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We develop an analytical framework to study the synchronization of a quantum self-sustained oscillator to
an external signal. Our unified description allows us to identify the resource on which quantum synchronization
relies, and to compare quantitatively the synchronization behavior of different limit cycles and signals. We focus
on the most elementary quantum system that is able to host a self-sustained oscillation, namely, a single spin 1.
Despite the spin having no classical analog, we first show that it can realize the van der Pol limit cycle deep
in the quantum regime, which allows us to provide an analytical understanding to recently reported numerical
results. Moving on to the equatorial limit cycle, we then reveal the existence of an interference-based quantum
synchronization blockade and extend the classical Arnold tongue to a snakelike split tongue. Finally, we derive
the maximum synchronization that can be achieved in the spin-1 system, and construct a limit cycle that reaches
this fundamental limit asymptotically.
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I. INTRODUCTION

Since the first observation reported by Huygens four cen-
turies ago [1], synchronization [2] has provided a universal
framework to capture features shared by very different com-
plex systems, such as chaotic electronic circuits and biological
neuron networks [3–6]. The essence of synchronization is the
ability of a self-sustained oscillator to adjust its rhythm when
subjected to a weak perturbation.

Recently, significant progress has been made in under-
standing whether quantum systems could synchronize as well.
In particular, the van der Pol oscillator, a classic self-sustained
oscillator extensively used in biology [7–10], has been inves-
tigated in the quantum regime of a few excitations [11,12],
demonstrating that synchronization to a semiclassical signal
survives in this limit despite the inevitable presence of quan-
tum noise. Since then, this system has been used to probe the
features of quantum synchronization [13], such as the role of
the number-phase uncertainty [14] or the exciting possibility
to enhance synchronization by applying a squeezing signal
[15]. Yet, the infinite-dimensional Hilbert space combined
with the intrinsic nonlinear and dissipative dynamics have
limited studies to numerical explorations of the parameter
space, usually guided by an analytical description of the
classical limit.

Addressing this challenge of understanding quantum syn-
chronization beyond numerics, an elementary unit, a spin 1,
has recently been identified as the smallest quantum system
that can be synchronized [16]. Its finite Hilbert space of di-
mension 3 has already proved useful to clarify analytically the
relation between entanglement and quantum synchronization
[17]. Here, we consider a spin 1 subjected to an external signal
and aim to analytically understand the resources on which
quantum synchronization relies, the role of quantum effects,
and by which means synchronization can reach the fundamen-
tal limit imposed by the laws of quantum mechanics.

To put the spin-1 platform on solid grounds, the first
question we address is whether this minimal system with no

classical analog is actually complex enough to capture all the
features of quantum synchronization that appear in classically
inspired systems like the van der Pol oscillator. We answer this
question by bridging the gap between the two architectures,
demonstrating that a van der Pol oscillator operating deep in
the quantum regime can be represented in the spin-1 platform,
even though the spin phase space lives on a sphere and does
not correspond to a position-momentum representation. This
result allows us to connect with previous numerical findings
obtained on a harmonic-oscillator platform, and to further
improve on them thanks to the analytical accessibility of
the spin-1 system. In particular, we identify the coherences
between energy levels as the resource for quantum synchro-
nization and we find that while squeezing does improve the
phase locking of a van der Pol limit cycle, an even better per-
formance can be achieved by additionally modifying the semi-
classical component of the signal. We prove that this signal
yields the optimal performance for a van der Pol limit cycle.

We then move on to the equatorial limit cycle which was
originally used to demonstrate phase locking to a semiclas-
sical signal [16]. Despite being insensitive to squeezing, this
pure-state limit cycle is shown to outperform the optimally
driven van der Pol oscillator, highlighting the complex in-
terplay between the different quantum resources. This un-
derstanding leads us to discover a quantum synchronization
blockade based on destructive interference between coher-
ences. Finally, we take full advantage of the spin-1 Hilbert
space and identify the maximum synchronization that can
be achieved without imposing any limit cycle nor a specific
signal form. This fundamental limit is shown to be an asymp-
totically strict bound that requires (i) a statistical mixture of
energy eigenstates in the limit cycle, i.e., a larger amplitude
uncertainty than that of a pure state, and (ii) a breaking of
the symmetry between the extremal spin eigenstates. We note
that the related question of optimizing the signal to maximize
the synchronization of a noisy classical limit cycle is also a
subject of research in classical nonlinear dynamics [18].
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This article is structured as follows. In Sec. II we develop
a consistent method to formalize how large the signal strength
can be without becoming comparable to the stabilization of
the limit cycle. This method prepares the ground to quantita-
tively compare the synchronization behavior of different limit-
cycle oscillators. Aside from discarding the simple tracking
of the energy as an indicator of the limit cycle’s integrity,
our method allows to extend the notion of an Arnold tongue
beyond the usual range, revealing a snakelike tongue, which
is discussed in Sec. III. In Secs. IV and V we investigate
the spin-1 implementations of the van der Pol oscillator and
of the equatorial limit cycle, respectively. Interference-based
quantum synchronization blockade is discussed in Sec. VI.
The bound on maximum synchronization for a spin-1 system
is derived in Sec. VII. We discuss the prospects of an exper-
imental observation of quantum synchronization in Sec. VIII
and conclude in Sec. IX.

II. FRAMEWORK

A limit-cycle oscillator is an open system, characterized
by a free Hamiltonian Ĥsys, that undergoes a stable periodic
motion represented by a closed curve in phase space. The
stability of this natural rhythm is ensured by the presence
of amplitude-dependent gain and damping via a dissipa-
tive coupling to an environment. In contrast to a coherent
drive, such a source of energy does not imprint any preferred
phase on the oscillation, thereby allowing the phase of the pe-
riodic motion to be freely adjusted by an external perturbation,
the signal, without affecting the amplitude. This phenomenon
is called synchronization.

In this article, we consider the synchronization of a limit-
cycle oscillator to an arbitrary external signal of strength ε that
is described by a Hamiltonian Ĥext. This scenario is described
by the quantum master equation

˙̂ρ = L0ρ̂ − iε[Ĥext, ρ̂], (1)

where ρ̂ is the density matrix of the system and we set h̄ = 1.
This generic equation is the starting point for any study on
the synchronization of a single limit-cycle oscillator in the
quantum regime. Actually, it also describes the synchroniza-
tion of multiple oscillators under a mean-field approximation
[11,19]. It is typically simulated numerically for a specific
limit cycle L0 and a specific form of the signal Ĥext, e.g., a van
der Pol limit cycle subject to a squeezing signal [15]. We will,
however, leave these unspecified for now and instead derive
some general properties of the quantum master equation for
a limit-cycle oscillator, focusing for simplicity on a spin-1
system. However, we stress that the methods we introduce in
the rest of this section are not tied to this particular platform,
but can be readily applied to limit-cycle oscillators living in a
different phase space, e.g., oscillator-based systems.

A. Spin-phase space

As introduced in Ref. [16], we employ the Husimi function
Q(θ, φ|ρ̂) = 〈θ, φ|ρ̂|θ, φ〉3/4π as a phase portrait for spin
systems. This spherical representation is formulated in terms
of spin-coherent states [20,21], which are precisely the states
that precess over time according to |θ, φ〉 → |θ, φ + ω0t〉,
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FIG. 1. (a)–(c) Illustration of the spherical phase space of a spin-
1 system. (a) Spin-coherent state |θ, φ〉 = |1.5, 1〉. The green arrow
indicates its direction of oscillation in phase space. (b) Equatorial
limit cycle |0〉 considered in Secs. III and V. (c) Limit cycle of the van
der Pol oscillator deep in the quantum regime, considered in Sec. IV.
(d) Energy-level structure of a spin-1 system (center), signal tones
and corresponding coefficients ti, j of the signal Hamiltonian Ĥext

(right), and dissipative coupling operators Ô j that describe unidirec-
tional transitions between two levels (left). The coupling operators
are invariant under rotations R̂z(α) = e−iαŜz up to a phase factor
indicated in the bottom row. Any linear combination of operators
within the same column yields again a valid dissipative coupling
operator.

as illustrated in Fig. 1(a), where the natural frequency ω0 is
set by the free Hamiltonian Ĥsys = ω0Ŝz. Here, Ŝz is the spin
component along the quantization axis. The azimuth angle φ

thus plays the role of the phase variable at the core of the
synchronization formalism, parametrizing the oscillation in
phase space.

From the phase-space representation, we can derive the
phase distribution P(φ|ρ̂ ) of a given state ρ̂ by integrating
out the θ angle, which is analogous to integrating out the
amplitude in a position-momentum phase space. Since the
dissipative source of energy does not favor any phase φ of
the oscillator, the intrinsic quantum noise inevitably leads
to phase diffusion such that the limit-cycle state ρ̂0 has a
uniform phase distribution P(φ|ρ̂0) = 1/2π , similar to a noisy
classical limit-cycle oscillator. Therefore, to monitor the phase
locking of the limit-cycle oscillator to an external signal, we
define the shifted phase distribution

S(φ|ρ̂) =
∫ π

0
dθ sin(θ )Q(θ, φ|ρ̂) − 1

2π
, (2)

which is identically zero if and only if the distribution is
uniform, that is if no phase preference is developed.

B. Limit cycle

Equipped with the phase-space representation reviewed in
the previous section, we can now go back to the quantum
master equation and derive the form that any limit cycle has to
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fulfill in a spin-1 system, specifying both the available target
states as well as the possible responses to perturbations.

The limit cycle is described by the first term in Eq. (1),
which corresponds to the situation without any signal applied,
ε = 0,

L0ρ̂ = −i[Ĥsys, ρ̂] +
N∑

j=1

γ jD[Ô j]ρ̂. (3)

This dynamics is composed of the oscillation generated by
the free Hamiltonian Ĥsys, and of a set of N Lindblad dis-
sipators D[Ô]ρ̂ = Ôρ̂Ô† − 1

2 {Ô†Ô, ρ̂} representing the gain
and damping induced by the environment. Different choices of
coupling operators Ô j and their corresponding rates γ j define
where and how the limit cycle is stabilized in phase space,
with the steady state of the dissipative map L0 being the target
state. At this point, the fact that the unit can be stabilized in
infinitely many ways seems to seriously hinder any attempt to
proceed further without focusing on a particular limit cycle.
However, we now show that the properties of a limit cycle
impose strong constraints on the coupling to the environment,
which allows us to narrow down the class of allowed operators
and leads to a common structure for valid target states.

The defining feature of a limit cycle is the ability to
stabilize the amplitude of the oscillation while leaving the
phase completely free. The latter is then linearly increasing in
time at the natural frequency ω0 and can be readily adjusted by
a weak external signal Ĥext, possibly to a different frequency.
We postpone to Sec. II E the open question of how strong the
signal can be without affecting the amplitude of oscillation,
and focus here instead on the necessary requirement for the
phase to be free before applying a signal.

Specifically, the absence of any phase preference implies
that the limit-cycle dynamics generated by L0 must be in-
variant under rotations R̂z(α) = e−iαŜz about the axis defined
by the free Hamiltonian Ĥsys. This is achieved by requiring
that the coupling operators Ô j are themselves invariant up to
a phase factor, which does not play any role because of the
incoherent nature of the coupling to the environment. Hence,
the set of allowed operators, shown in Fig. 1(d), is restricted
to those that satisfy 〈m|Ô j |n〉 �= 0 only for a fixed difference
m − n, where |n〉 denotes an eigenstate of Ŝz. Physically, the
operators Ô j correspond to incoherent population transfers
that can be combined to stabilize the target state of choice
without imposing any phase during the relaxation [22]. An
important consequence of the form of the coupling operators
is that the dynamics of the limit cycle leads to decoherence in
the energy eigenbasis, yielding a diagonal target state. In the
following, this feature will be key to understand the resource
on which quantum synchronization relies.

C. Signal

Now that we have identified the general form of a limit
cycle, the remaining ingredient of Eq. (1) is the external signal
which is applied to synchronize the oscillator. In a spin-1
system, there are up to three transitions that can be externally
driven. The corresponding Hamiltonian, in a frame rotating
at the signal frequency ωext and under the rotating-wave

approximation, reads as

Ĥext = t0,1ŜzŜ+ − t−1,0Ŝ+Ŝz + t−1,1Ŝ2
+ + H.c. (4)

As illustrated in Fig. 1(d), it consists of two individual tones
applied to the transitions | − 1〉 ↔ |0〉 and |0〉 ↔ |1〉, and a
squeezing harmonic addressing directly the transition |1〉 ↔
| − 1〉. The complex parameters tn,m describe the relative
phases and amplitudes of these tones. For instance, a semiclas-
sical signal of the form 2ε[cos(ϕ)Ŝx + sin(ϕ)Ŝy] corresponds
to the first two transitions being equally driven, t0,1 = t−1,0 =
eiϕ/2, and no squeezing tone, t−1,1 = 0.

D. Perturbation theory

Having fully characterized the spin-1 system in terms of
the available limit cycles and signals, we now connect the
two and develop a concise analytical description of quantum
synchronization. By definition, synchronization can only be
achieved for signal strengths ε small enough such that the
original limit cycle is only weakly perturbed [2]. Going be-
yond this regime would mean affecting not only the phase of
the oscillation but its amplitude as well, and thus deforming
the limit cycle. In the following, we refer to this undesired
regime as forcing. Consequently, we perform an expansion
of the density matrix in terms of the signal strength ρ̂ =∑∞

k=0 εk ρ̂ (k), where the first-order term ρ̂ (1) contains all the
features of synchronization. The quantum master Eq. (1) then
turns into a set of recursive differential equations [23]

˙̂ρ (k) = L0ρ̂
(k) + (1 − δk,0)Lextρ̂

(k−1), (5)

with Lextρ̂ = −i[Ĥext, ρ̂] and the normalization condition
Tr[ρ̂ (k)] = δk,0.

The leading order k = 0 corresponds to the situation with-
out any signal being applied. As discussed in Sec. II B, the
system then relaxes to the diagonal steady state

ρ̂ (0) =

⎛
⎜⎝

∗ 0 0

0 ∗ 0

0 0 ∗

⎞
⎟⎠, Tr[ρ̂ (0)] = 1, (6)

where the stars represent non-negative entries that depend on
the specific choice of the limit cycle.

The next order k = 1 accounts for the fact that a weak
signal is applied to synchronize the limit-cycle oscillator,
yielding the correction ρ̂ (1). To characterize this term further,
we note that the signal Hamiltonian, given in Eq. (4), is
entirely off diagonal, 〈m|Ĥext|n〉 ∝ (1 − δm,n). To first order,
the signal is thus aiming to generate coherences in the energy
eigenbasis. On the other hand, we showed that the action of
the limit cycle is to equilibrate populations back to the target
state ρ̂ (0) and, while doing so, to decohere the state in the
same basis. In matrix form, this means that L0 takes a block-
diagonal structure such that the dynamics of the populations
〈n|ρ̂|n〉 and of the coherences 〈n|ρ̂|m �= n〉 are decoupled. The
block Ldiag

0 acting on the populations is negative semidefi-
nite, with the vanishing eigenvalue being associated to ρ̂ (0),
while the block Loffdiag

0 acting on the coherences has complex
eigenvalues with negative real parts that lead to a decay of the
coherences.
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Going back to the quantum master Eq. (5), we thus find
that the first-order correction

ρ̂ (1) = −(
Loffdiag

0

)−1Lextρ̂
(0), (7)

which is given by the tradeoff between the signal that aims
to build up coherences and the limit-cycle dynamics that
suppresses them, is purely off diagonal

ρ̂ (1) =

⎛
⎜⎝

0 ∗ ∗
∗ 0 ∗
∗ ∗ 0

⎞
⎟⎠, (8)

where the stars represent complex entries compatible with
the condition ρ̂ (1)† = ρ̂ (1). This analytical result demonstrates
that quantum synchronization achieves phase localization by
building up coherences and leaving populations untouched.
The latter is equivalent to preserving the closed curve of the
limit cycle in phase space. As the signal strength ε is in-
creased, higher-order corrections contribute where all matrix
elements are nonzero in general:

ρ̂ (k�2) =

⎛
⎜⎝

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎞
⎟⎠, Tr[ρ̂ (k�2)] = 0. (9)

The coherences driven to first order are now acting back
on the populations via the signal Hamiltonian Ĥext, e.g.,
moving the limit cycle away from its original position in
phase space. This corresponds to the oscillator being forced.
In the rest of the article, we will restrict the study to the
synchronization regime, where higher-order corrections can
be neglected,

ρ̂ ≈ ρ̂ (0) + ερ̂ (1). (10)

To derive the exact relation between the different coher-
ences that can be built up in the spin-1 unit and the resulting
localization of the phase, we turn to the phase distribution
(2), which can be expressed explicitly in terms of the density
matrix

S(φ|ρ̂) = 3

8
√

2
|ρ1,0 + ρ0,−1| cos[φ + arg(ρ1,0 + ρ0,−1)]

+ 1

2π
|ρ1,−1| cos[2φ + arg(ρ1,−1)], (11)

where ρn,m = 〈n|ρ̂|m〉 are the matrix elements of the state
ρ̂. This is one of the main results of this article. A similar
formula containing only the cos(φ) term has been derived in
the specific case of an anharmonic oscillator [24]. We first
note that S(φ|ρ̂) depends only on coherences, and thus on the
first-order correction ρ̂ (1). Additionally, the term proportional
to cos(φ) shows that building up coherences is not a sufficient
condition to break the rotational invariance of the limit-cycle
state. In particular, interference effects between the coher-
ences ρ1,0 and ρ0,−1 are expected to either enhance or hinder
the synchronization behavior. We address the latter point in
Sec. VI where we discuss the possibility of synchronization
blockade, despite the energy levels of the spin-1 system being
equally spaced [25].

Combining Eqs. (10) and (11), we find that the phase
localization increases with the signal strength S(φ|ρ̂) =

εS(φ|ρ̂ (1) ). On the other hand, we have shown that ε cannot
be increased indefinitely as the system will eventually leave
the perturbative regime of synchronization. When comparing
the ability of different limit cycles to synchronize to different
signals, we thus need a general prescription to set the value
of ε while ensuring that the signal remains a perturbation. In
the spirit of all past studies which fixed both the signal and
the limit cycle, a natural guess would be that normalizing
every expression with respect to ε is sufficient to compare
different situations. However, since we have kept the signal
Hamiltonian (4) arbitrary, there are three additional parame-
ters ti, j which determine the relative strength of the signal on
each individual transition, as shown in Fig. 1(d). Moreover,
each limit cycle has a different response to a given signal,
some being deformed earlier than others. We are thus required
to derive the dimensionless parameter η that determines the
validity of the first-order approximation (10) in complete
generality, which is the subject of the next section.

E. How strong can the signal be?

By direct analogy with a classical system, one way to quan-
tify the deformation of a limit cycle is to monitor its change
in energy. If the signal becomes more than a perturbation, one
expects energy to be pumped into the system such that the
amplitude of the oscillation is modified and the limit cycle
is shifted in phase space. Following this reasoning, the small
parameter η would then be proportional to the change in the
average occupation of the energy levels, which reads as for the
spin unit

pavg(ε) = Tr[Ŝz(ρ̂(ε) − ρ̂ (0) )]. (12)

As a first sanity check, this deformation measure indeed
vanishes in the perturbative regime, where it amounts to
evaluate the average occupation of the purely off-diagonal
correction ρ̂ (1) given in Eq. (8). To test it further and check
whether it properly detects all types of deformations that can
be induced by the signal, we consider a subclass of limit cycles
which relax the system to the equatorial state ρ̂ (0) = |0〉〈0|.
The stabilization can be obtained by the two jump operators
Ôg = Ŝ+Ŝz and Ôd = Ŝ−Ŝz, where the ratio of the associated
rates γg/γd can be freely adjusted to modify the response
of the limit cycle to perturbations. It is sufficient to restrict
ourselves to a semiclassical signal for the rest of this section,
i.e., t0,1 = t−1,0 and t−1,1 = 0.

First focusing on the balanced case γg = γd, Fig. 2(a)
shows that the signal attracts the phase φ towards 0 and π

without leaving the equator, which seems to be a synchro-
nized state. To confirm this visual impression, we track the
deformation measure pavg(ε), which stays at zero for the con-
sidered range of signal strengths. It thus seems that the phase
localization is indeed achieved by synchronizing the oscillator
to the applied signal. Yet, two intriguing features do not agree
with this interpretation. First, we have derived in Eq. (11)
that a synchronized distribution with two stable phases can
only emerge by building up coherence between the extremal
states, i.e., ρ−1,1 �= 0, which in turn requires some initial
population in the states | ± 1〉. This is, however, not possible
for the present limit cycle, where only the equatorial state is
populated. Thus, any synchronized distribution of this limit
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FIG. 2. Shifted phase distribution S(φ|ρ̂) and deformation measures pavg(ε) and pmax(ε) as a function of the signal strength ε for the
equatorial limit cycle discussed in Sec. II E with (a) balanced rates γd/γg = 1 and (b) imbalanced rates γd/γg = 10. In both cases, a resonant
semiclassical signal is applied, i.e., t0,1 = t−1,0, t−1,1 = 0, and  = 0. The gray background in the lower plots indicates the regime of forcing

according to Eq. (14), ε(η) = ηγgγd/
√

γ 2
g + γ 2

d , evaluated for η = 0.1. The plots of the Q function show the state of the system for different

values of the signal strength.

cycle is predicted to have only a single peak. Additionally, if
one were to extend the plot range to larger signal strength, the
deformation measure would actually be found to vanish for
any value of ε. This triggers the suspicion that the measure
pavg(ε) may not play its role of signaling the transition from
the perturbative to the forcing regime for the limit cycle under
consideration.

To address this issue, we consider a more fine-grained
measure

pmax(ε) = max
n∈{−1,0,1}

∣∣ρn,n(ε) − ρ (0)
n,n

∣∣, (13)

which tracks the maximum change of each individual popu-
lation instead of the averaged pavg(ε). As shown in Fig. 2(a),
this measure is able to detect that the emergence of the two
peaks in the phase distribution belongs to the forcing regime.
Indeed, the onset of the peaks is found to be accompanied
by a transfer of population from the equatorial state to the
extremal states, which can only be achieved by higher-order
contributions (9). Due to the symmetry of both the limit cycle
γd = γg and the semiclassical signal t0,1 = t−1,0, this transfer
is, however, evenly distributed between the extremal states,
which explains why the average occupation pavg(ε) remained
blind to this deformation.

The balanced limit cycle is thus unable to synchronize to a
semiclassical signal. Physically, this follows from the fact that
to first order the coherences ρ1,0 and ρ0,−1 are generated with
equal amplitudes but opposite sign, and therefore counteract
each other in attempting to localize the phase distribution (11).
On the other hand, in the unbalanced case where one of the
rates dominates, one of the coherences is able to take the lead
and a single-peak phase distribution emerges as illustrated
in Fig. 2(b). This is in agreement with the synchronization
reported in Ref. [16]. Moreover, when the signal is further
increased, the limit cycle is now clearly deformed toward one
of the poles as it enters the forcing regime, before coming back

to the equator and forming the same double-peak distribution
as in the balanced case.

The results above demonstrate the difficulty of measuring
the deformation of a quantum limit cycle based on variations
of the populations. In fact, there remain some combinations
of limit cycle and signal for which even the refined measure
pmax(ε) is unable to identify the transition to the forcing
regime (see Appendix). The physical reason for that is that the
energy in the finite-dimensional Hilbert space of a spin system
is bounded, i.e., the amplitude cannot simply grow indefinitely
in phase space as the signal strength is increased. Hence, there
are situations for which the redistribution of the populations in
the forcing regime becomes very hard to distinguish from the
initial limit-cycle state.

To circumvent this problem, we propose to avoid any
coarse-grained deformation measure and instead derive the
dimensionless parameter η explicitly by requiring that the
first-order correction in Eq. (10) remains small with respect
to the leading-order term ||ερ̂ (1)||  ||ρ̂ (0)||. Here, ||Ô|| =√

Tr[Ô†Ô] stands for the Hilbert-Schmidt norm in the opera-
tor space, also known as the Liouville space [26]. In practice,
we impose a fixed threshold value 0 � η  1 and set

ε = η
||ρ̂ (0)||
||ρ̂ (1)|| . (14)

The parameter η is precisely the expansion parameter that
needs to be small to ensure the validity of Eq. (10). It is also
the key ingredient that allows us to compare all sorts of signals
and limit cycles, and we end this section by discussing the
physical interpretation of Eq. (14).

The numerator

||ρ̂ (0)|| =
√√√√ 1∑

m=−1

∣∣ρ (0)
m,m

∣∣2
(15)
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is similar to the inverse participation ratio used to characterize
Anderson localization [27,28], or to the effective dimen-
sion that determines the equilibration of a closed quantum
system undergoing unitary dynamics [29,30]. In the three-
dimensional Hilbert space of a spin 1, the norm ||ρ̂ (0)|| takes
values between

√
1/3, for a limit cycle that is a uniform

incoherent mixture of all states, and 1, for a limit cycle that
consists of a single state. It captures the fact that a limit
cycle with a wider spread of amplitude in phase space is
more susceptible to deformations than a narrow limit cycle
formed by a single pure state. The denominator, on the other
hand, is most easily interpreted by assuming that Loffdiag

0 is
diagonalizable and that its eigenoperators μ̂l , with eigenval-
ues �l , form an orthonormal basis spanning the space of
coherences. Expressing the impact of the signal in this basis
with the projection coefficients gl = Tr[μ̂†

l Lextρ̂
(0)], we can

then rewrite the first-order term (7) as ρ̂ (1) = −∑
l μ̂l (gl/�l )

and obtain for the norm

||ρ̂ (1)|| =
√√√√∑

l

∣∣∣∣ gl

�l

∣∣∣∣
2

. (16)

The decomposition coefficients gl describe how strongly a
certain eigencoherence is driven away from zero by the signal
Lext, and are compared to the corresponding relaxation rates
�l . Hence, the denominator of Eq. (14) ensures that the overall
effect of the signal on each eigencoherence remains small
compared to the stabilization of the limit cycle.

Note that the assumptions that Loffdiag
0 is diagonalizable and

that the eigencoherences form an orthonormal basis have only
been used to discuss the physical meaning of the threshold η.
In particular, the definition (14) remains well defined even if
these simplifying assumptions do not hold.

III. EXTENDED ARNOLD TONGUE

For the rest of the article, we consider the maximum of
the shifted phase distribution as a single-number measure of
synchronization [11,16,25]

S (ρ̂ ) = max
φ∈[0,2π )

εS(φ|ρ̂ (1) ). (17)

As a first application of the formalism developed in the
previous section, we address the open question of delimiting
the synchronization region as a function of the detuning  =
ω0 − ωext and the signal strength ε. It is known that the range
of detunings for which synchronization survives increases
with the signal strength [2]. This yields the classic triangular
region called the Arnold tongue, which is typically plotted
up to an arbitrary signal strength εmax(0) that is qualitatively
chosen to ensure that the signal is only weakly perturbing the
limit cycle for any value of the detuning [15–17].

Our method allows us to proceed further and to formally
derive the analytical boundary by explicitly tracking the valid-
ity of the perturbation theory for a fixed threshold η. Figure 3
illustrates this result for the equatorial limit cycle introduced
in the previous section: we can indeed obtain the maximum
signal that is permitted on resonance εmax(0), which deter-
mines the optimal horizontal cut of the tongue. However,
we find that the boundary of the synchronization region is

εmax(Δ)

−8 0 8

Δ/γg

εmax(0)

0

0.2

0.3

ε/
γ

g

0

0.1

0.2

S/
η

FIG. 3. Extended Arnold tongue for the equatorial limit-cycle
oscillator introduced in Sec. II E with imbalanced dissipation rates
γd/γg = 100, subject to a semiclassical signal t0,1 = t−1,0, t−1,1 = 0.
Usually, the Arnold tongue is plotted for any detuning  up to a
maximum cutoff value εmax(0), indicated here by a dashed white
line. Our method allows us to derive the boundary between the
synchronization regime (colored) and the forcing regime (white) as a

function of the detuning ε() = η/
√

(γ 2
d + 2)−1 + (γ 2

g + 2)−1,

which is represented by the solid black line. The Arnold tongue is
extended for nonzero detuning and becomes a snakelike split tongue.
The threshold is η = 0.1.

actually a function of the detuning, thereby demonstrating
that the standard horizontal cut is discarding an entire part
of the Arnold tongue. The physical origin of this uncharted
region is that the ability of the signal to affect the unit, i.e., to
drive coherences, is reduced as the detuning is increased. To
compensate this loss in susceptibility of the unit, the signal
strength can thus be increased beyond the resonant bound,
εmax() � εmax(0). This extension of the Arnold tongue to
larger off-resonant drive strengths, yielding a snakelike split
tongue, is one of our main results.

IV. VAN DER POL LIMIT CYCLE

The van der Pol oscillator has been proposed a century ago
as a tool to gain theoretical insight into the phenomenon of
synchronization [2]. After the success of the model in the
classical world, it has recently been quantized and studied
in the regime of a few excitations to probe numerically the
features of quantum synchronization [11,12]. Coming back
to the spin-1 system under study, it may not be clear at first
sight whether any link can be drawn between a mathematical
model formulated within the position-momentum phase space
of an oscillator and a purely quantum system with no classical
analog. However, we now show that when operated deep in
quantum regime, the van der Pol limit cycle can be faithfully
represented in the spin-1 system, which grants access to
tractable analytics and demonstrates the versatility of the most
elementary quantum unit to study quantum synchronization.

A. Harmonic oscillator vs spin 1

The defining characteristic of the van der Pol model is
the stabilization of the self-sustained oscillations, which is
achieved by a linear gain acting against a nonlinear damping.
In the weakly nonlinear regime where the limit cycle is
essentially circular in phase space, the quantum counterpart of
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this dissipative dynamics is realized for harmonic oscillators,
Ĥsys = ω0â†â, by a single-photon gain Ôg = â† and a two-
photon loss Ôd = â2 [11,12]. Bringing the oscillator in the
quantum regime then amounts to increasing the damping so
that occupied Fock states are strongly relaxed toward the
bottom of the energy ladder, except for the first excited state,
which is unaffected by the two-photon loss. Accordingly, the
oscillator is confined in the vicinity of the first excited state
and mostly couples to the vacuum and the two-photon Fock
state when submitted to a weak signal. Hence, deep in the
quantum regime, where the van der Pol oscillator is effectively
restricted to the three lowest Fock states [11,12], the three
levels of our spin-1 system provide a valid support.

To implement the dissipative dynamics in the spin plat-
form, we consider the single excitation gain Ôg = ŜzŜ+ −
Ŝ+Ŝz/

√
2 and the two-excitation loss Ôd = Ŝ2

−/
√

2, with re-
spective rates γg and γd. This specific form is chosen such
that the matrix representations of Ôg and Ôd are identical to
the matrix representations of the creation â† and two-photon
annihilation â2 operators of an oscillator restricted to the
three lowest Fock states. Similarly, we renormalize the signal
coefficients for the rest of the section as follows:

t0,1 = τ0,1, t−1,0 = τ−1,0/
√

2,

t−1,1 = τ−1,1/
√

2. (18)

Having specified the stabilization of the limit cycle, we
obtain the steady-state populations by solving the leading-
order quantum master Eq. (5), i.e., L0ρ̂

(0) = 0, which yields

ρ̂
(0)
1,1 = γg

3γd + γg
, ρ̂

(0)
0,0 = γd

3γd + γg
,

ρ̂
(0)
−1,−1 = 2γd

3γd + γg
. (19)

In the regime of interest γd � γg, the populations converge
to the values (0, 1

3 , 2
3 ), which are precisely those of a van der

Pol limit cycle implemented in a harmonic oscillator [11,12].
Hence, as long as the oscillator is indeed confined deep in
the quantum regime, its effective density matrix truncated to
the first three levels of the harmonic ladder is identical to
that of a spin-based van der Pol oscillator. Since the perturba-
tion expansion (5) is valid for both systems, the equivalence
remains true once a signal Lext is applied. Conversely, any
difference between the states of the two platforms indicates
that the oscillator is transitioning toward the classical regime,
populating higher Fock states, and thus losing the possibility
to be represented in a spin-1 system.

To conclude the comparison, we note that there remains
a fundamental difference between the two architectures,
namely, the phase-space representation which is at the core
of the synchronization phenomenon. Specifically, the infinite
position-momentum plane of a harmonic oscillator is replaced
by a sphere, that is a space of different topology. To derive the
impact of this change on the measure of phase localization,
we employ the counterpart of the spin-phase distribution (2)
for an oscillator [31,32]

Sosc(φ|ρ̂) = 1

2π
〈φ|ρ̂|φ〉 − 1

2π
, (20)
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Δ/γg
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0.1
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0.125
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FIG. 4. Synchronization of the van der Pol oscillator deep in the
quantum regime to a combination of semiclassical and squeezing
tones at relative strength τratio = |τ−1,1|/|τ0,1|. The color bar ranges
from the minimum synchronization

√
5/2/6π achieved for τratio →

∞ to the maximum synchronization S/η =
√

5(32 + 9π 2)/48π at
the optimal ratio τ

opt
ratio, which is indicated by the dashed black line.

Parameters are γd/γg = 1000 and η = 0.1.

where |φ〉 is a phase state defined in terms of the three lowest
Fock states |nF〉, nF ∈ {0, 1, 2}:

|φ〉 =
2∑

nF=0

einFφ|nF〉. (21)

Expressed in terms of the density-matrix elements ρnF,mF =
〈nF|ρ̂|mF〉, it takes the form

Sosc(φ|ρ̂) = 1

2π
|ρ1,0 + ρ2,1| cos[φ + arg(ρ1,0 + ρ2,1)]

+ 1

2π
|ρ2,0| cos[2φ + arg(ρ2,0)], (22)

which differs from Eq. (11) only in the constant preceding
the cos(φ) term. Therefore, the qualitative synchronization be-
havior of the van der Pol model is identical in both platforms
and we can exploit the spin system to characterize the deep
quantum regime analytically. For the rest of this section, we
assume γd � γg, unless stated otherwise.

B. Semiclassical and squeezing signal

We start by considering a situation explored in a recent
numerical study, which showed that the synchronization of
a van der Pol oscillator can be significantly enhanced by
exploiting the quantumness of the system, specifically by
adding a squeezing tone to a semiclassical signal [15]. In
the spin system considered here, this corresponds to fixing
the signal tones as τ0,1 = τ−1,0 and τ−1,1 �= 0. In addition,
we adjust the relative phase between the squeezing tone and
the semiclassical component such that they aim at localizing
the same phase, i.e., such that the cos(φ) and cos(2φ) terms
in Eq. (11) share a common peak. As shown in Fig. 4, the
resulting measure of synchronization S/η corroborates the
numerical findings of Ref. [15] near resonance, namely,
the van der Pol oscillator synchronizes better to signals
dominated by a squeezing tone τratio = |τ−1,1|/|τ0,1| � 1.
However it seems that this advantage is substantially reduced,
if not suppressed, when trying to lock to an off-resonant
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signal. There, the semiclassical component should be favored
in order to maximize the phase localization.

To investigate this tradeoff and establish whether squeez-
ing is only beneficial within a narrow bandwidth around
resonance, we turn to analytics and derive the first-order
correction ρ̂ (1) via Eq. (7). Substituting the obtained state into
the definition of the synchronization measure (17), we find
deep in the quantum regime the compact form

S = η

√
5

48π

3πγd + 8τratio

√
9γ 2

g + 42√
γ 2

d + 2τ 2
ratio

(
9γ 2

g + 42
) . (23)

Indeed, the maximum synchronization S/η =√
5(32 + 9π2)/48π ≈ 0.163 is achieved by the optimal

squeezing ratio τ
opt
ratio = 4γd(9γ 2

g + 42)−1/2/3π which
decreases with the detuning. On the other hand,
synchronization to a purely semiclassical signal without the
squeezing tone τratio = 0 is limited to S/η = √

5/16 ≈ 0.140.
The access to a squeezing tone on top of a semiclassical one
is thus always beneficial for the van der Pol limit cycle.
However, note that synchronization decreases again in the
limit τratio → ∞, where we find S/η → √

5/2/6π ≈ 0.084.

C. Optimized signal

In the previous section, we have reproduced results that
had previously been obtained with harmonic oscillators, and
we have demonstrated the power of the spin-1 platform to
go beyond numerics using the formalism developed in this
paper. We now conclude our study of the van der Pol limit
cycle by answering the fundamental question of what is the
maximum synchronization that can be achieved for a van der
Pol oscillator deep in the quantum regime.

To this end, we relax the semiclassical restriction τ0,1 =
τ−1,0 and employ the following parametrization:

τ0,1 = c cos(ζ )eiχ , τ−1,0 = c sin(ζ ), (24)

with c > 0, τratio = |τ−1,1|/c, 0 � ζ � π/2, and 0 � χ � 2π .
Using Eq. (7), we compute the first-order correction ρ̂ (1) and
obtain the synchronization measure S (ρ̂ (1) ) for any choice of
parameters. We omit here the general formula, which is rather
lengthy and uninformative as such. Instead, we perform an
exhaustive optimization over all three signal tones, focusing
on the resonant case  = 0 for simplicity.

In the resonant case, the optimal phase of the semiclassical
signal components is χ = 0. As illustrated in Fig. 5, we find
that maximum synchronization deep in the quantum regime is
achieved for ζ opt = arccot(

√
2γd/3γg) and τ

opt
ratio = 2

√
2/3π .

However, similar to the situation encountered in the previous
section, note that the tone τ−1,0 cannot be simply switched
off, ζ = 0, because in this case the synchronization is limited
to S/η =

√
5(32 + 9π2)/48π ≈ 0.163. As displayed in the

inset of Fig. 5, the maximum synchronization that is possible
for a van der Pol limit cycle takes the value

S/η =
√

40 + 45
2 π2

24π
≈ 0.215. (25)
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0.21

0.22

10 100 1000
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FIG. 5. Synchronization of the van der Pol oscillator deep in the
quantum regime γd/γg = 100 to a general signal (24) with χ = 0.
For reference, the dashed black line indicates the optimal ratio of
squeezing for a fixed ζ . The solid markers indicate from right to
left the optimal signal parameters for γd/γg = 10, 100, and 1000. In
the quantum regime, the optimal value of τratio converges to τ

opt
ratio =

2
√

2/3π and ζ opt decreases with γd/γg, as indicated by the solid
green arrows. Inset: S/η evaluated at the optimal values τ

opt
ratio and ζ opt

as a function of γd/γg. Maximum synchronization is obtained in the
limit γd/γg → ∞ where S/η converges to

√
40 + 45π 2/2/24π ≈

0.215, indicated by the dashed blue line. The threshold parameter is
η = 0.1.

This is one of the main results of the article, which will allow
us to compare the van der Pol model with other limit cycles
available in the spin-1 system.

V. EQUATORIAL LIMIT CYCLE

Moving away from classically inspired limit cycles, we
consider in this section the equatorial limit cycle used in
Sec. II E and defined by the dissipative coupling operators
Ôg = Ŝ+Ŝz and Ôd = Ŝ−Ŝz, with respective rates γg and γd.
The key feature of the resulting stabilization is its simplicity
because the extremal states | ± 1〉 are independently relaxed
to the equatorial state

ρ̂ (0) = |0〉〈0|. (26)

Incidentally, the absence of initial population in the extremal
states ρ

(0)
±1,±1 = 0 renders the limit cycle insensitive to a

squeezing signal, such that ρ
(1)
−1,1 is bound to stay zero. How-

ever, the remaining coherences

ρ
(1)
1,0 = − i

√
2

γd + i
t0,1, ρ

(1)
0,−1 = + i

√
2

γg + i
t−1,0 (27)

can be built up independently by the signal tones of the
corresponding transition. Therefore, we can directly exploit
their impact on S , as given by Eq. (11), and we find that a
straightforward combination of the semiclassical signal tones
outperforms the maximal synchronization achieved by a van
der Pol limit cycle.

To proceed further, we choose the following parametriza-
tion of the signal:

t0,1 = cos(ζ )eiχ , t−1,0 = sin(ζ ),

t−1,1 = 0. (28)
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Remarkably, this time the synchronization measure can be
expressed in a compact form without imposing any constraint
on the signal:

S = η
3

16

√
1 − 2

sin(ζ ) cos(ζ ) cos(χ + α)

r cos2(ζ ) + 1
r sin2(ζ )

,

r =
√

γ 2
g + 2

γ 2
d + 2

,

α = arg

(
1

γg − i

1

γd + i

)
. (29)

A. Semiclassical signal

First, we analyze synchronization to a semiclassical signal
t0,1 = t−1,0, parametrized by χ = 0 and ζ = π/4. This corre-
sponds to the scenario studied in Ref. [16], where synchro-
nization was found to vanish for balanced dissipation rates
γd = γg. Within the present framework, we can go a step
further and identify the physical origin of this singularity: for
balanced rates, the semiclassical signal is building up both
coherences with the same strength against the same relaxation
rate, yielding the same absolute value but with opposite phase
ρ0,1 = −ρ−1,0. Since the synchronization measure (11) is a
function of their sum |ρ0,1 + ρ−1,0|, this leads to destruc-
tive interference, captured by the factor cos(χ + α) = 1 in
Eq. (29), and no synchronization is observed.

Building on this understanding, we find that for any finite
asymmetry between the rates, one of the coherences domi-
nates such that the impact of the destructive interference is
reduced. The synchronization is then maximal on resonance
 = 0, where Eq. (29) takes the form

S = η
3

16

√
1 − 2γdγg

γ 2
d + γ 2

g

. (30)

In particular, large asymmetries yield the maximum syn-
chronization for a semiclassical signal S/η = 3/16 ≈ 0.188,
where only one of the coherences contributes without being
suppressed by the other. Comparing with the van der Pol limit
cycle, this value is larger than the one obtained for the same
signal, S/η ≈ 0.140, but lower than for the optimized signal,
S/η ≈ 0.215, which exploited all three coherences.

B. Optimized signal

The strength of the equatorial limit cycle is the possibility
to address the coherences individually. To improve on the van
der Pol model, we thus aim for a signal where the coherences
are built in phase and therefore interfere constructively. At
the level of the synchronization measure (29), this amounts
to requiring that cos(χ + α) = −1. We are then left with
the task of maximizing the term 2 sin(ζ ) cos(ζ )/[cos2(ζ )r +
sin2(ζ )/r]. This yields the optimal angles

χopt = π − α, ζ opt = arctan(r), (31)

where the second condition implies that both coherences have
the same amplitude. The resulting constructive interference

ζopt

χopt

−0.5 0 0.5 1 1.5
χ/π

0

0.1

0.2

0.3

0.4

0.5

ζ
/π

0

0.1

0.2

S/
η

FIG. 6. Equatorial limit cycle with balanced dissipation rates
γg = γd subject to a resonant signal parametrized by the conven-
tion of Eq. (28). The relative phase χ between the signal tones
determines the relative phase of the coherences ρ0,1 and ρ−1,0. They
interfere constructively for χ opt = π and destructively for χ = 0.
The parameter ζ determines if the amplitudes of the two tones are
equal (ζ opt = π/4) or different. The maximum synchronization for
the equatorial limit cycle, S/η = 3

√
2/16 ≈ 0.265, is obtained at the

intersection of the dashed black lines where both coherences have the
same amplitude and interfere constructively. A semiclassical signal
corresponds to χ = 0. The threshold parameter is η = 0.1.

yields

S
η

= 3

16

√
2 ≈ 0.265, (32)

which is the maximum synchronization that is possible for the
equatorial limit cycle and which outperforms the capabilities
of the van der Pol limit cycle. This result is illustrated in Fig. 6
for the case of balanced dissipation rates, where synchroniza-
tion to a semiclassical signal is not possible.

VI. INTERFERENCE-BASED SYNCHRONIZATION
BLOCKADE

In this section, we discuss how interference effects lead
to a quantum synchronization blockade. For clarity of the
formulas, we focus here on the equatorial limit cycle but the
same quantum effect is present in other oscillators, including
the van der Pol limit cycle.

Quantum synchronization blockade was first reported in
the study of two coupled anharmonic oscillators, where con-
servation of energy was found to favor the synchronization
of detuned oscillators [25]. This behavior is in contrast to
the classical expectation that synchronization is strongest on
resonance. However, in the present spin-1 system the energy
levels are equally spaced, and if there is a synchronization
blockade, it has to be of a different physical origin.

We previously found that for any value of the detuning ,
there exists a combination of optimal angles (31) such that the
synchronization is maximized (32). On resonance,  = 0, the
condition on the relative phase between the tones is χopt =
π . On the other hand, shifting the angle to χ = 0 leads to
perfect destructive interference S/η = 0. Now, if we change
the detuning while keeping χ = 0 fixed, the coherences (27)
start to rotate clockwise in the complex plane up to an angle of
π/2 for infinitely large detuning. This is shown in Fig. 7. If the
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FIG. 7. Illustration of the interference-based quantum synchro-
nization blockade effect for the equatorial limit cycle introduced in
Sec. II E. The relative phase of the signal components is fixed to
χ = 0 and their relative amplitude is chosen according to Eq. (31).
For imbalanced dissipation rates γd �= γg, the coherences ρ

(1)
0,−1 and

ρ
(1)
1,0 rotate by different angles if the detuning is in the range γg �

 � γd, as indicated by the sketches in the upper row. Therefore,
their destructive interference is partially lifted and synchronization is
obtained as shown by the lower plot of S/η. For strong asymmetries
γd � γg, the maximum synchronization converges to S/η = 3/16,
which is indicated by the dotted black line. This is smaller than
the maximum synchronization possible for this limit cycle, 3

√
2/16,

because the detuning cannot fully align the coherences to interfere
constructively. The threshold parameter is η = 0.1.

dissipation rates are balanced γg = γd, both coherences rotate
together and the interference remains destructive regardless
of the detuning. However, if one of the rates dominates, the
rotation of the corresponding coherence lags behind such
that the destructive interference is suppressed in a transient
regime. This leads to the onset of synchronization away from
resonance, as illustrated in the main plot of Fig. 7.

Specifically, the synchronization measure reads as

S = η
3

16

√
1 − cos

(
arctan

[
(γd − γg)

γdγg + 2

])
, (33)

where the cosine term approaches zero for a strong lag before
coming back to unity. Maximum synchronization is achieved
at || = √

γgγd, where it converges to S/η → 3/16 ≈ 0.188
in the limit γg � γd. Note that this value remains below the
fundamental limit (32) of the equatorial limit cycle since the
detuning is not able to rotate the coherences up to a relative
angle of π , which is the condition for them to interference
constructively.

VII. OPTIMAL QUANTUM SYNCHRONIZATION

In this section, we derive the fundamental limit to syn-
chronization deep in the quantum regime. In contrast to the
previous sections, we do not focus on any specific limit cycle.
Instead, we only rely on the properties of the spin-1 system
supporting the limit cycle, which follow from the laws of
quantum mechanics and the paradigm of synchronization.

This optimization over all signals and all possible limit cycles
of a given system is one of our main results.

A. Upper bound for a spin-1 system

In a first step, we derive an upper bound on the syn-
chronization measure S (ρ̂ ) based on the analytical insights
gathered in the previous sections. As discussed in Sec. II B,
the rotational invariance of the limit-cycle state requires a
diagonal steady-state density matrix, which we parametrize by

ρ̂ (0) =

⎛
⎜⎝

1−a−δ
2

a
1−a+δ

2

⎞
⎟⎠. (34)

Here, 0 � a � 1 is the population of the equatorial state
|0〉, and δ is a real parameter that satisfies the conditions
|a ± δ| � 1 and characterizes the asymmetry in the
populations of the extremal states | ± 1〉.

In parallel, in Eq. (11) we have identified the coherences
between energy eigenstates as the resource of quantum syn-
chronization. In the optimal situation where the coherences
ρ0,1 and ρ0,−1 interfere constructively, the first-order correc-
tion of the expansion (10) can be parametrized as

ρ̂ (1) =

⎛
⎜⎝

0 b c

b∗ 0 b

c∗ b∗ 0

⎞
⎟⎠, (35)

where b and c are arbitrary complex parameters [33]. As usual,
we further set the phase of c such that the maxima of the
cos(φ) and cos(2φ) terms in S(φ|ρ̂ ) coincide.

Substituting Eq. (14) into (17) we find that the synchro-
nization measure S (ρ̂ ) is a product of the term η||ρ̂ (0)||,
which depends only on the structure (34) of the limit cycle
and is shown in the main plot of Fig. 8, and of the term
(3|2b|/8

√
2 + |c|/2π )/||ρ̂ (1)||, which depends only on the

coherences introduced in Eq. (35) and is shown in the inset.
An upper bound to the synchronization achievable in the
spin-1 system can thus be derived by maximizing both terms
individually. Specifically, the term ||ρ̂ (0)|| takes its maximal
value of unity for any pure state, which are represented
by the extremal points of the set of physical states shown
in Fig. 8. On the other hand, the second term of S (ρ̂ ) is
maximized when the ratio of the coherences satisfies |b|/|c| =
3π/(4

√
2), which is indicated by the dashed black line in the

inset of Fig. 8. Taking the product of the two maxima, we find
that the synchronization measure is bounded from above by

S � Smax = η

√
2(16 + 9π2)

16π
≈ 0.288η. (36)

This result depends on the phase space via the prefactors of
the cos(φ) and cos(2φ) terms in Eq. (11). The corresponding
number for the phase space of a harmonic oscillator intro-
duced in Eq. (22) is

S � Sosc
max = η

√
3

2
√

2π
≈ 0.195η. (37)

B. Tightness of the bound

As summarized in Table I, all the combinations of limit
cycles and signals considered up to now stay below the bound
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3 , 0). The maximum
value, 1, is obtained for the extremal points of the triangle, which
represent pure states. The van der Pol limit cycle corresponds to the
point (a, δ) = ( 1

3 , 2
3 ). Inset: factor (3|2b|/8

√
2 + |c|/2π )/||ρ̂ (1)|| as

a function of the coherences b and c introduced in Eq. (35). The
maximum value

√
8 + 9π 2/2/8π is achieved along the dashed black

line |b|/|c| = 3π/4
√

2. If the coherence ρ−1,1 cannot be built up,
|c| = 0, a value of 3/8

√
2 is obtained.

(36). Therefore, it remains to determine whether any physical
limit-cycle oscillator can actually reach the bound Smax.

This search is complicated by the tradeoff that exists
between maximizing ||ρ̂ (0)|| and reaching the optimal ratio
|b|/|c|. To illustrate this point, we can classify the limit cycles
studied in the previous sections with respect to these two
quantities. The van der Pol limit cycle with the optimized
signal discussed in Sec. IV C successfully implements the
optimal ratio of the coherences, but, since its limit cycle
is a statistical mixture of different spin states, it does not
maximize ||ρ̂ (0)||. On the other hand, the equatorial limit cycle
discussed in Sec. V B implements the optimal value ||ρ̂ (0)|| =
1 by stabilizing the pure equatorial state |0〉, but the symmetry
ρ1,1 = ρ−1,−1 = 0 then enforces |c| = 0, putting the optimal
ratio of the coherences out of reach.

To design a combination of limit cycle and signal that
reaches Smax, we thus need to break the symmetry between the

TABLE I. Synchronization performance S (ρ̂ )/η of the quantum
van der Pol and the equatorial limit cycles for different signals. The
results are bounded by the maximum synchronization that can be
achieved in a spin-1 system, Smax = 0.288η.

Signal

Limit cycle Semiclassical Semiclassical and squeezing Optimal

van der Pol 0.140 0.163 0.215
Equatorial 0.188 0.188 0.265

states | ± 1〉, while ensuring that the limit cycle remains close
to a pure state. To this end, we supplement the equatorial limit
cycle Ôg = Ŝ+Ŝz and Ôd = Ŝ−Ŝz by a third decay channel
Ôd′ = ŜzŜ− at rate γd′ , which induces an asymmetry in the
limit cycle

ρ̂ (0) =

⎛
⎜⎝

0
γg

γg+γd′
γd′

γg+γd′

⎞
⎟⎠. (38)

We focus on the regime γd′  γg where the limit cycle
remains close to the state |0〉. However, in contrast to the
purely equatorial case, the present limit cycle is sensitive to
a squeezing signal, i.e., we can exploit the small but finite
asymmetry in the populations of the extremal states | ± 1〉 to
engineer a nonvanishing coherence |c|. In the limit γd′  γg,
the optimal ratio |b|/|c| = 3π/4

√
2 is obtained by choosing

the amplitude

|t−1,1| = 4

3π

√
(γg + γd )2 + 42

γ 2
d + γ 2

g + 22

γg

γd′
(39)

of the squeezing tone, whereas the angles χopt and ζ opt are
the same as in Eq. (31). The divergence of the squeezing tone
in the limit γd′ → 0, |t−1,1| ∝ γg/γd′ , reflects the fact that the
squeezing signal requires an asymmetry between the | ± 1〉
states to build up the coherence ρ

(1)
−1,1. The synchronization

measure reads as

S = η

√
2(16 + 9π2)

16π

√
γ 2

g + γ 2
d′

(γg + γd′ )2
−→

γd′γg

Smax. (40)

Hence, in the regime of interest γd′  γg we find that the
synchronization converges to the upper bound Smax by ap-
proaching the equatorial limit-cycle state with ||ρ̂ (0)|| ≈ 1
while keeping the ratio of the coherences set to |b|/|c| =
3π/4

√
2. This result demonstrates that the bound (36) is

tight and indeed corresponds to the maximum synchronization
achievable in the spin-1 system.

VIII. DISCUSSION

Quantum synchronization has still not been observed ex-
perimentally, despite the existence of proposals with trapped
ions [11] and optomechanical [12] oscillators. A significant
part of the challenge lies in the specific limit cycle that was
envisioned at the time, namely, the van der Pol oscillator,
which requires to engineer a single-photon gain and a damp-
ing where photons decay in pairs.

Our findings reveal that one actually has a lot of freedom
in tailoring a quantum system that is able to synchronize,
opening the realm of possibilities. Specifically, the signal and
the limit cycle can be significantly modified, with the latter
option offering a large and hitherto unexplored choice of both
target states and methods to stabilize it without imposing a
phase preference. When aiming for the first observation of
quantum synchronization, this freedom can be leveraged to
devise the best strategy to accommodate experimental con-
straints such as the natural relaxation of the system, which is
typically considered as an undesired source of noise. Shifting
the paradigm, we now show that this natural relaxation can in
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Spin-1 system assisted incoherent pumping

FIG. 9. Experimental proposal to sustain self-oscillations in a
spin-1 system. The damping is realized by the natural relaxation of
the spin ladder, while the incoherent gain is engineered by coherently
driving the | − 1〉 ↔ |a〉 transition and exploiting the spontaneous
relaxation of the ancilla state |a〉 to the equatorial state |0〉.

fact be exploited as a useful contribution to the stabilization
of the limit cycle, reducing the experimental complexity of
implementing a quantum self-sustained oscillator.

Consider a spin-1 system which dissipates energy to its
environment at rates �1,0 and �0,−1, as illustrated in Fig. 9.
This system is realized in a variety of experimental plat-
forms, such as trapped ions [34,35], nitrogen-vacancy centers
[36], and superconducting transmons [37,38]. Given that we
explicitly include the natural dissipative dynamics into the
limit-cycle stabilization, the only engineering challenge that is
left is to stabilize the oscillator away from its ground state by
incoherently pumping the transition between the ground state
| − 1〉 and the equatorial state |0〉. This is feasible with current
technology, and as an example we consider a scheme that
has been demonstrated experimentally with superconducting
circuits [39,40]. There, the working principle is to assist
the incoherent transfer from the ground state by driving a
transition to an ancilla level, which decays spontaneously into
the excited state of interest (see orange box in Fig. 9). This
technique has been used to efficiently achieve population in-
version of up to 93% in the steady state [40]. Such a pumping
scheme, supplemented by the natural relaxation of the system,
thus successfully establishes a quantum limit cycle.

We now go beyond the proof-of-concept approach and
assess the performance of this minimalistic limit-cycle oscil-
lator, benchmarking against the optimal limit cycle derived
in Sec. VII. In the regime of interest �0,−1  �a where the
population in the ancilla state is negligible, (�0,−1/�a)/(1 +
1/4C)  1, the steady state of the spin-1 system is given by

ρ̂ (0) =

⎛
⎜⎝

0
4C

1+4C
1

1+4C

⎞
⎟⎠, (41)

where C = g2/�0,−1�a denotes the cooperativity of the pump-
ing process. The larger the cooperativity, the more efficiently
the pumping acts against the natural relaxation. In practice,
the population of the equatorial state |0〉 can be varied from
zero close to unity by adjusting the cooperativity C: a value
of C = 1

8 implements a van der Pol–type occupation dis-
tribution, whereas a large cooperativity C � 1 implements
a limit-cycle state that is mostly the equatorial state |0〉.

Remarkably, any finite cooperativity will inevitably lead to an
asymmetry between the empty state |1〉 and the nearly empty
ground state | − 1〉, which is exactly the requirement we
derived for optimizing synchronization deep in the quantum
regime. This implies that the experimental scheme proposed
here is actually able to implement the optimal limit cycle
provided that the cooperativity is large enough. The exper-
imental demonstration of the pumping scheme reported a
decade ago [40] corresponds to C ≈ 3. This achievement is
already large enough to implement the first observation of
quantum synchronization, and sets the optimal limit cycle
within experimental reach of state-of-the-art platforms.

IX. CONCLUSION

We have developed a framework to study synchronization
in the quantum regime based on the perturbative nature of
the phenomenon. This allowed us to identify the coherences
between energy eigenstates as the resource of quantum syn-
chronization. Consequently, we have found that interference
effects between coherences that transform identically under
rotations may either enhance or hinder synchronization. This
result allowed us to explain previous observations and led
us to identify an interference-based synchronization blockade
that does not rely on an anharmonicity in the energy levels.

Our framework contains a prescription on how to choose
the signal strength such that the signal stays within the pertur-
bative regime of synchronization and the integrity of the limit
cycle is guaranteed to be preserved. The resulting maximum
signal strength is a function of the detuning, such that the
classic Arnold tongue can be extended for nonzero detuning
and becomes a snakelike split tongue.

Focusing on the smallest quantum system that can be
synchronized, namely a spin-1 system, we have then applied
the formalism to compare the synchronization of different
combinations of limit cycles and signals. To this end, we have
first demonstrated that the van der Pol model can be faithfully
represented even though the planar position-momentum phase
space of the oscillator is replaced by the spherical phase space
of a spin. Exploiting the low-dimensional Hilbert space, we
have been able to provide an analytical description of previous
numerical studies and to derive the optimized signal for this
specific limit cycle. We have then compared the performance
to the equatorial limit cycle, which we found to synchronize
better despite being insensitive to a squeezing tone.

Finally, the analytical understanding gained along the way
led us to derive a fundamental bound on the maximum syn-
chronization that can be achieved in the spin-1 system. This
bound has been shown to be tight by explicitly constructing
a limit cycle that reaches the bound asymptotically for an
optimized signal. Moreover, we have motivated that this limit
cycle is actually within experimental reach of current technol-
ogy by proposing a practical stabilization scheme. With this
limit-cycle oscillator at hand, quantum synchronization could
be readily observed by applying standard coherent (laser)
signals that are routinely used in most experimental platforms.

Our findings pave the way to study synchronization of
spin-based networks. Since the spin-1 system has the smallest
Hilbert space that is able to capture all features of a van der
Pol oscillator deep in the quantum regime, it is a promising
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candidate to study networks both in terms of numerical
efficiency and analytical accessibility. Besides, the spin
architecture grants access to efficient numerical simulation
techniques [41].

Furthermore, our result on the fundamental limit to the
synchronization of a spin 1 constitutes the first step towards
understanding the quantum-to-classical transition. It provides
a reference point to study how this fundamental limit evolves
for higher spin numbers, particularly for half-integer spins
which do not have access to an equatorial pure-state limit
cycle.
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APPENDIX: FAILURE OF THE MEASURE pmax(ε)

In this Appendix, we give an example of a limit cycle and a
signal for which the deformation measure pmax(ε) introduced
in Eq. (13) is unable to identify the transition to the forcing
regime. We consider the van der Pol limit cycle introduced in
Sec. IV of the main text, which is defined by the dissipative
coupling operators Ôg = ŜzŜ+ − Ŝ+Ŝz/

√
2 and Ôd = Ŝ2

−/
√

2
with the respective rates γg and γd. As for the signal we
consider the tones t0,1 = r, t−1,0 = 1/

√
2, and t−1,1 = 0.

As shown in Fig. 10, there is a range of values 0.6 �
r � 5.5 for which the deformation measure pmax(ε) is non-
monotonous and has a local maximum, then decreases toward
0, before it increases strongly and converges to a constant
value in the limit ε → ∞. This implies that for a threshold
value η smaller than the local maximum, there are up to three
solutions εi that satisfy η = pmax(εi ).

Now, for a very pronounced local maximum (cf. the dashed
green line in Fig. 10), the measure provides a clear indicator
that the limit cycle is deformed to an intermediate state for ε �
min{εi}, before it converges to another deformed state in the
strongly forced regime ε � max{εi}. In this situation, εmax =
min{εi} is straightforwardly identified as the maximum signal
strength allowed for synchronization. However, the value of
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FIG. 10. Upper panel: deformation measure pmax(ε, r) for a van
der Pol limit cycle as a function of the signal strength ε and the ratio
r = t0,1/

√
2t−1,0 of the amplitudes of the semiclassical tones. The

squeezing tone is switched off, t−1,1 = 0. Lower panel: cuts pmax(ε)
for fixed values r = 0.5, 2.5, 4, and 9, indicated by the corresponding
horizontal lines in the upper panel. Parameters are γd/γg = 100 and
 = 0.

the local maximum decreases with r, and in particular for r ≈
5 the peak almost vanishes (cf. the dotted red line in Fig. 10).
This means that for any fixed value of the threshold η there
is an r such that the first deviation of pmax(ε) is not detected,
without having a physical argument that it does not belong to
the forcing regime. Consequently, the measure pmax(ε) fails to
give a definite answer for the transition to the forcing regime.
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