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Creation of a squeezed photon distribution using artificial atoms with broken inversion symmetry
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We consider a two-level system with both a transversal and a longitudinal coupling to the electromagnetic
field of a resonator. Using a polaron transformation, this Hamiltonian can be mapped onto a Jaynes-Cummings
Hamiltonian with generalized field operators acting on the electromagnetic field in the resonator. In contrast to
the usual ladder operators a and a†, these operators exhibit a nonmonotonous coupling strength with respect
to the number n of photons in the resonator. In particular, there are roots of the coupling between qubit and
resonator at certain photon numbers n0. We show that this effect can be exploited to generate photon-number
squeezed light, characterized by a Fano factor F � 1, with a large number of photons (e.g., of the order
of 1 × 104).
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I. INTRODUCTION

Lasers serve as the source of coherent light in spectroscopic
and interferometric measurements. The precision of these
measurements is fundamentally limited due to shot noise
caused by the quantized nature of light and the photon statistics
of the radiation source. To circumvent this limitation, squeezed
light has been theoretically proposed [1–6] and successfully
applied in physical [7–9] and biological experiments [10,11].

To create squeezed light, nonlinear processes are necessary.
In the optical regime, squeezed light is created using a
conventional laser as the input source for a nonlinear optical
material that exploits higher-order processes like wave mixing
or parametric down-conversion [12–14] to create squeezed
light. In the microwave regime, superconducting parametric
devices and nonlinear oscillators have been demonstrated
and are being used for parametric [15,16] and bifurcation
amplification [17]. It is even possible to build nonlinear
superconducting oscillators in the quantum regime [18–20].
However, while parametric processes can be used to generate
quadrature squeezing, in this work we study the creation of a
squeezed photon distribution [21].

A laser uses atoms as an active medium to create photons.
For natural atoms, all diagonal matrix elements of the dipole
coupling between cavity and atom vanish because of the
inversion symmetry of the atomic Coulomb potential. In terms
of a Jaynes-Cummings model, this means that there is a pure
σx coupling to the radiation field. However, every setup that
breaks inversion symmetry will exhibit an additional σz cou-
pling to the radiation field. As we show below, this gives rise
to photon-number squeezing already in leading order. Such σz

couplings exist, for instance, in superconducting circuits [22],
quantum dots [23], and molecules [24]. It has been shown that a
quantum dot with broken inversion symmetry in a microcavity
acts as a nonlinear optical element [25]. Lasing with organic
molecules is a very applied research field [26] and lasing
devices based on solid-state qubits have been studied [27,28].
For superconducting devices, nonlinearities based on the
Josephson effect have been proposed as a way to create
squeezed photon distributions [29–31]. In experimentally
realized lasing devices using superconducting qubits [32–34]
or gate-defined double dots [35], the σz coupling between an
artificial atom and a cavity field is present but has not yet been

studied. In addition, the average number of photons in the laser
cavity is quite low (e.g., <200 in Ref. [33]).

In this paper, we examine a system described by a general
Hamiltonian including both a σx and a σz coupling between
atom and radiation field. Using a polaron transformation, the
general Hamiltonian can be mapped onto a Jaynes-Cummings
Hamiltonian with generalized field operators that exhibit a
nonmonotonous coupling strength with respect to the number
n of photons in the resonator (see inset in Fig. 1). If population
inversion is established, the photon number in the cavity starts
to increase. The stationary average photon number in the laser
cavity is given by the balance of photon creation and photon
loss rates in the system. Near n0, the position of the root of the
generalized field operator, the photon creation process breaks
down because of the decreasing coupling between atom and
resonator. This establishes a squeezed photon distribution
with an average photon number of the order of n0. The
average photon number can be very large, e.g., of the order
of 1 × 104, for realistic parameters. Simultaneously, a strong
squeezing, characterized by a Fano factor of F � 1, can be
reached (see Fig. 1).

II. HAMILTONIAN

The system under consideration is described by a Hamil-
tonian consisting of an artificial atom modeled by a two-level
system, interacting with the quantized electromagnetic field of
a resonator:

H = 1
2εσz + �ωa†a + �g[cos(θ )σz + sin(θ )σx](a + a†).

(1)

A generalization to an arbitrary number of atoms follows
below. The operators σi with i ∈ {x,y,z} denote the Pauli
matrices, a (a†) is the annihilation (creation) operator of a
photon with frequency ω, and ε is the level-splitting energy
of the two-level system. The photon field and the two-level
system are coupled with coupling strength g. In contrast to
the standard Jaynes-Cummings model, our system has both a
transversal and a longitudinal coupling to the electromagnetic
field. The relative coupling strength is characterized by the
angle θ .

Equation (1) describes an effective lasing Hamiltonian,
where we did not explicitly consider the third state which we
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FIG. 1. Photon statistics ρ(n) in the polaron frame for g =
0.0067, θ = π/10, �↑ = 0.006, �↓ = 0.0001, �∗

ϕ = 0.001, and 
 =
0. Red dots, one atom, κ = 1 × 10−7; blue dots, 100 atoms, κ =
1 × 10−5, Sk

z = 25.8. All rates and couplings are given in units of
ω. The distributions correspond to a Fano factor F0 = 0.0621 and
F0 = 0.0819 in the polaron frame, respectively. The Fano factor
in the photon-number frame, F , is enhanced by corrections due to
the polaron transformation, yielding F = 0.0622 and F = 0.1442
(strongly squeezed light), respectively. The average photon number is
〈n〉 = 21 851 and 〈n〉 = 21 562, respectively. Filled faint red and blue
curves represent the photon statistics of an ordinary laser producing
classical light with the same average photon number 〈n〉. Inset:
Coupling matrix element 〈n|A|n + 1〉. The root at the photon number
n0 = 22 599 causes the squeezed photon states.

need to establish population inversion. The pumping process
is modeled by a Lindblad term in the master equation of
this system and is described below. It contains the effective
pumping rates between the upper and the lower lasing states.

The Hamiltonian (1) can be mapped onto the well-known
Jaynes-Cummings Hamiltonian using the polaron transforma-
tion

U = exp[ipσz] = exp

[
g

ω
cos(θ )(a − a†)σz

]
.

For convenience, we introduce the operators

x = x0(a† + a) = �g sin(θ )(a† + a),

p = ip0(a† − a) = i
g

ω
cos(θ )(a† − a).

The transformation yields

Hp = U †HU = 1
2εσz + �ωa†a + (σ+A + σ−A†) (2)

with the operators A = e−ipxe−ip and A† = eipxeip instead of
the pure annihilation and creation operators known from the
Jaynes-Cummings Hamiltonian.

As basis we choose the direct product of the resonator
states, a†a|n〉 = n|n〉, and the states of the two-level system,
σz|↑,↓〉 = ±|↑,↓〉. The state |n〉 is defined in the polaron
frame, |n〉|σ 〉 = U †|n〉c|σ 〉, where |n〉c is the state with exactly
n photons in the resonator cavity. The matrix elements of
A (A†) are purely real and can be expressed in terms of the
generalized Laguerre polynomials,

〈n|A(†)|n + m〉 = ±m

2

x0

p0
T ±

n,m, (3)

with A† taking the upper sign and n ∈ N, m ∈ Z, m � −n.
For 0 < m < ∞, T ±

n,m is given by

T ±
n,m = 〈n|e±2ip|n + m〉

= (±1)me−2p2
0 (2p0)m

√
n!

(n + m)!
Lm

n

(
4p2

0

)
,

where Lm
n (x) are the associated Laguerre polynomials. For

−n � m < 0, one finds

T ±
n,m = 〈n|e±2ip|n + m〉

= (∓1)|m|e−2p2
0 (2p0)|m|

√
(n − |m|)!

n!
L

|m|
n−|m|

(
4p2

0

)
.

For now, we focus only on transitions that are almost
energy conserving. This step is justified below. Given this
assumption, the coupling between atom and resonator depends
only on the matrix element 〈n|A|n + 1〉, i.e., m = 1. Choosing
θ = π/2 reproduces the well-known

√
n behavior of the

Jaynes-Cummings model. However, for θ < π/2 the matrix
element shows a nonmonotonous dependence of the number n

of photons in the resonator (inset in Fig. 1). In particular, there
are photon numbers n0 where the matrix element is close to
zero. There, the atom is not able to further increase the number
of photons in the resonator. As discussed in the next section,
this is accompanied by a squeezed photon distribution.

III. PHOTON STATISTICS

We calculate the photon statistics of the laser analogously
to Ref. [36]: The system is described by the master equation
for its density matrix ρ,

ρ̇ = − i

�
[Hp,ρ] + LRρ + LQρ. (4)

The Lindblad superoperators are given by

LRρ = κ

2
(2aρa† − a†aρ − ρa†a), (5)

LQρ = �↓
2

(2σ−ρσ+ − ρσ+σ− − σ+σ−ρ)

+ �↑
2

(2σ+ρσ− − ρσ−σ+ − σ−σ+ρ)

+ �∗
ϕ

2
(σzρσz − ρ), (6)

where κ is the damping rate of the resonator, �↑ and �↓
are the effective pumping rates between the lasing states
(including relaxation effects), and �∗

ϕ is the pure dephasing
rate of the atom. We show below that this form of the Lindblad
superoperators is a good approximation even after the polaron
transformation.

We derive an effective equation of motion for the reduced
density matrix of the resonator,

ρr = Tratom(ρ),
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where the trace is only taken over the atomic states. Tracing
out the atomic states in Eq. (4) yields

ρ̇r = − i

�
[�ωa†a,ρr] − i

�
Tratom[(σ+A + σ−A†),ρ] + LRρr.

(7)

To evaluate the second term, we need to solve the remaining
equation of motion for ρ,

ρ̇ = − i

�
[Hp,ρ] + LQρ.

We write this as a system of four coupled differential equations
for the matrix elements of all possible combinations of
atomic states. The matrix elements are denoted by ρr p,s q =
〈p|〈r|ρ|s〉|q〉 with r,s ∈ {↑,↓} and p,q ∈ N0. If ρ↓p,↓q and
ρ↑p+1,↑q+1 are eliminated using (ρr)p,q = ρ↑p,↑q + ρ↓p,↓q , the
system can be cast into the form

�̇R = M · �R + �A(ρr)

with

�R =

⎛
⎜⎜⎜⎝

ρ↑p,↑q

ρ↑p,↓q+1

ρ↓p+1,↑q

ρ↓p+1,↓q+1

⎞
⎟⎟⎟⎠.

M and �A(ρr) are given in the Appendix.
The reduced density matrix ρr of the resonator evolves much

more slowly than the density matrix ρ of the whole system.
Therefore, we can use an adiabatic approximation and take the
stationary solution

�R = −M−1 · �A.

Now, the trace in Eq. (7) can be evaluated and ρr can be
calculated. Its diagonal entries

ρ(n) = 〈n|ρr|n〉
are the probability distribution of the photon number states in
the polaron frame and obey the recursion relation

ρ(n) = f (n)ρ(n − 1),

f (n) = ξ (n − 1)�↑
κn + ξ (n − 1)�↓

. (8)

The parameters are defined as follows:

ξ (n − 1) = A
1 + BN (n − 1)

|〈n − 1|A|n〉|2
�2g2

,

N (n) = 
2

4g2

�1
�1
2 + �∗

ϕ

+ |〈n|A|n + 1〉|2
�2g2

,

(9)

A = 2g2

�1
(

�1
2 + �∗

ϕ

) , B = 4g2

�1
(

�1
2 + �∗

ϕ

) ,


 = ε

�
− ω, �1 = �↑ + �↓.

The photon distribution ρ(n) has a local maximum at
photon numbers nm with f (nm) = 1 and f ′(nm) < 0. Figure 2
compares f (n) for pure σx coupling (θ = π/2, dashed lines)
and generalized couplings (solid lines).
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FIG. 2. Recursion coefficient f (n) of the photon statistics ρ(n) =
f (n)ρ(n − 1) for one atom (red) and 100 atoms (blue). The maximum
of ρ(n) is situated at nm defined by f (nm) = 1 and f ′(nm) < 0.
A conventional laser (pure σx coupling, dashed lines) gives ncl

m =
29 450. In case of both σx and σz coupling (solid lines), the root
of 〈n|A|n + 1〉 at n0 = 22 599 gives a maximum at much smaller
nm = 21 854 and nm = 21 565, respectively. As the slope of the solid
lines at nm is sharp, a squeezed state is created with F � 1. Plot
parameters are identical to Fig. 1.

For θ = π/2, the recursion relation (8) can be solved
analytically. Far above the lasing threshold, it is a Poissonian
distribution [36]. As f (n) decreases monotonically for θ =
π/2, there is only one maximum of ρ(n).

For θ �= π/2, f (n) has a root if 〈n|A|n + 1〉 = 0. In general,
there are now several nm fulfilling the criteria for a local
maximum, situated at much smaller photon numbers than the
average photon number for θ = π/2. The absolute value of
the slope |f ′(nm)| at these photon numbers is larger than in the
case of θ = π/2. As discussed in the next section, this yields
a photon-number squeezed state.

In principle, there could be several local maxima of ρ(n),
but in general only one of these maxima has a probability of
the order of unity, unless the lasing parameters are carefully
tuned.

IV. FANO FACTOR

We measure the squeezedness of the radiation using the
Fano factor F defined by

F = 〈n2〉c − 〈n〉2
c

〈n〉c
� 0,

with n = a†a. As introduced above, |n〉c denotes the state with
n photons in the resonator cavity. The Fano factor is F = 1
if ρ(n) is Poissonian, F = 〈n〉 + 1 if ρ(n) describes a thermal
state, and F < 1 if ρ(n) describes a photon-number squeezed
state.

Expressed by states in the polaron frame, the Fano factor F

is

F =
〈
n2 + 2p2

0n
〉 − 〈n〉2 + p2

0

〈n〉 + p2
0

+ p2
0

∑∞
n=0(

√
n
√

n − 1ρn,n−2 + √
n + 1

√
n + 2ρn,n+2)

〈n〉 + p2
0

.
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As ρn,n±2 ≈ 0 (there are no correlations of different photon-
number states) and p2

0 = O(( g

ω
)2) � 〈n〉, we get

F ≈ F0 + 2p2
0,

where F0 = 〈n〉2−〈n〉2

〈n〉 is now defined in the polaron frame.
Given an arbitrary ρ(n), F0 can be calculated numerically.
We show that the value of F0 depends on the (negative-valued)
slope of f (n) at f (nm) = 1. For that purpose, we linearize
f (n) around the maximum photon number nm, defined by
f (nm) = 1 and f ′(nm) = −c, c > 0,

f (n) ≈ 1 − c(n − nm).

This approximation is exact near nm. As ρ(n) drops fast around
nm, deviations from the linearized formula are only large in a
region where ρ(n) � 1. These regions do not contribute to the
calculation of the Fano factor. Of course, the approximation
can only be used for n < nm + 1

c
, as f (n) becomes negative

for larger n. A calculation of F0 using the linearized f (n)
yields

F0 = 1

c

1

〈n〉 = 1

c

1

nm − 1
,

which is valid as long as c � e−nm . The steeper f (n) at nm,
the smaller the Fano factor. By tuning the lasing parameters
in such a way that f (n) = 1 is fulfilled in one of the regions
near a root of 〈n|A|n + 1〉 and that f (n) exhibits a sharp slope
there, one achieves values F � 1.

V. MULTIATOM LASING

The number of photons in the resonator can be increased
by taking M artificial atoms (with M > 1). Therefore, we
generalize our model to M identical atoms coupled to a
common resonator,

H =
M∑
i=1

1

2
εσ i

z + �ωa†a

+ �g

M∑
i=1

(
cos(θ )σ i

z + sin(θ )σ i
x

)
(a + a†).

The superscript i of the Pauli matrices denotes the atom they
act on. The polaron transformation is generalized as well,

U = exp

⎡
⎣ip

M∑
j=1

σ j
z

⎤
⎦, (10)

and p is defined as above. Transforming H yields

Hp = U †HU =
M∑
i=1

1

2
εσ i

z + �ωa†a +
M∑
i=1

(σ i
+A + σ i

−A†)

− 2x0p0

M∑
i �=j=1

(
σ i

+σ j
z e−2ip + σ i

−σ j
z e2ip

)

− �ωp2
0M − �ωp2

0

M∑
i �=j=1

σ i
zσ

j
z ,

where A and A† are defined as above. The last term introduces
correlations between all atoms, and the σ i

±σ
j
z terms introduce

photon-number-dependent couplings between atoms via the

e±2ip terms. To solve this, we perform a mean-field approxi-
mation,

σ l
zσ

j
z ≈ σ l

z

〈
σ j

z

〉 + 〈
σ l

z

〉
σ j

z − 〈
σ l

z

〉〈
σ j

z

〉
,

σ i
±σ j

z ≈ σ i
±
〈
σ j

z

〉 + 〈σ i
±〉σ j

z − 〈σ i
±〉〈σ j

z

〉 = σ i
±
〈
σ j

z

〉
,

where in the last step we assumed that only energy-conserving
matrix elements of ρ are finite, implying 〈σ i

±〉 = 0. Defining

Sj
z =

M∑
i �= j

i = 1

〈
σ i

z

〉

and assuming that all atoms are identical, we can map
the M-atom Hamiltonian on a Hamiltonian analogous to
the single-atom case (2) with modified level-splitting en-
ergy ε → E(Sk

z ) = ε − 4�ωp2
0S

k
z , modified field operators

A → A(Sk
z ) = e−ipxe−ip − 2x0p0S

k
z e

−2ip, and an irrelevant
constant term. k is the index of an arbitrarily chosen atom.
Note that both terms in A(Sk

z ) are proportional to e−2ip, so
that the roots of the coupling matrix elements are not changed,
but the steepness of the recursion coefficient f (p) changes
(Fig. 2).

Calculating the photon statistics, there is a change in ξ (n −
1) due to the increased number of atoms and the modified field
operators,

ξ (n − 1) = M
A

1 + BN (n − 1)

∣∣〈n − 1|A(
Sk

z

)|n〉∣∣2

(�g)2
,


(Sk
z ) = 
 − 4ωp2

0S
k
z .

Here A, B are unchanged, and in N (n) the replacements A →
A(Sk

z ) and 
 → 
(Sk
z ) have to be made.

Once ρ is known, Sk
z can be determined self-consistently

from

Sk
z = (M − 1)D0 − M − 1

M

2κ

�1
〈n〉,

with D0 = �↑−�↓
�↑+�↓

being the stationary atom polarization.

VI. HIGHER-ORDER RATES

In the previous discussion, we focused only on energy-
conserving transitions in the Hamiltonian. However, the matrix
elements 〈n|A|n + m〉 are in fact nonzero for m �= 1. But we
show that there is a range of lasing parameters where energy-
nonconserving processes are suppressed.

Energy-nonconserving transitions might drive the system
across the squeezing point n0 where 〈n0|A|n0 + 1〉 = 0.
Therefore, we want the corresponding transition rates to be
small at n0. Near n0, we can solve the master equation contain-
ing the energy-nonconserving two-photon rates 〈n|A|n + 2〉
while the one-photon rates 〈n|A|n + 1〉 vanish. The rate for a
two-photon transition near n0 is

�p→p+2 = MA
1 + BN̄ (p)

∣∣〈p|A(
Sk

z

)|p + 2〉∣∣2

(�g)2
�↑,

N̄ (p) =
(



(
Sk

z

) − ω
)2

4g2

�1
�1
2 + �∗

ϕ

+
∣∣〈p|A(

Sk
z

)|p + 2〉∣∣2

(�g)2
.
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If the master equation is solved taking into account only the
energy-conserving transitions, the corresponding formula for
the one-photon rate is

�p→p+1 = MA
1 + BN (p)

|〈p|A|p + 1〉|2
�2g2

�↑,

where N (p) is defined in Eq. (9). We now try to modify the
lasing parameters g and θ in order to suppress the two-photon
rate. As we want n0 to be fixed, p0 has to be constant. This
reduces the parameter space (g,θ ) to a one-dimensional one,
implying g(θ ) = p0

ω
cos(θ) , and yields the following structure of

the transition rates:

�p→p+1 = p2
0 ω2 tan2(θ ) X1(p,1)

1 + 
2 X2 + p2
0 ω2 tan2(θ ) X3(p,1)

,

�p→p+2 = p4
0 ω2 tan2(θ ) X1(p,2)

1 + (
 − ω)2 X2 + p4
0 ω2 tan2(θ ) X3(p,2)

,

with X2 = (�1
2 + �∗

ϕ)
−2

being a constant and X1(n,m) and
X3(n,m) being functions containing parts of the matrix
elements 〈n|A|n + m〉. Because of ω2X2 � 1, for 
 = 0 the
rates are given by

�p→p+1 = p2
0 ω2 tan2(θ ) X1(p,1)

1 + p2
0 ω2 tan2(θ ) X3(p,1)

,

�p→p+2 = p4
0 tan2(θ ) X1(p,2)

X2 + p4
0 tan2(θ ) X3(p,2)

.

In the limit θ → π/2, both rates are X1(p,1)/X3(p,1) =
X1(p,2)/X3(p,2) = M �↑/2, so there is no suppression. On
the other hand, near n0, for each ω there is a θ → 0, such
that p2

0 ω2 tan(θ )2X3(p,1) � 1 and p4
0 tan2(θ )X3(p,2) � X2.

In this limit, we arrive at

�p→p+1 = p2
0 ω2 X1(p,1)θ2,

�p→p+2 = p4
0

X1(p,2)

X2
θ2 = R(p)�p→p+1.

The prefactor R(p) is given by

R(p) = p2
0

( �1
2 + �∗

ϕ

ω

)2
X1(p,2)

X1(p,1)
.

We chose p0 = g cos(θ )/ω � 1 fixed and

X1(p,2)

X1(p,1)
= 16

p + 2

(
L2

p

(
4p2

0

)
L1

p

(
4p2

0

))2

is a function of p that diverges at p = n0 and fulfills
X1(p,2)/X1(p,1) � 1 around nm, where ρ(n) has finite val-
ues. So the only way to suppress R(p) is to choose the pumping
and dephasing rates small compared to ω. In conclusion, if
a secular approximation applies, higher-order transitions are
suppressed.

Weak pumping decreases the output power of the laser
and the one-photon pumping rate �p→p+1, which is, however,
necessary for the lasing process. In order to compensate for
this drop, the number M of atoms has to be enlarged.

As the suppression relies on the case θ � π/2, a large σz

coupling to the resonator is needed. Figure 3 illustrates the
suppression of the two-photon rate for θ = π/10, comparing

0
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/Γ
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Photon number n
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nm = 21854

FIG. 3. Comparison of the transition rates from |↑〉 to |↓〉 creating
one photon (solid lines) or two photons (dashed lines), respectively.
For the chosen lasing parameters, the two-photon rates coincide if they
are plotted normalized to �↑. The plot parameters for the red lines are
identical to the single-atom case in Fig. 1. The blue lines represent
the single-atom case with 10 times larger pumping and dephasing
rates, �↑ = 0.06, �↓ = 0.001, and �∗

ϕ = 0.01. The suppression of
the two-photon rate for small θ and small pumping rates is visible.
Due to our approximations, the plotted two-photon rates are only
valid near n0.

two cases whose pumping rates differ by one order of
magnitude.

VII. PUMPING PROCESS AND LINDBLAD TERMS

Finally, we show that a pumping process can be imple-
mented and described by a Lindblad term LQρ as given
in Eq. (6), containing effective pumping rates �↑ and �↓.
Furthermore, we show that LRρ as given in Eq. (5) is a suitable
Lindblad term even after a polaron transformation.

We model the pumping process by two external reservoirs
providing the energy for transitions from the lower lasing state
|↓,n〉 ≡ |↓〉|n〉 to an intermediate state |1,n〉 (at energy ε1)
and from there to the upper lasing state |↑,n〉, respectively.
We assume a linear coupling between the reservoirs and
the system, O1,↓X1,↓ and O1,↑X1,↑, where the independent
reservoir operators are denoted by X1,↓ and X1,↑. The
Hamiltonian is given by

H = HS + H res
1,↓ + H res

1,↑ + O1,↓X1,↓ + O1,↑X1,↑,

where HS is given by Eq. (1) supplemented by an additional
term ε1|1〉〈1| describing the third level required for pumping.
The precise form of H res

1,↑/↓ and X1,↑/↓ does not matter as the
bath degrees of freedom will be integrated out. The coupling
operators are

O1,↓ = |1〉〈↓| + |↓〉〈1|,
O1,↑ = |1〉〈↑| + |↑〉〈1|.

Performing a polaron transformation yields a modified system
Hamiltonian HS,p = U †HSU which is given by

HS,p = 1
2εσz + �ωa†a + (σ+A + σ−A†) + ε1|1〉〈1|. (11)

The transformed coupling operators are

Q1,↓ = |1〉〈↓|e−ip + |↓〉〈1|eip,

Q1,↑ = |1〉〈↑|eip + |↑〉〈1|e−ip.
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Due to the factors e±ip, matrix elements of Q1,↑/↓ creating
more than one photon are nonzero. These multiphoton pump-
ing events disturb the creation of squeezed light and must be
suppressed.

Integrating out the bath degrees of freedom yields the
Bloch-Redfield form of the master equation,

ρ̇ = − i

�
[HS,p,ρ] +

∑
Q=Q1,↓,Q1,↑

(Q̃+ρQ + QρQ̃−

− QQ̃+ρ − ρQ̃−Q),

Q̃± =
∫ 0

−∞
dτ 〈X(±τ )X(0)〉eiHS,pτQe−iHS,pτ ,

where X is the bath coupling operator associated with Q.
For realistic lasing parameters we have g � ω. Therefore,
a rotating-wave approximation can be performed and the
interaction term in HS,p, given by Eq. (11), can be neglected.
Then, |↑/↓,n〉 is an eigenbasis of the remaining Hamiltonian
and Q̃± is given by

〈a,n|Q̃±|b,m〉 = 1

2
S±(±(Eb,m − Ea,n))〈a,n|Q|b,m〉,

1

2
S+(�) =

∫ 0

−∞
dτ 〈X(τ )X(0)〉e−i�τ ,

1

2
S−(�) =

∫ ∞

0
dτ 〈X(τ )X(0)〉e−i�τ ,

S(�) = 1

2
S+(�) + 1

2
S−(�),

where S(�) is the spectral function of the bath associated with
the coupling operator X, a,b ∈ {↑,↓}, and n,m ∈ N0.

Higher-order transitions can be suppressed by choosing an
appropriate spectral function of the baths. Figure 4(a) shows
a sketch of the level diagram in the lasing basis. Choosing
ε1 > 0, the system relaxes from |1,n〉 to |↑,n〉 releasing an
energy ε1 − �ω

2 into the bath H1,↑. A lasing transition is
made to |↓,n + 1〉 and from there the system is pumped
into the state |1,n + 1〉 taking an energy ε1 + �ω

2 out of
the bath H1,↓. Higher-order transitions additionally create or
annihilate photons. Therefore, their transition energies differ
from ε1 ± �ω

2 by an integer multiple of �ω. In order to suppress
them, S1,↑ and S1,↓ must be peaked at ε1 ∓ �ω

2 sharply enough
to give small values at all energies differing by an integer
multiple of �ω. Obviously, we also have to suppress the
decay of the two-level system via the pumping state, which
corresponds to the dashed transitions in Fig. 4(a).

Figure 4(b) shows that these conditions can be fulfilled
assuming that the pumping is created by a bath with the spectral
function of a harmonic oscillator at infinite temperature and the
relaxation is a dissipation process with a Lorentzian spectral
function,

S1,↓(�) = S0√(
�2 − ω2

r

)2 + 4γ 2ε2
,

S1,↑(�) = S ′
0

π

γ ′

(� − ωr)2 + γ ′2 .

0

0.5

1

(a)

(b)

-10 -5 0 5 10

S
(Ω

)/
S

0

Ω/ω

| ↑, n

| ↑, n + 1

| ↑, n + 2

| ↓, n + 1

| ↓, n + 2

| ↓, n + 3

|1, n − 1

|1, n

|1, n + 1

lasing
transition

1 − �ω
2

FIG. 4. (a) Level diagram in the lasing basis. Green arrows
indicate a release of energy into the bath, and magenta arrows indicate
an absorption out of the bath. Dashed transitions have to be suppressed
by the spectral function of the baths. (b) Spectral functions S1,↑ (solid
red) and S1,↓ (dashed blue) of the baths. ε > 0 means release of
energy into the bath, and ε < 0 means absorption out of the bath.
Solid and open circles indicate desired or suppressed transitions,
respectively. The transitions of the pumping process are marked
in green and magenta. Black transitions correspond to higher-order
processes. Blue circles indicate the transitions of the inverse pumping
process. The parameters of the plot are ε1 = 5 ω, γ ′ = 0.28 ω, and
γ = 0.08 ω.

Here ωr denotes the resonance frequencies, which differ for
S1,↑ and S1,↓ by �ω; γ is the damping parameter of the oscil-
lator, γ ′ the width parameter of the Lorentzian function, and
S0 and S ′

0 are constants. The pumping can be experimentally
realized by using a conventional laser. A suitable setup for the
relaxation process was presented recently [37].

Based on these spectral functions, the Bloch-Redfield form
of the master equation can be evaluated. We separate terms into
those who connect diagonal elements of ρ to either diagonal
elements or resonant off-diagonal elements of ρ and all other
terms,

ρ̇ = − i

�
[HS,p,ρ]

+
∑

n

|〈n|ep|n〉|2
[
S1,↓(−δε+)|1,n〉〈↓,n|ρ|↓,n〉〈1,n|

+ S1,↓(δε+)|↓,n〉〈1,n|ρ|1,n〉〈↓,n|

− S1,↓(−δε+)

2
(ρ|↓,n〉〈↓,n| + |↓,n〉〈↓,n|ρ)
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− S1,↓(δε+)

2
(ρ|1,n〉〈1,n| + |1,n〉〈1,n|ρ)

]
+ analogous terms for S1,↑(±δε−)

+ terms connecting off-diagonal matrix elements of ρ,

(12)

where δε± = ε1 ± �ω
2 . All rates have the form

S(±δε±)〈n|ep|n〉〈m|ep|m′〉. We show in the next paragraph
that all rates to off-diagonal matrix elements of ρ can be
neglected using a secular approximation.

Now, a master equation for the two-level system of the las-
ing transition can be derived. Assuming that the population of
the pumping state is constant, ρ̇1,n;1,n = 0, effective transition
rates between the lasing states are given by

�↑ = �|↓,n〉→|↑,n〉 = �|↓,n〉→|1,n〉�|1,n〉→|↑,n〉
�|↓,n〉→|1,n〉 + �|1,n〉→|↑,n〉

= S1,↓(−δε+)S1,↑(δε−)

S1,↓(−δε+) + S1,↑(δε−)
|〈n|ep|n〉|2,

�↓ = �|↑,n〉→|↓,n〉 = �|↑,n〉→|1,n〉�|1,n〉→|↓,n〉
�|↑,n〉→|1,n〉 + �|1,n〉→|↓,n〉

≈ 0.

�↓ vanishes as the transition rate �|↑,n〉→|1,n〉 is sup-
pressed by the spectral function S1,↑. �↑ and all transi-
tion rates in the master equation have a similar structure
O(S(±δε±))〈n|ep|n〉〈m|ep|m′〉 and therefore are of the same
order of magnitude. Higher-order lasing transitions are sup-
pressed if �↑, �↓, �∗

ϕ � ω. This implies that all rates in the
master equation (12) are much smaller than ω and, therefore,
a secular approximation neglecting all rates to nonresonant
off-diagonal matrix elements of ρ holds. The remaining terms
of Eq. (12) yield the usual form of the Lindblad superoperator
given by the first two lines of Eq. (6) and an irrelevant shift of
all atomic energy levels.

Pure dephasing of the atom is treated analogously, using
a coupling operator Opd = σz and one bath. Opd is invariant
under a polaron transformation, so the form of the standard
Lindblad term for pure dephasing will not change.

The resonator decay is derived with Ores = a + a†. Under a
polaron transformation, this becomes Qres = a + a† − 2p0σz.
Again, a secular approximation is performed. The leading two
terms yield the Lindblad term of a resonator, whereas the last
one gives an additional contribution on pure dephasing with a
rate 4p2

0Sres(0).
In conclusion, the form of the Lindblad superoperators

assumed in Eqs. (5) and (6) holds even after a polaron
transformation, but �↓, �↑, and �∗

ϕ are modified effective rates.

VIII. INFLUENCE OF THE MIXING ANGLE
ON SQUEEZING

The creation of photon-number squeezing relies on the
presence of the σz coupling. However, only a certain range
of values of the mixing angle θ allows for F � 1.

The polaron transformation is a nontrivial unitary trans-
formation if 0 � θ < π/2. Therefore, the coupling matrix
element 〈n|A|n + 1〉 exhibits roots for any of these θ . In order
to get photon-number squeezed light, the position of one of
these roots, n0, must be smaller than the maximum photon

number ncl
m of a conventional laser without σz coupling and

an effective transversal coupling strength of g sin(θ ). ncl
m is

defined by the balance of pumping and loss rates in the system
(cf. Fig. 2).

For θ ≈ π/2, n0 � ncl
m and squeezing is not possible for any

set of realistic lasing parameters. For θ � π/4, n0 < ncl
m might

be reached by a suitable parameter choice, but higher-order
rates are not suppressed and will drive the system across n0.
Hence the stationary state of the laser will be situated at ncl

m
and squeezing is not observed. For θ � π/4, higher-order
rates can be suppressed and a photon-number squeezed state
can be realized at 〈n〉 ≈ n0. In the extreme case of θ → 0,
the coupling matrix elements vanish as they are proportional
to sin(θ ). This implies that ncl

m decreases. On the other hand,
p0 → g

ω
for θ → 0. Therefore, n0 is bounded from below by

the position of the root for p0 = g/ω. Hence, n0 > ncl
m for

θ → 0 and the laser will produce classical radiation at low
intensity.

In conclusion, squeezed light is created for 0 < θ � π/4
and there is a tradeoff between good suppression of higher-
order rates and sufficient coupling between atom and resonator.

IX. FANO FACTOR IN THE MULTIATOM CASE

In the multiatom case, the polaron transformation is gener-
alized to the one defined in Eq. (10). Therefore, the corrections
to the Fano factor due to the polaron transformation change.
They give a constraint on the maximum number of atoms if a
certain Fano factor should be reached. The correction to the
photon number operator due to the polaron transformation is

a†
pap = a†a − ξ (a + a†) + ξ 2, ξ =

M∑
i=1

p0σ
i
z .

Therefore, the nominator of F is given by

〈n2〉c − 〈n〉2
c

= 〈n2〉 − 〈n〉2 − 〈ξ (a†a(a + a†) + (a + a†)a†a)〉
+ 2〈a†a〉〈ξ (a + a†)〉 + 〈ξ 2(a2 + (a†)2 + 4a†a + 1)〉
− 〈ξ (a + a†)〉2 − 2〈a†a〉〈ξ 2〉 − 2〈ξ 3(a + a†)〉
+ 2〈ξ 〉2〈ξ (a + a†)〉 + 〈ξ 4〉 − 〈ξ 2〉2,

where the subscript c denotes the cavity frame, as introduced
above. Most of the terms cancel due to the following reasons:

(1) The multiatom calculation is performed in a mean-
field approximation; therefore, 〈ξ r〉 = 〈ξ 〉r and 〈ξ rξa(†)〉 =
〈ξ 〉r〈ξa(†)〉 for r ∈ N.

(2) 〈ξa(†)〉 = 0 as these terms are proportional to the
energy-nonconserving matrix elements ρσ n,σ n±1 = 0, with
σ ∈ {↑,↓}.

The remaining nonvanishing terms are

〈n2〉c − 〈n〉2
c = 〈n2〉 − 〈n〉2 + 4〈ξ 2a†a〉 + 〈ξ 2〉 − 2〈a†a〉〈ξ 2〉.

The expectation values yield in the limit 〈n〉 � 1

〈ξ 2〉 = p2
0M + p2

0
M

M − 1

(
Sk

z

)2
,

〈ξ 2a†a〉 = 〈n〉〈ξ 2〉 − 〈n〉p2
0

2κ

�1
Sk

z F0,
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where Sk
z is the self-consistent atomic polarization for an

arbitrarily chosen atom k and F0 = (〈n2〉 − 〈n〉2)/〈n〉 is the
Fano factor of the photon distribution in the polaron frame. In
the limit 〈n〉 � 〈ξ 2〉, the Fano factor is

F ≈ F0

(
1 − p2

0
8κ

�1
Sk

z

)
+ 2〈ξ 2〉.

If the laser produces classical light, Sk
z ≈ 0 because the photon

number in the cavity is defined by the balance of pumping and
loss rates. On the other hand, if the laser produces squeezed
light, the number of photons is defined by the root of the
coupling matrix element and Sk

z � M . Therefore, we write
Sk

z = ηM with η ∈ [0,1]. For typical lasing parameters p0 and
M of the order of 100 we have p2

0M � 1, but p2
0M

2 is of the
order of unity. Therefore, the corrections to the Fano factor
due to the polaron transformation can be written as

F ≈ F0 + 2p2
0η

2M2.

The second term of F can be arbitrarily large for large M . If
the Fano factor should be smaller than a certain threshold Fmax

and if p0 is fixed, we arrive at the constraint

M �
√

Fmax − F0

2p2
0

.

Decreasing p0 shifts the roots of the coupling matrix element
to higher photon numbers and weakens this constraint.

X. CONCLUSION

In this paper we showed that artificial atoms with both σx

and σz coupling offer a way to construct a laser that produces
photon-number squeezed light. The maximum photon number

can be modified via the coupling strength g and the mixing an-
gle θ . In contrast to other proposals, usual coupling strengths of
the order of 1 × 10−3ω give rise to large photon numbers of the
order of 1 × 104. Once a maximum photon number is chosen,
g and θ can be adjusted to suppress energy-nonconserving
transitions that would otherwise destroy the squeezed state.
Furthermore, a pumping process can be implemented using
two external baths.

Coupling multiple artificial atoms to a common resonator
has already been demonstrated experimentally by the construc-
tion of a quantum metamaterial consisting of 20 superconduct-
ing flux qubits [22]. The individual qubits exhibited a mixing
angle θ ≈ 1.18 and a bare coupling strength g/ω ≈ 5 × 10−5

to the third resonator mode at ω3/(2π ) = 3 × 2.594 GHz. In
this setup, g/ω is actually quite small. A larger, but still real-
istic, coupling strength of g/ω = 4 × 10−3 and a typical res-
onator decay rate of κ/ω = 1 × 10−5 yield for M = 200 atoms
and rates of �↑/ω = 0.05, �↓/ω = 0.0001, and �∗

ϕ/ω =
0.001 an average photon number of 〈n〉 ≈ 381 700 and a Fano
factor F ≈ 0.08. Hence, using modified qubits with a smaller
mixing angle θ , an experimental realization of the presented
laser is possible and promising with current qubit technology.
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APPENDIX

The 4 × 4 matrix M and the vector �A defined above in the
calculation of ρ have the following form (� = 1):

M =

⎛
⎜⎜⎜⎜⎝

−iω(p − q) − �↓ − �↑ i〈q + 1|A†|q〉 −i〈p|A|p + 1〉 0

i〈q|A|q + 1〉 −i
 − iω(p − q) − �↓
2 − �↑

2 − �∗
ϕ 0 −i〈p|A|p + 1〉

−i〈p + 1|A†|p〉 0 i
 − iω(p − q) − �↓
2 − �↑

2 − �∗
ϕ i〈q + 1|A†|q〉

0 −i〈p + 1|A†|p〉 i〈q|A|q + 1〉 −iω(p − q) − �↑ − �↓

⎞
⎟⎟⎟⎟⎠,

�A(ρr) =

⎛
⎜⎜⎝

�↑(ρr)p,q

0
0

�↓(ρr)p+1,q+1

⎞
⎟⎟⎠.
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