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Superconducting quantum metamaterials as an active lasing medium: Effects of disorder
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A metamaterial formed by superconducting circuits or quantum dots can serve as an active lasing medium
when coupled to a microwave resonator. For these artificial atoms, in contrast to real atoms, variations in their
parameters cannot be avoided. In this paper, we examine the influence of disorder on such a multiatom lasing
setup. We find that the lasing process evolves into a self-organized stationary state that is quite robust against
disorder. The reason is that photons created by those atoms which are in or close to resonance with the resonator
stimulate the emission also of more detuned atoms. Not only the number of photons grows with the number
of atoms but also the width of the resonance as a function of the detuning. Similar properties are found for
other types of disorder such as variations in the individual coupling. We present relations on how the allowed
disorder scales with the number of atoms and confirm it by a numerical analysis. We also provide estimates for
the sample-to-sample variations to be expected for setups with moderate numbers of atoms.
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I. INTRODUCTION

Lasers are the standard sources of coherent light with a
wide range of applications [1]. Their basic components are
a resonator that stores photons and selects particular modes,
an optically active medium that emits photons coherently into
the resonator by stimulated emission, and a pumping process
that establishes a population inversion in the medium [2].
A large variety of systems can serve as an optically ac-
tive medium. This includes natural atoms or semiconductor
devices [3], but further systems have been proposed and
studied experimentally. These include strongly coupled single
or few Josephson qubits [4–7] and semiconductor quantum
dot systems [8–10]. In these setups, the low number of atoms
is compensated by strong coupling. Their frequencies are
in the GHz regime; accordingly they are sometimes called
“maser” instead of laser. These systems may find useful
applications, e.g., as miniaturized on-chip sources of coherent
microwaves in low-temperature experiments. There are other
on-chip microwave sources which have been studied, including
voltage-biased Josephson junctions [11–13] or nonlinear res-
onators close to the quantum regime [14–16]. However, these
devices emit incoherent radiation unless driven by a coherent
microwave source. Lasing devices based on qubits also show
unconventional properties, such as dressed-state lasing [17,18]
or photon-number squeezed light [19,20].

So far, experimental realizations of lasers based on super-
conducting or quantum dot qubits have only used single or
few artificial atoms. A way to reach higher output power
is to increase the number M of atoms, e.g., by using
superconducting quantum metamaterials. Such materials with
10–100 qubits have already been produced and studied [21].
A drawback of using solid-state circuits is the fact that they
invariably suffer from disorder, due to the variations either
in the fabrication process or in the environment. As a result,
the level-splitting εj (j = 1, . . . ,M) and hence the detuning
from the resonator frequency �j = εj /� − ω, as well as other
parameters such as the coupling strength to the resonator or the
local driving, vary for different artificial atoms. We therefore
examine the influence of this (quasistatic) disorder on the
multiatom lasing.

Our analysis reveals that the lasing process is rather robust
against various types of disorder over a wide range of their
strengths. The origin of this effect is the following: Those
atoms which are above the lasing threshold, e.g., close enough
to resonance, start emitting photons into the resonator. These
photons enhance the process of stimulated emission, which is
proportional to their number 〈n〉, also for atoms which are still
below the threshold. Hence these atoms start participating in
the lasing process, and 〈n〉 grows further. In parallel to this
growth, also the range of parameters such as the detuning or
coupling strength which are sufficient for lasing increases.

In this paper, we study the effects of disorder in the
detuning, the coupling strength, and the pumping strength of
the individual atoms on the photon number and the lasing
thresholds. After presenting the model and the basic relations
in Sec. II, we first compare the single- and the multiatom
setups of an ordered system in Sec. III. At this stage we
observe already the increase of the allowed range of detuning
and the reduced requirement on the coupling strength. In
Sec. IV quantitative results are presented for a Gaussian and
a box distribution of the disorder in the various parameters.
Since probably most experiments in the near future will be
carried out with not too large numbers of atoms (M � 100)
one should expect significant sample-specific deviations from
the average behavior. We therefore also study these statistical
properties. In Sec. V we reformulate the problem, which
provides further insight into the mechanism responsible for
the enhanced stability against disorder.

II. THE MODEL

We model the laser by the standard effective Hamiltonian
which accounts only for the two levels which are involved
in the lasing transition, and their coherent interaction with
the radiation field [2]. For an M-atom system it is the Tavis-
Cummings Hamiltonian [22]:

H = �ωa†a +
M∑

j=1

1

2
εj τ

j
z +

M∑
j=1

�gj (τ j
+a + τ

j
−a†). (1)
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Here a and a† are the photon annihilation and creation opera-
tors of the radiation field. The atoms, labeled by j = 1, . . . ,M ,
are modeled as two-level systems with level splitting εj . The
Pauli matrices acting on the two states of atom j are denoted by
τ

j
x,y,z, and gj is the coupling strength of atom j to the resonator.

The matrices τ± are defined by τ± = (τx ± iτy)/2. Although
this model has been developed for conventional atoms, it also
holds for suitable artificial ones, such as superconducting flux
and charge qubits or qubits formed by semiconductor quantum
dots. The restriction to two levels is valid as long as transitions
between further states are sufficiently off resonance. This rules
out, e.g., transmon qubits, which have a nearly harmonic
level structure, as active lasing material. However, the other
mentioned qubits with a sufficiently large anharmonicity can
satisfy the requirement, as demonstrated by the experiments
with a charge-qubit metamaterial presented in Ref. [21].

Also the pumping can be described in an effective way.
Rather than explicitly modeling the pumping, e.g., by transi-
tions via higher states, one can use a quantum master equation
approach with effective excitation and relaxation rates of the
atom j , �↑,j and �↓,j , respectively [2,7,23–25]. These rates
as well as the pure dephasing rate �∗

ϕ,j of atom j and the
relaxation rate κ of the resonator appear in the Lindblad terms
of the quantum master equation for the density matrix ρ [26]:

d

dt
ρ = − i

�
[H,ρ] + LRρ +

M∑
j=1

LQ,j ρ, (2)

LRρ = κ

2
(2aρa† − a†aρ − ρa†a), (3)

LQ,j ρ = �↓,j

2
(2τ

j
−ρτ

j
+ − ρτ

j
+τ

j
− − τ

j
+τ

j
−ρ)

+ �↑,j

2
(2τ

j
+ρτ

j
− − ρτ

j
−τ

j
+ − τ

j
−τ

j
+ρ)

+ �∗
ϕ,j

2

(
τ j
z ρτ j

z − ρ
)
. (4)

The combination of the mentioned rates defines the total
relaxation rate �1,j = �↑,j + �↓,j and the total dephasing
rate �ϕ,j = �1,j /2 + �∗

ϕ,j . Below, we will further use the
abbreviation �κ,j = �ϕ,j + κ/2. By adjusting the rates �↑,j >

�↓,j we account for the pumping of the lasing medium. Its
strength is characterized by the value of the atomic polarization
in equilibrium in the absence of a resonator:

D0 = (�↑,j − �↓,j )/�1,j . (5)

In the following we are mostly interested in the expectation
value of the photon number 〈n〉. It can be obtained with
sufficient precision in approaches known as semiclassical
or semiquantum laser theory [27]. In these approximations
certain expectation values are factorized, which amounts to
neglecting certain fluctuations. In the semiclassical theory,
all correlations between atomic and resonator states are
neglected, equivalent to a factorization of the density matrix,
ρ = ρatom ⊗ ρres [28]. This description neglects spontaneous
emission, but it yields a good estimate of the lasing threshold.
In the semiquantum theory only products of diagonal atomic
operators with operators of the radiation field are factorized,
e.g., 〈τ i

za
†a〉 ≈ 〈τ i

z 〉〈a†a〉. Furthermore, direct interatomic

couplings are neglected, 〈τ i
+τ

j
−〉 ≈ 0 for i 	= j . This approach

accounts for spontaneous emission and reproduces well the
results obtained from a numerical solution of the full master
equation (2) [29]. The semiquantum theory leads to the
following Maxwell-Bloch equations:

d

dt
〈a†a〉 =

M∑
j=1

igj (〈τ j
+a〉 − 〈τ j

−a†〉) − κ〈a†a〉, (6)

d

dt

〈
τ j
z

〉 = 2igj (〈τ j
−a†〉 − 〈τ j

+a〉)

−�1,j

(〈
τ j
z

〉 − D0,j

)
, (7)

d

dt
〈τ j

+a〉 = −
(

�ϕ,j + κ

2
− i�j

)
〈τ j

+a〉

− i
gj

2

(
1 + (2〈a†a〉 + 1)

〈
τ j
z

〉)
. (8)

In the stationary state, this set of equations can be cast
into a fixed-point equation for the quantum-statistical average
photon number 〈n〉 = 〈a†a〉:

〈n〉 =
M∑

j=1

βj

D0,j

(〈n〉 + 1
2

) + 1
2

�2
κ,j + �2

j + αj

(〈n〉 + 1
2

) . (9)

Here we introduced the parameters

αj = 4g2
j

�κ,j

�1,j

and βj = 2g2
j

�κ,j

κ
. (10)

The term 〈n〉 on the right-hand side of Eq. (9) accounts for the
stimulated emission. Equation (9) is the basic relation for the
following analysis.

III. PHOTON NUMBER AND ALLOWED DETUNING OF
THE ORDERED SYSTEM

It is instructive to first consider the case without disorder.
In this case the fixed-point equation has the solution

〈n〉0
M = X +

√
X2 + M�1

4κ
(D0 + 1), (11)

X = −1

4
+ M�1

4κ
D0 − ñ0(�)

2
,

ñ0(�) = �1

4g2

�2
κ + �2

�κ

, (12)

where the superscript zero refers to the absence of disorder.
The quantity ñ0(�) is the photon saturation number known
already from the semiclassical theory of lasing [6,30]. Within
this theory the threshold for lasing is

ñ0(�) <
M�1

2κ
D0. (13)

In Fig. 1 we display how the photon number 〈n〉0
M (g,�)

depends on the coupling strength g and the detuning � for
a many-atom setup with M = 100 and the single-atom laser
with M = 1. Figure 1(a) illustrates the dependence on the
coupling strength g. While the many-atom system shows a
sharp, kinklike transition to the lasing state above gmin, the
transition is washed out for the single- and few-atom setup.
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FIG. 1. Properties of the stationary quantum-statistical average
photon number 〈n〉0

M (g,�)/M per atom in an ordered lasing setup
with M atoms. (a) Plots as a function of the coupling strength g for
atoms on resonance, � = 0 ω. (b) Plots as a function of the atomic
detuning � at g = 0.002 ω. Solid red curves represent 〈n〉0

1(g,�),
dashed blue curves represent 〈n〉0

M ( g√
M

,�)/M , and dash-dotted green

curves represent 〈n〉0
M (g,�)/M . Parameters are �↑ = 0.006 ω, �↓ =

0.002 ω, �∗
ϕ = 0.001 ω, κ = 0.00001 ω, and M = 100.

However, even for M = 1 it remains remarkably sharp. The
crossover occurs at

gmin(M) =
√

1

M

κ

2D0

�2
ϕ + �2

�ϕ

∝ 1√
M

. (14)

As a function of the detuning, illustrated in Fig. 1(b), we note
a gradual decrease of 〈n〉0

M (g,�) with increasing �, followed
by a sharp transition to a low, close to thermal population. The
crossover occurs at

�max(M) = �ϕ

√
2g2M

D0

κ�ϕ

− 1 ∝
√

M. (15)

The analytic results (14) and (15) follow from Eq. (13),
which is, like Eq. (12), obtained within the semiclassical
approximation. Strictly, these approximations are valid for
very large numbers of M , only. Remarkably they provide good
estimates for the thresholds also for small M [5].

The results shown in Fig. 1 also illustrate a remarkable
scaling relation [5], namely,

1

M
〈n〉0

M

(
g√
M

,�

)
≈ 〈n〉0

1(g,�). (16)

The scaling relation, combined with Eqs. (14) and (15),
displays the following properties: (i) in the lasing state the
number of photons 〈n〉0

M grows linearly with the number of
atoms M , (ii) for different M we obtain the same qualitative
dependence on the coupling strength provided that it is rescaled
as g/

√
M , and (iii) we furthermore note that the width of the

resonance as a function of the detuning increases with the
number of atoms proportional to

√
M . In other words, for a

fixed coupling strength, a system with many atoms can tolerate
a stronger detuning and still show a transition to the lasing
state than a single-atom laser. As we show in Sec. V, this is the
reason for the robustness against disorder which we observe
in the following section.

In the rest of the paper we focus on disordered systems.
Their stationary quantum average photon number is denoted
by 〈n〉M .

IV. DISORDERED LASING MEDIUM

We now study the lasing transition in a system with many
atoms M � 1 with disorder in either the coupling strength,
the detuning, or the pumping. Accordingly, we average Eq. (9)
over the appropriate normalized probability distribution:

M∑
i=1

· · · = M

∫∫∫
d�dg dD0 p(�,g,D0) . . . . (17)

Having carried out the integration, we are left with a fixed-point
equation for 〈n〉M , depending on M and the distribution p. For
clarity we concentrate in the following on disorder in only one
lasing parameter at a time.

In general, the problem needs to be solved numerically.
However, we can proceed analytically by using a Gaussian
distribution pG or a box distribution pB:

pG(x) = 1√
2πσx

exp

(
− 1

2

(x − μ)2

σ 2
x

)
, (18)

pB(x) = 1

b

[
�

(
x − μ + b

2

)
− �

(
x − μ − b

2

)]
,

(19)
b =

√
12 σx,

where x is the variable to be averaged over, μ is its mean value,
and σx its standard deviation.

Below, we present results for the disorder averages of
the quantum-statistical expectation values 〈n〉M . On the other
hand, an experimental realization of quantum metamaterial-
based lasing most likely will not have a very large number
M of artificial atoms, and the probability distribution p

might not be sampled sufficiently to be well described by
the integrals. Instead, for a given realization there will be
deviations from the mean value 〈n〉M . We analyze these
fluctuations numerically by randomly generating setups of M

atoms with lasing parameters distributed according to a given
probability distribution p, and solving Eq. (9) numerically for
each of these setups. The solution for such a random system of
M atoms is denoted by 〈n〉M . It shows variations from sample
to sample.
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A. Disorder in the detuning

In this subsection we examine disorder in the atomic
detuning � = ε/� − ω. Its average is chosen to be zero. Since
the level-splitting energy should be positive, ε � 0, we have
� � −ω. This constrains the width of the box distribution to
σ� � ω/

√
3. Also in the case of a Gaussian distribution we

choose sufficiently narrow distributions to minimize the effect
of unphysical values of the detuning. With these restrictions,
we average Eq. (9) analytically and obtain

〈n〉 = Mβ
[
D0

(〈n〉 + 1
2

) + 1
2

]
I (ζ〈n〉),

(20)

ζ〈n〉 =
√

�2
κ + α

(〈n〉 + 1
2

)
.

The integrals I (ζ ) for the two types of distributions are given
by

IG(ζ ) =
√

π

2

1

ζσ�

exp

(
ζ 2

2σ 2
�

)
erfc

(
ζ√
2σ�

)
, (21)

IB(ζ ) = 1√
3ζσ�

arctan

(√
3σ�

ζ

)
. (22)

Here, erfc is the complementary error function.
These stationary fixed-point equations can be solved numer-

ically for 〈n〉M (σ�). Results for M = 100 atoms are shown by
the thick upper curves in Fig. 2 for three values of g and the
two types of distribution pG/B(�). We note that disorder in
the detuning decreases 〈n〉100(σ�) only weakly over a broad
range of the standard deviation σ�. This behavior cannot
be explained as an average of the single-atom lasing curves
〈n〉1(�), which are displayed in the inset. Averaging them over
the distributions pG/B(�) leads to the lower thin dash-dotted
and dotted curves in Fig. 2, respectively, which obviously are
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σΔ/ω
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0 0.1 0.2

n
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Δ/ω

FIG. 2. Influence of disorder in the detuning � on the quantum-
statistical average photon number 〈n〉100 in the resonator. Thick
solid lines are calculated for a Gaussian distribution with mean
� = 0 ω and standard deviation σ�; thick dashed lines represent a box
distribution with the same parameters. The average photon number
decreases remarkably slowly with increasing disorder. This cannot
be explained by averaging the single-atom lasing curves 〈n〉1(�),
examples of which are shown in the inset, over the same distribution
of detuning. Averaging of the single-atom results would lead to
the curves plotted with thin lines. Plot parameters are M = 100,
�↑ = 0.006 ω, �↓ = 0.002 ω, �ϕ = 0.001 ω, and κ = 0.00001 ω;
blue (black) curves represent g = 0.004 ω, red (gray) curves represent
g = 0.002 ω, and orange (light gray) curves represent g = 0.001 ω.

much narrower in the disorder standard deviation than the
collective behavior of the M atoms. We conclude that for
disorder in the detuning the setup with M atoms shows lasing
in a much broader range of detunings than what we obtain from
the single-atom results 〈n〉1 averaged over the same probability
distribution. We further illustrate this behavior in Sec. V.

In addition we observe that for a weak coupling strength
g = 0.001 ω the average contribution of each atom in the M-
atom setup in the limit σ� → 0 is 〈n〉100/100 ≈ 200, whereas
〈n〉1(� = 0) ≈ 195. That implies that the lasing activity per
individual atom is enhanced in the M-atom setup as compared
to the single-atom case, although for the parameters considered
this is a rather weak effect.

We also note that the results shown for the Gaussian and
the box distribution nearly coincide. Both distributions were
chosen to have the same average and second-order moment. In
addition 〈n〉M (σ�) depends only on even moments of pG/B(�).
As a result, for sufficiently narrow distributions, σ� � ω, both
distributions yield similar results.

We conclude this subsection with an analysis of the sample-
to-sample variations of setups with a finite number M of
atoms. For this purpose, we consider ensembles with random
parameters chosen according to the Gaussian distribution
pG(�) and solve Eq. (9) numerically. Results of 〈n〉M , varying
around its mean value 〈n〉M , are shown in Fig. 3 for the standard
deviation σ� = 0.2 ω and M = 50, 100, 800, and 1600 atoms.
On long enough time scales, when the quasistatic parameters
vary in an experiment, we expect that the lasing intensity will
vary accordingly.
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FIG. 3. Fluctuations of 〈n〉M around 〈n〉M for disorder in the
detuning due to nonperfect sampling of a Gaussian disorder distri-
bution with σ� = 0.2 ω. Histograms are created for 10 000 systems,
randomly chosen with the Gaussian distribution, for M = 50, 100,
800, and 1600 atoms, respectively. Results are 〈n〉50 = 7479, 〈n〉100 =
16 976, 〈n〉800 = 156 184, and 〈n〉1600 = 316 100 photons with stan-
dard deviations of 386, 352, 182, and 136 photons, respectively. Plot
parameters are � = 0 ω, g = 0.002 ω, �↑ = 0.006 ω, �↓ = 0.002 ω,
�∗

ϕ = 0.001 ω, and κ = 0.00001 ω.
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B. Disorder in the coupling strength

Similar to the previous case, we examine disorder in the
coupling strength g between the atoms and the resonator.
The condition g � 0 imposes rigorous constraints on the box
distribution, σg � g/

√
3, and similar approximate conditions

for the Gaussian distribution.
After averaging, the fixed-point equation (9) becomes

〈n〉 = M�1

2κ

(
D0 + 1

2〈n〉 + 1

)
I (c〈n〉),

(23)

c〈n〉 =
√

�1
(
�2

κ + �2
)

4(〈n〉 + 1/2)�κ

,

with the integrals

IG(c) = 1 − πcV (g,σg,c), (24)

IB(c) = 1 − c

b

[
arctan

(
g + b/2

c

)

− arctan

(
g − b/2

c

)]
. (25)

Again, we have b = √
12 σg , and V is the Voigt function:

V (g,σg,x) =
√

π

2

1

2πσg

exp

[(
x − ig√

2σg

)2]
erfc

(
x − ig√

2σg

)

+ c.c. (26)

Figure 4 shows numerical solutions 〈n〉M (σg) of these fixed-
point equations for M = 100 atoms on resonance, � = 0 ω,
and for two nonzero values of atomic detuning (thick curves).
The mean coupling strength g = 0.001 ω is chosen to be close
to the lasing threshold of a single atom on resonance.
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FIG. 4. Influence of disorder in the coupling strength g on the
stationary quantum-statistical average photon number 〈n〉100 in the
resonator (thick lines). Solid lines are calculated for a Gaussian
distribution with mean g = 0.001 ω and standard deviation σg; dotted
lines represent a box distribution with the same parameters. The
results cannot be explained by averaging the single-atom lasing
curves 〈n〉1(g), examples of which are shown in the inset, over
the same distribution of the coupling strength. This would yield
the results represented by thin lines. Plot parameters are M = 100,
�↑ = 0.006 ω, �↓ = 0.002 ω, �ϕ = 0.001 ω, and κ = 0.00001 ω.
Red (gray) curves represent � = 0 ω, blue (black) curves represent
� = 0.1 ω, and orange (light gray) curves represent � = 0.15 ω. The
thin blue (black) and orange (light gray) curves coincide.

For disorder in the coupling strength, similar to what we
found above, the properties of 〈n〉M cannot be explained
by averaging the single-atom lasing curves 〈n〉1(g) over the
distribution of pG/B(g) (which would result in the thin lines).
The averaging yields a smaller average photon number because
some of the atoms are coupled with g < g and therefore
do no contribute (significantly) to the lasing process. On
the other hand, the thick red (gray) curve in Fig. 4 shows
〈n〉100/100 ≈ 200, hence all atoms are actually participating in
the lasing process at their maximum contribution irrespective
of their actual individual coupling strength g. This effect is
even more pronounced for � = 0.1 ω or 0.15 ω, represented
by the thick blue (black) and orange (light gray) curves,
respectively, when the single-atom lasing curves and their
naı̈ve average predict no lasing activity at all. However, the
multiatom setup is still operating at approximately 80 or 50%
of its maximum photon number, respectively. In Sec. V we
provide further explanations of these properties.

In a typical lasing experiment, the pumping rates are chosen
such that the laser operates far above the lasing threshold of a
single resonant atom. Then, the decrease in 〈n〉M for increasing
� is even less pronounced than shown in Fig. 4. In this figure
we also observe again that the results obtained for a Gaussian
and a box distribution coincide for a wide range of the standard
deviation σg .

We conclude with an analysis of the fluctuations of 〈n〉M
around the mean value 〈n〉M due to disorder in g for a finite
system size M , by the same procedure as described above
for the variations in the detuning. The histograms of 〈n〉M in
Fig. 5 show a main peak around 〈n〉M and a tail representing
a few ensembles with much lower 〈n〉M . This tail arises
because we choose g close to the lasing transition: Some
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FIG. 5. Fluctuations of 〈n〉M around 〈n〉M for disorder in the
coupling strength due to a nonperfect sampling of a Gaussian
distribution with σg = 0.0004 ω. Histograms are created for 10 000
systems, randomly chosen with the Gaussian distribution, with M =
50, 100, 800, and 1600 atoms, respectively. 〈n〉50 = 9998, 〈n〉100 =
19 998, 〈n〉800 = 159 998, and 〈n〉1600 = 319 998. Plot parameters are
� = 0 ω, g = 0.002 ω, �↑ = 0.006 ω, �↓ = 0.002 ω, �∗

ϕ = 0.001 ω,
and κ = 0.00001 ω.
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atoms have such weak coupling strengths that they cannot
participate in the lasing process. The corresponding systems
have effectively a reduced M . As these systems occur rarely,
an ensemble of 10 000 systems is not sufficient to produce a
smooth distribution. The standard deviation of the main peak
is 0.24, 0.17, 0.07, and 0.05 photons, respectively.

C. Disorder in the pumping

The stationary value of the atomic polarization in the
absence of a resonator, D0 = (�↑ − �↓)/(�↑ + �↓), is a
function of the pumping and relaxation rates. These rates
appear in Eq. (9) via the expressions D0 and �1 = �↑ + �↓. In
this subsection, we concentrate on the effect of disorder in D0

while assuming that �1 is fixed. A motivation is provided by the
system presented in Ref. [4]. There, the effective excitation and
relaxation rates depend on the mixing angle θ of the charge and
Josephson energy, which fluctuates because of charge noise.
We obtain

�↑ − �↓ ∝ cos(θ ), (27)

�1 = �↑ + �↓ ∝ 1
2 [1 + cos2(θ )]. (28)

Typically, we have θ � π/2, so that D0 fluctuates proportional
to θ − π/2 whereas �1 is approximately constant.

Averaging Eq. (9) over the disorder in D0, we arrive at the
fixed-point equation

〈n〉 = Mβ
[
D0

(〈n〉 + 1
2

) + 1
2

]
�2

κ + �2 + α
(〈n〉 + 1

2

) . (29)

Its solution is of the same form as Eq. (11), except that D0 is
replaced by D0. For resonant atoms above the lasing threshold,
Eq. (13) and the relation �1D0 � κ hold. Then, Eq. (11)
reduces to a linear dependence on D0:

〈n〉M = M�1

2κ
D0 − ñ0(�). (30)

This means that, in contrast to the previously discussed ex-
amples, disorder in D0 is properly accounted for by averaging
over the single-atom results 〈n〉1.

V. DISCUSSION

The physical origin for the robustness of the system against
disorder is an increased stimulated emission of each individual
atom if there are additional photons 〈nadd〉 in the cavity
originating from the lasing activity of other atoms. For ordered
systems, the enhanced lasing activity, i.e., the growth of
the average photon number, 〈n〉M ∝ M , and the increased
range of allowed detuning is explicitly derived from Eq. (9).
For disordered systems with disorder in the detuning or the
coupling strength, we found a similar behavior of the average
quantity 〈n〉M . To gain further insight how 〈nadd〉 additional
photons in the resonator broaden and enhance the lasing
activity of each individual atom 〈ni〉, we split

〈n〉 =
M∑

j=1

〈nj 〉 = 〈ni〉 + 〈
ni

add

〉
(31)

with

〈
ni

add

〉 =
M∑
j=1
j 	=i

〈nj 〉. (32)

Accordingly, we split Eq. (6) into M equations for 〈ni〉, which
can be interpreted as the contributions of each atom i, and
which are given by

〈ni〉 = βi

D0,i

(〈ni〉 + 〈
ni

add

〉 + 1/2
) + 1/2

�2
κ,i + �2

i + αi

(〈ni〉 + 〈
ni

add

〉 + 1/2
) . (33)

If we sum this relation over all i = 1, . . . ,M , we recover
Eq. (9), but it is also valid for the single-atom case, M = 1.
Since on the right-hand side 〈ni

add〉 appears always together
with 〈ni〉, which is the term describing for a single atom the
stimulated emission, the relation displays the property that
each individual atom acquires an enhanced lasing activity by
the presence of additional photons in the resonator.
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00 .2

(a)

(b)
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n
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Δ/ω
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00 .0 02 .04

n
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FIG. 6. (a) 〈ni〉 as a function of detuning for fixed g = 0.001 ω.
(b) 〈ni〉 as a function of coupling strength for fixed � = 0.2 ω.
Solid red curves represent the case without additional photons in
the resonator; dashed blue curves represent the same in the presence
of 〈ni

add〉 = 4000 additional photons in the resonator cavity. Their
presence increases the lasing activity of each individual atom as
well as the range of allowed detuning, and decreases the threshold
coupling strength. Plot parameters are �↑ = 0.006 ω, �↓ = 0.002 ω,
�∗

ϕ = 0.001 ω, and κ = 0.00001 ω.
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Equation (33) is solved by

〈ni〉 = X̃ +
√

X̃2 + �1,i

2κ

[
D0,i

(〈
ni

add

〉 + 1

2

)
+ 1

2

]
,

(34)

X̃ = −1

4
−

〈
ni

add

〉
2

+ �1,i

4κ
D0,i − ñ0

2
.

This set of M equations for 〈ni〉 has to be solved self-
consistently via the relation Eq. (31). This is what we had
done (effectively) in the previous parts of the paper both for
ordered as well as for disordered systems.

To illustrate the enhancement effect we can also simply
assume that there exist additional photons, wherever they
come from. Figure 6 compares plots of 〈ni〉 for 〈ni

add〉 = 0 and
4000. Figure 6(a) demonstrates the broadening of the lasing
curve as a function of the detuning due to the presence of
additional photons, as well as a slight enhancement at � = 0 ω,
consistent with the observations made in Fig. 2. Figure 6(b)
demonstrates the lowering of the lasing threshold coupling
strength, consistent with the observations made in Fig. 4.

For disordered setups with a finite-width disorder distribu-
tion, we observed that atoms above the lasing threshold, e.g.,
close enough to resonance, “drag” others, which appeared to
be below, also into a lasing state, and finally a self-organized
stationary state is established. But we found an enhancement
of the lasing window also in the case of ordered systems. Here
we like to point out that the reformulation presented in this
section can reproduce also this property. To understand it we
consider M identical atoms which would all be off-resonant in
the single-atom setup, � > �max(1). It is important to note that
the semiquantum model does not exhibit a sharp transition to
the lasing state. Therefore, each of the atoms produces a small
but nonvanishing contribution 〈ni〉 to the total photon number
〈n〉0

M . This possibly very small contribution is then enhanced
by the presence of all other ones, which may be sufficient to
drive the system into the self-consistent broadened state.

VI. CONCLUSION

In this paper, we showed that a multiatom lasing setup with
M � 1 atoms is rather robust against disorder in the individual
atomic parameters, e.g., detuning, coupling strength to the
resonator, or pumping strength. If an atom is coupled to a
cavity that contains additional photons not originating from
the atom itself, its lasing activity is nevertheless enhanced
because of stimulated emission. This leads to a growth of the
number of photons scaling with M , but also to a broadening
of the resonance conditions, with the maximum allowed
detuning scaling proportional to

√
M . Therefore, multiple

atoms connected to a common resonator can effectively
drag each other into resonance and generate a self-consistent
stationary state that is robust against disorder.

The average total photon number 〈n〉M of the setup can
be calculated by performing the averages implied by the
fixed-point equation (9). We have performed these averages
for two types of distributions, box and Gaussian, with similar
results. Since currently systems with relatively low numbers
of artificial atoms (M � 100) are of interest for lasing
experiments, we also examined the fluctuations around 〈n〉M
due to the imperfect sampling of the parameter distribution.
This provides estimates for sample-to-sample fluctuations in
such a lasing setup, as well.

The conclusion from our analysis is that imperfections
in the control of material parameters do not prohibit the
construction of multiatom lasing setups. This will help the
construction of miniaturized on-chip radiation sources for
low-temperature microwave experiments.
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