
PHYSICAL REVIEW A 97, 063812 (2018)

Unraveling nonclassicality in the optomechanical instability
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Conditional dynamics due to continuous optical measurements has successfully been applied for state
reconstruction and feedback cooling in optomechanical systems. In this paper, we show that the same measurement
techniques can be used to unravel nonclassicality in optomechanical limit cycles. In contrast to unconditional
dynamics, our approach gives rise to nonclassical limit cycles even in the sideband-unresolved regime, where
the cavity decay rate exceeds the mechanical frequency. We predict a significant reduction of the mechanical
amplitude fluctuations for realistic experimental parameters.
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I. INTRODUCTION

In recent years, optomechanical experiments have started
to enter the quantum regime. Sideband cooling of the me-
chanical subsystem to the quantum ground state [1,2], sensing
of mechanical motion at the standard quantum limit [3–5],
quantum state transfer between the optical and mechanical
subsystems [6,7], and phonon lasing [8–10] have been demon-
strated experimentally. Theoretical studies [11–14] have led
to the prediction [15] that the phonon distribution of such
an optomechanical phonon laser can be nonclassical if the
system is operated in the resolved-sideband regime. However,
an experimental observation of this feature is still missing.

Continuous measurements, such as homodyne detection or
photon counting, can provide information on the state of a
system [16]. These measurements give rise to a conditional
time evolution since the state of the system at any given
time depends on the previous measurement results. Real-time
state reconstruction using these measurement results has been
experimentally demonstrated both in the regime of negligible
optical backaction and in the quantum regime [17–19]. In a
second step, the obtained knowledge of the system state can
be used to implement feedback mechanisms to, e.g., cool the
motion of the system [20–23]. Squeezing of the mechanical
motion of a levitated nanosphere in the presence of sideband
cooling and Markovian feedback has been studied theoretically
[24].

In this paper we consider the opposite limit, i.e., an optome-
chanical system driven into mechanical limit-cycle motion by
a blue-detuned laser. We show that a continuous measurement
on the optical cavity can be used to reveal nonclassicality of
the mechanical state by reducing its mechanical amplitude
fluctuations. We quantify this reduction using the mechanical
Fano factor, which is the mean-square fluctuation of the phonon
number normalized to the phonon-number expectation value.

In contrast to existing proposals based on unconditional
dynamics [11,15], which are required to be operated in
the sideband-resolved regime in order to obtain nonclas-
sical mechanical states, our approach opens the exciting
possibility of nonclassical self-oscillations in the sideband-
unresolved regime. This comes at the cost of obtaining a time-
dependent, stochastically fluctuating Fano factor because of the

conditional system dynamics. We characterize the magnitude
of these fluctuations and show that the conditional Fano factor
can become smaller than unity, notably even in the sideband-
unresolved regime, where it has been proven that the Fano
factor observed for unconditional dynamics is always larger
than unity [15].

This paper is structured as follows. In Sec. II we introduce
our system and the different parameter regimes that we inves-
tigate. Numerical results are shown in Sec. III and discussed
in Sec. IV. Finally, we conclude in Sec. V.

II. METHODS

We consider an optomechanical system described by the
quantum master equation

ρ̇ = − i[H,ρ] + κD[a]ρ + (nph+1)�D[b]ρ + nph�D[b†]ρ,

(1)

H = − �a†a + �b†b − g0a
†a(b† + b) + αlaser(a

† + a), (2)

where a and b are the annihilation operators of an optical
photon and a mechanical phonon, respectively, and � =
ωlaser − ωcav is the detuning of the frequency ωlaser of the laser
drive with respect to the cavity frequency ωcav. The Lind-
blad dissipators are defined by D[O]ρ = OρO† − 1

2O†Oρ −
1
2ρO†O. The mechanical and optical damping rates and the
thermal mechanical phonon number are denoted by �, κ ,
and nph, respectively, and we set h̄ = 1. The symbols �,
g0, and αlaser denote the mechanical resonance frequency,
the bare optomechanical coupling strength, and the amplitude
of the laser drive, respectively. A continuous measurement,
i.e., photon counting or a homodyne detection of the optical
quadrature aeiϕ + a†e−iϕ , is performed on the output port of
the optical cavity. We will focus on the case where the angle ϕ

is chosen to minimize the Fano factor. The photodetectors used
there are assumed to have a detection efficiency η. A sketch
of the setup introducing the parameters is shown in Figs. 1(a)
and 1(b).

In this paper, we assume a blue-detuned laser drive to be
applied to the optomechanical system, � > 0, to drive the
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FIG. 1. Sketch of the considered setup. An optomechanical sys-
tem is monitored by a continuous measurement, either homodyne
detection (a) or photon counting (b). A blue-detuned laser drive is
applied to the optomechanical system to induce mechanical limit
cycles at an amplitude Bss. (c) Optically induced damping �BA as
a function of r = 2g0Bss/� in the regime |�| < �. Here, � is
the detuning between the frequencies of the laser drive and the
cavity, � is the frequency of the mechanical oscillator, and g0 is
the bare single-photon optomechanical coupling strength. Limit-cycle
positions for the different parameter sets of the mechanical damping
considered in this paper (see main text) are indicated by solid markers.
The colors and marker symbols correspond to the ones of the data sets
in Fig. 3.

system into mechanical limit-cycle motion. This motion is of
the form [11,25]

〈b〉 = βss + Bsse
−i(�t+φ), (3)

where Bss is the steady-state amplitude of the limit-cycle
motion and βss is a constant offset. The value Bss is obtained
by equating the negative mechanical damping rate −� with
the optically induced damping rate �BA(r), defined as [11,25]

�BA(r) = 2κg2
0 |αlaser|2

∞∑
n=−∞

Jn(r)Jn+1(r)

rhnhn+1
, (4)

where Jn is the nth Bessel function of the first kind
and the dimensionless amplitude r is defined by r =
2g0Bss/�. This damping rate is sketched in Fig. 1(c).
We also introduced the abbreviation hn = κ2/4 + (n� +
� + 2g0Re[βss])

2. Amplitude fluctuations around the steady-
state value, δB(t) = B(t) − Bss, decay exponentially, δB(t) =
δB(0)e−�relt/2, where the relaxation rate is given by (see
Ref. [11])

�rel = 2κg2
0 |αlaser|2

∞∑
n=−∞

J ′
n(r)Jn+1(r) + Jn(r)J ′

n+1(r)

hnhn+1
+ �.

(5)

We consider three different parameter regimes of the me-
chanical damping �, schematically represented in Fig. 1(c) by
horizontal lines:

(i) Negligible mechanical damping (solid red line). In this
case, the theory developed in Ref. [15] is directly applicable.
Furthermore, a measurement at perfect detection efficiency,
η = 1, drives the system into a pure state. As �BA(r) oscillates
around zero, limit cycles are possible at each positively sloped
root of �BA(r). Quantum fluctuations and noise induced by
the optical decay may drive the system across the regions of
positive damping separating these limit-cycle positions. The
value of the maximum damping rate in these regions decreases
if κ is increased; therefore, for larger κ the system can show
multistability between several limit cycles or it may eventually
become unstable and does not feature a limit cycle at all.
In effect, all parameters considered in this paper are in the
sideband-resolved regime if the mechanical damping rate is
set to zero.

(ii) A nonzero mechanical damping that is small compared
to |�BA(0)| at mechanical amplitude zero, but large enough
such that there is a unique limit cycle (dashed blue line). In
this regime, there is no restriction on the values of κ . The
two parameter regimes introduced above are advantageous for
numerical simulations, since, for an appropriate choice of g0,
we can avoid multistability by widely separating the limit cycle
amplitudes in Fock space while the fluctuations in Fock number
n are still sufficiently small to allow us to restrict the Hilbert
space dimension to a numerically feasible size. However, so far
optomechanical limit cycle experiments operate at very small
values of g0/κ , the ratio κ/� can be smaller than unity, but the
cooperativities are not much larger than unity, such that their
limit cycle is situated in the parabolic region of the curve of
�BA(r) [10].

(iii) Therefore, we also investigate a mechanical damping
of the order of |�BA(0)| (dotted green line) to provide a result
in a corresponding parameter regime. However, we increase
the value of g0 as compared to the experiment because the
Hilbert-space dimension scales inversely proportional to g0.

To quantify the nonclassicality of the mechanical limit
cycle, we calculate the mechanical Fano factor

F =
〈
n2

〉 − 〈n〉2

〈n〉 , (6)

where n = b†b denotes the phonon number operator. It is a
measure of the mean-square amplitude fluctuations normalized
to the amplitude expectation value. A coherent (classical) state
corresponds to a Fano factor of unity, whereas thermal states or
states broadened by other noise feature a Fano factor larger than
unity. A Fano factor less than unity indicates a nonclassical,
sub-Poissonian squeezed mechanical state.

Applying homodyne detection on the optical cavity output
is a continuous measurement of the optical quadrature aeiϕ +
a†e−iϕ . Likewise, a photon counting measurement continu-
ously monitors single-photon losses of the optical cavity. These
measurements introduce a conditional time evolution, since
the state of the system depends on all previous measurement
results. To simulate a continuous measurement, the uncondi-
tional quantum master equation (1) is turned into a stochastic
quantum master equation for the density operator ρ, which

063812-2



UNRAVELING NONCLASSICALITY IN THE … PHYSICAL REVIEW A 97, 063812 (2018)

describes random quantum trajectories of the system and can
be solved numerically [16]. In the case of photon counting, the
system dynamics consists of a deterministic time evolution that
is interrupted by occasional quantum jumps at random times.
In the case of homodyne detection, the system dynamics is a
white-noise process so that a random measurement result has
to be taken into account in every time step. The eigenvalues of
the deterministic part of the differential equation have a large
imaginary component, such that explicit integration algorithms
are unstable even for relatively small time steps. Therefore,
we use a semi-implicit Milstein algorithm, which is implicit
with respect to the deterministic part of the time evolution
[26], to integrate the stochastic differential equation in the
case of homodyne detection. This algorithm has already been
implemented in the QUTIP package [27], which we use for all
numerical calculations in this paper. To solve the stochastic dif-
ferential equation for photon counting, we have implemented
a fourth-order implicit Runge-Kutta algorithm [28].

The steady-state system dynamics can be recovered from
the stochastic calculation by an average over many quantum
trajectories. Hence, the averages of observables, e.g., the aver-
aged phonon number expectation value 〈n〉, do not change their
value in the presence of continuous measurements. However,
knowledge acquired by the continuous measurement drives the
density matrix on each individual quantum trajectory closer to a
pure state, i.e., the von Neumann entropy S = −kBTr(ρ ln ρ)
decreases. Likewise, the values of functions of observables,
e.g., the Fano factor, may take values different from their
steady-state values. In the following, we numerically study
how both homodyne detection and photon counting reduce the
mechanical Fano factor of the system. We analyze the impact of
inefficient detection, η < 1, of finite mechanical temperature
nph > 0, and of the optomechanical coupling strength g0.

III. RESULTS

Figures 2(a)–2(c) show the phonon-number expectation
value 〈n〉, the von Neumann entropy S = −kBTr(ρ ln ρ), and
the Fano factor F for a quantum trajectory obtained by
homodyne detection [solid blue (black in print) curves], as well
as their mean values 〈n〉, S, and F obtained by averaging over
many trajectories [solid red (dark gray) curves]. Time is given
in units of the inverse amplitude relaxation rate, Trel = 1/�rel

[see Eq. (5)]. The system is initialized in its steady state at times
t < 0. At t = 0, homodyne detection is switched on and 〈n〉, S,
and F evolve stochastically. As expected, homodyne detection
does not change the mean phonon-number expectation value
〈n〉, but our increasing knowledge of the system state causes
the mean von Neumann entropy S and the mean Fano factor F

to be decreased. Empirically, an exponential decay towards
new conditional mean values is found, with a rate that is
approximately twice the amplitude relaxation rate (5):

S(t) ≈ (Sss − Scond)e−2�relt + Scond, (7)

F (t) ≈ (Fss − Fcond)e−2�relt + Fcond. (8)

This exponential decay is shown by dashed orange (light
gray) curves. The value of Scond depends on the strength of
the remaining dissipative channels of the system. For zero

(a)

(b)

(c) (e)

(d)

FIG. 2. Evolution of (a) the phonon-number expectation value
〈n〉, (b) the von Neumann entropy S, and (c) the Fano factor F under
homodyne detection for a single trajectory [solid blue (black in print)
curves]. The corresponding averages over 30 trajectories are shown
as solid red (dark gray) curves, and the theoretical expectations in
the limit of an average over infinitely many trajectories, Eqs. (7) and
(8), respectively, are shown as dashed orange (light gray) curves.
Time is given in units of the relaxation time Trel = 1/�rel. At times
t < 0 the system is assumed to be in its steady state, homodyne
detection is switched on at t = 0. (d) The Wigner function of the
mechanical state at two different times indicated by green dots on the
trajectories in a frame rotating at �, the earlier time being shown at
the top. The zero-point fluctuations are defined by xzpf = 1/

√
2m�

and pzpf = √
m�/2, where m denotes the mass of the movable

mirror. (e) Distribution of the Fano factor for times larger than the
data-acquisition start time indicated by the dotted black line in (c).
The data includes all 30 trajectories. The blue (dark gray) bars of
the histogram comprise at least 70 % of the total probability. In the
sideband-resolved regime, this region is asymmetrically distributed
around the mean value. Parameters are �/� = 0.36, g0/� = 0.36,
κ/� = 1.5, �/� = 0.00125, αlaser/� = 0.3, nph = 0.0, ϕ/π = 0.6,
and η = 1. The value of Bss characterizing the semiclassical solution
is Bss = 3.2.

mechanical damping and perfect detection, there is no unmon-
itored dissipation channel left and the system evolves into a
pure entangled state, having zero von Neumann entropy. For
nonzero mechanical damping or imperfect detection efficiency,
there is an additional unmonitored decay channel such that
the system evolves into a mixed state, having nonzero von
Neumann entropy, Scond � 0.
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In the case of homodyne detection, the value of Fcond

depends on the measured quadrature, i.e., it is a function of the
homodyne angle ϕ. In the following, all homodyne detection
data are given at the optimal angle ϕ that minimizes the value
of Fcond. Note that ϕ and ϕ + π effectively measure the same
quadrature.

In the limit t � Trel, the instantaneous Fano factor F (t)
of a quantum trajectory fluctuates around a constant mean
value Fcond. To quantify these fluctuations, we calculate the
histogram of the Fano factor F (t) over many trajectories for
times t larger than a data-acquisition start time indicated in
Fig. 2(c) by a black dashed line. This histogram is shown in
Fig. 2(e). In the following, we quantify its properties by three
numbers: (i) the mean Fano factor Fcond, (ii) the probability
p(F < Fss) to obtain a Fano factor smaller than the steady-state
value Fss, and (iii) the range of values of the Fano factor that
contains at least 70% of the total probability. This range is
indicated by blue (dark gray in print) bars in the histogram and
can be asymmetrically distributed around the mean value Fcond

in the sideband-resolved regime. To determine this range, we
calculate the cumulative distribution function of the histogram
and exclude all bins that have a value smaller than 15% or
larger than 85%.

Using these three figures of merit, we investigate the
efficiency of the reduction of the Fano factor by continuous
measurements compared to its steady-state value, for different
optical damping rates κ , different types of continuous mea-
surements, and damping rates in the three different regimes
introduced in Sec. II. Figures 3(a) and 3(b) summarize the
results as a function of the optical decay rateκ , ranging from the
sideband-resolved to the sideband-unresolved regime. Solid
red circles represent Fcond and p(F < Fss), respectively, for
homodyne detection and zero mechanical damping, �/� = 0.
The shaded region indicates the range of Fano factors that
contains 70% of all counts. Open red circles connected by a
dashed line represent the corresponding values of Fss. For the
given parameters there is no limit cycle in the region κ � �.
Likewise, the curves indicated by blue squares and connected
by solid lines represent the corresponding results for homodyne
detection and a nonzero mechanical damping which is small
compared to |�BA(0)|. Finally, the green triangles show the
results for homodyne detection and a mechanical damping
of the order of |�BA(0)|. For these three different parameter
regimes, we also give the results obtained by photon counting,
which are indicated by the black crosses with error bars or black
crosses connected by dotted lines adjacent to the corresponding
results for homodyne measurements.

As predicted in Refs. [11,15], the steady-state Fano factor
is smaller than unity in the sideband-resolved regime at zero
mechanical damping. This prediction still holds for small
mechanical damping, but is not applicable for a mechanical
damping of the order of |�BA(0)|. If κ is increased towards
the sideband-unresolved regime, the steady-state Fano factor
grows and takes values much larger than unity. Homodyne
detection or photon counting measurements decrease the con-
ditional mean Fano factor Fcond with respect to Fss for all
considered values of � and κ . Whereas Fcond grows in the
sideband-resolved regime with increasing κ , it saturates to a
value of about unity in the sideband-unresolved regime. In
the sideband-resolved regime, Fcond depends only weakly on

(b)

(a)
(c)

FIG. 3. (a) Mean conditional Fano factor Fcond under a continuous
measurement (solid markers), steady-state Fano factor Fss (open
markers), and (b) probability p(F < Fss) to observe a Fano factor
smaller than Fss as a function of the optical damping rate κ . Red
circles and dashed lines correspond to homodyne detection and zero
mechanical damping. Blue squares and solid lines correspond to
homodyne detection and a small mechanical damping compared to
|�BA(0)|. Green triangles represent the case of homodyne detection
and a large mechanical damping rate compared to |�BA(0)|. The
data drawn with black crosses adjacent to the results for homodyne
detection show the corresponding results for photon counting. The
shaded regions and error bars represent the ranges of Fano factors
that contain at least 70% of all counts. All curves are taken at perfect
detection efficiency, η = 1. The detuning � and the homodyne
detection angle ϕ are chosen such that the steady-state Fano factor
Fss and its mean conditional value Fcond are minimal, respectively. The
colors and marker symbols corresponding to the different parameter
regimes are the same as the ones used in Fig. 1(c). The properties of
the histogram in Fig. 2(e) are shown by the blue squares at κ/� = 1.5.
(c) Influence of imperfect detection, η < 1, for �/� = 0.00125 and
κ/� = 1.5. Parameters are κ/� = (0.1,0.5,1.0,1.5,2.0,2.5,3.0)
and nph = 0. Red circles: g0/� = 0.16, �/� = 0, αlaser/� = 0.35,
�/� = (0.05,0.21,0.37), and ϕ/π = (0.0,0.0,0.9). Blue
squares and black crosses: g0/� = 0.36, �/� = 0.00125,
αlaser/� = 0.3, �/� = (0.00,0.15,0.27,0.36,1.44,1.22,0.74), and
ϕ/π = (0.0,0.9,0.8,0.6,0.4,0.3,0.3). Green triangles: g0/� = 0.16,
�/� = 0.0006, αlaser/� = 0.1, �/� = 0.05, and ϕ/π = 0.15.
The corresponding values of 〈n〉ss and Bss are as follows.
Red circles: 〈n〉ss = (55.5,57.7,64.7) and Bss = (7.5,7.6,8.0).
Blue circles: 〈n〉ss = (9.4,10.3,11.3,11.8,22.2,15.3,8.0) and
Bss = (3.2,3.2,3.2,3.2,4.6,3.8,2.6). Green triangles: 〈n〉ss = 10.8
and Bss = 3.2.
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FIG. 4. Influence of the optomechanical single-photon
coupling strength g0 on Fss, Fcond, and p(F < Fss). The product
g0|αlaser| = 0.108 �2 is kept constant. The detuning � and the
homodyne angle ϕ are chosen such that the steady-state Fano factor
Fss and its mean conditional value Fcond are minimal, respectively.
Filled blue squares indicate the results for homodyne detection; black
crosses indicate the ones for photon counting. The steady-state Fano
factor Fss is shown in open blue squares. Parameters are κ/� = 1.5,
�/� = 0.005, g0/� = (0.144,0.18,0.24,0.36,0.72), αlaser/� =
(0.75,0.60,0.45,0.30,0.15), �/� = (0.61,0.58,0.55,0.44,0.07),
nph = 0, and ϕ/π = (0.4,0.3,0.3,0.2,0.6). The corresponding
values of 〈n〉ss and Bss are 〈n〉ss = (43.8,28.8,15.6,7.0,2.0) and
Bss = (6.8,5.4,4.0,2.5,0.3).

the homodyne angle ϕ, and homodyne detection and photon
counting yield the same results within the statistical errors. To-
wards the sideband-unresolved regime or for large mechanical
damping, however, the choice of an optimal homodyne angle
ϕ allows us to reach smaller values of Fcond than for photon
counting. The optimal homodyne angle is the one for which the
measured optical quadrature oscillates at the highest frequency
and is closest to a harmonic oscillation.

The probability p(F < Fss) to observe Fano factors smaller
than the steady-state Fano factor under a continuous measure-
ment increases towards the sideband-unresolved regime and
approaches unity.

The inset Fig. 3(c) shows the influence of the detection
efficiency η on Fss, Fcond, and p(F < Fss) for κ/� = 1.5. The
smaller the detection efficiency the less information can be
gained out of the continuous measurement. Therefore, Fcond

tends towards the steady-state value Fss for low detection
efficiency.

In Fig. 4 we investigate the influence of the optomechanical
single-photon coupling strength g0 on the reduction of the Fano
factor. To obtain comparable results, we rescale both |αlaser| and
g0 at a time such that their product g0|αlaser| is kept constant,
because, in the limit of a small ratio of g0/�, the steady-state
Fano factor is expected to be only a function of g0|αlaser| [15].
Figure 4 displays Fss, Fcond, and p(F < Fss) as a function of the
coupling strength g0 and confirms this prediction. The mean
Fano factor Fcond increases if the optomechanical coupling gets
larger and approaches the steady-state value Fss. Likewise, the
probability p(F < Fss) decreases.

FIG. 5. Influence of the mechanical temperature, expressed in
terms of the thermal phonon number nph, on Fss, Fcond, and p(F <

Fss). The detuning � and the homodyne angle ϕ are chosen such
that the steady-state Fano factor Fss and its mean conditional value
Fcond are minimal, respectively. Filled blue squares indicate the results
for homodyne detection; black crosses indicate the ones for photon
counting. The steady-state Fano factor Fss is shown in open blue
squares. Parameters are κ/� = 1.5, �/� = 0.00125, g0/� = 0.36,
αlaser/� = 0.3, �/� = (0.36,0.36,0.36,0.35,0.34,0.34,0.33), and
ϕ/π = 0.6. The corresponding values of 〈n〉ss and Bss are 〈n〉ss = 12
and Bss = 3.2.

Finally, Fig. 5 shows the influence of the mechanical
temperature, expressed in terms of the thermal phonon number
nph, on the reduction of the Fano factor. A reduction of Fcond

compared to Fss is observed for all considered temperatures.
However, in order to observe a nonclassical Fano factorFcond <

1, a small effective mechanical thermal occupation nph � 1 is
required.

IV. DISCUSSION

The results shown in Fig. 3 indicate that a continuous
measurement on the cavity output of an optomechanical system
decreases the mean mechanical Fano factor Fcond compared
to the steady-state value Fss in the absence of a continuous
measurement.

The difference Fss − Fcond is particularly large in the
sideband-unresolved regime and for a mechanical damping
close to |�BA(0)|. For parameters similar to the ones realized
in current experiments (see green triangles in Fig. 3), the
large steady-state Fano factor Fss > 3 is strongly reduced to
Fcond < 1, and we observe a nonclassical state with probability
1. A similar but less pronounced reduction is observed in the
sideband-resolved regime. In the sideband-unresolved regime,
we are able to reduce the Fano factor from a steady-state
value much larger than unity to a mean value Fcond close to
unity. Homodyne detection allows to decrease Fcond compared
to the value obtained for photon counting by choosing an
appropriate homodyne angle ϕ. By this means, a nonclassical
mean Fano factor Fcond < 1 can be achieved even in the
sideband-unresolved regime.
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Figure 3(c) shows that an imperfect detection, η < 1,
reduces the effect such that Fcond tends towards Fss. If all
knowledge of the measurement is discarded, η = 0, the con-
tinuous measurement is effectively absent and the relation
Fss = Fcond holds. However, even for 50% detection efficiency,
a continuous measurement still lowers the Fano factor by about
25%. In Fig. 4 we show that a continuous measurement is
able to reduce the Fano factor more effectively for a small
optomechanical coupling strength g0. If g0 becomes too large,
Fcond tends towards the steady-state value. Finally, Fig. 5
indicates that the reduction of Fcond with respect to Fss is
present at all considered mechanical temperatures. However,
in order to observe a nonclassical Fano factor Fcond < 1, a
small thermal phonon occupation nph � 1 is required for the
value of the mechanical damping considered here. Therefore,
cryogenic temperature or a precooling of the mechanics, e.g.,
using optomechanical cooling [1,2], is necessary. We stress
that nph refers to an effective bath occupation number of such
a combined mechanical and optical bath.

These numerical results can be qualitatively understood as
follows. The steady-state phonon-number distribution pss(n)
is given by an average over mechanical states at different
amplitudes, each of them having a lower uncertainty in
amplitude and phase than the steady-state distribution. In a
minimal model, we assume the phonon distribution of these
mechanical states to be a zero-mean distribution pbare(n),
which is centered around the instantaneous phonon-number
expectation value 〈n〉(t) and which is narrow enough to fulfill√〈n2〉bare 	 〈n〉ss. A continuous measurement on the optical
cavity provides information on the state of the mechanical
subsystem and allows us to track the diffusive movement 〈n〉(t)
of the mechanical state in phase space [see Fig. 2(a)]. The
measurement results 〈n〉(t) are distributed according to the
distribution pfluc(n), the Fano factor of which fulfills Ffluc <

〈n〉fluc. Consequently, we make the following ansatz for the
steady-state phonon distribution:

pss(n) =
∫ ∞

0
dn′ pfluc(n′)pbare(n − n′). (9)

The instantaneous Fano factor F (t |n) conditioned on a mea-
surement result n = 〈n〉(t) is F (t |n) = 〈n2〉bare/n and its aver-
age value is

Fcond =
〈

1

n

〉
fluc

〈n2〉bare. (10)

Comparing this result to the Fano factor obtained from Eq. (9),
we find

Fss ≈ Fcond + Ffluc, (11)

where the corrections are negligible in the limit of large
phonon-number expectation value 〈n〉fluc. Thus, the steady-
state Fano factor is the sum of the conditional Fano factor
of the mechanical states, which is resolved by a continuous
measurement, and the Fano factor of the fluctuations of 〈n〉(t),

which smear out this information in the case of unconditional
dynamics. This analytical result is well confirmed by our
numerics.

A continuous measurement on an optomechanical limit
cycle is experimentally feasible with current technology.
Optical homodyne detection on optomechanical systems is
routinely done in experiments [17–19]. The same holds for the
realization of optomechanical limit cycles [8–10,29,30]. To de-
tect a sub-Poissonian mechanical state, optomechanical state-
reconstruction techniques applicable to both the sideband-
resolved and the sideband-unresolved regime are required. A
proposal for state reconstruction in the sideband-unresolved
regime has been published recently [31]. In the sideband-
resolved regime, several schemes are established and could be
adapted to this setup [32]. For example, for optomechanical
state-transfer protocols [6] it could be beneficial to add an
auxiliary readout cavity to the system. A photon-counting mea-
surement scheme has recently been applied to characterize the
properties of a phonon laser [10]. Hence, the effect discussed
in this paper could already be verified in the sideband-resolved
regime and there is a theoretical proposal on how to proceed
in the case of the sideband-unresolved regime.

V. CONCLUSION

In this paper we numerically analyzed how homodyne
and photon counting measurements on the optical cavity
output decrease the mean mechanical Fano factor Fcond of an
optomechanical system below the steady-state value Fss. In
the sideband-resolved regime at small mechanical damping,
the steady-state limit cycle is already nonclassical, Fss < 1,
such that the additional benefit of a continuous measurement is
small. However, in the sideband-unresolved regime, the mean
Fano factor Fcond is drastically reduced compared to Fss and
the system is found in a nonclassical mechanical state for a
macroscopic fraction of the observation time. In particular, for
typical experimental parameters we observe a large decrease
of the mechanical Fano factor. The effect is robust against
imperfect detection, but a low effective thermal mechanical
phonon number nph is necessary to observe nonclassical states.

We conclude that optical continuous measurements are a
promising way to reduce amplitude fluctuations of the me-
chanical subsystem not only in the limit of cooling [20–23] but
also for optomechanical limit cycles. This opens a route to the
creation of nonclassical mechanical states in a new parameter
range, namely, outside the sideband-resolved regime.
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