a⟩m] + dW/dt (6.25)

(extending Eq. (3.14) to an inefficient detection). Mixing this signal with cos(ϕm(t)) and
sin(ϕm(t)) and time averaging allows for obtaining the cavity quadratures Re[⟨a+⟩m] and
Im[⟨a+⟩m] and thus the cavity phase. Since the cavity is to a good approximation related
to the spins by a+ ≈ −iΩS−/κ, the two traveling-wave states can be detected by an
increasing or decreasing cavity phase. While we have shown results for unit measurement
efficiency ξ = 1, we tested that the traveling-wave states persist for efficiencies as low as
ξ ≈ 0.1.
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Figure 6.12: Phase distribution under heterodyne detection (gray) and
homodyne detection (blue: species A, orange: species B). The distribution
is obtained by counting how often each phase value occurs and averaging
over multiple trajectories postselected on the traveling-wave state being
left or right chiral. Parameters: same as Fig. 6.9(b) with ωm = 0 and
N = 500.

6.8.2 Homodyne measurement

In this section, we show that the measurement backaction can qualitatively influence the
traveling-wave state. Specifically, we investigate the influence of a homodyne detection
of the quadrature a+ + a†+, setting ϕm = 0. Quantum trajectories in the presence of
homodyne detection reveal a traveling-wave state similar to that shown in Fig. 6.9 for the
case of heterodyne detection. Nevertheless, as we will now show, there are qualitative
differences between the traveling-wave states obtained via homodyne and heterodyne
detection.

The measurement of a single cavity quadrature continuously projects the state of
the cavity in states with well-defined expectation value along the a+ + a†+ quadrature.
Due to the coupling between spins and cavity, the measurement backaction on a+ also
affects the spin degrees of freedom. Given the adiabatic relation a+ ∝ iS−, the collective
spin is effectively measured in the quadrature Sy = i(S− − S+). Furthermore, the
phase difference of spins of species A and B is approximately ±π/2 (for traveling-wave
states) and S− = S−

A + S−
B ; consequently, the spins A and B are effectively measured in

quadratures rotated by ±π/4 relative to the y-quadrature. Since the sign of the phase
shift depends on the chirality of the traveling-wave state, the measurement backaction
on the spins depends on the chirality. Therefore, the spins tend to assume states where
the quadratures along these directions are well defined, while noise is enhanced along
quadratures rotated by 90°.

The expected behavior is confirmed in Fig. 6.12, which displays the phase distribution
of species A and B, i.e., the likelihood for the state to assume a particular phase. We have
postselected states with left and right chirality, and show the results for the two chiralities
in Panels (a) and (b), respectively. For the heterodyne case, the measurement backaction
is isotropic. For the homodyne case, on the other hand, the backaction on the state of
the spins A and B depends on their phases ϕa = arg[⟨σ+a ⟩m]. The backaction results in
peaks of the phase distribution which occur at phases of approximately π/2± π/4 and
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Figure 6.13: Schematic diagram for the analysis of nonreciprocal phase
transitions in active quantum systems.

−π/2± π/4 as expected from the discussion above. The dependence of the distribution
on the chirality is evident by comparing Panels (a) and (b).

It will be interesting to investigate homodyne detection for smaller ensemble sizes,
where the measurement noise is stronger. However, we find that the cumulant expansion
fails to approximate well the state of the system for N ≲ 200, which hints at the presence
of non-Gaussian correlations. We expect to find more qualitative differences between
quantum trajectories in the presence of heterodyne and homodyne detection at these
smaller values of N . Furthermore, the scaling of the number of chirality reversals may
depend on the measurement.

6.9 Implications for nonreciprocal quantum many-body sys-
tems

In the previous sections, we have analyzed a specific model to show how to engineer
nonreciprocal interactions in a quantum many-body system and how to identify their
observable consequences such as dynamical traveling-wave states. While some aspects
of our analysis are specific to the model considered, our results have implications for a
broader class of quantum models featuring nonreciprocal interactions. In this section,
we highlight what we believe are the general features of our analysis as well as discuss
possible directions to extend our framework.

In Fig. 6.13, we show a flowchart illustrating the key conceptual ingredients in the
analysis of a nonreciprocal quantum many-body system. The main features are listed
and explained in the following.
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Engineering antagonistic nonreciprocal interactions. Nonreciprocal interactions
are not native to quantum systems and must be engineered instead. Chiral waveguides,
in combination with phase shifts along their path, can mediate tuneable antagonistic
nonreciprocal interactions between two subsystems A and B; see Fig. 6.1(b,c). While
here, we focused on the case where both A and B are collections of quantum two-level
systems, our framework is in principle agnostic to the nature of the subsystems. The
master equation (6.7) can be employed to model antagonistic interactions among other
subsystems, e.g., comprising constituents with a larger local Hilbert space. Additionally,
the framework allows for studying nonreciprocal couplings in a network comprising more
than two subsystems to explore the role of frustration and network topologies.

Active quantum systems. Nonreciprocal interactions among agents can be enabled
by the out-of-equilibrium character of active matter [Fruchart et al., 2021; Bowick et al.,
2022]. We showed that, analogous to classical active matter, a quantum system provided
with a source of energy and thus driven out of equilibrium, becomes active and can
therefore feature a self-organization transition in the form of synchronization as well as
nonreciprocal interactions. While in our model a quantum many-body system is promoted
to an active quantum system by the local incoherent drive of Eq. (6.6), other mechanisms
are conceivable, such as saturated gain as in lasers or coherent light-matter interactions
beyond the rotating-wave approximation [Kirton et al., 2019; Chiacchio et al., 2023].

The role of PT symmetry. Nonreciprocal phase transitions are PT -symmetry break-
ing transitions [Fruchart et al., 2021]. Since open quantum systems are described in terms
of a quantum master equation [Breuer and Petruccione, 2002], or equivalently, a Liouvil-
lian L, PT symmetry should be identified at the level of the quantum master equation.
In our model, the implementation based on chiral waveguides allows for identifying PT
symmetry as complex conjugation of the Liouvillian L = L∗. We expect this notion of
PT symmetry to be relevant beyond the model considered here. While our definition has
the twofold advantage of being physically motivated and recovering the generalized PT
symmetry in the thermodynamic limit, parity-time symmetry is a broad concept [Bender
and Hook, 2024] and several instances have been discussed in the literature [Prosen, 2012;
Huber et al., 2020; Sá et al., 2023; Huybrechts et al., 2020; Nakanishi and Sasamoto, 2022;
Chiacchio et al., 2023; Jachinowski and Littlewood, 2025].

Symmetry constraints in the ensemble description. For any finite-size system, the
master equation typically features a unique time-independent steady state. Traveling-wave
states are therefore not directly visible from the steady-state density matrix. Nevertheless,
signatures of the time-crystal phase can still be identified at the ensemble level, by
inspecting either equal-time or two-time correlation functions (or equivalently the spectral
density). In our model, the spectral density satisfies |S(ω)| = |S(−ω)|, which implies that
the two traveling-wave states with opposite chirality, i.e., frequency, have equal weight.
Since this follows from symmetry arguments, we expect it to be a general feature of
PT -symmetric Liouvillians.

Spontaneous PT -symmetry breaking in the thermodynamic limit. While the
ensemble description obeys PT symmetry, it is nonetheless possible to observe the
spontaneous breaking of PT symmetry in two qualitatively different ways. One way is
by taking the thermodynamic limit, where PT symmetry can be spontaneously broken
(the system assumes one of two possible chiralities) in conjunction with the breaking
of continuous time-translational symmetry. This establishes that a quantum model
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can feature time-crystalline states induced by dynamical frustration [Hanai, 2024], i.e.,
nonreciprocal interactions.

Quantum trajectories and measurement backaction. A second way to observe
spontaneous PT -symmetry breaking, for any finite system size, is through measurement
backaction. In quantum systems, the effects of a measurement are described by unraveling
the dynamics into quantum trajectories, where each trajectory represents a possible
realization of the system’s evolution under continuous observation. Individual quantum
trajectories reveal the oscillatory behavior characteristic of the time-crystal and the
associated symmetry breaking. Additionally, the measurement backaction, i.e., the
influence of the chosen measurement on the quantum state, qualitatively alters the
dynamics of quantum traveling-wave states.

The role of decoherence. In classical active matter, noise or disorder is crucial for
perturbing potential equilibrium states, thereby enabling the emergence of traveling-
wave states [Fruchart et al., 2021]. In our model, decoherence takes up this role: By
destabilizing any state with maximal coherence, it allows for persistent traveling-wave
states. In any quantum system, the coupling to an environment unavoidably leads to
decoherence. Therefore, it can be expected that decoherence acts to stabilize dynamical
states in other quantum models featuring nonreciprocal interactions.

6.10 Conclusions

Nonreciprocal interactions in active matter lead to exciting features such as a new class
of critical phenomena and phase transitions. Since the laws of nature are fundamentally
quantum mechanical, these features have to emerge from an underlying microscopic
quantum theory. In this chapter, we have shown how this is possible by presenting
a quantum many-body system that exhibits a nonreciprocal phase transition. Each
constituent is an active quantum spin that is incoherently driven. The phases of one
species of spins are attracted to those of the other species, which in contrast are repelled.
These antagonistic interactions result in traveling-wave states. In other words, the spins
spontaneously self-organize, forming a dynamical synchronized pattern. The traveling-
wave states spontaneously break parity-time (PT )-symmetry, which we have motivated
from physical grounds and formulated as an invariance of the Liouvillian under complex
conjugation.

The model can be implemented in current experimental settings and therefore offers
a new platform to investigate nonreciprocal interactions in the quantum domain. Fur-
thermore, we have shown that the traveling-wave state remains observable for finite-size
systems. On the level of the density matrix, fourth-order correlations and exceptional
points in the spectrum provide ways to detect traveling-wave states. Most intriguingly,
standard heterodyne detection allows for observing quantum trajectories that feature
traveling-wave states and spontaneously break PT symmetry.

Our results are significant beyond the particular model considered here as emphasized
in the previous section. Chiral waveguides and phase shifts can be used to engineer
nonreciprocal interactions among arbitrary active quantum systems. We have highlighted
the importance of the formulation of PT symmetry on the level of the master equation.
It constrains the steady state of the system and is spontaneously broken in the thermo-
dynamic limit and in quantum trajectories. The measurement with which the quantum
trajectories are obtained acts back on the quantum system and influences the dynamics.
Furthermore, decoherence stabilizes a time-crystal state and thus takes the role of noise
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or disorder, which stabilize the dynamical state in classical active matter. We expect
these insights to be useful in future studies of nonreciprocity in quantum systems.

Antagonistic interactions of active matter in the quantum domain are a novel research
direction with exciting open questions. First of all, it will be interesting to study the
influence of nonreciprocity in other systems using our framework to engineer nonreciprocal
interactions. Furthermore, it is intriguing to study various symmetries. While we
have identified both PT symmetry and U(1) symmetry, a different model showed a
PT symmetry together with a Z2-symmetry [Chiacchio et al., 2023]. It would also be
interesting to find an instance of strong PT symmetry and see if it can be spontaneously
broken. Recently, a close connection between geometric and dynamical frustration has
been pointed out [Hanai, 2024]. Geometric frustration is known to lead to exciting phases
of quantum matter, such as quantum spin liquids, and it will be interesting to explore
the consequences of nonreciprocal dynamical frustration in quantum systems.

The field of active quantum matter is just emerging [Khasseh et al., 2023; Adachi
et al., 2022; Hanai et al., 2024; Yamagishi et al., 2024; Takasan et al., 2024; Yuan et al.,
2024; Antonov et al., 2025; Penner et al., 2025]. Given the relevance of antagonistic
interactions in classical active matter, it is important to consider similar interactions
of quantum constituents. This chapter proposes a way to do so and highlights general
features of nonreciprocal interactions in active quantum matter.
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Appendix for Chapter 6

6.A General complex coherent coupling

In this appendix, we describe how a complex-valued nonreciprocal coupling V− can
be implemented. The setup is shown in Fig. 6.14. Following [Karg et al., 2019], the
unidirectional waveguide with mode a− mediates the coherent interactions of our master
equation (6.1) with

V−/N = 2g2−e
iβ . (6.26)

The cavity mode a+ mediates dissipative interspecies and intraspecies interactions with

V+/N = V/N = 2g2+ . (6.27)

For simplicity, we focus on the case where there are no losses in the unidirectional
waveguide.

Under time reversal, the chirality of the unidirectional waveguide is reversed, and the
phase shifts β and π − β also change sign. The setup shown in Fig. 6.14 is only invariant
under the PT transformation for β ∈ {0, π}, which corresponds to real-valued V−. This
confirms that the imaginary part of V− explicitly breaks PT symmetry.

In the thermodynamic limit, we obtain the mean-field equations

d

dt
s+A =[(−γ+ + iδ)s+A + V s+As

z
A + (V+ − V ∗

−)s
+
Bs

z
A]/2 ,

d

dt
s+B =[(−γ+ − iδ)s+B + V s+Bs

z
B + (V+ + V−)s

+
As

z
B]/2 ,

d

dt
szA =γ+ (1− szA)− 2V s+As

−
A − 2Re[(V+ − V ∗

−)s
−
As

+
B]

d

dt
szB =γ+ (1− szB)− 2V s+Bs

−
B − 2Re[(V+ + V−)s

+
As

−
B] ,

(6.28)

which reduce to Eq. (6.11) when V− is real valued.

Figure 6.14: Setup to implement complex-valued nonreciprocal coupling
V−. The cavity mode a+ mediates reciprocal interactions. The phase
shifters in the unidirectional chiral mode a− transform a− → exp(iβ)a−
or a− → exp(i(π − β))a−.
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6.B Transition between incoherent and synchronized states

Throughout the main text, we focus on the case where V/γ+ is large enough such that
all spins of each species are synchronized. Figure 6.15(a) displays the transition from an
incoherent state to either the static synchronized state or the dynamical traveling-wave
state by increasing the dissipative coupling strengths. The transition is clearly indicated
by the absolute value of the mean coherence

∣∣s+A∣∣ (or equivalently
∣∣s+B∣∣, not shown), which

is zero in the incoherent regime.
Damping and dephasing of the spins can also induce a transition between synchronized

and incoherent states. Importantly, however, the traveling-wave state (and the other
synchronized states) possesses some degree of robustness with respect to damping and
dephasing. To show this, we include damping at rate γ− and dephasing at rate γz by
adding to the master equation (6.1) the terms

∑
a∈{A,B}

N∑
i=1

γ−D[σ−a,i]ρ+
γz
2
D[σza,i]ρ . (6.29)

In the thermodynamic limit, the equations Eq. (6.11) become (setting δ = 0 for simplicity),

d

dt
s+A =[−(γ+ + γ− + 2γz)s

+
A + V s+As

z
A + VBAs

+
Bs

z
A]/2 ,

d

dt
s+B =[−(γ+ + γ− + 2γz)s

+
B + V s+Bs

z
B + VABs

+
As

z
B]/2 ,

d

dt
szA =γ+ (1− szA)− γ− (1 + szA)− 2V s+As

−
A − 2VBARe[s+As

−
B] ,

d

dt
szB =γ+ (1− szB)− γ− (1 + szB)− 2V s+Bs

−
B − 2VAB Re[s+As

−
B] .

(6.30)

We find that the incoherent steady state

s+A,B = 0 , szA,B = z0 ≡
γ+ − γ−
γ+ + γ−

(6.31)

becomes unstable when

Γ <

z0V for |V−| > |V+| ,
z0

(
V +

√
V 2
+ − V 2

−
)

for |V−| < |V+| ,
(6.32)

where we defined the total decoherence rate Γ = γ+ + γ− + 2γz.
We show the influence of damping and dephasing on the coherence

∣∣s+A∣∣ of a traveling-
wave state in Fig. 6.15(b). Importantly, the state also retains its dynamics throughout the
region where

∣∣s+A∣∣ is finite (not shown). We conclude that time-crystalline traveling-wave
states are robust to damping and dephasing.

6.C Phase diagrams: amplitude and phase difference

The data used to produce Fig. 6.2(a) is shown in Fig. 6.16. Panel (a) shows the time-
averaged amplitude

∣∣s+A∣∣ in the long-time limit as a function of V− and V+. Panel (b) shows
the time-averaged phase difference. In both panels, one can identify boundaries between
the regions of static (π-)synchronized states and the regions of dynamical traveling-
wave states. The modulated traveling-wave state is not apparent in Fig. 6.16, since the
quantities are time averaged.
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(a) (b)

Figure 6.15: Transition from incoherent to synchronized states in the
thermodynamic limit indicated by the absolute value of the coherence∣∣s+A∣∣ (similar results are obtained for

∣∣s+B∣∣). (a) Transition from incoherent
to synchronized states by increasing V = V+ as a function of V−. There
is both a transition to the static synchronized state and to the dynamic
traveling-wave state. The white dashed line is obtained from a stability
analysis of the incoherent state, V = V+ = min(1, (1 + V 2

−)/2), a special
case of Eq. (6.32) in the absence of damping and dephasing. All interaction
strengths in units of γ+ and δ = 0. (b) Transition of the traveling-wave
(TW) state to the inhomogeneous state by increasing damping and decay.
The white dashed line is Γ = V z0; see Eq. (6.32). Parameters: δ = 0,
V− = 2V+ = 2V = 4γ+. Damping and dephasing strengths are given in
units of γ+.

We find numerically that the phase difference shown in Fig. 6.16(b) is precisely ±π/2
for V+ = 0. As V+ increases and the spins approach the synchronized regime, the phase
difference continuously shifts towards 0. Conversely, for negative V−, as the spins approach
the π-synchronized regime, the phase difference shifts towards π.

6.D Finite-size calculations of the steady state

To solve for the long-time limit of the full quantum master equation (6.1), we exploit
the permutational symmetry, i.e., the fact that all two-level systems within each group
are identical. This reduces the complexity from 42N to (N2)3, where N is the number of
spins per species. To find the steady state, we compute the eigenstate of the Liouvillian
corresponding to the zero eigenvalue. Numerics are performed using PIQS [Shammah
et al., 2018].

For larger N , this approach becomes unfeasible, so we resort to an approximation. We
systematically include correlations by using cumulant expansions [Kubo, 1962] to second
and fourth order, where third-order or fifth-order cumulants are set to zero, respectively.
For instance,

⟨o1o2o3⟩c = ⟨o1o2o3⟩ − ⟨o1o2⟩⟨o3⟩ − ⟨o1o3⟩⟨o2⟩
− ⟨o1⟩⟨o2o3⟩+ 2⟨o1⟩⟨o2⟩⟨o3⟩ = 0 .

(6.33)

Furthermore, we exploit the U(1) symmetry of the master equation (6.1) to set averages
such as ⟨σ+a,i⟩ = 0 or ⟨σ+a,iσzb,j⟩ = 0 to zero as they vanish in the long-time limit.
Additionally, we invoke the permutational invariance to set all spins within each species
equal, e.g., ⟨σ+A,iσ

−
A,j⟩ = ⟨σ+Aσ

−
A⟩ for all i ̸= j or ⟨σ+A,iσ

−
B,j⟩ = ⟨σ+Aσ

−
B⟩ for all i and j. In
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(a) (b)

Figure 6.16: Phase diagram in the thermodynamic limit. (a) Time-
averaged amplitude

∣∣s+A∣∣ in the long-time limit as a function of V− and V+.
(b) Time-averaged phase difference arg s+A/s

+
B in the long-time limit. The

initial conditions are chosen such that either of the two traveling-wave
states with phase difference ±π/2 is obtained in alternating vertical stripes.
Parameters: δ = 0, V = 2. All coupling strengths in units of γ+.

the second-order expansion, we thus obtain a closed set of differential equations for ⟨σza⟩,
⟨σ+a σ−a ⟩, ⟨σ+Aσ

−
B⟩, and ⟨σzaσza⟩, and ⟨σzAσzB⟩.

d

dt
szA =− V (szA + 1) /N + γ+ (1− szA) − 2V

N − 1

N
⟨σ+Aσ

−
A⟩ − 2VBARe[

〈
σ+Aσ

−
B

〉
] ,

d

dt
szB =− V (szB + 1) /N + γ+ (1− szB) − 2V

N − 1

N
⟨σ+Bσ

−
B⟩ − 2VAB Re[

〈
σ+Aσ

−
B

〉
] ,

d

dt
⟨σ+Aσ

−
A⟩ =− (γ+ +

V

N
)⟨σ+Aσ

−
A⟩+

V

2N
(⟨σzAσzA⟩+ szA)

+ V szA(N − 2)/N⟨σ+Aσ
−
A⟩+ VBAs

z
ARe[

〈
σ+Aσ

−
B

〉
] ,

d

dt
⟨σ+Bσ

−
B⟩ =− (γ+ +

V

N
)⟨σ+Bσ

−
B⟩+

V

2N
(⟨σzBσzB⟩+ szB)

+ V szB(N − 2)/N⟨σ+Bσ
−
B⟩+ VABs

z
B Re[

〈
σ+Aσ

−
B

〉
] ,

d

dt
⟨σ+Aσ

−
B⟩ =− (γ+ + V/N − iδ)⟨σ+Aσ

−
B⟩+ V

N − 1

2N
(szA + szB)

〈
σ+Aσ

−
B

〉
+ VAB(s

z
B + ⟨σzAσzB⟩)/4N + VBA(s

z
A + ⟨σzAσzB⟩)/4N

+
N − 1

2N

(
VABs

z
B

〈
σ+Aσ

−
A

〉
+ VBAs

z
A

〈
σ+Bσ

−
B

〉)
d

dt
⟨σzAσzA⟩ =2szA(γ+ − V/N)− 2⟨σzAσzA⟩(γ+ + V/N)− 4VBAs

z
ARe[

〈
σ+Aσ

−
B

〉
]

+ V
(
4
〈
σ+Aσ

−
A

〉
− 4(N − 2)szA

〈
σ+Aσ

−
A

〉)
/N

d

dt
⟨σzBσzB⟩ =2szB(γ+ − V/N)− 2⟨σzBσzB⟩(γ+ + V/N)− 4VABs

z
B Re[

〈
σ+Aσ

−
B

〉
]

+ V
(
4
〈
σ+Bσ

−
B

〉
− 4(N − 2)szB

〈
σ+Bσ

−
B

〉)
/N

d

dt
⟨σzAσzB⟩ =γ+(szA + szB − 2⟨σzAσzB⟩) + 2

N − 1

N
V−(szB − szA)Re[

〈
σ+Aσ

−
B

〉
]

− 2
N − 1

N
V+(s

z
A + szB)Re[

〈
σ+Aσ

−
B

〉
]− 2

N − 1

N
V (szB

〈
σ+Aσ

−
A

〉
+ szA

〈
σ+Bσ

−
B

〉
)

− V (szA + szB + 2 ⟨σzAσzB⟩)/N + 4V+Re[
〈
σ+Aσ

−
B

〉
]/N .
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In the limit N → ∞, they are equivalent to the mean-field equations. For the fourth-order
expansion, we use the julia package QuantumCumulants.jl [Plankensteiner et al., 2022].

6.E Trajectory calculations

We solve the stochastic master equation

ρ̇m =− i[
Ω

2
(a†S− + aS+) +H0 +Hinter, ρm] + +κD[a+]ρm + Ldriveρm+

+
dW

dt

√
κξ
[
eiϕm(t)(aρm − ⟨a⟩m ρm) + H.c.

] (6.34)

by employing a cumulant expansion to second order. To this end, we compute equations
of motion for expectation values of operators a+, a†+, σz,±A,B and products of two such
operators. The equation of motion for each operator o reads d ⟨o⟩m /dt = Tr[ρ̇mo]. Any
expectation value of a product of three operators is factorized using Eq. (6.33). We invoke
the permutational invariance to set all spins within each species equal, as was done in the
finite-size calculations of the steady state; see Section 6.D. The noise explicitly breaks
the U(1) symmetry; therefore, we keep terms such as ⟨σ+a ⟩ or

〈
σzaσ

+
b

〉
. This leads to 27

equations, e.g.,

d

dt
⟨a⟩ =− κ

2
⟨a⟩+ iN

Ω

2
(
〈
σ+A
〉
+
〈
σ+B
〉
)+

+
√
κξ/2

dW

dt

[
eiϕm(t)(⟨aa⟩ − ⟨a⟩2) + e−iϕm(t)( ⟨a†a⟩ − |⟨a⟩|2)

]
.

(6.35)

Note that the noise term vanishes in the thermodynamic limit when the mean-field
factorization is exact. We do not list all equations here; they can be derived and evaluated
using the QuantumCumulants.jl package [Plankensteiner et al., 2022].
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Chapter 7

Frequency shifts in superradiant
lasers

The results of this chapter have been published in

Nonreciprocal Interactions induce Frequency Shifts in Superradiant Lasers,
T. Nadolny, M. Brunelli, and C. Bruder,
Physical Review Letters, 134, 193603 (2025)

In the previous chapter, we have shown how nonreciprocal interactions among quantum
systems can be engineered using chiral waveguides. Other recent studies also describe
ways in which such interactions can be engineered by carefully designed light-matter
couplings [Chiacchio et al., 2023; Reisenbauer et al., 2024; Rudolph et al., 2024a; Hanai
et al., 2024]. In this chapter, we show that nonreciprocal interactions can naturally
occur between driven and undriven atoms in a superradiant laser. Building on the
understanding of quantum nonreciprocal interactions gained in the previous chapter, we
now explore their consequences in the context of superradiant lasers. Most strikingly, we
find frequency shifts and linewidth broadening of the emitted light. These findings have
practical implications for the realization of superradiant lasers, establishing the relevance
of nonreciprocal phenomena for quantum technologies.

7.1 Introduction

We have introduced the superradiant laser in Section 4.2.3. It consists of incoherently
driven atoms coupled to a cavity that rapidly loses excitations [Chen, 2009; Meiser
et al., 2009]. The effective atom-atom interactions mediated by the cavity lead to phase
attraction among the atomic dipoles, causing a Kuramoto-like transition to a synchronized
state. As a result, superradiant lasers emit coherent light with stable frequency and
narrow linewidth. Superradiant lasers offer great technological promise as their narrow
linewidth is expected to improve the precision of optical atomic clocks [Ludlow et al.,
2015].

In this chapter, we study a superradiant laser where a fraction of the atoms is not
driven; see Figs. 7.1(a,b). Surprisingly, this modification results in a shift of the lasing
frequency and spectral broadening, which may be detrimental to the use of a superradiant
laser as a stable frequency reference with narrow linewidth. This contrasts with the
expectation that the undriven atoms behave as passive spectators, causing only a reduction
of the laser power.

To explain this result, we consider the superradiant laser as quantum active matter
and the atomic dipoles as quantum active agents that interact in a nonreciprocal way.
We find that the driven atoms tend to align their dipole with the dipoles of both driven
and undriven atoms; the undriven atoms, however, have the opposite inclination: They

https://doi.org/10.1103/PhysRevLett.134.193603
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Figure 7.1: (a) Superradiant laser, where Nd atoms are driven and Nud =
N − Nd are undriven. All atoms are coupled at rate Ω to the cavity,
which decays at rate κ. (b) Incoherent gain and loss processes within
each atomic spin. (c) Alignment between two driven atomic dipoles (solid
and dashed straight arrows). Lighter to darker colors indicate increasing
time. (d) Antialignment between two undriven dipoles. (e) Nonreciprocal
interactions between driven and undriven dipoles. The dashed circular
arrows indicate the continuous motion.

tend to align their dipoles opposite to those of all other atoms; see Figs. 7.1(c-e). The
nonreciprocal interactions influence the self-organization transition of the atoms that
manifests as the lasing or synchronization transition; they result in a chase-and-run-
away dynamics of the atomic dipoles similar to the traveling-wave states presented in
Section 6.5. In the context of superradiant lasers, the traveling-wave states correspond to
frequency shifts. Furthermore, the antialignment itself decreases the coherence among the
atoms, causing spectral broadening and loss of power. This chapter connects fundamental
concepts of active matter with quantum technologies by showing that nonreciprocal
interactions have practical implications for the development of superradiant lasers.

7.2 Model

Master equation

We describe a superradiant laser, which comprises N atoms, each atom modeled as a
quantum spin-1/2 with states |0⟩ and |1⟩; see Fig. 7.1. While all spins are coupled
coherently to a lossy cavity mode, only Nd ≤ N of the spins are incoherently driven; the
other Nud = N −Nd spins are not driven. The fraction of driven spins is pd = Nd/N , and
the fraction of undriven spins is pud = 1− pd. As before, the spins are described by Pauli
matrices σzµ,i = |1⟩⟨1|µ,i − |0⟩⟨0|µ,i and ladder operators σ+µ,i = |1⟩⟨0|µ,i, σ

−
µ,i = |0⟩⟨1|µ,i.

The index µ ∈ {d, ud} distinguishes driven and undriven spins, and i ranges from 1 to
Nµ. The collective spin operators are S± =

∑Nd
i=1 σ

±
d,i +

∑Nud
i=1 σ

±
ud,i.

The Lindblad master equation for the density operator ρ is

ρ̇ =− iΩ[a†S− + aS+, ρ] + κD[a]ρ+ γ+

Nd∑
i=1

D[σ+d,i]ρ

+
∑

µ={d,ud}

Nµ∑
i=1

(
γ−D[σ−µ,i] + γzD[σzµ,i]/2

)
ρ .

(7.1)
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Both the atomic spins and the cavity are described in the frame rotating with their bare
frequencies, which are set equal for simplicity. A nonzero spin-cavity detuning does not
influence our results; see Appendix 7.B. All spins couple equally with strength Ω to the
cavity mode a, which decays at a rate κ. The last term in the first line of Eq. (7.1)
describes an incoherent drive at rate γ+, which can be engineered by pumping the state |0⟩
to a third state which rapidly decays to state |1⟩. The second line describes spontaneous
emission at rate γ− and dephasing at rate γz. The master equation (7.1) is nearly the
same as the master equation of the standard superradiant laser proposed by Meiser et al.
[2009]; see Eq. (4.59). The only difference is that the sum only extends over Nd spins
instead of all N spins.

Emission spectrum

As introduced before [see Eq. (2.14)], a key quantity to characterize a laser is the two-time
correlation function ⟨a†(t+ τ)a(t)⟩ or, correspondingly, the spectral density S(t, ω) of
light emitted by the cavity at time t and per frequency ω,

S(t, ω) =

∫ ∞

−∞
dτ
〈
a†(t+ τ)a(t)

〉
eiωτ . (7.2)

The steady-state spectrum is defined as S(ω) = limt→∞ S(t, ω). The spectrum of a
high-quality laser comprises a large and narrow peak, implying high output power and
small linewidth. The spectrum can be calculated by employing a cumulant expansion
approximation and the quantum regression theorem [Kubo, 1962; Breuer and Petruccione,
2002; Meiser et al., 2009; Xu et al., 2014; Plankensteiner et al., 2022]. We have used the
same techniques in Section 4.2.3 and Section 6.7. For this model, the relevant equations
are summarized in Appendix 7.A.

Figures 7.2(a,b) show the steady-state spectrum for the model defined in Eq. (7.1)
as a function of pd. For now, we neglect spontaneous emission and dephasing, setting
γ− = γz = 0. If all spins are driven, pd = 1, they collectively emit photons in a superradiant
way into the cavity mode, which outputs highly coherent light as indicated by the narrow
peak in the spectrum at zero frequency (relative to the bare atomic frequency). When
decreasing pd, there are two peaks in the spectrum at nonzero frequencies, indicating
a positive or negative shift in the lasing frequency. Furthermore, for pd smaller than a
critical value, the peaks vanish, indicating the absence of lasing.

7.3 Nonreciprocal interactions

We now explain the origin of the frequency shift displayed in Figs. 7.2(a,b).

Mean-field equations

First, we exploit the permutational invariance: All driven spins are identical to one
another, and all undriven spins are identical to one another. In the thermodynamic limit,
N → ∞, Eq. (7.1) can thus be solved exactly using a mean-field ansatz [Spohn, 1980].
The thermodynamic limit N → ∞ is well defined, when simultaneously decreasing Ω → 0,
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driven

undriven

(c) (d) (e)

(a) (b)

Figure 7.2: (a) Cavity emission spectrum S(ω) (arb. units) as a function
of fraction pd = Nd/N of driven spins for N = 103, κ = 10

√
NΩ, V = γ+,

and γ− = γz = 0. The frequency ω is measured relative to the bare atomic
frequency. The dashed line indicates the mean-field frequency. Below the
lasing transition pd < 3/4 [see Eq. (7.11)], the emission is close to zero.
(b) Line cuts through (a) as marked by the three arrows in (a) on a linear
scale. (c-e) Solutions of the mean-field equations (7.5) in the long-time
limit displayed on the Bloch sphere for (c) pd = 0.5: no lasing, (d) pd = 0.8:
lasing with frequency shift, and (e) pd = 1: standard superradiant laser.
In (d), the dashed curved arrows indicate the continuous oscillations.
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such that V ∝ NΩ2 = constant. Introducing the coherences s+µ = ⟨σ+µ,i⟩, populations
szµ = ⟨σzµ,i⟩, and the average coherence s+ = pds

+
d + puds

+
ud, the mean-field equations are

d

dt
s+d = −(γ+ + γ− + 2γz)s

+
d /2− iΩα∗szd ,

d

dt
s+ud = −(γ− + 2γz)s

+
ud/2− iΩα∗szud ,

d

dt
szd = −γ−(szd + 1)− γ+(s

z
d − 1) + 4Ω Im[αs+d ] ,

d

dt
szud = −γ−(szud + 1) + 4Ω Im[αs+ud] ,

d

dt
α = −κα/2− iNΩs− .

(7.3)

Next, we derive an effective spin-only description. In the bad-cavity limit where κ/(
√
NΩ)

is large, the cavity field instantaneously follows the spins, α = −2iNΩs−/κ, and can be
adiabatically eliminated. We obtain

d

dt
s+d = V s+szd − (γ− + 2γz + γ+) s

+
d /2 ,

d

dt
s+ud = V s+szud − (γ− + 2γz)s

+
ud/2 ,

d

dt
szd = −4V Re[s−d s

+]− γ−(1 + szd) + γ+(1− szd) ,

d

dt
szud = −4V Re[s−uds

+]− γ−(1 + szud) .

(7.4)

Here, V = 2NΩ2/κ is the effective dissipative coupling strength among all spins.
For now, let us analyze the case where damping and decoherence are negligible, setting

γ− = γz = 0. Then, the mean-field equations simplify to

d

dt
s+d = V s+szd − γ+s

+
d /2 ,

d

dt
s+ud = V s+szud ,

d

dt
szd = −4V Re[s−d s

+] + γ+ (1− szd) ,

d

dt
szud = −4V Re[s−uds

+] ,

(7.5)

and the purity of the undriven spins is conserved, (szud)
2 + 4s+uds

−
ud = const ≤ 1. Equa-

tions (7.5) imply that the coherence of driven (undriven) spins tends to align in (out of)
phase with respect to the average coherence. This becomes explicit in the dynamical
equations for the phases ϕµ = arg[s+µ ] derived from Eq. (7.5)

ϕ̇µ = szµ
V |s+|
|s+µ |

sin
(
ϕ̄− ϕµ

)
, (7.6)

where ϕ̄ = arg[s+] is the average phase. The sign of the term multiplying the sine
determines whether ϕµ aligns or antialigns with ϕ̄. In a standard superradiant laser, all
spins are driven, and their population is inverted szd > 0. Consequently, the interactions
are reciprocal: All spins tend to align their phases, resulting in a synchronized state [see
Fig. 7.2(e)] and the narrow linewidth of the emitted light [Meiser et al., 2009; Zhu et al.,
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2015]. The population of the undriven spins, however, is not inverted and szud < 0 is
obtained in the long-time limit. Therefore, the phase ϕud of the undriven spins is repelled
from the average phase ϕ̄. The phase ϕd of the driven spins remains to be attracted by
the average phase ϕ̄. The competing attraction and repulsion of the phases constitute
the effective nonreciprocal interactions among the atomic dipoles; they are sketched in
Fig. 7.1(e).

Dynamics of the form of Eq. (7.6) have been previously described for a network of
classical phase oscillators [Hong and Strogatz, 2011a,b]. The oscillators that tend to
align with the mean field have been termed conformists. The oscillators that tend to
antialign with the mean field oppose the average coherence; therefore, they have been
termed contrarians. The conformist-contrarian dynamics have been connected to opinion
forming, but no physical model to realize them is proposed. We have shown that the
same phase interactions arise in a superradiant laser with a fraction of undriven spins,
offering a physical realization of these dynamics. In the model of Hong and Strogatz
[2011a,b], the nonreciprocity results in chase-and-run-away dynamics of the phases named
traveling-wave states. They are qualitatively similar dynamical states to the traveling-
wave states discussed in the previous chapter. A difference is that the contrarians aim to
antialign their phases with each other, whereas in the previous chapter, the spins within
each ensemble aim to align their phases. We now show that Eqs. (7.5) also result in
traveling-wave states for pd < 1, implying emergent oscillations that explain the shift in
the lasing frequency displayed in Figs. 7.1(a,b).

Traveling-wave states

The mean-field equations Eqs. (7.5) can be solved exactly by an ansatz with constant
populations szd,ud as well as oscillating s+d =

∣∣s+d ∣∣eiωt+i(ϕd−ϕud) and s+ud =
∣∣s+ud∣∣eiωt. We

introduced the shared oscillation frequency ω, and the constant phase difference (ϕd−ϕud)
between driven and undriven spins. In the Bloch-sphere picture, the ansatz describes
oscillations on circles with radii

∣∣s+µ ∣∣ at constant szµ; see Fig. 7.2(d). Inserting this
ansatz in Eqs. (7.5) and solving the resulting algebraic equations, the frequency of the
traveling-wave states is obtained as

ω = ±
√
γ+
4

(
v − 2V pud −

√
v(v − 4V pud)

)
, (7.7)

where v = 2V − γ+. The frequency is shown by the dashed line in Fig. 7.2(a). It matches
well with the spectrum, which confirms that our ansatz of traveling-wave states, where
the spins oscillate with positive or negative frequency, explains the frequency shifts.
Since the cavity output closely follows the collective spin state a = −i(2Ω/κ)S−, the
emergent dynamics of the spins imply a (positive or negative) frequency shift of the laser,
detrimental to a stable frequency reference.

We numerically integrate Eqs. (7.5) for different initial conditions and find that the
spins always settle to either one of the two traveling-wave states in the long-time limit.
This behavior corresponds to spontaneous symmetry breaking discussed in Section 6.6.
As discussed in the previous chapter, noise can induce random switching between the two
traveling-wave states; the switching rate, however, is in general exponentially suppressed
in the number of spins. Consequently, it is extremely small for large numbers of spins
that are typical in superradiant lasers.
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Lasing transition

Using Eqs. (7.4), we perform a stability analysis around the incoherent state. The fixed
point, which characterizes the incoherent state, is s+d,ud = 0, szd = (γ+ − γ−)/(γ+ + γ−),
and szud = −1; see Fig. 7.2(c). The stability analysis around this fixed point reveals that
lasing occurs above a critical fraction of driven spins

pd >
1

2
+
γ+
4V

. (7.8)

Here, we still consider the limit of vanishing damping and decoherence. At least half of
the ensemble needs to be driven for lasing to occur. This is intuitive as there need to
be more spins that behave as conformists rather than contrarians for phase alignment
to occur. For the parameters of Fig. 7.2(a), the expression evaluates to pd > 3/4, which
agrees well with the emission spectrum and the mean-field frequency shown in this figure.

Comparison to standard laser

The traveling-wave states are unique to the superradiant regime of lasers. In a standard
laser, the presence of undriven spins results in a smaller effective size of the gain medium
but does not cause a frequency shift, as we now show.

In a standard laser, the cavity is a ‘good’ cavity with a decay rate κ that is small
compared to the incoherent gain and damping of the atoms. In this case, one can
adiabatically eliminate the spin degrees of freedom in Eq. (7.3) by setting ṡzµ = ṡ+µ = 0 to
obtain

d

dt
α = α

(
−κ
2
+ 2Npd

γ+ − γ−
Γ̃2
d/Ω

2 + 8|α|2
− 2Npud

γ−
Γ̃2
ud/Ω

2 + 8|α|2

)
, (7.9)

where we have defined Γ̃2
d = (γ− + γ+)(γ− + γ+ + 2γz) and Γ̃2

ud = γ−(γ− + 2γz). Since
the term in brackets on the right-hand side is real-valued, there are no oscillations and no
traveling-wave states. The lasing transition (obtained by expanding around α = 0) is

pd
γ+ − γ−

Γ̃2
d

− pud
γ−
Γ̃2
ud

>
κ

4NΩ2
. (7.10)

For any nonzero pd, the drive rate γ+ can be increased sufficiently to cross the lasing
threshold. This contrasts with the behavior of the superradiant laser, where no lasing
can be obtained for pd < 1/2 as we saw in Eq. (7.8).

7.4 Spontaneous emission and dephasing

We now investigate the effects of spontaneous emission at rate γ− and dephasing at rate
γz of each spin. As a first consequence, the lasing transition condition from Eq. (7.8)
changes; the full expression including γ− and γz reads

pd >
1

2

(
1 +

γ−
γ+

)(
1 +

2γ− + 4γz + γ+
2V

)
. (7.11)

Most importantly, the incoherent drive needs to overcome the spontaneous emission
to allow for population inversion. We see this from the first bracket on the right side:
The inequality can only be fulfilled when γ+ > γ−, since otherwise the right-hand side
evaluates to a value larger than one. Figure 7.3(a) shows the steady-state laser power
computed within the cumulant approximation for N = 105 as a function of γ+/V and pd.
The transition from small to large power is compatible with the mean-field prediction
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Figure 7.3: Steady-state lasing properties for N = 105, γz/V = 10−3,
γ−/V = 10−4, and κ = 10

√
NΩ, so that the cooperativity is C = 0.2.

(a) Laser power as a function of drive rate and fraction of driven spins.
The white line shows the mean-field lasing transition. The hatched region
indicates the regime in which frequency shifts occur in the steady state.
(b) Frequency shift as a function of time for pd = 0.8 and γ+ = V . The
initial state at t = 0 is the stationary state when γ− = γz = 0. The dashed
line is the mean-field solution, which follows an exponential decay at rate
Γ/2 = (γ−+2γz)/2. The spectrum for N = 105 is shown in grayscale (arb.
units). (c) Line cuts through (a) as marked by the three arrows in (a) on
a linear scale. (d,e) Steady-state linewidth and frequency shifts in units of
the minimum linewidth ∆νmin = V/N (same legend as (c)).



7.4. Spontaneous emission and dephasing 117

0 10 20tΓ

104

103

102ω
/
∆
ν

m
in

N = 103

0 10 20tΓ

N = 104

0 10 20tΓ

N = 105

0 10 20tΓ

N = 106

0

1
S(t, ω)

Figure 7.4: Time dependence of the frequency shift in the spectrum for
different values of N . The spectrum is normalized to a maximum value
of 1 for each time t. The dashed line is the mean-field prediction of
the frequency. The initial state at t = 0 is the stationary state when
γ− = γz = 0. Parameters as in Fig. 7.3(b) with N specified for each panel.

of Eq. (7.11) (white line). Experimentally, γ+ can be varied through the pump laser
intensity, while the collective coupling V = NCγ−/2 is set by the number of spins N and
the cooperativity C = 4Ω2/(κγ−).

The second consequence of spontaneous emission and dephasing is that the purity
of the undriven spins is no longer conserved; their coherence decays at rate Γ/2 ≡
(γ− + 2γz)/2. As the undriven spins decohere, they become less important as antagonists
to the driven spins. The frequency shift, which arises due to the competition of alignment
and antialignment, consequently decreases. Figure 7.3(b) shows the time evolution of the
frequency ω. In the mean-field limit, it exponentially decays to zero at rate Γ (dashed
line). For finite N , after an initial exponential decay, a nonzero frequency shift remains
in the spectrum in the long-time limit even in the presence of spontaneous emission
and dephasing. The initial frequency is large compared to Γ for typical experimental
parameters [Meiser et al., 2009] and therefore remains observable as a transient in
experiments.

Figure 7.4 shows the time evolution of the frequency shift for different values of N .
For increasing N , the spectrum approaches the mean-field prediction (dashed line). For
N → ∞, the frequency shift vanishes in the long-time limit, consistent with the mean-field
analysis.

To characterize the steady-state lasing, we analyze the dependence of three key
properties of the laser on the fraction of driven spins pd: the laser power, the linewidth,
and the frequency. The spectral properties are obtained by fitting a double-peaked
Lorentzian

A

π

(
∆ν

∆ν2 + (ω − δ)2
+

∆ν

∆ν2 + (ω + δ)2

)
, (7.12)

with amplitude A and linewidth ∆ν, displaced by ±δ, to the spectrum.
The linewidth shown in Fig. 7.3(d) significantly increases as the fraction of driven

spins decreases, revealing a strong spectral broadening caused by the antialignment of
undriven dipoles. Taking for example γ+ = V/2, the linewidth increases by one order
of magnitude for only 3% of undriven spins. While for smaller drive rates, there is less
spectral broadening, the laser power is smaller; see Fig. 7.3(c). Finally, as shown in
Fig. 7.3(e), a frequency shift can occur below a critical value of pd. This regime of nonzero
frequency shifts is highlighted as the hatched region in Fig. 7.3(a). It largely coincides
with the regime of large powers where γ+ ≈ V .
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7.5 Conclusion

In this chapter, we discussed a simple modification to the model of a superradiant laser
that has significant consequences. Introducing a fraction of undriven atomic spins limits
the optimal operation of the laser in three ways: an increased spectral linewidth, a shift
of the lasing frequency, and a reduced power. We explained these effects by identifying
nonreciprocal interactions between driven and undriven atoms. The atoms self-organize
into a collective state, and the nonreciprocal interactions between driven and undriven
atoms result in a dynamical pattern, namely the traveling-wave states.

There are various directions to explore in further studies. First, we have only focused
on a continuous incoherent drive to achieve continuous superradiant lasing. While this
is simple to model theoretically, it presents experimental challenges due to heating and
atom loss; see for example Norcia and Thompson [2016]. Other proposals to achieve
continuous superradiant lasing employ a beam of initially excited atoms that pass through
the cavity [Kazakov and Schumm, 2014; Liu et al., 2020; Tang et al., 2022; Famà et al.,
2024]. If a fraction of those atoms is not excited, similar dynamics as described here may
occur. Furthermore, atoms that have already de-excited might remain in the cavity for
some time, effectively acting as undriven atoms. Second, one can explore distributions of
incoherent drive rates other than the bimodal distribution considered here. For example,
a Gaussian distribution that could result from the intensity profile of a repump laser.
Third, it would be interesting to study the phenomena described in this chapter in the
context of superradiant masers operating at microwave frequencies [Arroo et al., 2021;
Wu et al., 2022]. These are described by the same master equation that we analyzed in
this chapter and should therefore also show the effects described here.

Here, we have shown that the laser’s performance degrades when introducing spins
with the goal to hinder the formation of a coherent state. It is therefore intriguing to
ask whether the interactions and properties of individual quantum constituents can be
engineered in such a way that the resulting collective state corresponds to improved lasing
properties. In other words, can the environment of the atoms be designed so that they
tend to autonomously form a more robust and precise source of coherent light? To explore
this possibility, it may be useful to view the superradiant laser as a self-organizing system
comprising individual constituents, and to build on insights from classical and quantum
synchronization.
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Appendix for Chapter 7

7.A Cumulant expansion and spectrum

To calculate the output power and the spectrum for large but finite N , we use a cumulant
expansion [Kubo, 1962], neglecting third and higher-order correlations. Additionally, we
exploit the permutational invariance of driven and undriven spins respectively, and the
global U(1)-symmetry to set terms like ⟨a⟩ or

〈
a†σ+µ

〉
equal to zero. This leads to a closed

set of eight equations,

d

dt
szd = −γ−(szd + 1)− γ+(s

z
d − 1)− 4Ω Im[⟨a†σ−d ⟩] ,

d

dt
szud = −γ−(szud + 1)− 4Ω Im[⟨a†σ−ud⟩] ,

d

dt

〈
a†a
〉
= −κ

〈
a†a
〉
+ 2Ω

(
Nd Im[

〈
a†σ−d

〉
] +Nud Im[

〈
a†σ−ud

〉
]
)
,

d

dt

〈
a†σ−d

〉
= −(γ+ + Γ + κ)⟨a†σ−d ⟩/2+

+ iΩ

(
(Nd − 1)

〈
σ+d σ

−
d

〉
+

1 + szd
2

+Nud

〈
σ+udσ

−
d

〉
+
〈
a†a
〉
szd

)
,

d

dt

〈
a†σ−ud

〉
= −(Γ + κ)⟨a†σ−ud⟩/2+

+ iΩ

(
(Nud − 1)

〈
σ+udσ

−
ud

〉
+

1 + szud
2

+Nd

〈
σ+d σ

−
ud

〉
+
〈
a†a
〉
szud

)
,

d

dt

〈
σ+d σ

−
d

〉
= −(γ+ + Γ)

〈
σ+d σ

−
d

〉
+ 2Ωszd Im[⟨a†σ−d ⟩] ,

d

dt

〈
σ+udσ

−
ud

〉
= −Γ

〈
σ+udσ

−
ud

〉
+ 2Ωszud Im[⟨a†σ−ud⟩] ,

d

dt

〈
σ+d σ

−
ud

〉
= −(γ+/2 + Γ)

〈
σ+d σ

−
ud

〉
+ iΩ

(
szud

〈
a†σ−d

〉∗
− szd

〈
a†σ−ud

〉)
,

where Γ = γ− + 2γz. We use the Julia package QuantumCumulants.jl [Plankensteiner
et al., 2022] to integrate these equations numerically.

The spectrum is computed within the cumulant-expansion approximation using the
quantum regression theorem [Breuer and Petruccione, 2002]. By factorizing

⟨σzµ(t+ τ)a†(t+ τ)a(t)⟩ ≈ szµ(t+ τ) ⟨a†(t+ τ)a(t)⟩ , (7.13)

the two-time correlations evolve according to

d

dτ
c(t, τ) =M(t+ τ)c(t, τ) , c(t, τ) =

 〈a†(t+ τ)a(t)
〉〈

σ+d (t+ τ)a(t)
〉〈

σ+ud(t+ τ)a(t)
〉
 ,

M(t+ τ) =

 −κ/2 iNdΩ iNudΩ
−iΩszd(t+ τ) −(Γ + γ+)/2 0
−iΩszud(t+ τ) 0 −Γ/2

 .

(7.14)
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In the steady state t → ∞, where szµ obtains a constant value, the matrix M is time
independent, and the steady-state spectrum can be calculated using the Laplace transform,

S(ω) = lim
t→∞

∫ ∞

−∞
dτ
〈
a†(t+ τ)a(t)

〉
eiωτ = 2Re

{[
(iω −M)−1css

]
1

}
. (7.15)

Here, the subscript 1 refers to the first component of the vector, and css = limt→∞ c(t, 0).
The spectrum in Fig. 7.3(b) can be calculated by a discrete Fourier transform of

solutions of Eq. (7.14) in consecutive time intervals. By using that szµ changes at rate
Γ during the transient, which is small compared to the typical frequency ω, we set
szµ(t+ τ) = szµ(t) constant for each time interval and use the Laplace transform at each
time t to approximately calculate the spectrum,

S(t, ω) =

∫ ∞

−∞
dτ
〈
a†(t+ τ)a(t)

〉
eiωτ ≈ 2Re

{[
(iω −M(t)−1c(t, 0)

]
1

}
. (7.16)

7.B Influence of cavity-spin detuning

This appendix discusses the effect of a nonzero detuning between cavity frequency ωc and
spin frequency ωs. The master equation in the laboratory frame is (setting γ− = γz = 0
for simplicity)

ρ̇ = −i[H, ρ] +κD[a]ρ+ γ+

Nd∑
i=1

D[σ+d,i]ρ , H =
ωs

2
Sz +ωca

†a+Ω(a†S−+ aS+) . (7.17)

The collective spin operators are as before S±,z =
∑Nd

i=1 σ
±,z
d,i +

∑Nud
i=1 σ

±,z
ud,i. In the frame

where both spins and cavity rotate with the spin frequency ωs, the Hamiltonian becomes

H = (ωc − ωs)a
†a+Ω(a†S− + aS+) . (7.18)

The cavity-spin detuning ωc − ωs results in a frequency shift of the laser. In the bad-
cavity limit, the frequency shift is smaller than the detuning by a factor of approximately
Γ/κ ∼ 10−3−10−5 and therefore does not limit the stability of a superradiant laser [Bohnet
et al., 2012; Norcia and Thompson, 2016]. Note the qualitative difference between the
frequency shift due to nonzero detuning and the frequency shifts due to nonreciprocal
interactions. A nonzero detuning induces a unique and deterministic frequency shift. The
nonreciprocal interactions, however, result in one of two possible frequency shifts through
spontaneous symmetry breaking.

The influence of the detuning ωc − ωs between cavity and spins on the traveling-wave
states, and correspondingly the frequency shifts, is shown in Fig. 7.5. The detuning
explicitly breaks the symmetry between the two frequencies of the traveling-wave states;
see also Section 6.5.3. Therefore, one of the two traveling-wave states is more likely to
occur, which is indicated by the asymmetry in the peaks, see Fig. 7.5(b). However, for
experimentally relevant values of the detuning, ωc−ωs ≪ κ, the influence of the detuning
on the frequency shifts induced by nonreciprocal interactions is negligible. When the
detuning is comparable to the cavity dissipation rate, the coherent spin-spin interactions
mediated by the cavity result in rich physics beyond the scope of the present work [Norcia
et al., 2018; Muniz et al., 2020; Young et al., 2024].
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Figure 7.5: Influence of detuning ωc − ωs between cavity and spins on the
frequency shift. Parameters are the same as in Fig. 7.2 with pd = 0.8.
(a) Cavity emission spectrum S(ω) (arb. units) as a function of cavity-spin
detuning ωc − ωs. The frequency ω is measured relative to the bare spin
frequency. For negative detuning, ωc −ωs < 0, the same result is obtained
but mirrored at ω = 0. (b) Line cut through (a) at ωc − ωs = 10−3κ on a
linear scale, highlighting the asymmetry in the two peaks.
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Chapter 8

Conclusions and outlook

8.1 Conclusions

We presented models of quantum systems that exhibit synchronization and nonreciprocal
phase transitions. Both of these are self-organization transitions where pairwise interac-
tions give rise to a collectively ordered state without any external control. Synchronization
results in a phase-coherent state; nonreciprocal phase transitions result in dynamical
traveling-wave states. Let us conclude by summarizing the key results and overarching
themes of this thesis.

Nonreciprocal interactions

The concept of nonreciprocal interactions is central to classical active matter but has
remained largely unexplored in quantum physics. We presented a general framework
for engineering antagonistic nonreciprocal interactions in quantum systems using chiral
waveguides. Within this framework, we showed that nonreciprocal phase transitions
can occur in a quantum-optical model of interacting spins. We formulated a suitable
parity-time symmetry at the level of the quantum master equation and established its
correspondence with the symmetry that is spontaneously broken in the thermodynamic
limit. Our results are of fundamental interest as they establish how nonreciprocal
interactions can arise in quantum physics and what their consequences are. These insights
are also practically relevant as they allowed us to explain how the presence of undriven
spins results in nonreciprocal interactions that cause frequency shifts in superradiant
lasers. This finding has implications for the design of superradiant lasers. For example,
in the case of atomic beam lasers, it may be crucial to avoid slow atoms that remain in
the cavity for extended times, taking the role of the undriven spins.

Measurement

We placed a special emphasis on the role of measurement, which generally imparts a
backaction on the system and causes fluctuations. In the context of quantum limit
cycles, we showed that the time evolution under heterodyne detection yields quantum
trajectories that make the similarity between classical and quantum limit cycles apparent.
Furthermore, the current of the photodetector allows one to approximate the degree
of quantum synchronization, connecting previously established theoretical measures of
quantum synchronization with experimentally accessible quantities.

Moreover, the measurement induces symmetry breaking. For quantum limit cycles,
the master equation is invariant under a phase shift; however, the trajectory obtained
through heterodyne detection selects a phase at every point in time. Similarly, quantum
trajectories of traveling-wave states select a chirality, thereby spontaneously breaking
parity-time symmetry. Simultaneously, the continuous time-translation symmetry is
broken, resulting in the time-crystalline state. In both cases, the fluctuations due to the
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measurement restore the symmetry over long timescales in finite-size systems. Phase
diffusion randomly changes the selected phase of the limit cycle, and chirality reversals
restore parity-time symmetry. In the thermodynamic limit, these fluctuations become
effectively suppressed, so that the symmetry remains broken indefinitely.

Classical versus quantum dynamics

In several contexts, we highlighted the analogy between the dynamics of quantum and
classical systems. For example, synchronization of quantum van-der-Pol oscillators or
spins-1/2 resembles synchronization of classical oscillators subject to noise. Furthermore,
the phase transition induced by nonreciprocal interactions among quantum spins-1/2 is
qualitatively the same as that of the nonreciprocal Kuramoto model for classical phase
oscillators. It is an important result to show how these phenomena can occur in models
that obey the laws of quantum mechanics. The formulation within the framework of open
quantum systems enables future studies to explore similar models in which the quantum
character is more pronounced; see also the following outlook section.

The quantum models of this thesis also exhibit differences from classical models. For
instance, we discussed qualitatively unique features in the synchronization of quantum
three-level limit-cycle oscillators. Their quantum nature is significant in a Kuramoto-
like model of synchronization of many coupled oscillators and shapes the dynamics of
the macroscopic ensemble. Furthermore, we emphasized the role of the measurement
backaction. While the measurement backaction in classical systems is usually negligible,
measurement backaction in quantum systems is generally inevitable and influences the
dynamics significantly. In the context of nonreciprocal interactions, we showed that
two types of continuous measurements – homodyne and heterodyne detection – induce
qualitatively different dynamics in traveling-wave states.

Microscopic origins of self-organization

A central theme of this work was to develop an intuitive understanding of the quantum
many-body dynamics. To achieve this, we traced the collective dynamics back to the
pairwise interactions between any two individual constituents. By identifying the “goals” of
individual constituents, we intuitively explained the self-organization into collective states,
like phase-coherent synchronized states or dynamical traveling-wave states. Specifically,
for the spin–1 oscillators, the quantum nature that governs the synchronization of one or
two oscillators also shapes the macroscopic patterns. For the spins (or atomic dipoles) of
the models with nonreciprocal interactions, we identified the competition of alignment
and antialignment that results in traveling-wave states. While our quantitative results are
obtained from numerical simulations and analytical calculations, this physical bottom-up
perspective provides an understanding of why the systems exhibit the rich phenomenology.

8.2 Outlook

Finally, we list connections to other fields as well as possibilities for future work and open
questions.

Finite-range interactions

A natural extension of our work is the study of finite-range interactions instead of global
interactions. Throughout this thesis, we have focused on situations where all constituents
are identically coupled to all others (within one species). Such interactions can be
mediated by a cavity or a freely propagating light mode. Finite-range interactions occur,
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for example, among trapped ions mediated by phonons [Zhu et al., 2006] or the Coulomb
force [Brown et al., 2011; Harlander et al., 2011], as well as among Rydberg atoms in
the form of dipole-dipole interactions [de Léséleuc et al., 2017]. When the coupling is
sufficiently long-range, given a specific dimension, it is to be expected that the phenomena
discussed in this thesis will still occur; for short-range interactions, however, the self-
organization transitions may be absent, and for intermediate-range couplings, further
interesting effects may occur [Defenu et al., 2023]. The numerical analysis of models with
finite-range couplings will be more complex as they do not possess the permutational
invariance of the constituents.

Extensions of nonreciprocal interactions

Another direction to explore are the effects of antagonistic interactions on different quan-
tum systems. We outlined a general framework for engineering antagonistic interactions
between quantum systems via opposing chiral waveguides that include a phase shift. In
this context, we studied spin models where each spin is incoherently driven. Kehrer and
Bruder [2025] applied the framework to two coupled quantum van-der-Pol oscillators. In
both cases, the quantum systems are driven out of equilibrium, and in this sense made
active, by incoherent processes. These incoherent processes also result in large rates of
decoherence. It will be interesting to apply the framework to quantum systems with
smaller rates of decoherence. For example, a fully collective model of a superradiant
laser that does not rely on incoherent repumping has been recently suggested by Reilly
et al. [2025]. Similarly, the nonreciprocal Dicke model [Chiacchio and Nunnenkamp,
2019; Buča and Jaksch, 2019; Chiacchio et al., 2023; Jachinowski and Littlewood, 2025] is
fully coherent when considering the effective spin model. In these models with less local
dissipation, it will be interesting to address questions regarding the effect of antagonistic
nonreciprocal interactions on quantum correlations. One may also explore nonreciprocity
in multilevel systems, where there are dark and subradiant states that can be used for
entanglement generation; see for example [Piñeiro Orioli et al., 2022; Finger et al., 2024]

Furthermore, the framework to engineer antagonistic interactions readily extends to
networks of more than two species. These networks feature a rich phase diagram and novel
dynamics in classical systems [Kehrer and Bruder, 2025; Weis and Hanai, 2025]. There
can be dynamical frustration due to antagonistic interactions between two subsystems
and geometric frustration among three or more subsystems. This enables the exploration
of similarities and the interplay between dynamical and geometric frustration in quantum
systems [Hanai, 2024].

Applications

While we have demonstrated practical consequences of nonreciprocity for superradiant
lasers, there are other applications of synchronization and nonreciprocal interactions that
remain to be explored. For one, limit cycles and synchronization could find relevance in
quantum sensing. Steps in this direction have been taken for single limit-cycle oscilla-
tors [Fernández-Lorenzo and Porras, 2017; Dutta and Cooper, 2019; Vaidya et al., 2025].
In coupled limit-cycle oscillators, the self-organization transition to a phase-coherent state
potentially offers advantages in sensing due to the robustness of the phase stabilized
by the interactions. Additionally, the synchronization transition and the exceptional
points at the nonreciprocal phase transition could be exploited for sensing, building on
the enhancement of sensing close to phase transitions [Wiersig, 2020] and exceptional
points [Sarkar et al., 2025].

More speculatively, it is intriguing to consider self-organization as an advantageous
way for the formation of complex structures in quantum many-body systems. Since
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self-organization is often robust and scalable, it has advantages compared with structure
formation by external control, which is prone to errors and difficult to apply to an
increasing number of constituents. Given the high control of driven-dissipative quantum
many-body systems in current experimental settings, one could aim to engineer the
environment and the interactions such that each constituent has the “goal” of forming
the desired structure. As a result, the ensemble of constituents may then self-organize
into the desired collective state. A natural case, where this concept of engineered self-
organization may apply, is the generation of squeezed states of spin ensembles, which
can be used for sensing beyond the standard shot-noise limit [Pezzè et al., 2018]. An
example of this is presented in Krešić et al. [2023]. Potentially, self-organization akin to
synchronization offers a robust and scalable path for the formation of squeezing. More
broadly, engineered self-organization could be relevant in the spontaneous occurrence of
algorithms in quantum machine learning [Biamonte et al., 2017] or emergent phenomena in
quantum materials [Tokura et al., 2017]. An intuitive understanding of how the collective
states occur based on analyzing the microscopic interactions, as developed in this thesis
in the contexts of synchronization and nonreciprocal phase transitions, may help design
quantum systems where self-organization results in useful many-body states.
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