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Quantum effects in amplitude death of coupled anharmonic self-oscillators
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Coupling two or more self-oscillating systems may stabilize their zero-amplitude rest state, therefore quenching
their oscillation. This phenomenon is termed “amplitude death.” Well known and studied in classical self-
oscillators, amplitude death was only recently investigated in quantum self-oscillators [Ishibashi and Kanamoto,
Phys. Rev. E 96, 052210 (2017)]. Quantitative differences between the classical and quantum descriptions were
found. Here, we demonstrate that for quantum self-oscillators with anharmonicity in their energy spectrum,
multiple resonances in the mean phonon number can be observed. This is a result of the discrete energy spectrum
of these oscillators, and is not present in the corresponding classical model. Experiments can be realized with
current technology and would demonstrate these genuine quantum effects in the amplitude death phenomenon.
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I. INTRODUCTION

Self-sustained oscillators are a class of oscillating systems,
in which the amplitude of the periodic motion is maintained by
an incoherent power source, which is balanced by a nonlinear
energy loss [1,2]. The phase of the self-oscillator is therefore
not fixed by the phase of the power source. This phase freedom
allows the self-oscillator to lock or entrain its phase to the phase
of an external signal, or to the phase of another self-oscillator,
a phenomenon known as synchronization [1,2].

The synchronization of quantum oscillators has become a
very active research topic in recent years, due to advances
in experiments with micromechanical and nanomechanical
oscillators [3–15]. The quantum van der Pol (vdP) oscillator
was proposed as a generic model for a quantum self-oscillator
[3,4], allowing for the investigation of synchronization in the
quantum regime. Synchronization of a quantum vdP oscillator
to a drive [3–5], the synchronization of two mutually coupled
vdP oscillators [3,6–8], and the synchronization of networks
of such oscillators [9] were theoretically investigated. Also,
it was shown that using a squeezing Hamiltonian instead of
a harmonic drive can produce stronger synchronization [11].
Recently, genuine quantum effects in the synchronization of
such vdP oscillators were predicted [10].

The quantum vdP oscillator model, being a quantum model
for a self-oscillator, can be used to study other phenomena,
different than quantum synchronization. Still, much less effort
has been invested in that direction. Recently, the quantum
amplitude dynamics of two dissipatively coupled quantum
vdP oscillators has been studied [16]. In the classical case,
it is known that dissipatively coupling two self-oscillators may
stabilize their zero-amplitude rest state via a Hopf bifurcation
[17–19]. This phenomenon, in which the amplitude of the
two self-oscillators is strongly suppressed as they approach
their steady state, is known in the literature as “amplitude
death” or “oscillation death” [1,20–22]. While both terms are
often used, Ref. [22] distinguishes the case in which both
oscillators approach an identical steady state, and the case
in which each oscillator approaches a different steady state.

“Amplitude death” refers to the former, while “oscillation
death” refers to the latter. We keep this nomenclature, and
use the term “amplitude death” for the case described in our
paper. In Ref. [16], the researchers have shown the quantum
analog of the amplitude death phenomenon. They have found
quantitative differences when comparing the quantum model
with a corresponding classical model with Gaussian noise.

Here, we investigate the amplitude dynamics of two dissi-
patively coupled quantum vdP oscillators with anharmonicity
in their energy spectrum. We report qualitative differences in
the amplitude death phenomenon between the quantum model
and a corresponding classical model with Gaussian noise. For
increasing detuning between the two oscillators, we observe
a decay in the oscillation amplitude, as expected in amplitude
death. Then, however, for an even larger detuning, we observe
an increase of the oscillation amplitude. We demonstrate that
such an increase is the result of the quantized anharmonic
energy spectrum.

This paper is organized as follows. We describe the models
used in this paper in Sec. II. This includes the quantum model,
the noiseless classical model, and the semiclassical model, i.e.,
a classical model with Gaussian noise. In Sec. III, we describe
the effect of the anharmonicity in the energy spectrum on the
vdP oscillation amplitude. We show that this anharmonicity
leads to strong oscillation-amplitude suppression, however,
only in the presence of noise. Genuine quantum effects in
the amplitude death phenomenon, which are not the result of
noise, but stemming from the quantized energy levels of the
anharmonic oscillators, are described in Sec. IV. In Sec. V we
conclude and remark about possible experimental realizations
of the proposed system.

II. MODEL

We consider two anharmonic dissipatively coupled quan-
tum vdP oscillators [6,7,16]. The schematics of the energy
spectrum of the oscillators and the nonunitary processes
involved in the coupling to the environment are shown in Fig. 1.
The time evolution of the density matrix ρ of the two oscillators
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FIG. 1. The four lowest-lying discrete energy levels of the quan-
tum vdP oscillator with Kerr nonlinearity. The Kerr nonlinearity leads
to an energy level spacing ωm + (2n + 1)Km between the nth and (n +
1)th energy levels. The wiggly lines describe nonunitary processes
stemming from coupling the system to Markovian reservoirs (marked
by rectangles with rounded corners): the incoherent energy gain
with rate G and the incoherent nonlinear energy loss with rate κ

are obtained by coupling the individual vdP oscillators to their own
Markovian reservoirs. The dissipative coupling with strength V is
obtained by coupling the vdP oscillators to a common Markovian
reservoir.

is governed by the quantum master equation (h̄ = 1)

∂tρ =
2∑

m=1

(−i[Hm,ρ] + GD[a†
m]ρ + κD

[
a2

m

]
ρ
)

+VD[a1 − a2]ρ, (1)

where am and a
†
m are the annihilation and creation operators

of the mth oscillator, and Hm = ωma
†
mam + Km(a†

mam)2 is the
Hamiltonian of the mth oscillator, with ωm and Km being
the natural frequency and the Kerr nonlinearity parameter
of the mth oscillator, respectively. This Hamiltonian leads
to an energy level spacing ωm + (2n + 1)Km between the
nth and (n + 1)th energy levels of the mth oscillator. The
nonunitary dynamics is described using Lindblad operators
D[x]ρ ≡ xρx† − (x†xρ + ρx†x)/2. The parameters G and κ

describe the rate of energy gain and the rate of nonlinear energy
dissipation of the self-oscillators, respectively. V defines the
strength of the dissipative coupling. Such a dissipative coupling
is obtained by assuming that the two vdP oscillators are coupled
to a common Markovian reservoir [23], as schematically shown
in Fig. 1. In the following, we will use QuTiP [24,25] to
numerically simulate this master equation.

In the model described by Eq. (1), we have chosen κ and
G to be identical for both vdP oscillators. This allows us to
simplify our analysis by discarding any difference between the
states of the two self-oscillators which may arise as a result of
their individual character. This is by no means a crucial choice
for observing the noise-induced amplitude death and quantum
effects described below. We have maintained the freedom of
choosing a nonidentical natural frequency ωm as the amplitude
death depends critically on the frequency detuning between the
two self-oscillators. Furthermore, we allow for nonidentical
Kerr nonlinearity Km as it helps to elucidate the quantum
effects described in Sec. IV.

It is known that in the absence of a Kerr nonlinearity, the un-
coupled (V = 0) vdP oscillators exhibit limit cycles. We would
like to emphasize that this is also true in the presence of a Kerr
nonlinearity. This is apparent when examining the steady-state
density matrix for such a Kerr nonlinear vdP oscillator, which
is given by the diagonal ρ(V =0)

nn = (G/κ)n�(1 + n,G/κ +
n,G/κ)/[(G/κ)n�(1,G/κ,2G/κ)], where (. . .)n denotes the
Pochhammer symbol and � is Kummer’s confluent hypergeo-
metric function [10,26]. ρ(V =0) depends only on G/κ and not
on the Kerr parameter Km. It therefore describes limit cycles
with no preferred phase, just as for the harmonic Km = 0 case.

The equations of motion for the classical amplitudes of
oscillation, αm ≡ 〈am〉, can be obtained from Eq. (1). Using
the Heisenberg equation of motion and after employing a
mean-field approximation, one obtains

∂tαm = −i[ωm + 2Km|αm|2]αm + G

2
αm − κ|αm|2αm

+ V

2
(αm̄ − αm) (2)

for m ∈ {1,2}, and where m̄ �= m. These equations of motion
constitute our classical noiseless model.

To obtain from Eq. (1) a semiclassical model, i.e., a classical
model which includes Gaussian noise, we describe the system
using a partial differential equation for the Wigner distribution
function W (α1,α

∗
1 ,α2,α

∗
2 ,t) [16,27,28]:

∂tW (α) =
2∑

m=1

[
−

(
∂

∂αm

μαm
+ c.c.

)

+ 1

2

(
∂2

∂αm∂α∗
m

Dαmα∗
m

+ ∂2

∂αm∂α∗̄
m

Dαmα∗̄
m

)

+ κ − iKm

4

(
∂3

∂α∗
m∂α2

m

αm + c.c.

)]
W (α). (3)

This phase-space representation is completely equivalent to the
master equation description [Eq. (1)]. The drift coefficients are
given by

μαm
=

{
−i[ωm + 2Km|αm|2] + G

2
− κ(|αm|2 − 1) − V

2

}
αm

+ V

2
αm̄,

(4)
and the diffusion coefficients are given by

Dαm,α∗
m

= G + 2κ(2|αm|2 − 1) + V, Dαm,α∗̄
m

= −V. (5)

In the classical limit (|αm| � 1), we can neglect the third-
order derivatives of Eq. (3) [28,29]. By doing so, we obtain the
Fokker-Planck equation [30]

∂tW (α) =
2∑

m=1

[
−

(
∂

∂αm

μαm
+ c.c.

)
+ 1

2

(
∂2

∂αm∂α∗
m

Dαmα∗
m

+ ∂2

∂αm∂α∗̄
m

Dαmα∗̄
m

)]
W (α). (6)

Equation (6) constitutes our semiclassical model. It can be
further transformed into an equivalent Langevin form [16],
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FIG. 2. Amplitude suppression of two coupled self-oscillators for
the harmonic and anharmonic cases in the classical, semiclassical, and
quantum descriptions. (a), (d) Show the squared amplitude |α1|2 of the
noiseless classical oscillator obtained from Eq. (2). (b), (e) Present the
long-time limit amplitude squared |α1|2, obtained from numerically
simulating the semiclassical model (6), and then ensemble averaging
over many independent trajectories. (c), (f) Show the mean phonon
number 〈a†

1a1〉 of the quantum oscillator, Eq. (1). The upper plots (a),
(b), and (c) correspond to the harmonic case K/G = 0. The lower
plots (c), (d), and (e) correspond to the anharmonic case, with K/G =
1. A decrease in |α1|2 and 〈a†

1a1〉 is seen in the anharmonic case, as
compared with the harmonic case. The energy loss rate is κ/G = 0.2
for all plots. Cyan crosses mark the parameters for which the Wigner
density functions appearing in Fig. 3 were calculated.

which can be straightforwardly numerically simulated. The
transformation is shown in Appendix.

III. NOISE-INDUCED AMPLITUDE DEATH

The rest state of two harmonic self-oscillators is always
unstable without a coupling between the two oscillators. When
the two self-oscillators are dissipatively coupled, the rest state
may become stable, leading to strong amplitude suppression.
This depends on the strength of the coupling V , and on
the frequency detuning between the two self-oscillators, � ≡
ω2 − ω1. In the classical noiseless case, it is predicted that the
rest state is stable in the regime G < V < (�2 + G2)/(2G)
[17]. This behavior can be seen in Fig. 2(a), which shows
the squared amplitude |α1|2 = |α2|2. For two vdP oscillators
with an anharmonic energy spectrum, the effective oscillation
frequency of the individual oscillators, ω̃m ≡ ωm + 2Km|αm|2,
depends on the amplitude of oscillation. This is a direct result
of the anharmonicity in their energy spectrum Km. In the
case that this anharmonicity is identical for both oscillators,
K1 = K2 = K , the effective frequency detuning is identical to
the natural frequency detuning,

�̃ = ω̃2 − ω̃1 = ω2 − ω1 + 2K(|α2|2 − |α1|2) = � (7)

since the relation α1 = α2 holds in this case. We therefore
expect the amplitude of oscillation of the oscillators with Kerr
nonlinearity to be identical to the amplitude of oscillation of
the harmonic oscillators, for any specific values of V and �.
This is indeed the case, as can be seen by comparing Fig. 2(a)
with Fig. 2(d), in which the squared amplitude of oscillation
|α1|2 = |α2|2 for K/G = 1 is shown.

FIG. 3. Wigner density function for the steady state of the oscilla-
tor before and after amplitude death occurred, for both the harmonic
case and the nonlinear case. (a), (b) Correspond to the cyan crosses
marked in Fig. 2(c), while (c) and (d) match the cyan crosses shown
in Fig. 2(f). The suppression of oscillation amplitude in the presence
of a Kerr nonlinearity is clearly visible by comparing (a) and (c).
The limit cycle shrinks, resulting in a decrease of 〈a†

1a1〉. The Wigner
distributions are all rotationally symmetric, having no preferred phase.
In all plots, κ/G = 0.2 and V/G = 6.

For vdP oscillators in the presence of noise, on the other
hand, the anharmonicity drastically changes the oscillation
amplitude as compared with the harmonic case. This can
be seen both in our semiclassical model, and in the fully
quantum description. In Fig. 2(b), we numerically simulate the
semiclassical model (6) for K = 0, and show the long-time
limit amplitude squared |α1|2, which is ensemble averaged
over many independent trajectories. This |α1|2 is shown as a
function of both the detuning � and the coupling strength V .
Oscillations are sustained for small enough �, with slightly
higher amplitudes than in the noiseless case. This oscillation
amplitude is highly suppressed in the regime where amplitude
death is expected. Nevertheless, the amplitude of oscillation
does not vanish completely, as noise hinders the complete
collapse. This agrees with Ref. [16]. In Fig. 2(e), in which |α1|2
is shown for K/G = 1, and in contrast to the classical noiseless
case, the amplitudes of oscillation are significantly changed.
This can be seen by comparing Fig. 2(e) to Fig. 2(b). It is seen
that the values of |α1|2 for V > G are significantly lower for
the anharmonic case, as compared with the harmonic case.

As mentioned, a similar decrease is seen also in the quantum
description. In Fig. 2(c) we show the mean phonon number of
the first oscillator 〈a†

1a1〉 for the harmonic case, as a function
of � and V . As discussed in Ref. [16], the mean phonon
number significantly decreases in the regime where amplitude
death is expected classically, but does not vanish completely.
Noise prevents the complete collapse. This can also be seen
in Figs. 3(a) and 3(b), in which we plot the Wigner function
representation of the steady state of the oscillator before and
after amplitude death occurred. The parameters chosen for
these Wigner representations are marked in cyan crosses in
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FIG. 4. (a) Average occupation number 〈a†
1a1〉 as a function of K .

It is obtained using Eq. (1). (b) Average oscillation amplitude squared
obtained from Eq. (6), |α1|2, as a function of K . In both noisy models, a
noticeable decrease in the oscillation amplitude is seen for increasing
K . The legend shown describes both plots. Other parameters used in
both plots are (κ,�) = (0.2,0.0) × G.

Fig. 2(c). After amplitude death takes place, the probability dis-
tribution is sharply concentrated about the axis origin, leading
to low phonon expectation values 〈a†

1a1〉. When nonlinearity
is introduced, just as in the semiclassical description, the mean
phonon number of the oscillators is significantly changed. This
is seen in Fig. 2(f), in which the mean phonon number 〈a†

1a1〉 is
shown for K/G = 1. As in the semiclassical description, it is
seen that the values of 〈a†

1a1〉 for V > G are significantly lower
for the K/G = 1 case, as compared with the K/G = 0 case.
This is also seen in the Wigner function representation, shown
for the nonlinear case in Figs. 3(c) and in Fig. 3(d) for the
parameters marked in cyan crosses in Fig. 2(f). Even before
amplitude death occurred, the limit cycle of the oscillator
shrank as compared with the harmonic case [Fig. 3(a)]. The
nonlinearity leads therefore to a decrease of 〈a†

1a1〉 in the
quantum case. Note that while Figs. 2 and 3 show the average
phonon number and Wigner function representation of the first
oscillator, almost identical figures are obtained for the second
oscillator [see Fig. 6(d) and discussion in the end of Sec. IV].

The underlying cause for this decrease, seen in the semi-
classical model and in the quantum description, is noise.
When noise is present, the amplitude of the self-oscillator
fluctuates, as is implied by the existence of a diffusion constant,
Eq. (5). The effective frequency of the oscillators with Kerr
nonlinearity ω̃m depends on this fluctuating amplitude of
oscillation. For that reason, the frequency is now a fluctuating
quantity as well. The bigger the anharmonicity K is, the larger
the frequency fluctuations become. This implies that when
noise is present in the system, the spread of values for �̃

is wider than the spread of values of the effective detuning
for harmonic self-oscillators �. Therefore, increasing K has a
similar effect as increasing the effective detuning between the
two self-oscillators. As the dissipative coupling is sensitive to
the detuning, we see the effect of increasing K as a decrease in
〈a†

1a1〉 (〈a†
2a2〉) for V > G. For V 	 G, on the other hand, the

dissipative term plays only a minor role. Therefore, increasing
K does not significantly change the occupation number 〈a†

1a1〉
(〈a†

2a2〉).
In Fig. 4(a), we numerically simulate the quantum master

equation (1), and show the decrease of 〈a†
1a1〉 for increasing

K . In Fig. 4(b), we numerically simulate the semiclassical
model (6), and show the decrease in the average amplitude
squared |α1|2 for increasing K . Indeed, both noisy models
show this decrease, and only quantitative differences can be
seen when comparing the two. The noiseless classical model
cannot account for this amplitude suppression, as is seen in
Fig. 2. We therefore conclude that this amplitude suppression,
or average occupation number reduction, is noise induced.

For very large values of K/G, this noise-induced amplitude
suppression can balance the amplitude growth induced by the
linear energy gain G. This allows us to set κ = 0 for these
cases, while still keeping the self-oscillators in the quantum
parameter regime in which only a small number of energy
levels are populated (see Sec. IV). For smaller values of K/G,
a finite κ is required to keep the oscillators in the quantum
parameter regime.

IV. QUANTUM EFFECTS: AMPLITUDE REVIVAL

In the quantum parameter regime, the anharmonicity leads
to genuine quantum effects in the amplitude death phe-
nomenon, which cannot be modeled using a semiclassical
model. They are the result of the quantized, discrete energy
spectrum of the oscillators (see Fig. 1). The Kerr anharmonicity
Km leads to an energy level spacingωm + (2n + 1)Km between
the nth and the (n + 1)th Fock levels of the mth anharmonic
quantum vdP oscillator. There are therefore several discrete
frequencies relevant for each oscillator. As the amplitude death
phenomenon depends on the detuning between the frequencies
of the oscillators, we can expect this discreteness to be reflected
in the mean phonon number 〈a†

mam〉 of each oscillator. In order
to observe this discreteness, however, one must also consider
the broadening of the energy levels due to the dissipative
processes. Working in a parameter regime in which the energy
level spacing is much larger than the energy level broadening
is therefore a necessity.

To see an example of this, consider one quantum anhar-
monic vdP oscillator to have a Kerr nonlinearity K1, while
the second vdP oscillator is harmonic, i.e., K2 = 0. Deep
in the quantum parameter regime, in which only the lowest
three energy levels of each oscillator are populated, just three
frequencies are relevant: the transition frequencies between
the populated energy levels of the first oscillator, ω1 + K1 and
ω1 + 3K1, and the frequency of the second oscillator, ω2. The
effective detuning between the two oscillators could therefore
be minimized at two discrete values: �̃ = ω2 − ω1 − K1 = 0
and �̃ = ω2 − ω1 − 3K1 = 0. At these values for which the
effective detuning is minimized, we expect to see a revival
of the oscillation amplitude. In Fig. 5(a), the blue curve
depicts 〈a†

1a1〉 = 〈a†
2a2〉 obtained by numerically simulating

the master equation (1), for the example just described (the
Fock level probability distribution is shown in the left inset).
The peaks in the mean phonon number are clearly visible. The
red curve in Fig. 5(a) depicts the peaks in 〈a†

1a1〉 = 〈a†
2a2〉

for a smaller V , i.e., for a parameter regime in which more
Fock levels are populated (see right inset). Indeed, the peaks
are seen in this case for � = (2n + 1)K1, with n being a non-
negative integer. The average oscillation amplitude squared,
|α1|2 = |α2|2, predicted by the semiclassical model, is shown
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FIG. 5. Average occupation number 〈a†
1a1〉 = 〈a†

2a2〉 and average
oscillation amplitude squared |α1|2 = |α2|2, obtained from Eqs. (1)
and (6), respectively, are shown as a function of the detuning in (a)
and (b) for a vdP oscillator with very strong nonlinearity K1/G = 50
coupled to a harmonic (K2/G = 0) vdP oscillator. In (c) and (d), the
same quantities are shown for two anharmonic (K1/G = K2/G =
50) coupled vdP oscillators. In all plots, blue curves correspond to
V/G = 8, while red curves correspond to V/G = 2. The Fock basis
probability distributions for both these coupling strengths are shown
in the insets (calculated for � = 0). The individual dissipation rate is
κ/G = 0.

in Fig. 5(b). As in Fig. 5(a), the blue and red curves correspond
to V/G = 8 and 2, respectively. In both cases, only one peak is
seen. This is expected, as the energy distribution is continuous
in the semiclassical case. One can furthermore observe a
mismatch in the peak location between the two cases. This
is a classical effect, caused by the fact that the frequency of the
nonlinear oscillator depends on the amplitude of oscillation,
ω̃1 = ω1 + 2K1|α1|2. The peak appears for ω2 = ω̃1, i.e., for
� = 2K1|α1|2. Smaller values of V correspond to a larger
amplitude of oscillation, and therefore the peak for V/G = 2
appears to the right of the peak for V/G = 8.

FIG. 6. (a) Average occupation number 〈a†
1a1〉 as a function

of � and K . Peaks in the occupation number at K = ±2� are
clearly visible. (b) Difference in occupation number between the two
oscillators, 〈a†

1a1 − a
†
2a2〉. The oscillation revival is more apparent

in the mth oscillator, if it involves its lowest frequency ωm + K .
Other parameters are (κ,V )/G = (0.25,2) in both plots. (c) Average
occupation number difference, 〈a†

1a1 − a
†
2a2〉, as a function of � and

κ . Other parameters are (K,V )/G = (50,2). The difference becomes
more pronounced as κ is increased. (d) 〈a†

1a1 − a
†
2a2〉 for parameters

corresponding to Fig. 2(f), (K,κ)/G = (1,0.2).

We now also consider the case in which both the vdP
oscillators have an anharmonic energy spectrum. An example
is shown in Fig. 5(c), in which the occupation number 〈a†

1a1〉 =
〈a†

2a2〉 of both oscillators is plotted as a function of the detuning
�, for equal Kerr nonlinearities K1 = K2 ≡ K . The blue curve
corresponds to strong dissipative coupling V for which only
the first three low-lying Fock levels are populated (left inset),
while the red curve corresponds to smaller V , for which
more Fock levels have non-negligible population (right inset).
We now expect phonon number peaks for � = 2nK , with n

being an integer. These correspond to resonances between the
transition frequencies of the two anharmonic oscillators, for the
non-negligibly populated Fock states. The blue and red curves
shown in Fig. 5(d) present the single peak which is predicted
by the semiclassical model. Contrary to Fig. 5(b), and because
both oscillators are nonlinear with K1 = K2, both peaks appear
at the same detuning � = 0.

In the previously described examples, we set κ/G = 0. The
energy gain G was balanced by the dissipative coupling V .
This was possible because we have used large Kerr parameters
K1 or K2, which therefore, as explained in Sec. III, made the
dissipative coupling more effective. For small values of K1 and
K2, a finite value of κ needs to be introduced in order to keep
the system in the quantum parameter regime.

Figure 6(a) illustrates that in the absence of Kerr anhar-
monicity, i.e., K1 = K2 ≡ K = 0, the two oscillators have a
high phonon number only for � = 0. As |�| is increased, the
oscillation amplitude is strongly suppressed. For larger values
of K , the oscillation amplitudes become much smaller, as the
dissipative coupling is more effective. Still, for � = 0, we have
a peak in the phonon number. As we increase |�|, the phonon
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number decreases. But once |�| gets closer to the resonance
condition |�| = 2K , the phonon number increases again.

In Fig. 6(a), a dissipation rate of κ/G = 0.25 was chosen.
It is needed to balance the energy gain G for the lower
values of K . This value of κ introduces a small asymmetry
between negative and positive detuning �. In Fig. 6(b), the
difference of the phonon number between the two oscillators
〈a†

1a1 − a
†
2a2〉 is shown. We can see that for negative detunings,

the phonon number peaks are more pronounced for oscillator
1. For positive detunings, the opposite is true. To understand
this effect, we need to consider the frequency resonances
relevant to a corresponding phonon number peak. For � > 0
(� < 0) and K > 0, the resonances involve the lowest possible
transition frequency of the second (first) oscillator, with higher
transition frequencies of the first (second) oscillator. As κ

is influencing energy levels higher than the ground state, its
effect is less detrimental on the oscillator for which the lowest
possible frequency is relevant. We therefore expect that if the
relations K > 0 and κ > 0 hold, such an asymmetry occurs. In
Fig. 6(c), the difference 〈a†

1a1 − a
†
2a2〉 is plotted as a function

of the detuning � and of κ [other parameters are (V,K)/G =
(2,50)]. It is indeed seen that 〈a†

1a1 − a
†
2a2〉 = 0 for κ = 0.

As κ is in increasing, so is the difference 〈a†
1a1 − a

†
2a2〉. In

Fig. 6(d) we show the difference 〈a†
1a1 − a

†
2a2〉 for parameters

corresponding to Fig. 2(f).

V. CONCLUSIONS

In this paper, we have studied theoretically the amplitude
death phenomenon for two coupled anharmonic quantum vdP
oscillators. We have shown that the anharmonicity leads to
smaller oscillation amplitudes in the semiclassical model, and
in the quantum description, an effect which we have shown
to be the result of noise. Furthermore, we have found in
the quantum description qualitative differences as compared
with the semiclassical model. Peaks in the mean phonon
number of the oscillators are seen as a function of their
detuning. They describe quantized amplitude death, and then
oscillation revival. We have shown that these peaks correspond
to discrete transition frequencies in the energy spectrum of the
anharmonic vdP oscillators, and that they are therefore not seen
in a semiclassical model.

Quantum vdP oscillators with a dissipative coupling can
be engineered in a variety of systems. In trapped ion systems,
one-phonon gain and two-phonon loss can be implemented
using appropriately red- and blue-detuned drives [3]. The dis-
sipative coupling can be implemented using various techniques
[6,31,32]. For these systems, large Kerr nonlinearities K1 and
K2 can be engineered [13,33–35]. In cavity optomechani-
cal systems, quantum vdP oscillators can be realized using
“membrane-in-the-middle” setups [4,36]. The two-phonon
loss is obtained by placing the membrane at a node of the
cavity field, and then driving the cavity with an appropriate
red-detuned drive. The one-phonon gain is implemented via a
coupling to another cavity mode, which is driven by an appro-
priate blue-detuned laser. A dissipative coupling of the form
D[am − am̄] between two such quantum vdP oscillators can be
implemented using an additional cavity [4]. Engineering large
Kerr nonlinearities in optomechanical systems is extremely

challenging and has not been demonstrated, but hybrid systems
such as [37,38] exploiting strong nonlinearities from auxiliary
systems have been proposed. Realizing this experiment will
demonstrate a new quantum effect in the amplitude dynamics
of nonlinear coupled oscillators.
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APPENDIX: TRANSFORMING THE FOKKER-PLANCK
EQUATION TO A LANGEVIN EQUATION

Following Ref. [16], we first rewrite the Fokker-Planck
equation (6) to Cartesian coordinates. Using αm = xm + iym,
we find

∂tW (X) =
2∑

m=1

[
−

(
∂

∂xm

μxm
+ ∂

∂ym

μym

)
+ 1

2

(
∂2

∂x2
m

Dxmxm

+ ∂2

∂y2
m

Dymym
+ ∂2

∂xm∂xm̄

Dxmxm̄

+ ∂2

∂ym∂ym̄

Dymym̄

)]
W (X), (A1)

where X = (x1,y1,x2,y2), the drift vector μ =
(μx1 ,μy1 ,μx2 ,μy2 ) is given by

μxm
= [

ωm + 2Km

(
x2

m + y2
m

)]
ym

+
[
G

2
− κ

(
x2

m + y2
m − 1

) − V

2

]
xm + V

2
xm̄, (A2)

μym
= −[

ωm + 2Km

(
x2

m + y2
m

)]
xm

+
[
G

2
− κ

(
x2

m + y2
m − 1

) − V

2

]
ym + V

2
ym̄, (A3)

and the diffusion matrix is given by

D = 1

2

⎡
⎢⎣

ν1 0 −V/2 0
0 ν1 0 −V/2

−V/2 0 ν2 0
0 −V/2 0 ν2

⎤
⎥⎦, (A4)

where νm = G/2 + κ[2(x2
m + y2

m) − 1] + V/2.
The Langevin equation corresponding to Eq. (A1) is

d X = μdt + σdW t , (A5)

where dW t is the Wiener increment, and the noise strength
is obtained via σ = U

√
D′U−1, where D′ = U−1 DU is the

diagonalized form of D. As the Kerr nonlinearity does not
appear in the diffusion matrix, the analytical derivation and
exact expression for the noise term are identical to what is
shown in Ref. [16].
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