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We report an experimental demonstration of quantum synchronization. This is achieved by performing a digital
simulation of a single spin-1 limit-cycle oscillator on the quantum computers of the IBM Q system. Applying
an external signal to the oscillator, we verify typical features of quantum synchronization and demonstrate an
interference-based quantum synchronization blockade. Our results show that state-of-the-art noisy intermediate-
scale quantum computers are powerful enough to implement realistic dissipative quantum systems. Finally, we
discuss limitations of current quantum hardware, and we define the requirements necessary to investigate more
complex problems.

DOI: 10.1103/PhysRevResearch.2.023026

I. INTRODUCTION

Synchronization, i.e., the adjustment of the rhythm of a
self-sustained oscillation to a weak perturbation, is a universal
feature of many complex dynamical systems [1]. Classical
synchronization has been demonstrated in a variety of very
different setups ranging from electrical circuits to biological
neuron systems [2–4]. Several proposals have been made to
study the quantum effects of synchronization in supercon-
ducting circuits [5,6], optomechanical systems [7,8], trapped
ions [9,10], and nanomechanical oscillators [11]. However, all
the experimental demonstrations of synchronization reported
to date on these platforms were operating in the classical
regime [12–21] because of the challenge of sustaining a highly
nonlinear oscillator in the quantum regime.

Here, we report an experimental demonstration of quan-
tum synchronization. Our quantum limit-cycle oscillator is
implemented in a single spin-1 system, which was recently
introduced as the smallest possible system that can be
synchronized [22]. We use two qubits of a quantum computer
to implement the desired spin-1 system while the remaining
qubits play the role of the environment sustaining the oscil-
lation. The advantage of this approach is that the nonlinear
dissipation required to study quantum synchronization cor-
responds to easily engineered single-qubit relaxation, which
enables the study of nonlinear oscillators in the quantum
regime. With this mapping in place, we perform a digital
quantum simulation [23,24] of spin-1 synchronization dynam-
ics on the publicly available few-qubit quantum computers
at the IBM Q system [25]. More specifically, we program
the universal quantum computer such that it approximates the
time evolution of the spin-1 system of interest, and we extract
the state of the spin-1 system by measuring the two qubits. In
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this sense, the two qubits encoding the spin-1 system represent
an experimental realization of a spin-1 limit-cycle oscillator.

The ongoing efforts to build a quantum computer have
resulted in noisy intermediate-scale quantum (NISQ) devices,
which are constantly improving in terms of decoherence and
relaxation times, gate fidelities, and readout fidelities [26].
NISQ devices have become a highly relevant platform for
simulating realistic physical problems, and they have already
been used to find quantum ground states [27–29] and to
simulate closed-system quantum many-body dynamics [30].
Moreover, it has been shown that they can be used in principle
to simulate the dynamics of dissipative quantum systems
[31–34]. Our results demonstrate that state-of-the-art NISQ
devices are indeed able to study complex dissipative quantum
systems that were not realized experimentally before.

II. SYSTEM AND MAPPING

We consider the synchronization of a single spin-1 limit-
cycle oscillator to an external signal of strength ε that is
described by a Hamiltonian Ĥsignal. The dynamics in a frame
rotating at the signal frequency and under a rotating wave
approximation is given by the quantum master equation (h̄ =
1) [35]

d

dt
ρ̂ = −i[�Ŝz + εĤsignal, ρ̂]

+ �−1,0D[Ŝ+Ŝz]ρ̂ + �1,0D[Ŝ−Ŝz]ρ̂. (1)

Here, Ŝz is the spin-1 operator along the quantization axis
and � = ω0 − ωsignal is the detuning between the spin pre-
cession frequency ω0 and the signal frequency ωsignal. By
Ŝ± we denote the spin raising and lowering operators,
�−1,0 and �1,0 are the decay rates toward the state |0〉,
and D[Ô]ρ̂ = Ôρ̂Ô† − 1

2 {Ô†Ô, ρ̂} is a Lindblad dissipator.
The signal Hamiltonian is given by Ĥsignal = j0,1ŜzŜ+/

√
2 −

j0,−1ŜzŜ−/
√

2 + j−1,1Ŝ2
+/2 + H.c., where the complex coef-

ficients jk,l determine the relative amplitude and phase of
the three possible transitions in a spin-1 system, as sketched
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FIG. 1. (a) Energy level diagram of a spin-1 system hosting a limit-cycle oscillator. The limit cycle is stabilized by dissipative transitions
toward the state |0〉 at rates �±1,0 and is subjected to an external signal that drives transitions jk,l between the spin-1 states. (b) Quantum-circuit
implementation of the synchronization dynamics for a time step dt , obtained by a Suzuki-Trotter decomposition. The gates shown in white
correspond to the free evolution of the oscillator while the other circuit components correspond to the transitions of the same color in (a).
Here, Rz(θ ) = U3(0, 0, θ ) is the phase gate, and the signals j0,±1 are mapped onto controlled gates U±1,0(t ) = U3(−2ε| j0,±1|t, arg( j0,±1) −
3π

2 , − arg( j0,±1) − π

2 ). The U3(θ, ϕ, λ) gate is a basis gate of the IBM quantum computer, defined in Eq. (3). Open (solid) circles indicate a
controlled gate conditioned on the control qubit qk being in |0〉qk

(|1〉qk
); see Eq. (2). (c) Trotter step of the j1,−1 signal using three controlled

U3(θ, ϕ, λ) gates, where τ = arg( j−1,1). (d) Implementation of relaxation dynamics with θk (t ) = 2 arcsin(
√

�k,0t ). Note that the two dissipative
steps in (b) could also be applied sequentially to a single ancillary qubit.

in Fig. 1(a). For instance, the combination j0,1 = j∗0,−1 and
j−1,1 = 0 corresponds to a semiclassical signal, while j0,1 =
j0,−1 = 0 and j−1,1 �= 0 corresponds to a squeezing signal.

To simulate a quantum system on a quantum computer, its
Hilbert space Hsys needs to be mapped onto the logical Hilbert
space Hqc of the quantum computer. We choose to represent
the three spin-1 states in terms of the following two-qubit
states:

|+1〉 = |1〉q1 ⊗ |0〉q0 , |0〉 = |0〉q1 ⊗ |0〉q0 ,

|−1〉 = |0〉q1 ⊗ |1〉q0 . (2)

Note that this encoding gives rise to a fourth state |X 〉 =
|1〉q1

⊗ |1〉q0
outside the spin-1 Hilbert space, which needs to

be isolated from the other states.
Next, the system’s continuous dynamics (1) has to be

translated to the level of logical qubits, to which we can only
apply a finite set of discrete unitary gates. The exact time
evolution is approximated by a series of many transformations
that propagate the system’s state for a small time step dt .
For the unitary part of Eq. (1), this is achieved by means of a
Suzuki-Trotter decomposition [23]. Simulating the remaining
nonunitary dissipative dynamics may seem challenging given
that we can only apply unitary gates. However, this task can be
achieved by simulating discrete-time unitary dynamics on an
extended system where ancillary degrees of freedom mimic
a dissipative environment. In fact, it has been shown that this
environment can even be modeled by a single resettable qubit
[31].

In our case, a single Trotter time step dt that approximates
the dynamics (1) up to corrections of the order dt3 is shown
in Figs. 1(b)–1(d). This is one of our main results. The signal
Hamiltonian Ĥsignal is implemented by controlled two-qubit
rotations such that the undesired state |X 〉 remains decoupled
from the spin-1 system. Our mapping (2) has the benefit
that the limit-cycle state |0〉 corresponds to the ground state
|0〉q1

⊗ |0〉q0
of the qubits. Thus, the dissipative stabilization

of the limit cycle translates to energy relaxation processes
on the two qubits q0 and q1. This allows us to implement the

required nonlinear dissipation in the quantum regime with
minimal complexity: The nonunitary circuit Dk performing
a measurement and subsequent reset of the ancilla qubit,
shown in Fig. 1(d), implements single-qubit relaxation with a
tunable relaxation rate �k,0 [23]. As discussed in Appendix A,
we are effectively implementing a photon-counting quantum-
trajectory simulation of the quantum master equation (1)
granted that the condition �k,0dt � 1 holds. Each experimen-
tal run of the circuit calculates a random quantum trajectory
of a pure state, and the dynamics of ρ̂ can be recovered by an
ensemble average over many quantum trajectories [36].

III. METHODS

The data presented in this article have been collected
on the publicly accessible NISQ computer IBMQX2 between
September 30 and October 7, 2019. This quantum computer
provides five qubits in a star-shaped geometry where CNOT

operations can be performed between the central qubit 2 and
all other qubits 0, 1, 3, and 4 [37]. Additional CNOT operations
are provided between the qubits 0 and 1 as well as 3 and 4,
which we do not use, however. The maximum CNOT error
rate is below 2 % and the central qubit 2 has a T2 time of
approximately 70 μs.

We used the PYTHON API QISKIT [38] to define quantum
circuits, to submit them to the quantum computer, and to
evaluate the measurement results returned from the quantum
computer. Before submission, each circuit has been mapped
(transpiled) to a set of basis gates of the IBM devices, which
are a two-qubit CNOT gate, the single-qubit U3(θ, ϕ, λ) gate
defined by

U3|0〉q j = cos
θ

2
|0〉q j + eiϕ sin

θ

2
|1〉q j ,

U3|1〉q j = −eiλ sin
θ

2
|0〉q j + eiλ+iϕ cos

θ

2
|1〉q j , (3)

and the single-qubit gates U2(ϕ, λ) = U3(π/2, ϕ, λ) and
U1(λ) = U3(0, 0, λ). The final state has been reconstructed
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FIG. 2. (a) Time evolution of the state |0〉 under the semiclassical signal components j0,±1 (markers) on a noisy intermediate-scale quantum
device (NISQ) and ideal noise-free time evolution (lines). The upper plot is obtained for controlled U±1,0 gates as shown in the circuit diagram
in Fig. 1(b) for εdt = 0.1, j−1,0 = 0.5 × e−π i/6, j1,0 = 1 × e5π i/6, j−1,1 = 0, and �/ε = 0. In the lower plot, uncontrolled single-qubit U±1,0

gates were used with the same parameters. The data have been collected on the IBMQX2 computer on qubits q0 = 4 and q1 = 2. (b) Dissipative
stabilization of the limit-cycle state |0〉 if no signal is applied, j±1,0 = j−1,1 = 0, on a NISQ device (markers) and theoretical expectation taking
into account noise (lines). The dynamics of the coherences in the inset is illustrated by the thin connecting lines. The gray circle defines the
level of the noise due to the dissipative limit-cycle stabilization. Parameters: �1,0dt = 0.2, �/�1,0 = 0, ε/�1,0 = 0.25, and �−1,0/�1,0 = 1.
Data have been collected on IBMQX2 on qubits q0 = 2 and q1 = 2 in sequential runs. (c) Demonstration of the onset of synchronization if
both the signal and the dissipative stabilization of the limit-cycle state are switched on, j−1,0 = 1 × e2π i/6, j1,0 = 2 × e−π i/6, and j−1,1 = 0.
The signal builds up coherences beyond the noise level of the limit cycle. The data have been averaged over three runs, each having 8192
repetitions per circuit. The corresponding error bars are smaller than the plot markers.

by a quantum state tomography using the built-in QISKIT

functions implementing Ref. [39]. Each quantum circuit has
been executed with the maximum possible number of 8192
repetitions.

The queuing system of the quantum computer allows one
to group several quantum circuits to batch jobs, which are
treated as a single task such that all quantum circuits in the
batch job are executed successively. We grouped quantum
circuits generating the time evolution for different numbers of
time steps or for scans of different values of a parameter. At
the beginning of each batch job, two calibration circuits have
been added to measure the readout error of the qubits q0 and
q1. The readout error of the central qubit 2 is approximately
1% [25]. Based on these calibration results, the measurement
errors of all subsequent measurements have been mitigated
using QISKIT methods. To validate the stability of the error
mitigation procedure and to rule out drifts of the device
parameters during data collection, each batch job has been
submitted three times. The corresponding standard deviation
is indicated by the error bars in the plots, which are smaller
than the plot markers. Note that these error bars capture only
statistical measurement errors and the short-term stability of
the device parameters on a timescale of hours. Since the
parameters of the quantum computer vary on a timescale
of days, the quantum computers are recalibrated on a daily
basis. Therefore, numerical changes of the results obtained for
small signal strength ε → 0 are expected if data obtained on
different days are compared.

IV. DEVICE CHARACTERIZATION

By iteratively applying N Trotter steps on an ideal quantum
computer, an initial state is evolved to a final state at time
T = Ndt . In a first step, we assess whether this is the case
on an actual NISQ device by testing the elements of the

decomposition shown in Figs. 1(b)–1(d). We also discuss the
restrictions imposed by the limited capabilities of state-of-the-
art quantum computers.

Figure 2(a) shows the time evolution of the initial state
|0〉 under the signal components j0,±1 on a NISQ device
and the corresponding ideal noise-free result. Simulations of
the exact dynamics, given by Eq. (1), have been performed
using the PYTHON package QUTIP [40]. Controlled two-qubit
gates are found to induce strong depolarization errors that
evolve the initial state |0〉 to a completely mixed state after
only a few Trotter steps. This result is also confirmed by
simulations taking into account a noise model of the IBM
quantum computers provided in the PYTHON API QISKIT.
Given that already the signal component suffers from severe
depolarization errors, it is not feasible to perform the time
evolution as shown in Figs. 1(b)–1(d) on a NISQ device.
However, in the synchronization regime, most of the pop-
ulation remains in the limit-cycle state |0〉. Therefore, it is
possible to circumvent the problem of depolarizing errors by
considering a modified circuit consisting only of uncontrolled
single-qubit U±1,0 rotations. This is discussed in more detail
in the next section. The single-qubit-rotation error rates on
the IBM quantum computers are about an order of magnitude
smaller than the two-qubit controlled-NOT (CNOT) error rate
[25]. Consequently, the uncontrolled implementation of the
signal using only single-qubit rotations reproduces the ideal
noise-free result almost perfectly over a much larger range of
Trotter steps, as shown in Fig. 2(a).

Figure 2(b) demonstrates the dissipative stabilization of the
limit cycle state |0〉 if no signal is applied, j±1,0 = j1,−1 = 0.
Once more, the controlled two-qubit operations contained in
the operations Dk induce a decay of the state |0〉 toward a
completely mixed state. Surprisingly, the noise induced by the
dissipative stabilization is such that the limit-cycle state shows
a small amount of coherence. This effect is not captured by the
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simple noise model provided in QISKIT. The corresponding
results demonstrating that the initial states |±1〉 evolve to
the limit-cycle state |0〉 under the action of the dissipative
terms Dk are given in Appendix B. There, we also discuss an
alternative implementation of the dissipative stabilization that
requires fewer two-qubit gates and can be used to minimize
noise in the coherences.

In addition to the strong depolarizing effect of two-qubit
gates, another limitation of IBM’s current quantum computers
is that they do not allow measurement and reset operations of
qubits in the middle of a quantum circuit. This means that we
must use a new ancillary qubit in each time step and measure
all of them at the end of the time evolution. Therefore, the
maximum number of Trotter steps we can apply is bounded
by the number of available ancillary qubits on a quantum
computer. Moreover, since SWAP operations are composed of
three CNOT gates and suffer strong depolarizing errors, we
can only use qubits that are directly connected to the system
qubit q j to be relaxed, which limits us to at most four time
steps. At the moment, this is the most severe limitation for the
simulation of dissipative quantum systems on the device. We
expect that it will be lifted in the near future.

V. DEALING WITH HARDWARE CONSTRAINTS

The paradigm of quantum synchronization allows us to
adapt the quantum circuit shown in Fig. 1 to the limitations
of IBM’s quantum computers. Specifically, the signal
strength is linearly proportional to a small dimensionless
parameter 0 � η � 1 that ensures that Ĥsignal is only a
small perturbation to the limit-cycle state [35]. Thus, the
amplitudes of the coherences ρ̂±1,0 are of order η and the
populations of the states |±1〉 are of order η2. That is, they are
strongly suppressed as compared to the limit-cycle state |0〉
having a population of O(1). Under these conditions, we can
replace the controlled two-qubit gates U±1,0 by uncontrolled
single-qubit rotations. In principle, the signal will now build
up coherences ρ̂k,X between the spin-1 states and the state
|X 〉, and it will transfer population to the state |X 〉. However,
both effects can be safely ignored, in particular on a noisy
system, because the coherences ρ̂k,X and the population ρ̂X,X

are only of order η3 and η4, respectively. Moreover, since the
relaxation mechanism Dk takes the state |X 〉 back to |±1〉,
there is no risk to trap population in |X 〉. Plots verifying
that the coherences ρ̂k,X are well below the limit-cycle noise
threshold are shown in Appendix B.

Having replaced controlled rotations by uncontrolled ro-
tations, if we additionally restrict ourselves to semiclassical
signals, i.e., j−1,1 = 0, the entire unitary part of the time evo-
lution (1) can be simulated using only single-qubit rotations.
The qubits q0 and q1 can now be independently assigned to
physical qubits of the quantum computer, which allows us to
evolve the qubits q0 and q1 sequentially in two consecutive
runs on the five-qubit IBMQX2 quantum computer. The full
spin-1 density matrix is reconstructed from quantum state
tomographies of the qubits q0 and q1 at the end of each time
evolution.

Given the fixed connectivity and SWAP fidelities of IBM’s
current quantum computers, the limit on the available Trotter
steps imposed by the device connectivity cannot be evaded.

As a consequence, quantum simulation of the steady-state so-
lution of Eq. (1) is out of reach, but we are able to demonstrate
the transient buildup of synchronization, as shown in Fig. 2(c).

VI. RESULTS

We now demonstrate typical features of quantum synchro-
nization on the IBM Q system [25]. Figure 3(a) shows the
phase distribution of the limit-cycle oscillator, calculated from
the experimentally obtained density matrix according to the
analytical formula [35]

S(ϕ) = 3

8
√

2
|ρ̂1,0 + ρ̂0,−1| cos[ϕ + arg(ρ̂1,0 + ρ̂0,−1)]

+ 1

2π
|ρ̂1,−1| cos[2ϕ + arg(ρ̂1,−1)], (4)

as a function of the signal detuning. The dashed black line
indicates the expected position of the peak of S(ϕ) according
to Eq. (1). The small differences in the positions of the
maximum stem from a detuning dependence of the limit-
cycle stabilization mechanism due to device imperfections.
Figure 3(b) confirms that the magnitude of the coherences
between the spin eigenstates grows linearly with the over-
all signal strength ε, whereas the populations change only
quadratically in ε. Therefore, the applied signal perturbs the
limit-cycle state only weakly, and we operate in the regime of
synchronization. The buildup of the coherence ρ̂−1,1 is due to
higher-order effects and scales proportional to ε2. Finally, a
global phase applied to the signals, j±1,0 → eiχ j±1,0, rotates
the phase of the coherences accordingly as demonstrated in
the upper panel of Fig. 3(c). By rotating only the phase
of one of the signal components, i.e., j−1,0 → eiχ j−1,0 but
j1,0 = const, the coherences ρ̂1,0 and ρ̂0,−1 in Eq. (4) can
be tuned to interfere destructively, which manifests itself in
an interference-based quantum synchronization blockade [35]
and is demonstrated in the lower panel of Fig. 3(c). This
result is an experimental demonstration of quantum effects in
synchronization.

VII. CONCLUSION

Understanding dissipative quantum systems is of high rel-
evance for quantum sensing [41], quantum information pro-
cessing [42], and quantum state preparation [43]. Simulating
dissipative systems is much harder than simulating a compara-
ble closed system since one has to account for environmental
degrees of freedom. For instance, even for a moderate network
size of approximately 20 limit-cycle oscillators, classical
simulation approaches will fail. Our results demonstrate that
state-of-the-art NISQ devices enable the study of realistic
dissipative quantum systems. However, they also reveal that
known approaches to simulate dissipative quantum systems
[31–34] face obstacles when applied to more complex dissi-
pative quantum systems, since (i) the two-qubit gate fidelities
[37] are at least an order of magnitude too low, (ii) missing
qubit reset operations complicate the quantum circuit, and (iii)
the effective connectivity of the device is too low. In a network
of dissipative quantum systems, exchange interactions built
out of controlled gates, such as the U1,−1 gate, will become
indispensable.
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(a) (b) (c)

FIG. 3. (a) Phase distribution S(ϕ) of the spin-1 limit-cycle oscillator as a function of the detuning � between its natural frequency and the
signal frequency after N = 3 time steps. The dashed black line indicates the theoretical expectation of the position of the maximum of S(ϕ),
obtained by combining Eqs. (1) and (4). Parameters are �−1,0/�1,0 = 1, �1,0dt = 0.2, ε/�1,0 = 0.25, j−1,0 = 2 × e2π i/6, j1,0 = 2 × e−π i/6, and
j−1,1 = 0. (b) Populations and coherences as a function of the signal strength ε for �/�1,0 = 0. The gray background indicates the noise level
of the coherences introduced in Fig. 2(b). (c) Upper panel: Phase of the coherences if the overall phase χ of the signals, j±1,0eiχ , is varied
for �/�1,0 = 0 and ε/�1,0 = 0.25. Lower panel: Demonstration of an interference-based quantum synchronization blockade if the phase of
only one of the signals is varied, j−1,0 = eiχ × 2 × e−2π i/6 and j1,0 = 2 × e−2π i/6 = const. Data points are the result obtained on a NISQ
device, the solid line corresponds to a simulation taking into account noise, and the dashed line describes the theory result. Parameters are
�−1,0/�1,0 = 1.25, �1,0dt = 0.2, ε/�1,0 = 0.25, and j−1,1 = 0. All data of this figure have been collected on the IBMQX2 computer on qubits
q0 = 2 and q1 = 2 in sequential runs.

Despite these hardware limitations, we were able to ex-
perimentally demonstrate the synchronization of a quantum
limit-cycle oscillator by a digital quantum simulation on the
IBM Q system. We observed a purely quantum effect in
synchronization, namely a quantum interference-based syn-
chronization blockade. Thus state-of-the-art NISQ computers
are a useful tool to study simple realistic dissipative quantum
systems, and our results will provide a guideline for the
development of new quantum computers and novel algorithms
enabling the study of dissipative quantum systems on current
hardware.

Note added: Recently, we became aware of Ref. [44],
which studies quantum synchronization effects in an ensemble
of spin-1 87Rb atoms.
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APPENDIX A: IMPLEMENTING SINGLE-QUBIT
RELAXATION

As discussed in Sec. II, our state representation (2) is
chosen such that the dissipative stabilization of the limit-cycle
state |0〉 in Eq. (1) translates to a relaxation of the logical
qubits toward the joint ground state |0〉q1

⊗ |0〉q0
. In principle,

one could take advantage of the natural energy relaxation
in the quantum computer to stabilize the limit cycle at the
natural relaxation rate �rel. However, this is not sufficient if
we want to study synchronization effects for the following
reason. An external signal Ĥsignal creates coherences between
the spin-1 states at a certain rate �signal, which must be smaller
than the rate �rel at which the limit cycle is stabilized to
satisfy the paradigm of synchronization [35]. On a physical
quantum computer, noise will decrease the magnitude of the
coherences at a rate �dec. Hence, in order to allow us to
observe synchronization, the signal must overcome this de-
coherence, �signal > �dec. However, this is incompatible with
the requirement �rel > �signal since decoherence is typically
stronger than energy relaxation, �dec > �relax. Therefore, to
study synchronization on a physical quantum computer, the
natural energy relaxation rate �rel must be artificially in-
creased.

This can be achieved by the following circuit, also shown
in Fig. 1(d):

(A1)
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(a) (b) (c)

FIG. 5. Time evolution of the populations (top row) and the coherences (bottom row) if only the dissipative stabilization mechanism of the
limit cycle is switched on. The initial state is (a) |+1〉, (b) |−1〉, and (c) |X 〉. Parameters are the same as in Fig. 2(b).

This circuit maps an initial state |ψ0〉q ⊗ |0〉a = (α|0〉q +
β|1〉q) ⊗ |0〉a to the state[

α|0〉q + β cos

(
θ

2

)
|1〉q

]
⊗ |0〉a + β sin

(
θ

2

)
|0〉q ⊗ |1〉a

immediately before the measurement. If we set sin2(θ/2) =
�dt � 1, the measurement projects the state of qubit q to
|ψdt 〉|1 = |0〉q at a probability �|β|2dt , or to

|ψdt 〉|0 = α

(
1 + �

2
|β|2dt

)
|0〉q

+β

(
1 − �

2
dt + �

2
|β|2dt

)
|1〉q + O(dt2)

at a probability 1 − �|β|2dt . This is precisely the evolution
of the state vector |ψ〉 in a stochastic Schrödinger equation of
the form

d|ψ〉 =
[
−i

(
−i

�

2
σ−σ+

)
+ �

2
〈ψ |σ−σ+|ψ〉

]
|ψ〉dt

+
[

σ+|ψ〉√〈ψ |σ−σ+|ψ〉 − |ψ〉
]

dN, (A2)

where dN ∈ {0, 1} is a stochastic Poissonian increment
with expectation value E (dN ) = �〈ψ |σ−σ+|ψ〉dt = |β|2�dt
[36]. The unconditional quantum master equation for the
density matrix ρ̂ = E [|ψ〉〈ψ |] corresponding to Eq. (A2)
describes single-qubit relaxation,

d

dt
ρ̂ = �D[σ̂+]ρ̂. (A3)

Note that we are using the quantum-information definition of
the single-qubit basis states, i.e., σ̂z|0〉 = +|0〉 and σ̂z|1〉 =
−|1〉. Therefore, Eq. (A3) actually describes relaxation since
σ̂+|1〉 = |0〉.

Thus, a measurement result of 1 on the ancillary qubit a
represents the release of an excitation from the qubit q into
the environment and resets the qubit q to its ground state.

A controlled unitary gate is implemented by at least two
CNOT operations [45,46]. Thus, the circuit given above re-
quires at least three CNOT operations. An alternative circuit
that performs exactly the same transformation of the initial
state |ψ0〉q ⊗ |0〉a, but requires only two CNOT gates, is the
following:

(A4)

Despite the fact that both circuits ideally perform the same transformation of an initial state |ψ0〉q ⊗ |0〉a, they will perform
differently on a NISQ device. The parameters of the quantum computer fluctuate in time and are recalibrated once a day.
Therefore, on each day we choose the circuit that induces the fewest coherences in the limit-cycle state for the given gate
errors.
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APPENDIX B: DISSIPATIVE LIMIT-CYCLE
STABILIZATION

Here, we provide additional information on the dissipa-
tive stabilization of the limit cycle. Figure 4 supplements
Figs. 2(b) and 2(c) and shows the coherences ρ̂k,X between
the spin-1 states and the surplus state |X 〉. As discussed in
Sec. IV, the dissipative stabilization of the limit cycle by
the quantum circuits (A1) and (A4) induces a small amount
of coherence between the spin-1 states on an actual NISQ
computer. The amplitude of this noise is represented by the
gray circle. Figure 4(a) shows that the coherences ρ̂k,X of
the limit-cycle state are much smaller than the noise level,
i.e., the state |X 〉 is indeed well decoupled from the spin-1
subspace.

If an external signal is applied to the limit-cycle oscillator,
ε > 0, coherences between the spin-1 states and the state

|X 〉 are built up. These nonzero coherences arise because
we use a simplified version of the quantum circuit shown in
Fig. 1(b). As discussed in Sec. V, we approximated the time
evolution of the signal by uncontrolled single-qubit rotations.
Figure 4(b) justifies this simplification because the coherences
ρ̂k,X remain well below the noise amplitude of the limit-
cycle coherences, i.e., they represent negligible higher-order
corrections to the quantum synchronization dynamics.

Finally, Fig. 5 shows the evolution of the populations and
coherences under the dissipative time evolution if an initial
state different from |0〉 is chosen. These data confirm that the
dissipative stabilization mechanism given by Eqs. (A1) and
(A4) transfers population from the initial state to the state
|0〉. The coherences stay below the noise level of the limit
cycle except for transient dynamics associated with the state
transfer.
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